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ABSTRACT

While multi-vehicular collaborative driving demonstrates clear advantages over
single-vehicle autonomy, traditional infrastructure-based V2X systems remain
constrained by substantial deployment costs and the creation of “uncovered dan-
ger zones” in rural and suburban areas. We present AirV2X-Perception, a large-
scale dataset that leverages Unmanned Aerial Vehicles (UAVs) as a flexible al-
ternative or complement to fixed Road-Side Units (RSUs). Drones offer unique
advantages over ground-based perception: complementary bird’s-eye-views that
reduce occlusions, dynamic positioning capabilities that enable hovering, pa-
trolling, and escorting navigation rules, and significantly lower deployment costs
compared to fixed infrastructure. Our dataset comprises 6.73 hours of drone-
assisted driving scenarios across urban, suburban, and rural environments with
varied weather and lighting conditions. The AirV2X-Perception dataset facilitates
the development and standardized evaluation of Vehicle-to-Drone (V2D) algo-
rithms, addressing a critical gap in the rapidly expanding field of aerial-assisted
autonomous driving systems. The dataset and development kits are open-sourced
at https://anonymous.4open.science/r/AirV2X-Perception-BBA7.

1 INTRODUCTION

Multi-vehicular collaborative driving has been shown to be more effective than single-vehicle au-
tonomous driving primarily due to the complementary sensory coverage provided through inter-
vehicle cooperation. This collaborative approach significantly reduces perception limitations (Zhang
etal., 2023; Wang et al., 2025d; Gao et al., 2024) by enabling vehicles to share sensor data and com-
pensate for each other’s blind spots. Recent research in Vehicle-to-Everything (V2X) communica-
tion demonstrates that Road-Side Units (RSUs) mounted on infrastructure offer superior perception
capabilities than vehicle-only collaboration, primarily due to their elevated positioning that mini-
mizes blind spots and provides broader field-of-view coverage. However, traditional infrastructure-
based solutions face significant economic constraints. The substantial construction and maintenance
costs associated with RSUs necessitate strategic deployment decisions. Consequently, these units
are predominantly installed at high-traffic intersections and critical urban junctions to maximize
cost-benefit ratios. This economically-driven compromise results in what we term “uncovered dan-
ger zones”’—highways, pedestrian zones, suburban neighborhoods, and rural areas where vehicles
operate without the perceptual advantages of infrastructure support.

Motivation. In parallel with these infrastructure limitations, the rapid rise of the low-altitude econ-
omy and steady advances in Unmanned Aerial Vehicle (UAV) technology offer a promising alter-
native. Modern drones now handle everything from emergency response and fire rescue to goods
transport and everyday food delivery. The evolution of drone capabilities has naturally paved the
way for drone-based perception systems, which represent a logical extension of this technology into
the autonomous driving domain. Unlike static infrastructure-dependent solutions, drone-assisted
collaborative driving leverages the mobility and versatility of aerial platforms to enhance vehicu-
lar perception in environments where traditional RSUs are economically unfeasible. Compared to
traditional RSUs, drone-based perception systems offer several significant advantages:

* Drones offer a unique and complementary perception perspective distinct from both vehicle-
mounted sensors and fixed RSUs. Ground vehicles capture primarily horizontal, ego-centric views
limited by occlusions, while RSUs provide fixed vantage points typically restricted to intersec-
tions. In contrast, drones deliver real-time bird’s-eye views that are both elevated and mobile,
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enabling holistic scene understanding in cluttered environments. This aerial perspective facilitates
tracking of agents across occlusions, better anticipation of multi-agent interactions, and improved
detection of lane changes or cut-ins otherwise hidden from ground-level sensors.

* Drones provide superior operational adaptability and flexibility through dynamic positioning
based on real-time requirements. They can hover above specific areas of interest, patrol designated
routes, or be programmed to escort individual vehicles, delivering tailored perception assistance
precisely where and when needed—capabilities that fixed infrastructure simply cannot match.

* Drone solutions present a more cost-effective approach to expanding coverage. According to
the 5G Automotive Association (5SGAA) in 2020 (Nokes et al., 2020), a fixed RSU without camera
or lidar sensors costs between 20, 000—80,000. In comparison, fully-equipped drones with high-
resolution cameras and lidar range from under 1, 000 to 50, 000 depending on specifications. This
economic flexibility enables strategic resource allocation—deploying less expensive Vehicle-to-
Drone (V2D) systems in rural areas while positioning advanced systems in accident-prone or
high-density zones.

