AIRV2X: UNIFIED AIR-GROUND VEHICLE-TO-EVERYTHING COLLABORATION

Anonymous authorsPaper under double-blind review

ABSTRACT

While multi-vehicular collaborative driving demonstrates clear advantages over single-vehicle autonomy, traditional infrastructure-based V2X systems remain constrained by substantial deployment costs and the creation of "uncovered danger zones" in rural and suburban areas. We present AirV2X-Perception, a largescale dataset that leverages Unmanned Aerial Vehicles (UAVs) as a flexible alternative or complement to fixed Road-Side Units (RSUs). Drones offer unique advantages over ground-based perception: complementary bird's-eye-views that reduce occlusions, dynamic positioning capabilities that enable hovering, patrolling, and escorting navigation rules, and significantly lower deployment costs compared to fixed infrastructure. Our dataset comprises 6.73 hours of droneassisted driving scenarios across urban, suburban, and rural environments with varied weather and lighting conditions. The AirV2X-Perception dataset facilitates the development and standardized evaluation of Vehicle-to-Drone (V2D) algorithms, addressing a critical gap in the rapidly expanding field of aerial-assisted autonomous driving systems. The dataset and development kits are open-sourced at https://anonymous.4open.science/r/AirV2X-Perception-BBA7.

1 Introduction

Multi-vehicular collaborative driving has been shown to be more effective than single-vehicle autonomous driving primarily due to the complementary sensory coverage provided through intervehicle cooperation. This collaborative approach significantly reduces perception limitations (Zhang et al., 2023; Wang et al., 2025d; Gao et al., 2024) by enabling vehicles to share sensor data and compensate for each other's blind spots. Recent research in Vehicle-to-Everything (V2X) communication demonstrates that Road-Side Units (RSUs) mounted on infrastructure offer superior perception capabilities than vehicle-only collaboration, primarily due to their elevated positioning that minimizes blind spots and provides broader field-of-view coverage. However, traditional infrastructure-based solutions face significant economic constraints. The substantial construction and maintenance costs associated with RSUs necessitate strategic deployment decisions. Consequently, these units are predominantly installed at high-traffic intersections and critical urban junctions to maximize cost-benefit ratios. This economically-driven compromise results in what we term "uncovered danger zones"—highways, pedestrian zones, suburban neighborhoods, and rural areas where vehicles operate without the perceptual advantages of infrastructure support.

Motivation. In parallel with these infrastructure limitations, the rapid rise of the low-altitude economy and steady advances in Unmanned Aerial Vehicle (UAV) technology offer a promising alternative. Modern drones now handle everything from emergency response and fire rescue to goods transport and everyday food delivery. The evolution of drone capabilities has naturally paved the way for drone-based perception systems, which represent a logical extension of this technology into the autonomous driving domain. Unlike static infrastructure-dependent solutions, drone-assisted collaborative driving leverages the mobility and versatility of aerial platforms to enhance vehicular perception in environments where traditional RSUs are economically unfeasible. Compared to traditional RSUs, drone-based perception systems offer several significant advantages:

Drones offer a unique and complementary perception perspective distinct from both vehicle-mounted sensors and fixed RSUs. Ground vehicles capture primarily horizontal, ego-centric views limited by occlusions, while RSUs provide fixed vantage points typically restricted to intersections. In contrast, drones deliver real-time bird's-eye views that are both elevated and mobile,

enabling holistic scene understanding in cluttered environments. This aerial perspective facilitates tracking of agents across occlusions, better anticipation of multi-agent interactions, and improved detection of lane changes or cut-ins otherwise hidden from ground-level sensors.

- **Drones provide superior operational adaptability and flexibility** through dynamic positioning based on real-time requirements. They can <u>hover</u> above specific areas of interest, <u>patrol</u> designated routes, or be programmed to <u>escort</u> individual vehicles, delivering tailored perception assistance precisely where and when needed—capabilities that fixed infrastructure simply cannot match.
- Drone solutions present a more cost-effective approach to expanding coverage. According to the 5G Automotive Association (5GAA) in 2020 (Nokes et al., 2020), a fixed RSU without camera or lidar sensors costs between 20,000–80,000. In comparison, fully-equipped drones with high-resolution cameras and lidar range from under 1,000 to 50,000 depending on specifications. This economic flexibility enables strategic resource allocation—deploying less expensive Vehicle-to-Drone (V2D) systems in rural areas while positioning advanced systems in accident-prone or high-density zones.
- V2D systems can be integrated with emerging aerial networks as the low-altitude economy
 develops. The increasing presence of UAVs performing various tasks creates opportunities for
 "opportunistic" sensing and communication channels for ground vehicles. These aerial vehicles,
 already equipped with advanced sensors and communication devices, can establish a multi-layered
 perception network with minimal additional infrastructure investment, creating a more robust and
 redundant system for autonomous vehicle perception.

These compelling advantages have sparked considerable interest in Vehicle-to-Drone (V2D) communication systems, leading to substantial research efforts focused on developing algorithms that can effectively utilize aerial perspectives to enhance ground vehicle autonomous driving. As a result, there has been a significant increase in research exploring various aspects of drone-assisted vehicular perception, from communication protocols to collaborative sensing frameworks (Hu et al., 2022; Gao et al., 2025b;a; Wu et al., 2025a). However, with the flourishing of V2D algorithms and the demand for more advanced solutions, there remains a critical absence of high-quality datasets specifically designed for training and evaluating drone-assisted perception systems. This limitation hampers the development of robust algorithms that can effectively leverage aerial perspectives to enhance vehicular perception.

To bridge this gap, we present AirV2X-Perception, a large-scale drone-assisted V2X driving dataset. AirV2X-Perception contains 6.73 hours of drone-assisted driving data collected in the co-simulation of the CARLA (Dosovitskiy et al., 2017) and Airsim (Shah et al., 2018) simulator. The dataset contains multiple connected agent types including vehicles, roadside units (RSU), and drones, each equipped with different sensors. The dataset is collected in various urban and rural areas, with different weather (clear, rainy, foggy, and cloudy) and lighting conditions (daytime, dusk, and nighttime). AirV2X-Perception also contains various common navigation strategies for drones, including hovering, patrolling, and escorting, to provide a more comprehensive evaluation of the V2D algorithms. To accommodate the challenges of large-scale perception networks, we include up to 15 connected agents simultaneously (5 vehicles, 5 RSUs, 5 drones) in single scenarios. By releasing this comprehensive dataset to the research community, we aim to accelerate the development of robust drone-assisted perception algorithms and establish standardized benchmarks for performance evaluation.

2 RELATED WORKS

2.1 V2X DATASETS

In this section, we summarize some widely used V2X datasets in Table 1. Existing V2X datasets (Wang et al., 2025b) can be categorized into three distinct groups. The Vehicle + Infrastructure category constitutes the majority of current datasets, with simulated environments like OPV2V (Xu et al., 2022d), V2XSim (Li et al., 2022), and V2XSet (Xu et al., 2022c) providing multiple connected vehicles and infrastructure elements for various perception tasks. Real-world counterparts such as DAIR-V2X (Yu et al., 2022), TUMTraf (Zimmer et al., 2024), and V2XReal (Xiang et al., 2024) offer authentic data but typically suffer from limited scale and environmental diversity, predominantly focusing on urban daytime scenarios. The Drone-specific category includes datasets such as CoPercpetion-UAV (Hu et al., 2022), CoPercpetion-UAV+ (Hu et al., 2023), UAV3D (Ye

Table 1: '-' denotes an unavailable attribute. 'R/S' refers to whether the data is real-world or simulated. 'A.W.' denotes adverse weather conditions. 'D/N' indicates daytime or nighttime scenarios, while 'U/R' refers to urban or rural environments.

	Max Conn		Connect	ed Agents	Mod	Modalities		Diversity		
Year	Dataset	R/S	CAVs	Infra	Drones	Cam.	LiDAR	A.W.	D/N	U/R
		Vei	hicle + I	Infrastrı	ıcture					
Xu et al. (2022d)	OPV2V	Sim	7	0	()	√	√	_	D	U
Li et al. (2022)	V2XSim	Sim	5	1	()	\checkmark	\checkmark	_	D	U
Xu et al. (2022c)	V2XSet	Sim	7	1	()	\checkmark	\checkmark	_	D	U
Yu et al. (2022)	DAIR-V2X	Real	2	1	()	\checkmark	\checkmark	_	D+N	U
Xu et al. (2023)	V2V4Real	Real	2	()	0	_	\checkmark	_	D	U
Hao et al. (2024)	Rcooper	Real	0	4	()	\checkmark	\checkmark	_	D+N	U
Zimmer et al. (2024)	TUMTraf	Real	1	1	()	\checkmark	\checkmark	\checkmark	D	U
Ma et al. (2024)	HoloVIC	Real	1	4	()	\checkmark	\checkmark	_	D	U
Xiang et al. (2024)	V2XReal	Real	4	2	0	\checkmark	\checkmark	_	D	U
Huang et al. (2024)	V2X-Radar	Real	1	1	0	\checkmark	\checkmark	\checkmark	D+N	U
			Dron	es Only						
Hu et al. (2022)	CoP-UAV	Sim	0	0	5	√	_	_	D	U
Hu et al. (2023)	CoP-UAV+	Sim	0	()	10	\checkmark	_	_	D	U
Ye et al. (2024)	UAV3D	Sim	0	()	5	\checkmark	_	_	D	U
Feng et al. (2024)	U2Udata	Sim	0	0	3	\checkmark	\checkmark	\checkmark	D+N	R
	V	ehicle	+ Infras	structure	e + Drones					
Dutta et al. (2024)	MAVREC	Real	1	()	1	√	_	_	D	U+R
Wang et al. (2024)	UVCPNet	Sim	1	()	2	\checkmark	_	_	D	U
Wang et al. (2025a)	Griffin	Sim	1	0	1	\checkmark	\checkmark	\checkmark	D+N	U+R
Hou et al. (2025)	AGC Drive	Real	2	0	1	\checkmark	\checkmark	_	D+N	U+R
-	AirV2X (Ours)	Sim	5	5	5	✓	✓	✓	D+N	U+R

et al., 2024), and U2Udata (Feng et al., 2024), which concentrate on aerial vehicle collaboration but lack the ground-vehicle components essential for comprehensive V2X research. The emerging Vehicle + Infrastructure + Drone category attempts to integrate all three agent types, but current offerings like MAVREC (Dutta et al., 2024), UVCPNet (Wang et al., 2024), Griffin (Wang et al., 2025a), and AGC Drive (Hou et al., 2025) exhibit significant limitations—restricted to minimal agent configurations (typically one vehicle with one or two drones), supporting limited perception tasks, and lacking environmental diversity. Our proposed AirV2X-Perception dataset addresses these limitations by providing an unprecedented comprehensive solution integrating all three agent types at scale. With support for 5 CAVs, 5 infrastructure elements, and 5 drones, it offers the most extensive connected agent environment currently available. Unlike existing datasets with limited scenarios, AirV2X-Perception encompasses diverse environmental conditions spanning urban and rural settings, daytime and nighttime operations, and various adverse weather conditions. Furthermore, it supports both camera and LiDAR modalities across vehicular and RSU agent types alongside high-resolution camera sensors for drone agents, enabling research on multi-modal and cross-modal perception algorithms. The dataset facilitates various perception tasks including object detection, semantic segmentation, and tracking, making it versatile for different collaborative perception research directions while providing a realistic testbed for evaluating algorithms under conditions closer to real-world deployment scenarios.

