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ABSTRACT

Micro Crack detection using deep neural networks(DNNs) through an automated
pipeline using wave fields interacting with the damaged areas is highly sought
after. However, these high dimensional spatio-temporal crack data are limited,
moreover these dataset have large dimension in the temporal domain. The dataset
exhibits a pronounced class imbalance, with crack pixels accounting for an aver-
age of only 5% of the total pixels per sample. This severe imbalance presents a
challenge for deep learning models when dealing with various microscale cracks,
as the network tends to favor the majority class, often resulting in reduced detec-
tion accuracy. This study proposes an asymmetric encoder–decoder network with
Adaptive Feature Reutilization Block for micro-crack detection. The impact of
various activation and loss functions were examined through feature space visual-
isation using manifold discovery and analysis (MDA) algorithm. The optimized
architecture and training methodology achieved an accuracy of 87.74%.

1 INTRODUCTION

Micro crack detection in materials is of significant importance due to the potential for catastrophic
failures, which can lead to substantial financial losses and safety hazards in industries (Malekloo
et al., 2022; Golewski, 2023). Detecting cracks in complex structures, like aircraft bodies or intricate
machinery components, poses a substantial challenge using conventional methods like visual inspec-
tion or standard cameras, especially when dealing with complex geometries. The use of wave-based
approaches for crack detection offers a powerful solution, as these methods allow for the analysis of
structures that are not easily accessible or too complex to inspect manually.

Convolutional Neural Networks (CNNs) are especially good at processing spatial data due to their
ability to capture local spatial correlations within an image (LeCun et al., 2015). Nevertheless, stan-
dard segmentation methods, such as vanilla architectures, demonstrate limited performance on this
particular dataset, due to the complex spatio-temporal nature of the crack patterns. This becomes
even more significant when the cracks represent a tiny minority in the dataset, leading to poor detec-
tion accuracy. This issue is enhanced when dealing with very small cracks, as they not only lead to
data imbalance but may also cause minimal disruption in wave behaviour. In such cases, the waves
may exhibit minimal changes, making it difficult for the model to detect the cracks accurately.

This challenge necessitates the development of a more tailored custom model. Our proposed Micro-
CrackAttentionNeXt is designed to overcome the limitations of vanilla models like UNet by incor-
porating enhanced spatial and temporal feature extraction. Unlike UNet Ronneberger et al. (2015),
where the input and target share the same modality (image-to-image translation). Our model pro-
cesses spatio-temporal input data and outputs spatial crack predictions, enabling it to handle more
complex data while improving micro-scale detection accuracy. The asymmetric encoder-decoder
structure, with attention layers is particularly effective as it focuses on capturing critical crack pat-
terns rather than relying heavily on skip connections. The attention mechanism ensures that the
model prioritizes the time steps when the waves interact with the cracks, improving detection preci-
sion. The DNNs capacity to recognise minute details and complex patterns in high dimensional data
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is impacted by the activation functions used, which becomes crucial in the micro-scale setting where
accuracy is much needed. Activation functions enhance the network’s expressive power, enabling it
to capture diverse features and representations.

Rectified Linear Unit (ReLU) Nair & Hinton (2010) and its variants are commonly used activation
functions. ReLU introduces non-linearity by setting negative values to zero, allowing positive ones
to pass unchanged, which aids in deep network training. The ”dying ReLU” issue, where neurons
become inactive, hampers learning Xu et al. (2015); He et al. (2015b). Variants like Leaky ReLU
mitigate this by allowing small negative slopes. SELU (Scaled Exponential Linear Unit) Klambauer
et al. (2017) scales outputs to maintain self-normalizing properties, keeping activations near zero
mean and unit variance. GeLU (Gaussian Error Linear Unit) Hendrycks & Gimpel (2023) enhances
representation learning by incorporating probabilistic elements, though it has higher computational
complexity. ELU (Exponential Linear Unit) Clevert et al. (2016) improves learning dynamics but is
computationally expensive. Various Loss functions have been proposed in the literature to combat
class imbalance issues in the DNN model. The loss functions tested are: 1)Dice LossLin et al.
(2018), 2)Focal LossLin et al. (2018), 3)Weighted Dice LossYeung et al. (2021) and, 4)Combined
Weighted Dice LossJadon (2020).