* V2D systems can be integrated with emerging aerial networks as the low-altitude economy
develops. The increasing presence of UAVs performing various tasks creates opportunities for
“opportunistic” sensing and communication channels for ground vehicles. These aerial vehicles,
already equipped with advanced sensors and communication devices, can establish a multi-layered
perception network with minimal additional infrastructure investment, creating a more robust and
redundant system for autonomous vehicle perception.

These compelling advantages have sparked considerable interest in Vehicle-to-Drone (V2D) com-
munication systems, leading to substantial research efforts focused on developing algorithms that
can effectively utilize aerial perspectives to enhance ground vehicle autonomous driving. As a re-
sult, there has been a significant increase in research exploring various aspects of drone-assisted
vehicular perception, from communication protocols to collaborative sensing frameworks (Hu et al.,
2022; Gao et al., 2025bza; Wu et al., 2025a). However, with the flourishing of V2D algorithms and
the demand for more advanced solutions, there remains a critical absence of high-quality datasets
specifically designed for training and evaluating drone-assisted perception systems. This limitation
hampers the development of robust algorithms that can effectively leverage aerial perspectives to
enhance vehicular perception.

To bridge this gap, we present AirV2X-Perception, a large-scale drone-assisted V2X driving
dataset. AirV2X-Perception contains 6.73 hours of drone-assisted driving data collected in the
co-simulation of the CARLA (Dosovitskiy et al., 2017) and Airsim (Shah et al., 2018) simulator.
The dataset contains multiple connected agent types including vehicles, roadside units (RSU), and
drones, each equipped with different sensors. The dataset is collected in various urban and rural ar-
eas, with different weather (clear, rainy, foggy, and cloudy) and lighting conditions (daytime, dusk,
and nighttime). AirV2X-Perception also contains various common navigation strategies for drones,
including hovering, patrolling, and escorting, to provide a more comprehensive evaluation of the
V2D algorithms. To accommodate the challenges of large-scale perception networks, we include up
to 15 connected agents simultaneously (5 vehicles, 5 RSUs, 5 drones) in single scenarios. By releas-
ing this comprehensive dataset to the research community, we aim to accelerate the development of
robust drone-assisted perception algorithms and establish standardized benchmarks for performance
evaluation.

2 RELATED WORKS

2.1 V2X DATASETS

In this section, we summarize some widely used V2X datasets in Table 1. Existing V2X
datasets (Wang et al., 2025b) can be categorized into three distinct groups. The Vehicle + In-
frastructure category constitutes the majority of current datasets, with simulated environments like
OPV2V (Xu et al., 2022d), V2XSim (Li et al., 2022), and V2XSet (Xu et al., 2022c) providing mul-
tiple connected vehicles and infrastructure elements for various perception tasks. Real-world coun-
terparts such as DAIR-V2X (Yu et al., 2022), TUMTraf (Zimmer et al., 2024), and V2XReal (Xiang
et al., 2024) offer authentic data but typically suffer from limited scale and environmental diversity,
predominantly focusing on urban daytime scenarios. The Drone-specific category includes datasets
such as CoPercpetion-UAV (Hu et al., 2022), CoPercpetion-UAV+ (Hu et al., 2023), UAV3D (Ye
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Table 1: ‘=’ denotes an unavailable attribute. ‘R/S’ refers to whether the data is real-world or sim-
ulated. ‘A.W.” denotes adverse weather conditions. ‘D/N’ indicates daytime or nighttime scenarios,
while ‘U/R’ refers to urban or rural environments.

Max Connected Agents  Modalities Diversity
Year Dataset R/S CAVs Infra Drones Cam. LiDAR A.W. D/N U/R
Vehicle + Infrastructure
Xu et al. (2022d) OPV2V Sim 7 v v D 18]
Li et al. (2022) V2XSim Sim 5 v v D U
Xu et al. (2022c¢) V2XSet Sim 7 1 v v D 18]
Yu et al. (2022) DAIR-V2X Real 2 1 v v D+N U
Xu et al. (2023) V2V4Real Real 2 v D 18]
Hao et al. (2024) Rcooper Real 4 v v D+N U
Zimmer et al. (2024) TUMTraf Real 1 1 v v v D 18]
Ma et al. (2024) HoloVIC Real 1 4 v v D U
Xiang et al. (2024)  V2XReal Real 4 2 v v D 18]
Huang et al. (2024)  V2X-Radar Real 1 1 v v v. D+tN U