2.2 V2X Perception Algorithms

Fusion scheme taxonomy is a primary categorization framework for V2X collaborative perception algorithms. **Early fusion** (Gao et al., 2018; Chen et al., 2019b; Arnold et al., 2020) involve direct sharing of raw sensor data, maximally preserving information but requiring prohibitive bandwidth for practical deployment. **Late fusion** methods (Melotti et al., 2020; Fu et al., 2020; Zeng et al., 2020; Shi et al., 2022; Glaser & Kira, 2023) share only final predictions, dramatically reducing communication overhead at the cost of suboptimal accuracy due to information loss. **Intermediate fusion** techniques (Wang et al., 2020; Liu et al., 2020; Cui et al., 2022; Xu et al., 2022b; Qiao & Zulkernine, 2023; Li et al., 2023; Wang et al., 2023; Yu et al., 2023; Wang et al., 2025c) represent the most widely adopted approach, striking a balance by sharing mid-level representations (e.g., BEV features) that enable flexible collaboration while maintaining reasonable data transmis-

sion bandwidth. The emerging **language-based fusion** paradigm (Luo et al., 2025a; You et al., 2024; Wu et al., 2025b; Gao et al., 2025a; Luo et al., 2025b) offers advantages in transmission efficiency, explainability, and interoperability, though our work focuses primarily on benchmarking the predominant intermediate fusion approaches.

Key technical challenges in V2X collaborative perception include model complexity, communication efficiency, and agent heterogeneity. Early transformer-based architectures like V2X-ViT (Xu et al., 2022c) and CoBEVT (Xu et al., 2022a) achieved significant performance improvements over predecessors such as F-Cooper (Chen et al., 2019a) and V2VNet (Wang et al., 2020), but at the cost of high computational demands. Subsequent work has addressed these limitations through various strategies: SICP (Qu et al., 2024) employs convolutional neural networks to reduce model complexity, while HEAL (Lu et al., 2024) and STAMP (Gao et al., 2025b) implement hierarchical fusion strategies that enhance feature processing while scaling to larger agent numbers. For communication efficiency, When2com (Liu et al., 2020) introduced selective communication through graph grouping, and Where2comm (Hu et al., 2022) utilized spatial confidence maps to share only partial feature maps—significantly reducing bandwidth requirements while preserving accuracy. Agent heterogeneity presents another challenge in V2X systems. HEAL (Lu et al., 2024) addressed this through backward alignment strategies. STAMP (Gao et al., 2025b) developed lightweight adapterreverter pairs for feature alignment without modifying the local models. LangCoop (Gao et al., 2025a) innovated using natural language as a universal communication medium between diverse agents. Our AirV2X-Perception dataset features 10+ connected agents per scene and introduces the novel heterogeneity of aerial perspectives. It serves as a comprehensive benchmark for evaluating these algorithms against multiple real-world challenges, particularly in the underexplored domain of drone-assisted V2X systems.

3 AIRV2X-PERCEPTION DATASET

In this section, we introduce AirV2X-Perception, a novel dataset designed specifically to advance drone-assisted V2X collaborative perception research. We first detail our simulation environment and scenario design (§3.1), followed by an exploration of three distinct drone navigation strategies—hover, patrol, and escort (§3.2). We then describe our data collection methodology (§3.3) and conclude with our annotation approach and downstream task formulations (§3.4), designed to facilitate benchmark evaluations for this emerging research domain.

3.1 SIMULATOR ENVIRONMENT AND SCENARIO DESIGN

Simulator Environment: The AirV2X-Perception dataset is collected by co-simulating CARLA (Dosovitskiy et al., 2017) and Airsim (Shah et al., 2018) simulator environments. CARLA simulator is a high-fidelity open-source simulator for autonomous driving research, which provides realistic physical dynamics, vehicle control and interactions as well as photo-realistic digital assets for sensor data collection. Airsim is designed for unmanned aerial vehicle (UAV) simulation and provides realistic physical dynamics of drones. In this project, we use it to simulate the dynamics of drone agents and synchronized with actors in the CARLA simulator. We designed a total of 6.73-hour V2X collaborative driving sequences collected through Towns 1-4 and 6-7, and 12 of the CARLA simulator. We ignore Towns 5 and 10 since these maps contain static objects embedded into the CARLA static map asset that do not have accurate ground truth labels or sensing results, which may potentially lead to unstable model training. We also ignore town 11 as it is an unadorned map that does not align with the collaborative perception objectives of this work.

Scenario Design: The dataset is collected in four different weather conditions including clear, cloudy, foggy, and rainy, as well as three daytime type variations including day, dusk, and night, forming a variety of lighting conditions such as cloudy day, rainy night, and clear dusk, etc., assisting model training and evaluation in different weather and lighting conditions. Since the CARLA simulator provides urban and rural maps, we also collect data in both environments. The statistical distribution of the scenes in the dataset is shown in Figure 1.

3.2 Navigation Strategies for Drones

We designed three types of navigation strategies for drones, hover – letting a drone hover at a fixed position, patrol – assigning each drone a list of predefined waypoints to navigate, and escort –

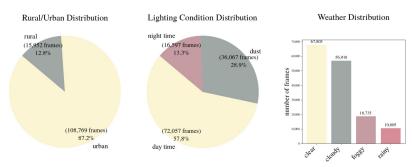


Figure 1: The percentage of each scenario in the dataset.

assigning each drone a connected vehicle to follow. Each of these navigation strategy designs has its own advantages and application in the real world. More specifically, hover is suitable for single-point monitoring in a specific area with minimum power consumption. Secondly, patrol enables the drone to cover a larger area, which is more suitable for large and complex transportation scenarios, but requires more power consumption and high complexity in multi-drone route planning. Finally, escort strategy is designed to assist a certain vehicle or a certain platooning group of vehicles. A conceptual visualization of these three trajectories is shown in Figure 2. The dataset incorporates all of these three types of trajectories. The distribution of each type of navigation strategy in the dataset is shown in Figure 2.

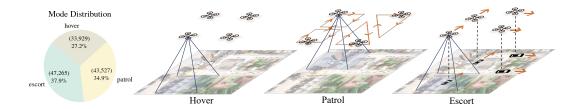


Figure 2: A conceptual visualization of three different navigation strategies for drones, along with the data distribution of each strategy.

3.3 Data Collection

Sensor data are collected at a 5 Hz frequency. Each driving sequence contains 3 to 5 connected vehicles, 3 to 5 connected drones, and 3 to 5 RSUs. Each agent is equipped with both LiDAR and camera sensors and the details of the sensor setups are summarized in Table 2. Each vehicle is equipped with 6 cameras forming a surround-view matrix. The camera sensor placement can be visualized in Figure 3 (c). Each agent also carries GNSS sensors for global positioning while vehicles and drones are also equipped with IMU sensors. LiDAR point clouds are visualized in Figure 3 (b). Sensors from vehicles, drones, and RSUs are annotated with different colors. LiDAR point clouds of different types of agents complement each other, forming more complete point clouds of the scene.

Table 2: Sensor configurations for vehicles, RSUs, and drones.

Agent	LiDAR	Cameras	Other Sensors
Vehicle	1× 360° 64-channel LiDAR; 20 Hz rotation; Vertical FOV +10°/-38°	6× surround-view cameras; FOV 110°; 1280× 720 resolution	GNSS, IMU
RSU	1× 360° 64-channel LiDAR; 20 Hz rotation; Vertical FOV +10°/-38°	4× cameras (front, left, right, back); FOV 110°; 1280× 720 resolution	GNSS
Drone	$1 \times 360^{\circ}$ 64-channel LiDAR; 20 Hz rotation; Vertical FOV -30°/-90°	$1 \times$ downward-facing camera; FOV 110° ; 1280×720 resolution	GNSS, IMU

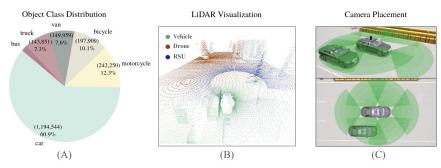


Figure 3: (a) The percentage of each scene in the dataset; (b) LiDAR point clouds visualization for each agent types, and (c) the camera/LiDAR placement for vehicular agents.

3.4 Data Annotation and Downstream Tasks

CARLA simulator provides accurate ground truth labels for all the objects in the scene, including the 3D bounding boxes, semantic segmentation, depth map, and semantic LiDAR point clouds. Using such labels, we provide 3D bounding boxes annotations for 3D object detection, segmentation map annotations for BEV semantic segmentation, depth map annotations for depth estimation, and tracking annotations for 3D multi-object tracking. The data and annotations are gathered in a synchronized manner across all agents in the scene, enabling the collaborative perception tasks. The dataset is split into training, validation, and test sets that contain 2.19, 1.02, and 3.52 hours of driving sequences, respectively. We annotate 6 categories of common objects in the driving scenarios including cars, motorcycles, bicycles, vans, trucks, and buses, forming a total of 1,961,484 annotated objects. The statistics of the dataset are summarized in Figure 3 (a).

4 Benchmark

 In this section, we benchmark multi-agent collaborative perception algorithms on our proposed AirV2X-Perception dataset. We carefully select six representative algorithms that showcase different approaches to collaborative perception challenges, with particular attention to their applicability in complex, heterogeneous, multi-agent scenarios involving ground vehicles, infrastructure, and aerial perspectives. Our evaluation spans 3D object detection, BEV semantic segmentation, and computational efficiency across diverse environmental conditions and agent configurations, providing insights into both algorithmic performance and practical deployment considerations.

4.1 EXPERIMENTAL SETUP AND METHODOLOGY

The AirV2X-Perception dataset has three agent types: vehicles, roadside units (RSUs), and drones. To evaluate performance across this heterogeneous setting, we select representative collaborative perception algorithms: transformer-based V2XViT (Xu et al., 2022b); communication-efficient When2com (Liu et al., 2020) and Where2comm (Hu et al., 2022); BEV-optimized CoBEVT (Xu et al., 2022a); and heterogeneous-agent methods HEAL (Lu et al., 2024) and STAMP (Gao et al., 2025b). All experiments were conducted on RTX A6000 GPUs with PyTorch 2.6.0 and CUDA 12.6. To ensure fair comparison, we focus on LiDAR-based V2X perception—supported by most existing methods—and apply consistent training hyperparameters. Implementation details and reproducibility resources are available in the accompanying codebase¹.