These activation functions aim to strike a delicate balance between adaptability and computational
efficiency, essential considerations in the micro-material domain, where capturing fine details is
crucial for accurate crack detection. Empirical exploration and meticulous fine-tuning of these acti-
vation functions is imperative to identify the optimal choice that aligns with the distinctive charac-
teristics of micro-material images. Ultimately, a nuanced and effective approach to crack detection
in micro-materials relies on the thoughtful selection and optimization of activation functions within
the CNN architecture.

The extent of the influence of different activations is difficult to determine against conventional met-
rics such as accuracy and F1 score. Hence, it is imperative to analyse the internal dynamics of
the model. Methods like Principal Component Analysis, t-SNE van der Maaten & Hinton (2008)
and UMAP McInnes et al. (2020) are used to analyse the higher dimensional feature maps of these
blackbox models against the target. However, these methods provide little to no insight when used
on segmentation problems. In this study, we use the recently proposed Manifold Discovery Anal-
ysis (MDA) Islam et al. (2023) to qualitatively assess the impacts of various activation functions.
Moreover, through this, we were able to analyse the effects activations had on the feature maps of
the model, allowing us to choose the best activation function for the given problem.

The primary contributions of this paper are:

• Introducing MicroCrackAttentionNeXt – an improvement over (Moreh et al., 2024).
• Qualitative Investigation of the impact of different network architectural choices, activa-

tions and loss functions in MicroCrackAttentionNeXt through Manifold Discovery and
Analysis.

The paper’s structure is outlined in the following manner: Section 2 encompasses a concise yet
informative overview of relevant studies. Section 3 deals with the dataset used and the proposed
methodology. The assessment of the performance of the proposed system and the results obtained
are included in Section 4. Ultimately, concluding remarks and future works are presented in Section
5.

2 RELATED WORKS

In a number of areas, including materials science, aerospace, and infrastructure, where the exis-
tence of small fissures might jeopardise the structural integrity of materials, micro-crack detection
is essential (Chen et al., 2024; Yuan et al., 2022; Retheesh et al., 2017). Conventional techniques
for detecting microcracks are frequently labour-intensive and not very scalable. Deep learning, and
Convolutional Neural Networks (CNNs) in particular, have become a potent and effective technique
for microcrack detection automation in recent years(Su & Wang, 2020; Chen & Jahanshahi, 2017;
Hamishebahar et al., 2022).

Tran et al. (2024) applied 1D Convolutional Neural Networks (1D CNNs) for structural damage
detection, utilizing acceleration signals to detect cracks in numerical steel beam models. Their
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approach showed high detection accuracy, comparable to more complex methods, by processing
time-series data and extracting key features related to structural changes. While they focused on
single-dimensional data, our research extends this by using multi-dimensional spatio-temporal data,
which includes wave propagation across the material. This allows for more detailed analysis, cap-
turing both spatial and temporal interactions crucial for detecting micro-cracks.

Jiang et al. (2022) combined 1D CNNs with Support Vector Machines (SVM) to enhance structural
damage detection. 1D CNNs were used to localize damage, while SVMs focused on classifying
the severity, benefiting from the strengths of both models in feature extraction and small-sample
learning.

Barbosh et al. (2024) used Acoustic Emission (AE) waveforms and DenseNet to detect and localise
the crack. The localisation was done to determine whether the crack was close to the sensor or far
away. The cracks were also classified into severe and less severe cracks.