Drones Only

Hu et al. (2022) CoP-UAV Sim 5 v D U
Hu et al. (2023) CoP-UAV+ Sim 10 v D U
Ye et al. (2024) UAV3D Sim 5 v D U
Feng et al. (2024) U2Udata Sim 3 v v v. D+tN R
Vehicle + Infrastructure + Drones
Dutta et al. (2024) MAVREC Real 1 1 Ve D U+R
Wang et al. (2024)  UVCPNet Sim 1 2 v D U
Wang et al. (2025a)  Griffin Sim 1 0 1 v v v.  D+N U+R
Hou et al. (2025) AGC Drive Real 2 0 1 v v D+N U+R
AirV2X (Ours) Sim 5 5 5 v v v D+N U+R

et al., 2024), and U2Udata (Feng et al., 2024), which concentrate on aerial vehicle collaboration
but lack the ground-vehicle components essential for comprehensive V2X research. The emerging
Vehicle + Infrastructure + Drone category attempts to integrate all three agent types, but current
offerings like MAVREC (Dutta et al., 2024), UVCPNet (Wang et al., 2024), Griffin (Wang et al.,
2025a), and AGC Drive (Hou et al., 2025) exhibit significant limitations—testricted to minimal
agent configurations (typically one vehicle with one or two drones), supporting limited percep-
tion tasks, and lacking environmental diversity. Our proposed AirV2X-Perception dataset addresses
these limitations by providing an unprecedented comprehensive solution integrating all three agent
types at scale. With support for 5 CAVs, 5 infrastructure elements, and 5 drones, it offers the
most extensive connected agent environment currently available. Unlike existing datasets with lim-
ited scenarios, AirV2X-Perception encompasses diverse environmental conditions spanning urban
and rural settings, daytime and nighttime operations, and various adverse weather conditions. Fur-
thermore, it supports both camera and LiDAR modalities across vehicular and RSU agent types
alongside high-resolution camera sensors for drone agents, enabling research on multi-modal and
cross-modal perception algorithms. The dataset facilitates various perception tasks including ob-
ject detection, semantic segmentation, and tracking, making it versatile for different collaborative
perception research directions while providing a realistic testbed for evaluating algorithms under
conditions closer to real-world deployment scenarios.

2.2  V2X PERCEPTION ALGORITHMS

Fusion scheme taxonomy is a primary categorization framework for V2X collaborative perception
algorithms. Early fusion (Gao et al., 2018; Chen et al., 2019b; Arnold et al., 2020) involve direct
sharing of raw sensor data, maximally preserving information but requiring prohibitive bandwidth
for practical deployment. Late fusion methods (Melotti et al., 2020; Fu et al., 2020; Zeng et al.,
2020; Shi et al., 2022; Glaser & Kira, 2023) share only final predictions, dramatically reducing
communication overhead at the cost of suboptimal accuracy due to information loss. Intermedi-
ate fusion techniques (Wang et al., 2020; Liu et al., 2020; Cui et al., 2022; Xu et al., 2022b; Qiao
& Zulkernine, 2023; Li et al., 2023; Wang et al., 2023; Yu et al., 2023; Wang et al., 2025c) rep-
resent the most widely adopted approach, striking a balance by sharing mid-level representations
(e.g., BEV features) that enable flexible collaboration while maintaining reasonable data transmis-
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sion bandwidth. The emerging language-based fusion paradigm (Luo et al., 2025a; You et al.,
2024; Wu et al., 2025b; Gao et al., 2025a; Luo et al., 2025b) offers advantages in transmission effi-
ciency, explainability, and interoperability, though our work focuses primarily on benchmarking the
predominant intermediate fusion approaches.

Key technical challenges in V2X collaborative perception include model complexity, communica-
tion efficiency, and agent heterogeneity. Early transformer-based architectures like V2X-ViT (Xu
et al., 2022¢) and CoBEVT (Xu et al., 2022a) achieved significant performance improvements over
predecessors such as F-Cooper (Chen et al., 2019a) and V2VNet (Wang et al., 2020), but at the cost
of high computational demands. Subsequent work has addressed these limitations through various
strategies: SICP (Qu et al., 2024) employs convolutional neural networks to reduce model complex-
ity, while HEAL (Lu et al., 2024) and STAMP (Gao et al., 2025b) implement hierarchical fusion
strategies that enhance feature processing while scaling to larger agent numbers. For communi-
cation efficiency, When2com (Liu et al., 2020) introduced selective communication through graph
grouping, and Where2comm (Hu et al., 2022) utilized spatial confidence maps to share only partial
feature maps—significantly reducing bandwidth requirements while preserving accuracy. Agent
heterogeneity presents another challenge in V2X systems. HEAL (Lu et al., 2024) addressed this
through backward alignment strategies. STAMP (Gao et al., 2025b) developed lightweight adapter-
reverter pairs for feature alignment without modifying the local models. LangCoop (Gao et al.,
2025a) innovated using natural language as a universal communication medium between diverse
agents. Our AirV2X-Perception dataset features 10+ connected agents per scene and introduces the
novel heterogeneity of aerial perspectives. It serves as a comprehensive benchmark for evaluating
these algorithms against multiple real-world challenges, particularly in the underexplored domain
of drone-assisted V2X systems.