4.2 Performance Overview

We evaluate methods along three primary dimensions: 3D object detection accuracy, BEV semantic segmentation quality, and computational efficiency (peak GPU memory). For 3D detection, we use $[-140.8, 140.8] \times [-40, 40]$ meters around the ego vehicle and report mAP at 30% and 50% IoU (AP30, AP50). For BEV segmentation, we restrict the area to $[-64, 64] \times [-64, 64]$ meters and report mIoU. Following prior datasets such as Dair-V2X (Yu et al., 2022) and TUMTraf (Zimmer et al.,

¹https://anonymous.4open.science/r/AirV2X-Perception-BBA7

2024), all vehicle types are treated as a single class for consistency. Peak GPU memory denotes the maximum usage during training per batch. Table 3 summarizes results across these dimensions.

The results show several trends. First, heterogeneous agent collaboration methods (HEAL and STAMP) achieve superior performance in object detection, with HEAL reaching the highest AP30 and AP50 scores of 49.2% and 45.5%. This indicates that explicitly modeling agent heterogeneity is advantageous in complex multi-agent scenarios such as those in our AirV2X-Perception dataset. Second, we observe a clear trade-off between accuracy and efficiency: while HEAL attains state-of-the-art detection results, it con-

Table 3: Performance overview of 3D object detection, BEV semantic segmentation, and peak GPU memory usage.

Method	AP30↑	AP50↑	$m Io U \!\!\uparrow$	VRAM↓(GB)
When2com	23.0	20.5	15.0	8.2
CoBEVT	42.9	29.8	33.9	38.1
Where2comm	44.8	37.0	29.2	10.2
V2XViT	46.4	39.1	32.7	43.5
HEAL	49.2	45.5	33.9	12.4
STAMP	<u>47.9</u>	<u>42.7</u>	27.7	<u>10.1</u>

sumes 51% more memory than When2com, the most memory-efficient baseline. For semantic segmentation, both HEAL and CoBEVT achieve the best mIoU of 33.9%, with V2XViT close behind at 32.7%. The strong performance of STAMP and HEAL across both tasks underscores the importance of handling heterogeneous agent inputs in collaborative perception.

4.3 Performance Analysis Across Environmental Conditions

Table 4: 3D object detection results in different scenarios, including lighting conditions (day, dusk, or night), environments (urban or rural), and weather conditions (rainy, foggy, cloudy, or clear).

	_ D	ay	Du	ısk	Ni	ght	Ur	ban	Ru	ral	Ra	iny	Fog	ggy	Clo	udy	Cl	ear
Method	AP30	AP50																
When2com	21.5	20.8	24.8	20.6	15.4	15.0	25.3	22.4	16.1	15.5	17.2	16.4	32.7	26.4	25.3	22.4	22.7	22.1
CoBEVT	37.1	24.2	48.4	35.1	10.5	2.0	51.3	37.4	13.8	3.5	15.7	4.7	27.7	13.6	51.3	37.4	49.4	35.7
Where2comm	42.5	35.7	47.9	38.6	23.4	21.4	48.6	40.3	32.6	26.0	35.0	27.5	31.4	26.0	48.6	40.3	45.4	39.3
V2XViT	46.8	41.1	47.8	39.0	19.3	16.2	52.1	43.8	28.7	25.1	32.3	28.6	38.4	31.3	52.1	43.8	50.7	44.3
HEAL	49.2	46.9	49.9	44.7	32.8	31.7	52.8	48.9	36.8	34.1	38.5	35.7	45.6	39.3	52.8	48.9	54.8	52.8
STAMP	48.6	41.6	48.0	39.7	19.8	16.9	52.8	44.5	28.6	25.7	32.0	29.2	38.5	31.6	52.8	44.5	52.1	45.0

To evaluate real-world applicability, we analyze algorithm performance across environmental factors: lighting (day, dusk, night), scene type (urban or rural), and weather (rainy, foggy, cloudy, clear). As shown in Table 4, **all methods are strongly affected by lighting**, with large degradation at night. CoBEVT suffers the steepest drop, with nighttime AP30 (10.5%). In contrast, HEAL shows the highest resilience, retaining 65.7% of its daytime AP30 at night (32.8% vs. 49.2%). **Scene context** also matters: urban scenes consistently outperform rural ones. This gap is largest for CoBEVT (51.3% vs. 13.8%, a 73.1% reduction) and smallest for HEAL (52.8% vs. 36.8%, a 30.3% reduction), suggesting heterogeneous fusion particularly benefits rural environments.

For **weather**, CoBEVT degrades notably in fog (27.7% vs. 49.4% in clear), while HEAL remains steadier across conditions. Rain impacts all models, though HEAL and STAMP remain more robust than earlier methods like When2com and CoBEVT. Overall, these results highlight that collaborative perception methods differ greatly in robustness to environmental variation, underscoring the need for models resilient across diverse conditions.

4.4 IMPACT OF DRONE NAVIGATION STRATEGIES

A unique aspect of our AirV2X-Perception dataset is the incorporation of aerial agents (drones) with distinct navigation strategies: hover, patrol, and escort. We evaluate how these navigation strategies affect perception performance in Table 5. We can observe that hover mode presents the greatest challenge for all methods, possibly due to the limited range covered by static drones. Patrol mode yields the best results across algorithms, particularly for CoBEVT (64.2% AP30). Escort mode shows intermediate performance, with HEAL (41.8%

Table 5: Object detection results with different navigation strategies for drones, including hover, patrol, and escort.

	Hover		Pat	rol	Escort	
Method	AP30	AP50	AP30	AP50	AP30	AP50
When2com CoBEVT Where2comm V2XViT HEAL STAMP	10.5 23.4 19.3	2.0 21.4 16.2 31.7	21.7 64.2 57.8 58.8 56.1 59.8	54.3 48.4 50.9 53.8	21.5 31.9 34.7 41.8	28.8 36.6

AP30) outperforming V2XViT and STAMP (both 34.7% AP30), suggesting that more sophisticated fusion mechanisms better handle adaptive trajectories. These findings emphasize that drone navigation strategies should be coordinated with perception algorithm capabilities to optimize collaborative perception systems.

4.5 SEMANTIC SEGMENTATION PERFORMANCE ANALYSIS

The experiemental results of BEV semantic segmentation performance across environmental conditions and drone navigation strategies are shown in Table 6 and Table 7. Segmentation performance is consistent across environmental conditions. V2XViT's segmentation performance varies by only 6.6% points between its best (cloudy at 36.4%) and worst (foggy at 28.8%) conditions, compared to a 32.8% point spread in detection between urban settings (52.1%) and night scenarios (19.3%). For various drone navigation strategies, patrol mode yields the highest performance across all methods, with V2XViT reach-

Table 6: Semantic segmentation performance (mIoU) across various drone navigation strategies.

	-6		
Method	Hover	Patrol	Escort
When2com	15.1	14.8	15.8
CoBEVT	34.3	40.3	28.4
Where2comm	31.7	33.8	27.6
V2XViT	32.7	40.5	38.9
HEAL	34.3	40.3	38.4
STAMP	26.3	32.1	30.7

ing 40.5% and both CoBEVT and HEAL achieving 40.3%, consistent with detection results.

Table 7: Segmentation performance (mIoU) across various lighting, environments, and weathers.

Method	Day	Dusk	Night	Urban	Rural	Rainy	Foggy	Cloudy	Clear
When2com	16.2	14.3	15.1	17.9	13.6	11.5	14.0	17.9	16.4
CoBEVT	33.1	34.2	34.3	33.7	27.0	28.3	30.7	33.7	32.7
Where2comm	32.8	36.5	31.7	31.6	28.6	24.1	28.7	31.6	30.0
V2XViT	34.7	35.0	32.7	36.4	28.1	29.7	28.8	36.4	33.9
HEAL	33.1	34.2	34.3	33.7	27.0	28.3	30.7	33.7	32.7
STAMP	26.1	33.5	26.4	36.1	25.1	22.2	27.4	36.1	33.5

4.6 IMPACT OF DEGRADED LIDAR SENSOR CONFIGURATIONS

To evaluate robustness under resource-constrained scenarios with degraded LiDAR configurations. While our primary benchmark uses 64-channel LiDAR, we collect data using 16- and 32-channel configurations to simulate cost-effective deployments, particularly relevant for aerial agents. Results in Table 8 show performance degradation across all methods with degraded LiDAR. However, simpler methods (When2com, CoBEVT) show better robustness to sensor degradation, maintaining

Table 8: Object detection performance (AP30) with different LiDAR channel configurations.

Method	64-ch	32-ch	16-ch
When2com	23.0	15.2 ↓7.8	5.6 \17.4
CoBEVT	42.9	$32.8 \downarrow 10.1$	15.5 ↓27.4
Where2comm	44.8	31.5 \13.3	21.8 \(\pm23.0\)
V2XViT	46.4	29.9 \16.5	$17.0 \downarrow 29.4$
STAMP	47.9	14.1 \ \ 33.8	11.1 ↓36.8
HEAL	49.2	14.9 \134.3	12.2 ↓37.0

24.3% and 36.1% of baseline performance, while heterogeneous methods (STAMP, HEAL) experience more severe drops to 23.2% and 24.8%. This suggests that sophisticated fusion strategies may require adaptation for low-quality sensors, highlighting a trade-off between accuracy and robustness.

4.7 IMPACT OF TEMPORAL AND SPATIAL ERRORS

Table 9 summarizes the robustness of different V2X perception methods under temporal asynchronization and localization/direction errors. Temporal asynchronization generally reduces performance, but training with asynchronous data mitigates the degradation. CoBEVT shows a slight improvement (+1.0%) under asynchronous training, suggesting that temporal misalignment may act as implicit data augmentation. Localization and direction errors further highlight system fragility. Performance consistently drops as noise increases, with localization errors (0.2m) causing more severe degradation (3.4–5.6%) than comparable direction errors (0.2°) at 2.2–3.6%. STAMP and HEAL exhibit higher sensitivity, indicating that sophisticated feature fusion mechanisms require

precise spatial alignment. Overall, these findings emphasize that real-world V2X systems must account for both temporal and spatial inconsistencies. Robust training strategies and accurate pose estimation are critical for maintaining performance under realistic deployment conditions.

Table 9: Object detection performance (AP30) of different V2X methods under temporal asynchronization and localization/direction error simulations. "Sync/Async" denotes synchronized training and asynchronous evaluation; "Async/Async" denotes asynchronous training and evaluation.