Moreover, Li et al. (2023) proposed a GM-ResNet-based approach to enhance crack detection, uti-
lizing ResNet-34 as the foundational network. To address challenges in global and local information
assimilation, a global attention mechanism was incorporated for optimized feature extraction. Rec-
ognizing limitations in ResNet-34, the fully connected layer was replaced with a Multilayer Fully
Connected Neural Network (MFCNN), featuring multiple layers, including batch normalization and
Leaky ReLU nonlinearity. This innovative substitution significantly improved the model’s ability
to capture complex data distributions and patterns, enhancing feature extraction and representation
capabilities while preventing overfitting during training.

Wuttke et al. (2021) introduced a 1D-CNN-based model, SpAsE-Net, for detecting cracks in solid
structures using wave field data. The model leverages sparse sensor data and the Dynamic Lat-
tice Element Method (LEM) for wave propagation simulations. The network’s architecture includes
fully convolutional layers for spatial feature fusion and a predictor module using transposed convo-
lutional layers and focal loss for crack localization. It achieves around 85% accuracy in detecting
small cracks(>1 µm) and 97.4% accuracy in detecting large cracks(>4 µm) by tuning the focal loss
parameters.

Moreh et al. (2022) present a DNN based method for detecting and localizing cracks in materials
using spatio-temporal data. They introduce two CNN architectures: a SimpleCNN (SCNN) as a
baseline model and a more complex Residual Network (ResNet18) encoder. SCNN and ResNet18
leverage 1D convolutions to extract temporal features from the wave data, followed by 2D convo-
lutions for spatial feature extraction. Both models employ a decoder with transposed convolutional
layers to upscale the encoded features and predict a binary mask indicating the crack locations. The
models were evaluated on simulated wave propagation data, where cracks ranging from 0.4 to 12.8
µm in size. ResNet18 outperformed SCNN and achieved a precision of 0.92, recall of 0.719 and a
DSC of 0.744.

Moreh et al. (2024) explores the use of DNN for automated crack detection in structures using
seismic wave signals. The authors improve on previous asymmetric encoder-decoder models by
experimenting with different encoder backbones and decoder layers. The best combination was
found to be the 1D-DenseNet encoder and the Transpose Convolutions as decoders. The proposed
model achieved an accuracy of 83.68% with a total parameter count of 1.393 million.

This study builds upon the foundational contributions of Wuttke et al. (2021) and Moreh et al. (2024),
extending their methodologies to a broader scope. The existing body of work in this field remains
relatively sparse, with few studies addressing crack segmentation through the specific approach
employed in this research.

3 METHOD

Our proposed work targets the detection of microcracks across various sizes and locations within
seismic wave field numerical data. For this purpose, our MicroCracksAttentionNeXt extracts crucial
signals from the data to identify and detect those cracks. This is done by first learning the temporal
representations, followed by spatial representations. This encoded data is then passed through the
decoder to achieve semantic spatial segmentation.
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Figure 1: 1) The 6 frames (100 time-steps interval, from left to right) of a displacement() wave
propagation inside the defined plate with cracks(Wuttke et al., 2021). 2) Visualization of a data
instance.

In this section, we describe the seismic wave data followed by the architecture of the proposed
MicroCrackAttentionNeXt model and, subsequently, the training procedure used.

3.1 WAVE FIELD DATA

In this study, it is crucial to understand that it deals with numerical data produced by geo-science
experts at our group (Wuttke et al., 2021). For someone without expertise in this field, interpreting
the data is nearly impossible, as the data is purely numerical and provides no visual insights. The
goal of this research is to demonstrate that it is indeed possible to extract patterns from such data.
Research in this area is still in its infancy, making it an important achievement to prove that machine
learning can process such data and segment fractures. We are also working on generating a new
dataset that better represents reality, where real-world data can be evaluated using our model.