3  AIRV2X-PERCEPTION DATASET

In this section, we introduce AirV2X-Perception, a novel dataset designed specifically to advance
drone-assisted V2X collaborative perception research. We first detail our simulation environment
and scenario design (§3.1), followed by an exploration of three distinct drone navigation strate-
gies—hover, patrol, and escort (§3.2). We then describe our data collection methodology (§3.3)
and conclude with our annotation approach and downstream task formulations (§3.4), designed to
facilitate benchmark evaluations for this emerging research domain.

3.1 SIMULATOR ENVIRONMENT AND SCENARIO DESIGN

Simulator Environment: The AirV2X-Perception dataset is collected by co-simulating
CARLA (Dosovitskiy et al., 2017) and Airsim (Shah et al., 2018) simulator environments. CARLA
simulator is a high-fidelity open-source simulator for autonomous driving research, which provides
realistic physical dynamics, vehicle control and interactions as well as photo-realistic digital assets
for sensor data collection. Airsim is designed for unmanned aerial vehicle (UAV) simulation and
provides realistic physical dynamics of drones. In this project, we use it to simulate the dynam-
ics of drone agents and synchronized with actors in the CARLA simulator. We designed a total of
6.73-hour V2X collaborative driving sequences collected through Towns 1-4 and 6-7, and 12 of the
CARLA simulator. We ignore Towns 5 and 10 since these maps contain static objects embedded
into the CARLA static map asset that do not have accurate ground truth labels or sensing results,
which may potentially lead to unstable model training. We also ignore town 11 as it is an unadorned
map that does not align with the collaborative perception objectives of this work.

Scenario Design: The dataset is collected in four different weather conditions including clear,
cloudy, foggy, and rainy, as well as three daytime type variations including day, dusk, and night,
forming a variety of lighting conditions such as cloudy day, rainy night, and clear dusk, etc., assist-
ing model training and evaluation in different weather and lighting conditions. Since the CARLA
simulator provides urban and rural maps, we also collect data in both environments. The statistical
distribution of the scenes in the dataset is shown in Figure 1.

3.2 NAVIGATION STRATEGIES FOR DRONES

We designed three types of navigation strategies for drones, hover — letting a drone hover at a fixed
position, patrol — assigning each drone a list of predefined waypoints to navigate, and escort —
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Figure 1: The percentage of each scenario in the dataset.

assigning each drone a connected vehicle to follow. Each of these navigation strategy designs has
its own advantages and application in the real world. More specifically, hover is suitable for single-
point monitoring in a specific area with minimum power consumption. Secondly, patrol enables the
drone to cover a larger area, which is more suitable for large and complex transportation scenarios,
but requires more power consumption and high complexity in multi-drone route planning. Finally,
escort strategy is designed to assist a certain vehicle or a certain platooning group of vehicles. A
conceptual visualization of these three trajectories is shown in Figure 2. The dataset incorporates all
of these three types of trajectories. The distribution of each type of navigation strategy in the dataset
is shown in Figure 2.

Mode Distribution
hover
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Figure 2: A conceptual visualization of three different navigation strategies for drones, along with
the data distribution of each strategy.

3.3 DATA COLLECTION

Sensor data are collected at a 5 Hz frequency. Each driving sequence contains 3 to 5 connected
vehicles, 3 to 5 connected drones, and 3 to 5 RSUs. Each agent is equipped with both LiDAR
and camera sensors and the details of the sensor setups are summarized in Table 2. Each vehicle
is equipped with 6 cameras forming a surround-view matrix. The camera sensor placement can
be visualized in Figure 3 (c). Each agent also carries GNSS sensors for global positioning while
vehicles and drones are also equipped with IMU sensors. LiDAR point clouds are visualized in
Figure 3 (b). Sensors from vehicles, drones, and RSUs are annotated with different colors. LiDAR
point clouds of different types of agents complement each other, forming more complete point clouds
of the scene.