Method		Temporal As	ynchronization	Localization & Direction Errors					
	Baseline	Sync/Async	Async/Async	$\sigma = 0.1$ m	$\sigma=0.2\mathrm{m}$	$\sigma = 0.2^{\circ}$	$\sigma = 0.4^{\circ}$		
When2com	23.0	20.3 \2.7	22.5 ↓0.5	20.3 \2.7	18.5 ↓4.5	19.8 \ \ 3.2	17.1 \$_5.9		
CoBEVT	42.9	$41.0 \downarrow 1.9$	$43.9 \uparrow 1.0$	41.0 \1.9	$39.2 \downarrow 3.7$	40.4 ↓2.5	37.8 \$_5.1		
Where2comm	44.8	$43.2 \downarrow 1.6$	43.2 \1.6	$43.2 \downarrow 1.6$	41.4 \ \ 3.4	42.6 ↓2.2	40.2 ↓4.6		
V2XViT	46.4	44.0 ↓2.4	45.1 ↓1.3	44.0 ↓2.4	41.7 ↓ 4.7	43.2 ↓3.2	40.1 ↓6.3		
STAMP	49.2	$46.9 \downarrow 2.3$	48.6 ↓ 0.6	$46.9 \downarrow 2.3$	44.1 ↓ 5.1	46.1 \13.1	$42.7 \downarrow 6.5$		
HEAL	47.9	45.1 \12.8	45.2 ↓2.7	45.1 ↓ 2.8	42.3 ↓ 5.6	44.3 ↓3.6	40.8 ↓7.1		

5 Discussion

Our comprehensive evaluation of multi-agent collaborative perception algorithms reveals several key insights that can guide future research in both algorithmic improvement and dataset design.

5.1 Algorithmic Improvement

The AirV2X-Perception dataset presents a particularly demanding benchmark due to its **heterogeneous collaboration requirements** among vehicles, roadside units (RSUs), and drones, each with distinct sensing capabilities and perspectives. Our results demonstrate that methods specifically designed for heterogeneous agents (HEAL and STAMP) consistently outperform conventional approaches, particularly in challenging environmental conditions. This underscores the importance of algorithms that can effectively integrate information from diverse sensing modalities and viewpoints.

Computational efficiency for large-scale collaborative perception represents another significant challenge. Real-world deployments may involve dozens or hundreds of interconnected agents, yet several current approaches employ self-attention mechanisms that scale quadratically with agent count. The substantial variation in memory requirements across methods (8.2GB for When2com versus 43.5GB for V2XViT) highlights the need for algorithms that maintain perceptual accuracy while scaling efficiently to large agent networks.

Furthermore, **performance robustness across diverse environmental conditions** remains problematic. Our analysis shows substantial performance degradation in challenging scenarios, with even the best-performing method (HEAL) experiencing a 34% reduction in accuracy during night-time operations. Developing environment-invariant collaborative perception systems that maintain consistent performance across all conditions constitutes a critical research direction.

5.2 FUTURE DATASET DESIGN

While the AirV2X-Perception dataset offers a comprehensive benchmark across diverse environments and agent configurations, **real-world deployment introduces additional complexities not fully captured in simulation**. Future research should emphasize datasets that incorporate realistic sensor noise, communication constraints, and environmental variations, enabling more reliable evaluation under authentic conditions and improving transferability from simulation to practice.

In real applications, perception informs decision-making, which in turn influences subsequent perceptions. Closed-loop evaluation frameworks that capture this feedback cycle would yield deeper insights into long-term performance beyond single-frame accuracy. Finally, future datasets should include safety-critical edge cases such as accidents, road blockages, construction zones, and extreme weather, as these scenarios are especially important for evaluating system robustness and ensuring safe autonomous driving.

Ethics Statement. This work relies entirely on simulated environments (CARLA and AirSim), ensuring no personal or sensitive real-world data is involved. All released data are synthetic sensor outputs from virtual vehicles, drones, and RSUs. The authors affirm compliance with the ICLR Code of Ethics and uphold the principles of scientific integrity, transparency, and responsible stewardship.

Reproducibility Statement. We release the full AirV2X-Perception dataset, benchmark splits, and accompanying codebase with training and evaluation scripts available at https://anonymous.4open.science/r/AirV2X-Perception-BBA7. All experiments specify hardware/software details, hyperparameters, and fixed random seeds, and we benchmarked established baselines using their official or verified implementations. Together, these resources enable independent researchers to reproduce our results and fairly compare future methods.

REFERENCES

486

487

488

489

490

491

492

493

494

495

496 497

498 499

500

502

503

504

505

506

507

508 509

510

511

512

513

514 515

516

517

518 519

520

521

522

523

524

525 526

527

528

529

530

531

532

533

534 535

536

- Eduardo Arnold, Mehrdad Dianati, Robert de Temple, and Saber Fallah. Cooperative perception for 3d object detection in driving scenarios using infrastructure sensors. IEEE Transactions on Intelligent Transportation Systems, 23(3):1852–1864, 2020. 3
- Qi Chen, Xu Ma, Sihai Tang, Jingda Guo, Qing Yang, and Song Fu. F-cooper: Feature based cooperative perception for autonomous vehicle edge computing system using 3d point clouds. In Proceedings of the 4th ACM/IEEE Symposium on Edge Computing, pp. 88–100, 2019a. 4
- Qi Chen, Sihai Tang, Qing Yang, and Song Fu. Cooper: Cooperative perception for connected autonomous vehicles based on 3d point clouds. In 2019 IEEE 39th International Conference on Distributed Computing Systems (ICDCS), pp. 514–524. IEEE, 2019b. 3
- Jiaxun Cui, Hang Qiu, Dian Chen, Peter Stone, and Yuke Zhu. Coopernaut: End-to-end driving with cooperative perception for networked vehicles. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 17252–17262, 2022. 3
- Alexey Dosovitskiy, German Ros, Felipe Codevilla, Antonio Lopez, and Vladlen Koltun. Carla: An open urban driving simulator. In Conference on robot learning, pp. 1–16. PMLR, 2017. 2, 4
- Aritra Dutta, Srijan Das, Jacob Nielsen, Rajatsubhra Chakraborty, and Mubarak Shah. Multiview aerial visual recognition (mavrec): Can multi-view improve aerial visual perception? In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2024.
- Tongtong Feng, Xin Wang, Feilin Han, Leping Zhang, and Wenwu Zhu. U2udata: A large-scale cooperative perception dataset for swarm uavs autonomous flight. In Proceedings of the 32nd ACM International Conference on Multimedia (MM '24), 2024. 3
- Chen Fu, Chiyu Dong, Christoph Mertz, and John M Dolan. Depth completion via inductive fusion of planar lidar and monocular camera. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 10843–10848. IEEE, 2020. 3
- Hongbo Gao, Bo Cheng, Jianqiang Wang, Keqiang Li, Jianhui Zhao, and Deyi Li. Object classification using cnn-based fusion of vision and lidar in autonomous vehicle environment. IEEE Transactions on Industrial Informatics, 14(9):4224–4231, 2018. 3
- Xiangbo Gao, Asiegbu Miracle Kanu-Asiegbu, and Xiaoxiao Du. Mambast: A plug-andplay cross-spectral spatial-temporal fuser for efficient pedestrian detection. arXiv preprint arXiv:2408.01037, 2024. 1
- Xiangbo Gao, Yuheng Wu, Rujia Wang, Chenxi Liu, Yang Zhou, and Zhengzhong Tu. Langcoop: Collaborative driving with language. arXiv preprint arXiv:2504.13406, 2025a. 2, 4
- Xiangbo Gao, Runsheng Xu, Jiachen Li, Ziran Wang, Zhiwen Fan, and Zhengzhong Tu. Stamp: Scalable task and model-agnostic collaborative perception. arXiv preprint arXiv:2501.18616, 2025b. 2, 4, 6 538
 - Nathaniel Moore Glaser and Zsolt Kira. We need to talk: Identifying and overcoming communication-critical scenarios for self-driving. arXiv preprint arXiv:2305.04352, 2023. 3

- Ruiyang Hao, Siqi Fan, Yingru Dai, Zhenlin Zhang, Chenxi Li, Yuntian Wang, Haibao Yu, Wenxian Yang, Jirui Yuan, and Zaiqing Nie. Rcooper: A real-world large-scale dataset for roadside cooperative perception. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 22347–22357, 2024. 3
 - Yunhao Hou, Bochao Zou, Min Zhang, Ran Chen, Shangdong Yang, Yanmei Zhang, Junbao Zhuo, Siheng Chen, Jiansheng Chen, and Huimin Ma. Agc-drive: A large-scale dataset for real-world aerial-ground collaboration in driving scenarios. *arXiv preprint arXiv:2506.16371*, 2025. 3
 - Yue Hu, Shaoheng Fang, Zixing Lei, Yiqi Zhong, and Siheng Chen. Where2comm: Communication-efficient collaborative perception via spatial confidence maps. *Advances in neural information processing systems*, 35:4874–4886, 2022. 2, 3, 4, 6
 - Yue Hu, Yifan Lu, Runsheng Xu, Weidi Xie, Siheng Chen, and Yanfeng Wang. Collaboration helps camera overtake lidar in 3d detection. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 9243–9252, 2023. 2, 3
 - Xun Huang, Jinlong Wang, Qiming Xia, Siheng Chen, Bisheng Yang, Xin Li, Cheng Wang, and Chenglu Wen. V2x-r: Cooperative lidar-4d radar fusion for 3d object detection with denoising diffusion. *arXiv preprint arXiv:2411.08402*, 2024. 3
 - Jinlong Li, Runsheng Xu, Xinyu Liu, Jin Ma, Zicheng Chi, Jiaqi Ma, and Hongkai Yu. Learning for vehicle-to-vehicle cooperative perception under lossy communication. *IEEE Transactions on Intelligent Vehicles*, 8(4):2650–2660, 2023. 3
 - Yiming Li, Dekun Ma, Ziyan An, Zixun Wang, Yiqi Zhong, Siheng Chen, and Chen Feng. V2x-sim: Multi-agent collaborative perception dataset and benchmark for autonomous driving. *IEEE Robotics and Automation Letters*, 7(4):10914–10921, 2022. 2, 3
 - Yen-Cheng Liu, Junjiao Tian, Nathaniel Glaser, and Zsolt Kira. When2com: Multi-agent perception via communication graph grouping. In *Proceedings of the IEEE/CVF Conference on computer vision and pattern recognition*, pp. 4106–4115, 2020. 3, 4, 6
 - Yifan Lu, Yue Hu, Yiqi Zhong, Dequan Wang, Yanfeng Wang, and Siheng Chen. An extensible framework for open heterogeneous collaborative perception. arXiv preprint arXiv:2401.13964, 2024. 4, 6
 - Xuewen Luo, Chenxi Liu, Fan Ding, Fengze Yang, Yang Zhou, Junnyong Loo, and Hwa Hui Tew. Senserag: Constructing environmental knowledge bases with proactive querying for llm-based autonomous driving. In *Proceedings of the Winter Conference on Applications of Computer Vision*, pp. 989–996, 2025a. 4
 - Xuewen Luo, Fengze Yang, Fan Ding, Xiangbo Gao, Shuo Xing, Yang Zhou, Zhengzhong Tu, and Chenxi Liu. V2x-unipool: Unifying multimodal perception and knowledge reasoning for autonomous driving. *arXiv* preprint arXiv:2506.02580, 2025b. 4
 - Cong Ma, Lei Qiao, Chengkai Zhu, Kai Liu, Zelong Kong, Qing Li, Xueqi Zhou, Yuheng Kan, and Wei Wu. Holovic: Large-scale dataset and benchmark for multi-sensor holographic intersection and vehicle-infrastructure cooperative. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 22128–22137, 2024. 3
 - Gledson Melotti, Cristiano Premebida, and Nuno Gonçalves. Multimodal deep-learning for object recognition combining camera and lidar data. In 2020 IEEE International Conference on Autonomous Robot Systems and Competitions (ICARSC), pp. 177–182. IEEE, 2020. 3
 - Tom Nokes, Ben Baxter, Harry Scammell, Denis Naberezhnykh, and Leonardo Provvedi. Cost analysis of v2i deployment. Technical Report ED13276, Issue No. 5, Ricardo Energy & Environment, August 2020. URL https://5gaa.org/content/uploads/2020/09/5GAA_Ricardo-Study-V2I-Cost-Analysis_Final_110820.pdf. 2
 - Donghao Qiao and Farhana Zulkernine. Adaptive feature fusion for cooperative perception using lidar point clouds. In *Proceedings of the IEEE/CVF winter conference on applications of computer vision*, pp. 1186–1195, 2023. 3