The wave field dataset utilized in this work (Wuttke et al., 2021), while effective for crack detection,
presents some limitations in terms of data dimensionality. These datasets are characterized by large
temporal dimensions, which increases the complexity of data processing and model training. The
dataset consists of homogeneous 2D plates, where each plate is modelled with lattice particles that
share consistent properties, such as density and Young’s Modulus. The modeling of structural sys-
tems is achieved using Voronoi-Delaunay meshing algorithms within the Lattice Element Method
(LEM). Lattice nodes, representing unit cell centers, are connected by beams capable of handling
normal forces (N ), shear forces (V ), and bending moments (M ). If the strain energy Ue in an
element exceeds a predefined threshold Uth, the element undergoes stiffness reduction or removal,
simulating failure states. To simulate wave propagation through the material, an external force of
1000 N is applied at the midpoint of the left boundary, ensuring that the waves propagate across the
entire plate, interacting with both non-crack and crack regions. The resulting displacements in both
the x- and y-directions are recorded over 2000 time steps, capturing detailed temporal changes in
the wave field. These displacements are measured by a 9 × 9 (81) sensor grid uniformly distributed
across the material, resulting in a wave field dataset with dimensions of 2 x 81 × 2000. Figure 1
shows a sample of the input dataset. This approach provides spatio-temporal data that captures the
interaction between the propagating waves and the cracks, allowing for in-depth analysis of crack
detection model performance.

A major challenge arises from the severe class imbalance present in the dataset. On average, only
5% of the total pixels represent cracks, with the remaining majority belonging to intact, non-crack
regions. This imbalance poses a substantial obstacle for deep learning models, which are prone
to bias toward the majority class. As a result, the models tend to predict non-crack regions more
frequently, leading to suboptimal detection accuracy for the minority class (crack regions). Address-
ing this issue requires careful design of the model and training process to ensure that the network
can effectively learn from the minority class, and accurately identify crack regions without being
overpowered by the majority class imbalance.
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3.2 MICROCRACKSATTENTIONNEXT MODEL ARCHITECTURE

MicrocrackAttentionNeXt, shown in Figure 2, is an asymmetric encoder-decoder network. The in-
put to the model is a tensor with shape X ∈ RCin×T×S , where Cin = 2 represents the input channels
corresponding to the x and y components of wave data, T = 2000 is the temporal dimension, and
S = 81 corresponds to the spatial dimension, which is a flattened 9× 9 sensor grid. To reduce com-
putational complexity and focus on salient temporal features, the network uses an initial max pooling
layer with a kernel size of (4, 1). This layer transforms the input tensor X to X1 ∈ R2×500×81 by
downsampling the temporal dimension from 2000 to T1 = 500. This reduction is crucial as it
reduces the amount of data the subsequent layers need to process.

The encoder is composed of four convolutional blocks, each designed to progressively extract
higher-level features from the input data. The first convolutional block applies two convolutional
layers with kernel sizes (3, 1) and padding (1, 0), which maintain the spatial dimensions while ex-
panding the channel dimension from 2 to 16. These layers are followed by batch normalization and
activation functions, introducing non-linearity. A Squeeze-and-Excitation (SE) module is then ap-
plied, which recalibrates channel-wise feature responses by modelling interdependencies between
channels. This module enhances the representational power of the network by allowing it to fo-
cus on the most informative features. Following the first convolutional block, a max pooling layer
with a kernel size of (2, 1) further reduces the temporal dimension from 500 to T2 = 250. Group
normalization is applied to the data, normalizing across channels and improving convergence dur-
ing training. An AttentionLayer computes self-attention over the temporal and spatial dimensions,
enabling the network to weigh different parts of the input differently. This attention mechanism is
essential for focusing on relevant features and capturing dependencies across the data. A residual
connection adds the attention output back to the original input, facilitating better gradient flow and
mitigating issues such as vanishing gradients (Raghu et al., 2022; He et al., 2015a).