Table 2: Sensor configurations for vehicles, RSUs, and drones.
Agent LiDAR Cameras Other Sensors

Vehicle 1x 360° 64-channel LIDAR; 20 Hz 6 x surround-view cameras; FOV 110°; GNSS, IMU
rotation; Vertical FOV +10°/-38° 1280x 720 resolution

RSU 1x 360° 64-channel LIDAR; 20 Hz 4 cameras (front, left, right, back); GNSS
rotation; Vertical FOV +10°/-38° FOV 110°; 1280x 720 resolution

Drone 1x 360° 64-channel LiDAR; 20 Hz  1x downward-facing camera; FOV  GNSS, IMU
rotation; Vertical FOV -30°/-90° 110°; 1280 720 resolution
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Figure 3: (a) The percentage of each scene in the dataset; (b) LiDAR point clouds visualization for
each agent types, and (c) the camera/LiDAR placement for vehicular agents.

3.4 DATA ANNOTATION AND DOWNSTREAM TASKS

CARLA simulator provides accurate ground truth labels for all the objects in the scene, including
the 3D bounding boxes, semantic segmentation, depth map, and semantic LiDAR point clouds. Us-
ing such labels, we provide 3D bounding boxes annotations for 3D object detection, segmentation
map annotations for BEV semantic segmentation, depth map annotations for depth estimation, and
tracking annotations for 3D multi-object tracking. The data and annotations are gathered in a syn-
chronized manner across all agents in the scene, enabling the collaborative perception tasks. The
dataset is split into training, validation, and test sets that contain 2.19, 1.02, and 3.52 hours of driving
sequences, respectively. We annotate 6 categories of common objects in the driving scenarios in-
cluding cars, motorcycles, bicycles, vans, trucks, and buses, forming a total of 1,961,484 annotated
objects. The statistics of the dataset are summarized in Figure 3 (a).

4 BENCHMARK

In this section, we benchmark multi-agent collaborative perception algorithms on our proposed
AirV2X-Perception dataset. We carefully select six representative algorithms that showcase dif-
ferent approaches to collaborative perception challenges, with particular attention to their applica-
bility in complex, heterogeneous, multi-agent scenarios involving ground vehicles, infrastructure,
and aerial perspectives. Our evaluation spans 3D object detection, BEV semantic segmentation, and
computational efficiency across diverse environmental conditions and agent configurations, provid-
ing insights into both algorithmic performance and practical deployment considerations.

4.1 EXPERIMENTAL SETUP AND METHODOLOGY

The AirV2X-Perception dataset has three agent types: vehicles, roadside units (RSUs), and drones.
To evaluate performance across this heterogeneous setting, we select representative collaborative
perception algorithms: transformer-based V2XViT (Xu et al., 2022b); communication-efficient
When2com (Liu et al., 2020) and Where2comm (Hu et al., 2022); BEV-optimized CoBEVT (Xu
et al., 2022a); and heterogeneous-agent methods HEAL (Lu et al., 2024) and STAMP (Gao et al.,
2025b). All experiments were conducted on RTX A6000 GPUs with PyTorch 2.6.0 and CUDA 12.6.
To ensure fair comparison, we focus on LiDAR-based V2X perception—supported by most existing
methods—and apply consistent training hyperparameters. Implementation details and reproducibil-
ity resources are available in the accompanying codebase'.

4.2 PERFORMANCE OVERVIEW

We evaluate methods along three primary dimensions: 3D object detection accuracy, BEV semantic
segmentation quality, and computational efficiency (peak GPU memory). For 3D detection, we use
[—140.8,140.8] x [—40, 40] meters around the ego vehicle and report mAP at 30% and 50% IoU
(AP30, AP50). For BEV segmentation, we restrict the area to [—64, 64] x [—64, 64] meters and report
mloU. Following prior datasets such as Dair-V2X (Yu et al., 2022) and TUMTraf (Zimmer et al.,
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2024), all vehicle types are treated as a single class for consistency. Peak GPU memory denotes the
maximum usage during training per batch. Table 3 summarizes results across these dimensions.