- Deyuan Qu, Qi Chen, Tianyu Bai, Hongsheng Lu, Heng Fan, Hao Zhang, Song Fu, and Qing Yang. Sicp: Simultaneous individual and cooperative perception for 3d object detection in connected and automated vehicles. In 2024 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 8905–8912. IEEE, 2024. 4
 - Shital Shah, Debadeepta Dey, Chris Lovett, and Ashish Kapoor. Airsim: High-fidelity visual and physical simulation for autonomous vehicles. In *Field and Service Robotics: Results of the 11th International Conference*, pp. 621–635. Springer, 2018. 2, 4
 - Shuyao Shi, Jiahe Cui, Zhehao Jiang, Zhenyu Yan, Guoliang Xing, Jianwei Niu, and Zhenchao Ouyang. Vips: Real-time perception fusion for infrastructure-assisted autonomous driving. In *Proceedings of the 28th annual international conference on mobile computing and networking*, pp. 133–146, 2022. 3
 - Binglu Wang, Lei Zhang, Zhaozhong Wang, Yongqiang Zhao, and Tianfei Zhou. Core: Cooperative reconstruction for multi-agent perception. In 2023 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 8676–8686. IEEE Computer Society, 2023. 3
 - Jiahao Wang, Xiangyu Cao, Jiaru Zhong, Yuner Zhang, Haibao Yu, Lei He, and Shaobing Xu. Griffin: Aerial-ground cooperative detection and tracking dataset and benchmark. arXiv preprint arXiv:2503.06983, 2025a. 3
 - Naibang Wang, Deyong Shang, Yan Gong, Xiaoxi Hu, Ziying Song, Lei Yang, Yuhan Huang, Xiaoyu Wang, and Jianli Lu. Collaborative perception datasets for autonomous driving: A review. arXiv preprint arXiv:2504.12696, 2025b. 2
 - Rujia Wang, Xiangbo Gao, Hao Xiang, Runsheng Xu, and Zhengzhong Tu. Cocmt: Communication-efficient cross-modal transformer for collaborative perception. *arXiv* preprint *arXiv*:2503.13504, 2025c. 3
 - Tsun-Hsuan Wang, Sivabalan Manivasagam, Ming Liang, Bin Yang, Wenyuan Zeng, and Raquel Urtasun. V2vnet: Vehicle-to-vehicle communication for joint perception and prediction. In *Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part II 16*, pp. 605–621. Springer, 2020. 3, 4
 - Yuchao Wang, Peirui Cheng, Pengju Tian, Xiangru Li, Xiaoyu Zhang, and Licheng Jiao. Uvcpnet: A uav-vehicle collaborative perception network for 3d object detection. *arXiv* preprint arXiv:2406.04647, 2024. 3
 - Yuping Wang, Shuo Xing, Cui Can, Renjie Li, Hongyuan Hua, Kexin Tian, Zhaobin Mo, Xiangbo Gao, Keshu Wu, Sulong Zhou, et al. Generative ai for autonomous driving: Frontiers and opportunities. *arXiv preprint arXiv:2505.08854*, 2025d. 1
 - Hanlin Wu, Pengfei Lin, Ehsan Javanmardi, Naren Bao, Bo Qian, Hao Si, and Manabu Tsukada. A synthetic benchmark for collaborative 3d semantic occupancy prediction in v2x autonomous driving. *arXiv preprint arXiv:2506.17004*, 2025a. 2
 - Keshu Wu, Pei Li, Yang Zhou, Rui Gan, Junwei You, Yang Cheng, Jingwen Zhu, Steven T Parker, Bin Ran, David A Noyce, et al. V2x-llm: Enhancing v2x integration and understanding in connected vehicle corridors. *arXiv preprint arXiv:2503.02239*, 2025b. 4
 - Hao Xiang, Zhaoliang Zheng, Xin Xia, Runsheng Xu, Letian Gao, Zewei Zhou, Xu Han, Xinkai Ji, Mingxi Li, Zonglin Meng, Li Jin, Mingyue Lei, Zhaoyang Ma, Zihang He, Haoxuan Ma, Yunshuang Yuan, Yingqian Zhao, and Jiaqi Ma. V2x-real: A large-scale dataset for vehicle-to-everything cooperative perception. In *Computer Vision ECCV 2024*, pp. 455–470, 2024. 2,
 - Runsheng Xu, Zhengzhong Tu, Hao Xiang, Wei Shao, Bolei Zhou, and Jiaqi Ma. Cobevt: Cooperative bird's eye view semantic segmentation with sparse transformers. *arXiv preprint* arXiv:2207.02202, 2022a. 4, 6
 - Runsheng Xu, Hao Xiang, Zhengzhong Tu, Xin Xia, Ming-Hsuan Yang, and Jiaqi Ma. V2x-vit: Vehicle-to-everything cooperative perception with vision transformer. In *European conference on computer vision*, pp. 107–124. Springer, 2022b. 3, 6

- Runsheng Xu, Hao Xiang, Zhengzhong Tu, Xin Xia, Ming-Hsuan Yang, and Jiaqi Ma. V2x-vit: Vehicle-to-everything cooperative perception with vision transformer. In *Computer Vision ECCV* 2022, 2022c. 2, 3, 4
- Runsheng Xu, Hao Xiang, Xin Xia, Xu Han, Jinlong Li, and Jiaqi Ma. Opv2v: An open benchmark dataset and fusion pipeline for perception with vehicle-to-vehicle communication. In 2022 IEEE International Conference on Robotics and Automation (ICRA), pp. 2583–2589, 2022d. 2, 3
- Runsheng Xu, Xin Xia, Jinlong Li, Hanzhao Li, Shuo Zhang, Zhengzhong Tu, Zonglin Meng, Hao Xiang, Xiaoyu Dong, Rui Song, Hongkai Yu, Bolei Zhou, and Jiaqi Ma. V2v4real: A real-world large-scale dataset for vehicle-to-vehicle cooperative perception. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 13712–13722, 2023. 3
- Hui Ye, Rajshekhar Sunderraman, and Shihao Ji. Uav3d: A large-scale 3d perception benchmark for unmanned aerial vehicles. In *Advances in Neural Information Processing Systems 37 (NeurIPS 2024) Datasets and Benchmarks Track*, 2024. 2, 3
- Junwei You, Haotian Shi, Zhuoyu Jiang, Zilin Huang, Rui Gan, Keshu Wu, Xi Cheng, Xiaopeng Li, and Bin Ran. V2x-vlm: End-to-end v2x cooperative autonomous driving through large vision-language models. *arXiv preprint arXiv:2408.09251*, 2024. 4
- Haibao Yu, Yizhen Luo, Mao Shu, Yiyi Huo, Zebang Yang, Yifeng Shi, Zhenglong Guo, Hanyu Li, Xing Hu, Jirui Yuan, and Zaiqing Nie. Dair-v2x: A large-scale dataset for vehicle-infrastructure cooperative 3d object detection. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 21329–21338, 2022. 2, 3, 6
- Haibao Yu, Yingjuan Tang, Enze Xie, Jilei Mao, Jirui Yuan, Ping Luo, and Zaiqing Nie. Vehicle-infrastructure cooperative 3d object detection via feature flow prediction. *arXiv preprint arXiv:2303.10552*, 2023. 3
- Wenyuan Zeng, Shenlong Wang, Renjie Liao, Yun Chen, Bin Yang, and Raquel Urtasun. Dsdnet: Deep structured self-driving network. In *Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XXI 16*, pp. 156–172. Springer, 2020.
- Yuxiao Zhang, Alexander Carballo, Hanting Yang, and Kazuya Takeda. Perception and sensing for autonomous vehicles under adverse weather conditions: A survey. *ISPRS Journal of Photogrammetry and Remote Sensing*, 196:146–177, 2023. 1
- Walter Zimmer, Gerhard Arya Wardana, Suren Sritharan, Xingcheng Zhou, Rui Song, and Alois C. Knoll. Tumtraf v2x cooperative perception dataset. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 22668–22677, 2024. 2, 3, 6

APPENDIX

A EXPERIMENTS DETAILS

All experiments were conducted under consistent hardware and software conditions using RTX A6000 GPUs, PyTorch 2.6.0, CUDA 12.6, and SpConv 2.1. Models were trained with a batch size of 4 using the Adam optimizer with an initial learning rate of 0.002 for 20 epochs. We trained and evaluated all models following their official implementations (or unofficial implementations where official ones were unavailable). Random seeds were fixed across all experiments to ensure reproducibility. For additional implementation details, please refer to our open-source codebase².

B ABLATION STUDIES FOR DIFFERENT NUMBERS AND TYPES OF AGENTS.

Table A1: Object Detection Results by Lighting Conditions Across Different Agent Combinations.