This pattern repeats in the subsequent convolutional blocks, with each block increasing the number
of channels (from 16 to 32, 32 to 64, and 64 to 128) and further reducing the temporal dimension
(from 250 to 125, 125 to 62, and 62 to 31) through additional pooling layers. The consistent use of
(3, 1) kernels ensures effective temporal feature extraction while preserving spatial dimensions. SE
modules and attention mechanisms are integrated throughout. Feature maps are upsampled and rein-
troduced to the Conv1 block through a Self-Attention Module (SAM)-inspired mechanism, enabling
the decoder backbone to reuse features and increase model performance. The feedback mechanism
employs bilinear interpolation for resizing and utilizes Conv2D layers to selectively regulate the fea-
tures propagated back into the network giving it the alias of Adaptive Feature Reutilization block.

At the bottleneck of the network, a convolutional layer with a large kernel size of (31, 1) is employed,
covering the entire temporal dimension T5 = 31. This layer transforms the tensor to Xbottleneck ∈
RB×128×1×81, capturing long-range temporal dependencies and encapsulating high-level temporal
information into a compact form. Batch normalization and activation are applied to maintain training
stability and introduce non-linearity.

The decoder begins by reshaping this bottleneck tensor into a spatial grid Xreshaped ∈ R128×9×9, re-
organizing the data for spatial processing. A point-wise convolution reduces the channel dimension
from 128 to 16, preparing the data for upsampling. The network then uses transposed convolutional
layers to reconstruct the spatial dimensions progressively. The first transposed convolution upsam-
ples the spatial dimensions from 9× 9 to 18× 18 and reduces the channel dimension from 16 to 8.
The second transposed convolution further upsamples the dimensions to 36 × 36, maintaining the
channel count at 8. Each transposed convolution is followed by batch normalization to ensure stable
learning and effective non-linear transformations.

Finally, a point-wise convolution reduces the channel dimension from 8 to 1, and a sigmoid activa-
tion function scales the output to the range [0, 1]. The output tensor Y ∈ R1×36×36 represents the
reconstructed spatial data, which is then flattened into a vector Yflat ∈ R1296 (since 36×36 = 1296),
making it suitable for downstream tasks. Figure 2 shows the proposed model architecture. The archi-
tectural choices in MicrocrackAttentionNeXt are designed to balance feature extraction capability
and computational efficiency. The initial temporal downsampling reduces the data size, allowing
the network to process longer sequences without excessive computational overhead. The 1D convo-
lutional blocks with increasing channel dimensions enable the extraction of hierarchical features in
the temporal domain, without mixing the spatial component. We found that learning temporal and
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Figure 2: MicroCrackAttentionNeXt model architecture.

spatial components separately enables the model to learn better representations, and it is much more
computationally efficient. The Squeeze-and-Excitation layers optimize the network’s focus on in-
formative channels, improving feature quality. Using a large kernel size in the bottleneck layer is an
intentional choice to capture long-range temporal dependencies, which are important in sequences
where connected events are separated by large time steps. The reshaping and upsampling in the de-
coder reconstruct the spatial dimensions effectively, ensuring that the high-level features extracted
by the encoder are used to generate outputs.

3.3 TRAINING PROCEDURE

The model was trained using the Adam optimizerKingma & Ba (2017) with a learning rate of 0.001
for a total of 50 epochs. Multiple experiments were run on different activation functions and loss
metrics. The experiments involved evaluating four different activation functions against four loss
metrics, resulting in a total of 16 experiments. The activation functions and loss metrics are outlined
below.

3.3.1 ACTIVATION FUNCTIONS

Activation functions are used to introduce non-linearity within neural networks, each offering dif-
ferent advantages for a DL model. The Rectified Linear Unit (ReLU) is defined as ReLU(x) =
max(0, x), outputting the input if positive and zero otherwise, thus avoiding vanishing gradient
issues. The Scaled Exponential Linear Unit (SELU) normalizes outputs automatically, scaling neg-
ative inputs with an exponential function and multiplying positive inputs by a fixed constant, where
λ = 1.0507 and α = 1.67326. The Gaussian Error Linear Unit (GELU) employs the Gaussian
cumulative distribution function, Φ(x) = 1

2

[
1 + erf

(
x√
2

)]
, to probabilistically weigh input signif-

icance. GELU smoothly blends linear and non-linear behavior, making it more flexible in capturing
complex patterns The Exponential Linear Unit (ELU) applies ELU(x) = x for positive inputs and
α(ex − 1) for negatives, mitigating vanishing gradients more effectively than ReLU, and accelerat-
ing convergence, with α typically set to 1. Each function enhances network performance through
tailored non-linear transformations.