The results show several trends. First, hetero- Typje 3: Performance overview of 3D object de-

geneous agent collaboration methods (HEAL  (cctjon, BEV semantic segmentation, and peak
and STAMP) achieve superior performance in - GPU memory usage.

object detection, with HEAL reaching the highest

AP30 and APS0 scores of 49.2% and 45.5%. This  Mcthod | AP30r APS07 mloUr VRAMuGh)
indicates that explicitly modeling agent hetero- When2com | 23.0 205 150 8.2
geneity is advantageous in complex multi-agent COBEVT 429 298 339 38.1
scenarios such as those in our AirV2X-Perception \V]V;;r\j’%lfomm i‘éi g;? gg% 41L(3)§

1 . . . .
dataset. Second, we observe a clear trade-off HEAL 492 455 339 124

between accuracy and efﬁc1§ncy: while HEAL STAMP 479 427 277 10.1
attains state-of-the-art detection results, it con- —
sumes 51% more memory than When2com, the most memory-efficient baseline. For semantic seg-
mentation, both HEAL and CoBEVT achieve the best mIoU of 33.9%, with V2XViT close behind at
32.7%. The strong performance of STAMP and HEAL across both tasks underscores the importance
of handling heterogeneous agent inputs in collaborative perception.

4.3 PERFORMANCE ANALYSIS ACROSS ENVIRONMENTAL CONDITIONS

Table 4: 3D object detection results in different scenarios, including lighting conditions (day, dusk,
or night), environments (urban or rural), and weather conditions (rainy, foggy, cloudy, or clear).

| Day Dusk Night | Urban Rural | Rainy Foggy Cloudy Clear

Method ‘AP30 AP50 AP30 AP50 AP30 APSO‘APSO AP50 AP30 APSO‘APSO AP50 AP30 AP50 AP30 AP50 AP30 APS50

When2com 21.5 208 248 20.6 154 150|253 224 161 155|172 164 327 264 253 224 227 221
CoBEVT 37.1 242 484 351 105 20 |51.3 374 138 35 | 157 47 277 13.6 513 374 494 357
Where2comm | 42.5 357 479 38.6 234 214|486 403 326 260|350 275 314 260 48.6 403 454 393

V2XViT 46.8 41.1 47.8 39.0 193 162|521 438 287 251|323 286 384 313 52.1 438 50.7 443
HEAL 49.2 469 499 447 328 31.7 | 528 489 368 34.1|385 357 456 393 52.8 489 54.8 528
STAMP 48.6 41.6 48.0 39.7 198 169|528 445 286 257|320 292 385 31.6 528 445 521 450

To evaluate real-world applicability, we analyze algorithm performance across environmental fac-
tors: lighting (day, dusk, night), scene type (urban or rural), and weather (rainy, foggy, cloudy,
clear). As shown in Table 4, all methods are strongly affected by lighting, with large degrada-
tion at night. CoBEVT suffers the steepest drop, with nighttime AP30 (10.5%). In contrast, HEAL
shows the highest resilience, retaining 65.7% of its daytime AP30 at night (32.8% vs. 49.2%).
Scene context also matters: urban scenes consistently outperform rural ones. This gap is largest for
CoBEVT (51.3% vs. 13.8%, a 73.1% reduction) and smallest for HEAL (52.8% vs. 36.8%, a 30.3%
reduction), suggesting heterogeneous fusion particularly benefits rural environments.

For weather, CoBEVT degrades notably in fog (27.7% vs. 49.4% in clear), while HEAL remains
steadier across conditions. Rain impacts all models, though HEAL and STAMP remain more robust
than earlier methods like When2com and CoBEVT. Overall, these results highlight that collaborative
perception methods differ greatly in robustness to environmental variation, underscoring the need
for models resilient across diverse conditions.

4.4 IMPACT OF DRONE NAVIGATION STRATEGIES

A unique aspect of our AirV2X-Perception Table 5: Object detection results with different
dataset is the incorporation of aerial agents navigation strategies for drones, including hover,
(drones) with distinct navigation strategies: patrol, and escort.

hover, patrol, and escort. We evaluate how Hover Patrol Escort
these navigation strategies affect perception
performance in Table 5. We can observe that
hover mode presents the greatest challenge for ~ When2com 154 150 21.7 21.0 25.0 20.6

Method AP30 AP50 AP30 AP50 AP30 AP50

all methods, possibly due to the limited range ~ COBEVT 105 2.0 642 543 215 9.0
covered by static drones. Patrol mode yields the =~ Where2comm 23.4 214 578 484 31.9 257
V2XViT 193 162 58.8 509 34.7 28.8

best results across algorithms, particularly for
CoBEVT (64.2% AP30). Escort mode shows
intermediate performance, with HEAL (41.8%

HEAL 32.8 31.7 56.1 53.8 41.8 36.6
STAMP 19.8 169 59.8 51.7 34.7 29.2
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AP30) outperforming V2XViT and STAMP (both 34.7% AP30), suggesting that more sophisticated
fusion mechanisms better handle adaptive trajectories. These findings emphasize that drone naviga-
tion strategies should be coordinated with perception algorithm capabilities to optimize collaborative
perception systems.