	Ove	erall	Day	time	Du	ısk	Nigh	ttime
Method	AP30	AP50	AP30	AP50	AP30	AP50	AP30	AP50
Vehicle + Infra -	+ Drone							
When2comm	23.0	20.5	21.5	20.8	24.8	20.6	15.4	15.0
CoBEVT	42.9	29.8	37.1	24.2	48.4	35.1	10.5	2.0
Where2comm	44.8	37.0	42.5	35.7	47.9	38.6	23.4	21.4
V2XViT	46.4	39.1	46.8	41.1	47.8	39.0	19.3	16.2
HEAL	49.2	45.5	49.2	46.9	49.9	44.7	32.8	31.7
STAMP	47.9	42.7	47.6	41.6	48.0	39.7	19.8	16.9
Vehicle + Infra								
When2comm	16.2 6.8↓	16.1 4.4↓	16.4 5.1↓	12.6 8.2↓	19.0 5.8↓	12.1 8.5↓	7.9 7.6↓	7.2 7.9↓
CoBEVT	35.1 7.8↓	21.7 8.1	28.4 8.7↓	19.4 4.8↓	42.9 5.5↓	31.2 4.0↓	9.2 1.3↓	0.7 1.3↓
Where2comm	37.4 7.4	32.9 4.0↓	34.5 8.0↓	31.6 4.2↓	41.3 6.6↓	35.0 3.6↓	17.6 5.8↓	14.8 6.5↓
V2XViT	40.5 5.9↓	32.8 6.3↓	43.6 3.2↓	35.1 6.0↓	43.3 4.5↓	35.4 3.5↓	12.7 6.6↓	12.3 4.0↓
HEAL	45.3 3.9↓	42.6 3.0↓	44.5 4.7↓	43.5 3.4↓	46.4 3.5↓	39.5 5.2↓	22.8 10.0↓	16.7 15.0↓
STAMP	45.0 2.9↓	40.8 1.9↓	45.5 2.0↓	40.0 1.6↓	45.9 2.1↓	38.0 1.7↓	18.8 1.0↓	15.0 1.9↓
Vehicle only								
When2comm	11.3 11.7↓	1.2 19.3↓	10.6 10.9↓	0.8 20.0↓	12.0 12.8↓	1.8 18.9↓	3.0 12.4↓	0.4 14.7↓
CoBEVT	23.7 19.2↓	8.0 21.8↓	25.4 11.7	5.1 19.1	25.7 22.7↓	5.5 29.6↓	5.3 5.2↓	0.5 1.5↓
Where2comm	24.5 20.3↓	5.3 31.7↓	23.1 19.4↓	4.7 31.0↓	26.1 21.8↓	5.8 32.7↓	7.0 16.4↓	2.4 18.9↓
V2XViT	28.5 17.9↓	9.3 29.8↓	26.8 20.0↓	9.6 31.4↓	29.5 18.2↓	9.2 29.8↓	11.2 8.0↓	1.8 14.4↓
HEAL	32.4 16.9↓	12.9 32.7↓	29.7 19.5↓	13.4 33.5↓	33.3 16.6↓	14.0 30.7↓	12.5 20.3↓	1.7 30.0↓
STAMP	31.0 16.9↓	13.4 29.3↓	28.6 18.9↓	13.8 27.8↓	33.1 14.9↓	12.7 27.0	10.2 9.6↓	1.8 15.1↓

This section analyzes the impact of different agent types (vehicles, infrastructure, and drones) on perception performance across various environmental conditions and scenarios.

As shown in Table A1, when examining overall performance, removing drone agents leads to a moderate performance drop, while using only vehicle agents results in a severe degradation. The performance decline is particularly pronounced in AP50 metrics, where vehicleonly configurations suffer decreases of up to 32.7% for models like HEAL. This suggests that infrastructure agents provide critical spatial information that complements vehicle perspectives. For nighttime scenarios, the contribution of drone agents becomes especially valuable, with their removal causing HEAL's AP50 score to drop by 15.0%. This highlights drones' ability to maintain visibility in low-light conditions where ground-based agents struggle. The aerial perspective provided by drones offers a strategic advantage in maintaining perception relia-

Table A2: Object Detection Results by Environments Across Different Agent Combinations.

	Url	oan	Rui	ral					
Method	AP30	AP50	AP30	AP50					
Vehicle + Infra	+ Drone								
When2comm	25.3	22.4	16.1	15.5					
CoBEVT	51.3	37.4	13.8	3.5					
Where2comm	48.6	40.3	32.6	26.0					
V2XViT	52.1	43.8	28.7	25.1					
HEAL	52.8	48.9	36.8	34.1					
STAMP	52.8	44.5	28.6	25.7					
Vehicle + Infra									
When2comm	20.8 4.4↓	15.0 7.4↓	12.8 3.3↓	10.0 5.5↓					
CoBEVT	47.2 4.1↓	29.4 8.1↓	8.9 4.8↓	3.3 0.1↓					
Where2comm	40.1 8.5↓	36.4 3.9↓	26.5 6.1↓	23.0 3.0↓					
V2XViT	44.6 7.6↓	40.8 3.1↓	22.9 5.9↓	16.5 8.6↓					
HEAL	52.1 0.8↓	46.5 2.5↓	33.3 3.4↓	30.5 3.6↓					
STAMP	52.3 0.6↓	43.4 1.0↓	25.9 2.7 ↓	23.0 2.7 ↓					
Vehicle only									
When2comm	13.3 12.0↓	1.4 21.0↓	4.5 11.6↓	0.4 15.1↓					
CoBEVT	32.0 19.3↓	6.3 31.1↓	6.7 7.1↓	3.6 0.2↑					
Where2comm	27.5 21.1↓	6.1 34.2↓	14.0 18.6↓	2.7 23.4↓					
V2XViT	33.9 18.3↓	10.8 33.0↓	10.5 18.3↓	4.7 20.4 ↓					
HEAL	37.8 15.0↓	16.5 32.4↓	12.5 24.2↓	4.6 29.5↓					
STAMP	36.4 16.5↓	16.2 28.3↓	11.9 16.8↓	3.3 22.4↓					

bility across varying environmental conditions, particularly in scenarios with compromised lighting.

²https://github.com/taco-group/AirV2X-Perception

Table A2 shows that in urban set-tings, HEAL and STAMP demon-strate remarkable robustness to drone removal, with minimal AP30 drops of 0.8 and 0.6% respectively, suggesting that the dense infrastructure in urban areas can partially compen-sate for the elevated perspective that drones provide. The multiple per-ception points available from infras-tructure agents in urban environments appear sufficient to maintain reliable detection performance even without aerial data streams. Rural environ-ments tell a different story, with every agent type providing crucial informa-tion. The absence of dense infrastructure in rural settings makes drone perspectives particularly valuable, as evidenced by performance drops of 2.7%-6.1% AP30 when drones are re-moved. The vehicle-only configura-tion performs drastically worse in ru-ral settings, with HEAL experiencing a 29.5% decrease in AP50, highlight-

Table A3: Object Detection Results by Drones' Navigation Strategies Across Different Agent Combinations.

	Но	ver	Par	trol	Esc	ort
Method	AP30	AP50	AP30	AP50	AP30	AP50
Vehicle + Infr	a + Drone					
When2comm	15.4	15.0	21.7	21.0	25.0	20.6
CoBEVT	10.5	2.0	64.2	54.3	21.5	9.0
Where2comm	23.4	21.4	57.8	48.4	31.9	25.7
V2XViT	19.3	16.2	58.8	50.9	34.7	28.8
HEAL	32.8	31.7	56.1	53.8	41.8	36.6
STAMP	19.8	16.9	59.8	51.7	34.7	29.2
Vehicle + Infr	a					
When2comm	7.9 7.6↓	7.2 7.9↓	16.4 5.3↓	13.8 7.2↓	20.0 5.0↓	15.6 5.0↓
CoBEVT	8.2 2.3↓	0.7 1.34	57.1 7.1↓	45.6 8.7↓	15.1 6.4↓	11.3 2.3↑
Where2comm	17.6 5.8↓	14.8 6.5↓	52.4 5.4↓	42.3 6.0↓	28.8 3.0↓	21.3 4.4↓
V2XViT	12.7 6.6↓	12.3 4.0↓	55.8 3.0↓	44.9 6.1↓	28.9 5.8↓	20.4 8.4
HEAL	22.8 10.0↓	16.7 15.0↓	57.6 1.5↑	49.0 4.8↓	41.3 0.5↓	36.4 0.2↓
STAMP	18.8 1.0↓	15.0 1.9↓	58.6 1.2↓	51.1 0.6 ↓	35.1 0.5↑	27.2 2.0 ↓
Vehicle only						
When2comm	3.0 12.4↓	0.4 14.7↓	16.1 5.6↓	1.9 19.2↓	6.5 18.5↓	0.8 19.8↓
CoBEVT	5.3 5.2↓	0.5 1.5↓	35.9 28.2↓	13.5 40.8↓	12.9 8.7↓	3.5 5.5↓
Where2comm	7.0 16.4↓	2.4 18.9↓	36.4 21.4↓	9.8 38.6↓	13.1 18.8↓	1.6 24.1↓
V2XViT	11.2 8.0↓	1.8 14.4↓	41.1 17.8↓	15.3 35.6↓	15.8 18.9↓	4.7 24.1↓
HEAL	12.5 20.3↓	1.7 30.0↓	45.5 10.6↓	24.9 28.9 ↓	18.0 23.8↓	5.8 30.8↓
STAMP	10.2 9.6↓	1.8 15.14	44.4 15.4↓	22.7 29.0 ↓	17.0 17.7↓	4.6 24.6↓

ing the challenges vehicles face in rural perception without additional perspectives. This significant disparity underscores how the collaborative perception benefits vary substantially based on environmental context.

Table A4: Object Detection Results by Weather Conditions Across Different Agent Combinations.