3.3.2 LOSS FUNCTIONS

1. Dice Loss:
Dice Loss is based on the Dice coefficient and is commonly used for segmentation tasks. It
measures the overlap between the predicted and true labels, focusing on improving perfor-
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mance for imbalanced datasets.

Dice Loss = 1− 2|X ∩ Y |
|X|+ |Y |

(1)

where X and Y are the predicted and true sets, respectively.

2. Focal Loss:
Focal Loss is designed to address class imbalance by down-weighting the loss assigned to
well-classified examples, making the model focus more on hard-to-classify instances.

Focal Loss(pt) = −α(1− pt)
γ log(pt) (2)

where pt is the predicted probability, α is a weighting factor, and γ is a focusing parameter.

3. Weighted Dice Loss:
Weighted Dice Loss is a variation of Dice Loss that assigns different weights to different
classes, enhancing performance on datasets with imbalanced class distributions by penal-
izing certain classes more.

Weighted Dice Loss = 1− 2
∑

wixiyi∑
wix2

i +
∑

wiy2i
(3)

where wi is the weight assigned to class i, and xi, yi are the predicted and true values for
class i.

4. Combined Weighted Dice Loss:
This is a hybrid loss that combines Weighted Dice Loss and CrossEntropy Loss, allowing
the model to balance overall performance while addressing class imbalances by tuning the
contribution of each component.

CWDL = α · WDL + (1− α) · CrossEntropy Loss (4)

where CWDL is Combined Weighted Dice Loss, WDL is Weighted Dice Loss and, α is a
weighting factor to balance the two loss components.

We found the combination of Combined Weighted Dice Loss and GeLU to be the best performing.
The combined weighted dice loss performed the best across all the activations. However, we found
that we were able to squeeze more accuracy through the GeLU function.

3.4 EVALUATION METRICS

For the evaluation part, we utilized the same metrics as in Moreh et al. (2024), namely Dice Sim-
ilarity Coefficient (DSC) and accuracy which frequently employed to evaluate the performance of
models. The DSC measures the overlap between predicted and actual results, particularly in seg-
mentation tasks. Its mathematical formulation is given by:

DSC =
2 · TP

2 · TP + FP + FN
(5)

Accuracy measures the overall correctness of the predictions by calculating the proportion of true
results, both positive and negative, over the total number of cases, given by:

Accuracy =
TP+ TN

TP+ TN+ FP + FN
(6)

4 RESULTS & DISCUSSION

4.1 MDA ANALYSIS

Manifold Discovery and Analysis (MDA) helps visualize the higher dimensional manifolds formed
by the intermediate layers of the model in lower dimension (Islam et al., 2023). These plots help
visualise the learned features in the ℓth layer with respect to the output manifold. Unlike methods
like t-SNE and UMAP, which only work on classification tasks, MDA works on regression tasks,

7
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Figure 3: 1) MDA visualizations of layers using Gelu activation and Dice loss, shown for a) Layer
22, b) Layer 25, c) Layer 34, and d) Layer 64 and, 2) MDA visualization of Layer 64 utilizing
different activation functions: a) ELU, b) ReLU, c) GELU, and d) SELU.

Figure 4: MDA visualization of Layer 64 comparing a) Untrained Model and b) Trained Model.

where the output manifold can have a complex shape. MDA also preserves the geodesic distances
between higher dimensional feature points, preserving both local and global structure.