4.5 SEMANTIC SEGMENTATION PERFORMANCE ANALYSIS

The experiemental results of BEV semantic segmentation Table 6: Semantic segmentation per-
performance across environmental conditions and drone formance (mloU) across various drone
navigation strategies are shown in Table 6 and Table 7. navigation strategies.
Segmentation performance is consistent across environ-  \ethod Hover Patrol Escort
mental conditions. V2XViT’s segmentation performance
varies by only 6.6% points between its best (cloudy at When2com 15.1 148 158
36.4%) and worst (foggy at 28.8%) conditions, compared CoBEVT 343403 284

> Where2comm  31.7 33.8 27.6

to a 32.8% point spread in detection between urban set-  yoxviT 327 405 389
tings (52.1%) and night scenarios (19.3%). For various  QggAL 343 403 384
drone navigation strategies, patrol mode yields the high-  STAMP 26.3 32.1 30.7

est performance across all methods, with V2XViT reach-
ing 40.5% and both CoOBEVT and HEAL achieving 40.3%, consistent with detection results.

Table 7: Segmentation performance (mloU) across various lighting, environments, and weathers.

Method | Day Dusk | Night Urban | Rural Rainy Foggy Cloudy  Clear
When2com 16.2 14.3 15.1 17.9 13.6 11.5 14.0 17.9 16.4
CoBEVT 33.1 34.2 34.3 33.7 27.0 28.3 30.7 33.7 32.7
Where2comm 32.8 36.5 31.7 31.6 28.6 24.1 28.7 31.6 30.0
V2XViT 34.7 35.0 32.7 36.4 28.1 29.7 28.8 36.4 339
HEAL 33.1 342 343 33.7 27.0 28.3 30.7 33.7 32.7
STAMP 26.1 33.5 26.4 36.1 25.1 22.2 27.4 36.1 335

4.6 IMPACT OF DEGRADED LIDAR SENSOR CONFIGURATIONS

To evaluate robustness under resource-
constrained scenarios with degraded LiDAR
configurations. While our primary benchmark

Table 8: Object detection performance (AP30)
with different LIDAR channel configurations.

uses 64-channel LiDAR, we collect data using Method | 64-ch  32ch 16-ch

16- and 32-channel configurations to simulate When2com 23.0 152178 56174
cost-effective deployments, particularly rele- CoBEVT 429 328101 155274
vant for aerial agents. Results in Table 8 show Where2comm | 44.8  31.5 133 21.8 /23,0
performance degradation across all methods V2XViT 46.4 299 165 17.0 1294
with degraded LiDAR. However, simpler STAMP 47.9 141338 1111368
methods (When2com, CoBEVT) show better HEAL 492 149343 1221370

robustness to sensor degradation, maintaining

24.3% and 36.1% of baseline performance, while heterogeneous methods (STAMP, HEAL) expe-
rience more severe drops to 23.2% and 24.8%. This suggests that sophisticated fusion strategies
may require adaptation for low-quality sensors, highlighting a trade-off between accuracy and
robustness.

4.7 IMPACT OF TEMPORAL AND SPATIAL ERRORS

Table 9 summarizes the robustness of different V2X perception methods under temporal asyn-
chronization and localization/direction errors. Temporal asynchronization generally reduces per-
formance, but training with asynchronous data mitigates the degradation. CoOBEVT shows a slight
improvement (+1.0%) under asynchronous training, suggesting that temporal misalignment may act
as implicit data augmentation. Localization and direction errors further highlight system fragility.
Performance consistently drops as noise increases, with localization errors (0.2m) causing more
severe degradation (3.4-5.6%) than comparable direction errors (0.2°) at 2.2-3.6%. STAMP and
HEAL exhibit higher sensitivity, indicating that sophisticated feature fusion mechanisms require
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precise spatial alignment. Overall, these findings emphasize that real-world V2X systems must ac-
count for both temporal and spatial inconsistencies. Robust training strategies and accurate pose
estimation are critical for maintaining performance under realistic deployment conditions.