	Rai	iny	Fog	ggy	Cloudy		Clear	
Method	AP30	AP50	AP30	AP50	AP30	AP50	AP30	AP50
Vehicle + Infra	+ Drone							
When2comm	17.2	16.4	32.7	26.4	25.3	22.4	22.7	22.1
CoBEVT	15.7	4.7	27.7	13.6	51.3	37.4	49.4	35.7
Where2comm	35.0	27.5	31.4	26.0	48.6	40.3	45.4	39.3
V2XViT	32.3	28.6	38.4	31.3	52.1	43.8	50.7	44.3
HEAL	38.5	35.7	45.6	39.3	52.8	48.9	54.8	52.8
STAMP	32.0	29.2	38.5	31.6	52.8	44.5	52.1	45.0
Vehicle + Infra								
When2comm	11.0 6.2↓	9.5 6.8↓	28.9 ₃.8↓	20.0 6.41	20.8 4.4↓	15.0 7.4↓	18.5 ₄.3↓	16.9 5.14
CoBEVT	13.5 <u>2.2</u> ↓	3.3 1.41	23.2 4.5↓	7.2 _{6.4↓}	47.2 _{4.1↓}	29.4 8.1↓	42.6 _{6.8} ↓	31.2 4.5↓
Where2comm	27.6 7.4↓	24.0 ₃.₅↓	22.8 8.6↓	19.8 6.2↓	40.1 8.5↓	36.4 ₃.9↓	39.7 5.8↓	36.0 ₃.4↓
V2XViT	26.6 5.7↓	23.0 5.6↓	35.2 ₃.2↓	26.0 _{5.4}	44.6 7.6↓	40.8 ₃.1↓	46.4 4.3↓	36.1 8.2↓
HEAL	36.4 2.1↓	33.8 1.9↓	43.8 1.84	38.6 0.6↓	50.1 2.8↓	46.5 _{2.5↓}	50.6 4.3↓	46.6 6.24
STAMP	30.2 1.8↓	26.9 _{2.4↓}	36.7 1.8↓	31.1 ₀.5↓	52.3 _{0.6↓}	43.4 _{1.0↓}	50.5 _{1.5↓}	44.1 _{0.9} ↓
Vehicle only								
When2comm	5.1 12.14	0.4 16.04	8.3 _{24.4}	1.2 25.2↓	13.3 12.0↓	1.4 21.04	14.3 8.4↓	1.1 21.0↓
CoBEVT	5.5 10.14	2.7 _{2.0↓}	15.2 12.5↓	2.8 10.8↓	32.0 19.3↓	6.3 31.14	32.0 17.4↓	10.2 25.5↓
Where2comm	15.9 19.1↓	2.8 _{24.7} \	13.0 18.4↓	1.5 24.5↓	27.5 21.14	6.1 34.2↓	25.7 19.7↓	5.8 _{33.6↓}
V2XViT	10.8 21.5↓	5.8 _{22.8↓}	21.1 17.3↓	5.6 _{25.8↓}	33.9 18.3↓	10.8 ₃₃.₀↓	36.6 14.2↓	12.0 ₃₂.₃↓
HEAL	12.2 26.3↓	5.0 30.7↓	21.0 24.6↓	8.0 31.3↓	37.8 15.0↓	16.5 32.4↓	38.3 16.6↓	19.1 ₃₃.6↓
STAMP	12.8 19.3↓	3.8 25.4↓	21.1 17.4↓	5.8 _{25.7} ↓	36.4 16.5↓	16.2 28.3↓	37.4 14.7↓	19.0 26.0↓

Table A3 displays the impact of different drone flight patterns on performance. In hover scenarios, drones provide essential overhead perspectives, with their removal causing significant decreases in AP50 (1.9%-15.0%). Vehicle-only configurations suffer catastrophic degradation in hover scenarios, with AP50 decreases of up to 30.0% for HEAL. For patrol scenarios, where drones follow predetermined routes, HEAL surprisingly shows a 1.5-point AP30 improvement when removing drones,

indicating potential conflicts between drone and ground agent information during this pattern. However, this anomaly is not reflected in AP50 metrics, where all models show performance drops. The escort pattern reveals interesting dynamics, with STAMP showing a slight 0.5% improvement in AP30 when removing drones, suggesting that closely following drone patterns may sometimes introduce redundant or conflicting information.

Table A5: Semantic Segmentation Results by Lighting Conditions, Environments, and Weather Conditions Across Different Agent Combinations.

Method	Overall	Day	Dusk	Night	Urban	Rural	Rainy	Foggy	Cloudy	Clear
Vehicle + Infra	Vehicle + Infra + Drone									
When2comm	15.0	16.2	14.3	15.1	17.9	13.6	11.5	14.0	17.9	16.4
CoBEVT	33.9	33.1	34.2	34.3	33.7	27.0	28.3	30.7	33.7	32.7
Where2comm	29.2	32.8	36.5	31.7	31.6	28.6	24.1	28.7	31.6	30.0
V2XViT	32.7	34.7	35.0	32.7	36.4	28.1	29.7	28.8	36.4	33.9
HEAL	33.9	33.1	34.2	34.3	33.7	27.0	28.3	30.7	33.7	32.7
STAMP	27.7	26.1	33.5	26.3	36.1	25.1	22.2	27.4	36.1	33.5
Vehicle + Infra										
When2comm	13.6 1.3↓	14.7 1.4↓	13.1 1.3↓	13.8 1.3↓	16.3 1.6↓	12.3 1.3↓	10.4 1.0↓	12.7 1.3↓	16.3 1.6↓	14.9 1.5↓
CoBEVT	27.9 6.1↓	27.1 6.0↓	28.0 6.1↓	28.2 6.2↓	27.6 6.1↓	22.1 4.8↓	23.3 5.1↓	25.2 5.6↓	27.6 6.1↓	26.8 5.9↓
Where2comm	24.0 5.2↓	26.9 5.9↓	29.9 6.6↓	26.0 5.7↓	25.9 5.7↓	23.5 5.2 \$\div	19.8 4.3↓	23.6 5.2↓	25.9 5.7↓	24.6 5.4
V2XViT	26.8 5.9↓	28.5 6.3↓	28.7 6.3↓	26.8 5.9↓	29.8 6.5↓	23.1 5.0↓	24.4 5.3↓	23.6 5.2↓	29.8 6.5↓	27.8 6.1↓
HEAL	27.9 6.1↓	27.1 6.0↓	28.1 6.1↓	28.1 6.2↓	27.7 6.1↓	22.1 4.8↓	23.3 5.1↓	25.2 5.5↓	27.7 6.1↓	26.8 5.9 \$\diamond\$
STAMP	22.7 5.0↓	21.4 4.7↓	27.5 6.0↓	21.5 4.7↓	29.6 6.5↓	20.6 4.5↓	18.3 4.0↓	22.5 4.9↓	29.6 6.5↓	27.5 6.0↓
Vehicle only										
When2comm	12.5 2. 4↓	13.6 2.6↓	12.1 2.3↓	12.7 2.4↓	15.0 2.9 ↓	11.4 2.2↓	9.6 1.8↓	11.8 2.2↓	15.0 2.9↓	13.8 2.6↓
CoBEVT	23.7 10.24	23.2 9.9↓	23.9 10.3\	24.0 10.3\	23.6 10.1↓	18.9 8.1↓	19.8 8.5↓	21.5 9.2↓	23.6 10.1↓	22.9 9.8↓
Where2comm	20.5 8.8↓	22.9 9.8↓	25.6 10.9↓	22.2 9.5↓	22.1 9.5↓	20.0 8.6↓	16.9 7.3↓	20.1 8.6↓	22.1 9.5↓	21.0 9.0↓
V2XViT	22.9 9.8↓	24.3 10.4↓	24.4 10.5↓	22.9 9.8↓	25.4 10.9↓	19.7 8.4↓	20.7 8.9↓	20.2 8.6↓	25.4 10.9↓	23.7 10.24
HEAL	23.8 10.24	23.2 9.9↓	23.9 10.2↓	24.1 10.3↓	23.6 10.1↓	18.8 8.1↓	19.8 8.5↓	21.5 9.2↓	23.6 10.1↓	22.9 9.8↓
STAMP	19.4 8.3↓	18.3 7.9↓	23.5 10.01	18.4 7.9↓	25.3 10.9↓	17.5 7.5↓	15.6 6.7↓	19.2 8.2↓	25.3 10.9↓	23.4 10.1

Table A5 presents semantic segmentation performance across various conditions. For semantic segmentation, removing drone agents causes approximately 4.5%-6.5% decreases across most models and conditions. When comparing vehicle-only to vehicle+infrastructure, we observe an additional 3.0\$-4.5\$ drop, indicating that while drones provide valuable elevated perspectives for segmentation tasks, infrastructure agents also contribute significantly to boundary delineation and contextual understanding.

Table A6 reveals that drone flight patterns significantly impact semantic segmentation performance. The patrol pattern, where drones follow predetermined routes, yields the highest baseline performance across all models. Removing drones during patrol scenarios causes substantial performance drops (5.8%-7.3%). The vehicle-only configuration experiences the most severe degradation (9.6%-12.1%) in patrol scenarios, suggesting that this pattern provides complementary information that cannot be recovered from ground perspectives. For escort patterns, where drones follow specific vehicles, the performance drops are more consis-

Table A6: Semantic Segmentation Results by Drones' Navigation Strategies Across Different Agent Combinations.

Method	Hover	Patrol	Escort				
Vehicle + Infra + Drone							
When2comm	15.1	14.8	15.8				
CoBEVT	34.3	40.3	28.4				
Where2comm	31.7	33.8	27.6				
V2XViT	32.7	40.5	38.9				
HEAL	34.3	40.3	38.4				
STAMP	26.3	32.1	30.7				
Vehicle + Infra							
When2comm	13.8 1.3↓	13.4 1.4↓	14.4 1.4↓				
CoBEVT	28.2 6.2	33.0 7.3↓	23.3 5.1				
Where2comm	26.0 5.7↓	27.8 6.1↓	22.6 5.0↓				
V2XViT	26.8 5.9↓	33.2 7.3↓	31.9 7.0↓				
HEAL	28.1 6.2↓	33.1 7.3↓	31.5 6.9↓				
STAMP	21.5 4.7↓	26.3 5.8↓	25.1 5.6↓				
Vehicle only							
When2comm	12.7 2.4↓	12.5 2.4↓	13.2 2.5↓				
CoBEVT	24.0 10.3↓	28.2 12.1↓	19.9 8.5↓				
Where2comm	22.2 9.5↓	23.7 10.1↓	19.4 8.3↓				
V2XViT	22.9 9.8↓	28.3 12.1↓	27.2 11.7↓				
HEAL	24.1 10.3↓	28.2 12.1↓	26.9 11.5↓				
STAMP	18.4 7.9↓	22.5 9.6↓	21.4 9.2↓				

tent across models, with 5.0%-7.0% decreases when removing drones. The hover pattern shows

slightly less sensitivity to drone removal (4.7%-6.2%), suggesting that the aerial perspectives are limited in the hover mode because the drones are stationary.

In conclusion, our comprehensive ablation studies demonstrate that each agent type contributes uniquely to perception performance, with their relative importance varying across environmental conditions, scenarios, and perception tasks. Overall, both drone agents and infrastructure agents provide valuable perspectives multi-agent collaborative perception.

C DATASET VISUALIZATION

 Figures A1 and A2 provide qualitative insight into the breadth and fidelity of the *AirV2X-Perception* dataset. Each scene is captured synchronously by heterogeneous sensing platforms—including road-side units (RSUs), connected vehicles, and drones. (i) The top panels in both figures highlight the raw RGB imagery acquired by the surround camera matrix on RSUs and vehicles. (ii) The middle panels display bird's-eye-view (BEV) camera image from the drone (left), a semantic BEV map (middle), and a perspective LiDAR point cloud with 3-D bounding boxes (right). (iii) The bottom panel displays the full LiDAR sweep onto the BEV plane axis-aligned bounding boxes. For the complete dataset, please refer to our open-sourced dataset link³.