In a nutshell, MDA works as follows: First, distance is computed between the estimated outputs
of the DNN, from this distance the farthest point is chosen to construct the boundary of the output
manifold. All the points are sorted w.r.t the farthest point in k bins using optimal histogram bin
count. These bins become the labels that will be used in the second step. Second, the high dimen-
sional features from an intermediate layer are projected to the manifold using the Bayesian manifold
projection (BMP) approach. BMP computes a posterior distribution over the low-dimensional space
by combining the prior (based on pseudo-labels and manifold structure) with a likelihood (based on
the observed data). Finally, a DNN trained on predicting the location of uncertain Bayesian points
on a 2D embedding space is used to visualise the results. The plots are assessed qualitatively on the
following points:

• Feature Separation and Continuity: The MDA visualization shows a curved shape, indicat-
ing that the features extracted from the neural network follow a smooth continuum along
the manifold. This suggests that the neural network is capturing meaningful information.

• Color Gradient: A spectrum of gradients is shown, implying that the model has learned to
separate different features.

The MDA plot for the untrained model shows a relatively disorganized and diffuse clustering of
points. This suggests that the feature representations at Layer 64 are not yet structured in a mean-
ingful way to distinguish between patterns within the dataset. The absence of clear separation or
distinct clustering patterns indicates that the untrained model has not yet learned to capture the un-
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Figure 5: MDA visualization comparing a) 1D-Densenet Moreh et al. (2024) and b) Our proposed
model - MicroCrackAttentionNeXt. The highlighted region in black indicates the region where
the cluster is broken in 1D-Densenet. In contrast, the same region in MicroCrackAttentionNeXt
shows coherency implying that the MicroCrackAttentionNeXt learned good feature representations
for microcracks.

derlying structure of the data, which is expected at the initial stages of training. At this stage, the
network’s representations are largely random, as it has not yet learned the task-specific features.
The spread-out nature of the points highlights that the model is treating all inputs similarly, without
any differentiation based on the features it should detect. In contrast, the MDA plot for the trained
model reveals a much more structured and organized distribution. The ℓth layer of a well-trained
model shows the cluster with a smooth arch-like structure in fig 5 and a gradient of colors differenti-
ating the two output extremums, in our case red representing 0 and Blue representing 1. The analysis
of various layer depths and activation functions in MicroCrackAttentionNeXt reveals a clear pattern
in the network’s ability to form distinguishable manifold curves. Fig 3(1) visualises the manifold at
different layers of the network. All the layers show consistent and smooth arch-like shapes. This
implies that all the layers have learned good representations. In fig 3(2) effects of various activa-
tions are plotted, we see that ELU shows more spread out cluster especially toward the light colors
(towards crack class), ReLU shows a good arch like structure with tightly packed dots of red color
(no crack class). Still, the light color dots are much more incoherent and less compact. SeLU shows
a poorly defined structure compared to all other activations. This is also reflected in the results
table where SeLU performs worse in all cases. This behaviour of SeLU can be attributed to its
self-normalising property, as it forces all outputs to behave similarly, ”dampening” the importance
of smaller, rare patterns. This makes the model less discriminative, making the plot less defined and
incoherent. GeLU in terms of cluster shape and compactness is similar to ReLU, which should be
the case as GeLU is smoothed version of ReLU. We also observe very similar performance in the
results table. Among all the activations GeLU performed the best, this fact also reflects on the MDA
plot where the cluster is very smooth and the lighter points are more compactly packed relative to
other activation functions. Its smooth probabilistic gating mechanism helps in finely controlling how
information is passed through the network, allowing the model to focus more on the minority class.
Fig 5 shows MDA visualisation of 1-D Densenet proposed in Moreh et al. (2024) is compared with
the proposed MicroCrackAttentionNeXt model. One thing to note is the absence of full spectrum
of colors in the plot. This is mainly attributed to the severe class imbalance in the data. This class
imbalance leads to very few values in the feature map strongly correlating to the strong value of
predicting the crack class. This is further aggravated by the dimensionality reduction, which renders
even fewer points corresponding to higher confidence value. Hence we see often only one point
representing Blue color. The proposed MicroCrackAttentionNeXt achieved a DSC of 0.91. Table 1
shows the comparison of different loss functions used to train MicroCrackAttentionNeXt.
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Table 1: Comparison of accuracies using different loss functions for multiple crack sizes. FL: Focal
Loss, DL: Dice Loss, WDL: Weighted Dice Loss, CWDL: Combined Weighted Dice Loss

Activation function Loss function > 0 µm > 1 µm > 2 µm > 3 µm > 4 µm

GeLU

FL 0.8275 0.8612 0.9354 0.9501 0.9541
DL 0.8633 0.9012 0.9585 0.9701 0.9802

WDL 0.8381 0.8798 0.9415 0.9670 0.9793
CWDL 0.8774 0.9211 0.9814 0.9808 0.9848

ReLU

FL 0.8252 0.8632 0.9456 0.9701 0.9802
DL 0.8553 0.8902 0.9646 0.9770 0.9829

WDL 0.8213 0.8687 0.9293 0.9524 0.9703
CWDL 0.8678 0.9134 0.9673 0.9808 0.9866

ELU

FL 0.8313 0.8797 0.9558 0.9839 0.9911
DL 0.8502 0.9011 0.9673 0.9831 0.9884

WDL 0.8563 0.9034 0.9605 0.9739 0.9829
CWDL 0.8515 0.9041 0.9673 0.9847 0.9920

SeLU

FL 0.8206 0.8671 0.9503 0.9793 0.9902
DL 0.8412 0.8993 0.9707 0.9870 0.9893

WDL 0.8201 0.8664 0.9307 0.9555 0.9712
CWDL 0.8443 0.8910 0.9625 0.9854 0.9929

5 CONCLUSION AND FUTURE WORK

5.1 CONCLUSION

Through this study, we have demonstrated the effectiveness of feature visualization in designing
MicroCrackAttentionNeXt, by carefully optimizing the architecture, leveraging the right activation
function and loss. This architecture also utilizes multiple 1D-CNN layers for feature extraction,
significantly reducing the training time. These are followed by folded layers that merge spatial and
temporal features, along with a prediction module for semantic segmentation. The dataset used are
spatio-temporal in nature and represent the behavior of wave propagation, where waves interact with
the cracks, leading to disruptions in their patterns and altered behavior in the presence of cracks. The
model is capable of segmenting the microcracks, helping to determine their spatial locations in the
material. The qualitative examination of the activation functions using the Manifold Discovery and
Analysis (MDA) algorithm allowed the evaluation of impact of different activation and loss functions
on the model’s performance. The proposed model and 1D-Densenet were analyzed using the MDA
plots. It was observed that manifold of the proposed model was more compact with a much more
smoother arc than 1D-Densenet. With the optimized selection of activation and loss functions, an
accuracy of 87.74% was achieved.

5.2 FUTURE WORK

In future efforts to improve microcrack detection models, two primary strategies can be pursued:
expanding datasets and refining model architectures. The dataset used, presents a challenge due to
severe class imbalance, which requires more advanced techniques for data generation and augmenta-
tion to mitigate the bias introduced. Moreover, the segmentation output suffers from low resolution,
and without appropriate upscaling techniques, critical details may be lost. To address this, in the
future works, we propose incorporating a super-resolution GAN approach to enhance the resolution
of the segmentation outputs. While the encoder architecture performs optimally, further changes are
necessary in the decoder section of the segmentation model to achieve improved results and maintain
consistency with the high-quality input features. To enhance the encoder’s ability to capture long-
range dependencies, state space model can be used, particularity integrating the recently proposed
Mamba architecture. This adjustment would improve the model’s ability to handle complex spatial
relationships, thereby strengthening feature extraction and contributing to overall performance gains
in the segmentation task.
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