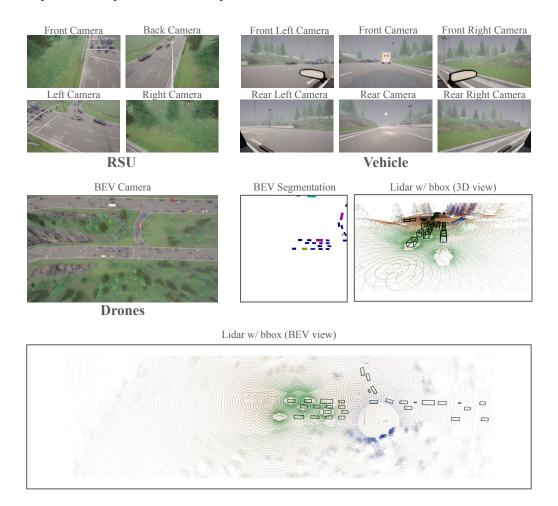


Figure A1: Visualization of some representative data of a single timestamp of the AirV2X-Perception dataset. Note that for each agent type from RSU, vehicle, and drone, only one agent is chosen for visualization.

 $^{^{3} \}verb|https://huggingface.co/datasets/xiangbog/AirV2X-Perception|$

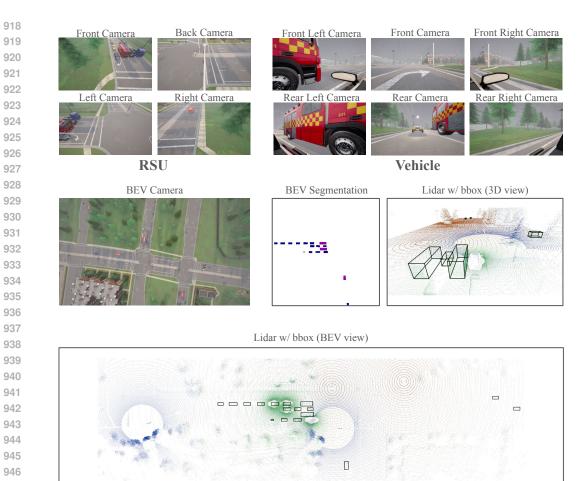


Figure A2: Visualization of some representative data of a single timestamp of the AirV2X-Perception dataset. Note that for each agent type from RSU, vehicle, and drone, only one agent is chosen for visualization.

BEYOND THE DATASET D

Drone-Assisted Vehicle-to-Everything (V2X) for Autonomous Driving

The convergence of autonomous driving technologies with unmanned aerial vehicles (UAVs) presents compelling opportunities for intelligent transportation systems. The global drone industry is experiencing remarkable growth, with annual UAV shipments projected to reach 9.5 million units by 2029 (Hayes, 2024), corresponding to a market value of \$35-54 billion in 2024. Within the mobility domain, UAV-assisted logistics and transportation services alone are expected to double from \$5.3 billion in 2019 to \$11 billion by 2026 (Afrin et al., 2024). This proliferation of UAV technology is creating new possibilities for drone-assisted Vehicle-to-Everything (V2X) frameworks to enhance autonomous driving capabilities globally.

V2X communication, encompassing interactions between vehicles and their environment (other vehicles, infrastructure, pedestrians, networks), forms the foundation of connected autonomous driving. However, accommodating the growing number of connected devices and data-intensive services in vehicular networks challenges existing infrastructure (Wang & Zhang, 2025). Drone-assisted V2X offers a promising solution by integrating aerial drones as dynamic sensor platforms, communication relays, and edge computing nodes. UAVs effectively add a third dimension to V2X networks, enabling more comprehensive coverage and adaptive architectures than static ground infrastructure alone can provide.

D.2 CURRENT RESEARCH TRENDS AND FUTURE PROJECTIONS

Research on drone-assisted vehicular networks has accelerated, exploring innovative protocol designs, efficient resource management, and energy-optimized operations for UAV nodes in V2X ecosystems. Current research prototypes demonstrate UAVs functioning as aerial base stations, relays, or cooperative sensing platforms in connected vehicle environments. Field trials show that drones can wirelessly connect isolated vehicle clusters, extend coverage in rural areas, and provide aerial perspectives to detect hazards beyond a vehicle's line-of-sight. Cooperative perception is emerging as a particularly valuable application—drones equipped with cameras or LiDAR can stream data to nearby vehicles, effectively enabling them to "see" around corners or beyond obstructions.

Looking ahead, sixth-generation (6G) wireless architectures are expected to natively support airborne communication nodes, facilitating real-time coordination between dense drone swarms and ground vehicles (Kavas-Torris et al., 2022). Researchers anticipate advanced UAV traffic management systems and dynamically reconfigurable airborne base stations that adapt to changing traffic conditions. Advancements in AI are projected to enhance multi-UAV collaboration, enabling autonomous drone swarms to optimize their positioning for network coverage and data collection. The trajectory of research suggests that drone-assisted V2X will evolve from today's experimental implementations to become a fundamental component of smart transportation within the decade.

D.3 ADVANTAGES OVER TRADITIONAL RSUS AND VEHICLE-ONLY SYSTEMS

Drone-assisted V2X systems offer advantages over traditional roadside units (RSUs) and purely vehicle-based networks. Their primary strength lies in dynamic adaptability: unlike fixed RSUs, UAVs can be repositioned as needed to provide coverage in response to changing traffic or network conditions. This on-demand deployment reduces the need for ubiquitous physical infrastructure while enabling adaptive network scaling. Studies demonstrate that "flying RSUs" significantly improve connectivity in sparse vehicular networks by filling coverage gaps between distant ground nodes (Hadiwardoyo, 2019)—particularly valuable in rural areas or developing regions where fixed infrastructure deployment is impractical.

From a sensing perspective, drones provide superior vantage points compared to vehicle-mounted sensors alone. Autonomous vehicles' onboard cameras, radar, and LiDAR have limited range and are vulnerable to occlusions from buildings or large vehicles. UAV-mounted sensors mitigate these limitations by observing the environment from above, seeing over obstacles and surveying broader areas simultaneously. This aerial perspective enables more comprehensive situational awareness when integrated with vehicle data.

Communication performance also improves with drone assistance. Signal propagation for V2X radio is often hindered by buildings, terrain, or dense traffic, especially in urban environments. Aerial relays enjoy clearer line-of-sight paths and can maintain simultaneous links with multiple vehicles from elevated positions. By serving as intermediate nodes, drones reduce the number of hops or transmission distances, thereby lowering latency and increasing data rates.

Finally, drone integration can be cost-effective compared to deploying numerous fixed sensors and RSUs. While individual drones represent sophisticated technology investments, their mobility allows them to cover multiple locations over time and be shared among many users as a service. This reduces the need for permanently installed infrastructure that might be underutilized during off-peak hours. In scenarios like temporary events, construction zones, or disaster response, this agility and efficiency far outperform static, traditional infrastructure approaches.

D.4 TECHNICAL CHALLENGES AND LIMITATIONS

Despite their promise, drone-assisted V2X systems face several technical challenges:

Latency and real-time communication: Supporting safety-critical autonomous driving applications demands ultra-low latency. Introducing drones as relays adds new sources of delay (Gupta & Fernando, 2024). The entire process from capture to broadcast must occur within milliseconds, requiring optimized communication protocols and careful scheduling of V2X message transmissions.

- Energy constraints: Limited battery life fundamentally restricts most UAVs to 20-40 minutes of flight time, constraining their endurance for continuous V2X support. Frequent battery swaps or recharging would be required for persistent coverage, while energy budgets also limit onboard sensing and computing capabilities. Energy-efficient hardware and operations (including automated docking stations and solar-powered platforms) remain active research areas.
- Safety and airspace conflict: UAVs must avoid collisions with other aircraft and prevent hazards to people and property below. Mid-air collision avoidance requires reliable detect-and-avoid systems, especially at low altitudes around buildings and traffic. Dedicated UAV-to-UAV communication links have been proposed to coordinate movements and prevent incidents. Robust fail-safe protocols (automatic parachutes, controlled emergency landings) are essential to mitigate risks from battery depletion or malfunction.
- Coordination and scalability: Managing drone fleets alongside thousands of connected vehicles introduces complex coordination challenges. UAVs must synchronize their trajectories, sensing tasks, and communication resources to maximize coverage without interference. City-wide deployments might require dozens or hundreds of drones, demanding sophisticated aerial traffic management systems. Research continues to explore swarm formation control and adaptive networking algorithms.
- Security and privacy: Drone integration expands the attack surface of vehicular networks. Communication links between UAVs and vehicles or infrastructure may be vulnerable to eavesdropping, jamming, or spoofing without proper security measures. Additionally, drone-mounted cameras and sensors may capture sensitive data about individuals or businesses, raising privacy concerns that must be addressed through both regulatory frameworks and privacy-preserving technical designs.

In summary, the integration of unmanned aerial vehicles with vehicle-to-everything communications creates research opportunities driven by both practical needs and technical challenges. While drone-assisted V2X offers compelling advantages in enhanced perception, flexible coverage, and improved communication reliability, it faces substantial hurdles in energy efficiency, latency management, safety, coordination, and security. These challenges establish a rich research landscape spanning communications, sensing, control systems, energy management, and cybersecurity. By addressing these interconnected concerns, researchers can advance drone-assisted V2X from experimental prototypes to practical implementations, ultimately transforming autonomous transportation with dynamic aerial support that overcomes the limitations of traditional ground-based approaches (Wang & Zhang, 2025; Kavas-Torris et al., 2022).

E LLM USAGE STATEMENT

Large Language Models (LLMs) were not used to generate, analyze, or create any of the content, results, or figures presented in this paper. LLMs were only employed after the full manuscript was completed, and solely for light editing of grammar and phrasing. All scientific ideas, experimental design, implementation, and writing were conducted entirely by the authors.

REFERENCES

Tanzina Afrin, Nita Yodo, Arup Dey, and Lucy G Aragon. Advancements in uav-enabled intelligent transportation systems: A three-layered framework and future directions. *Applied Sciences*, 14 (20):9455, 2024. 18

Abhishek Gupta and Xavier N Fernando. Latency analysis of drone-assisted c-v2x communications for basic safety and co-operative perception messages. *Drones* (2504-446X), 8(10), 2024. 19

Seilendria Ardityarama Hadiwardoyo. *Modelling and real deployment of c-its by integrating ground vehicles and unmanned aerial vehicles*. PhD thesis, Universitat Politècnica de València, 2019. 19

Philip Butterworth Hayes. Global drone industry market forecasts: analysts trim their growth predictions again - Unmanned airspace — unmannedairspace.info, 2024. [Accessed 17-05-2025].

Ozgenur Kavas-Torris, Sukru Yaren Gelbal, Mustafa Ridvan Cantas, Bilin Aksun Guvenc, and Lev-ent Guvenc. V2x communication between connected and automated vehicles (cavs) and un-manned aerial vehicles (uavs). Sensors, 22(22):8941, 2022. 19, 20 Dawei Wang and Ruonan Zhang. Uav-assisted intelligent vehicular networks, 2025. 18, 20