Table 9: Object detection performance (AP30) of different V2X methods under temporal asynchro-
nization and localization/direction error simulations. “Sync/Async” denotes synchronized training
and asynchronous evaluation; “Async/Async” denotes asynchronous training and evaluation.

Method Temporal Asynchronization Localization & Direction Errors
Baseline Sync/Async Async/Async o =0.Im o =02m o=0.2° oc=04°
When2com 23.0 20.3 (27 22.5 105 20.3 2.7 18.5 145 19.8 132 17.1 159
CoBEVT 42.9 41.0 119 439 11.0 410019 392137 404 125 37.8 5.1
Where2comm 44.8 432 116 432 116 432 116 414134 426122 40.2 |46
V2XViT 46.4 44.0 |24 45.1 113 44.0 |24 417 |47 432132 40.1 |63
STAMP 49.2 469 |23 48.6 10.6 469 |23  44.1 |51  46.1 131 427 165
HEAL 479 45.1 |28 452 127 45.1 |28 423 |56 443 136 40.8 7.1

5 DISCUSSION

Our comprehensive evaluation of multi-agent collaborative perception algorithms reveals several
key insights that can guide future research in both algorithmic improvement and dataset design.

5.1 ALGORITHMIC IMPROVEMENT

The AirV2X-Perception dataset presents a particularly demanding benchmark due to its heteroge-
neous collaboration requirements among vehicles, roadside units (RSUs), and drones, each with
distinct sensing capabilities and perspectives. Our results demonstrate that methods specifically
designed for heterogeneous agents (HEAL and STAMP) consistently outperform conventional ap-
proaches, particularly in challenging environmental conditions. This underscores the importance of
algorithms that can effectively integrate information from diverse sensing modalities and viewpoints.

Computational efficiency for large-scale collaborative perception represents another significant
challenge. Real-world deployments may involve dozens or hundreds of interconnected agents, yet
several current approaches employ self-attention mechanisms that scale quadratically with agent
count. The substantial variation in memory requirements across methods (8.2GB for When2com
versus 43.5GB for V2XViT) highlights the need for algorithms that maintain perceptual accuracy
while scaling efficiently to large agent networks.

Furthermore, performance robustness across diverse environmental conditions remains prob-
lematic. Our analysis shows substantial performance degradation in challenging scenarios, with
even the best-performing method (HEAL) experiencing a 34% reduction in accuracy during night-
time operations. Developing environment-invariant collaborative perception systems that maintain
consistent performance across all conditions constitutes a critical research direction.

5.2 FUTURE DATASET DESIGN

While the AirV2X-Perception dataset offers a comprehensive benchmark across diverse environ-
ments and agent configurations, real-world deployment introduces additional complexities not
fully captured in simulation. Future research should emphasize datasets that incorporate realis-
tic sensor noise, communication constraints, and environmental variations, enabling more reliable
evaluation under authentic conditions and improving transferability from simulation to practice.

In real applications, perception informs decision-making, which in turn influences subsequent per-
ceptions. Closed-loop evaluation frameworks that capture this feedback cycle would yield deeper
insights into long-term performance beyond single-frame accuracy. Finally, future datasets should
include safety-critical edge cases such as accidents, road blockages, construction zones, and ex-
treme weather, as these scenarios are especially important for evaluating system robustness and
ensuring safe autonomous driving.
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Ethics Statement. This work relies entirely on simulated environments (CARLA and AirSim),
ensuring no personal or sensitive real-world data is involved. All released data are synthetic sensor
outputs from virtual vehicles, drones, and RSUs. The authors affirm compliance with the ICLR Code
of Ethics and uphold the principles of scientific integrity, transparency, and responsible stewardship.

Reproducibility Statement. We release the full AirV2X-Perception dataset, benchmark
splits, and accompanying codebase with training and evaluation scripts available at
https://anonymous.4open.science/r/AirV2X-Perception-BBA7.  All experiments specify hard-
ware/software details, hyperparameters, and fixed random seeds, and we benchmarked established
baselines using their official or verified implementations. Together, these resources enable indepen-
dent researchers to reproduce our results and fairly compare future methods.
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APPENDIX

A EXPERIMENTS DETAILS

All experiments were conducted under consistent hardware and software conditions using RTX
A6000 GPUs, PyTorch 2.6.0, CUDA 12.6, and SpConv 2.1. Models were trained with a batch
size of 4 using the Adam optimizer with an initial learning rate of 0.002 for 20 epochs. We trained
and evaluated all models following their official implementations (or unofficial implementations
where official ones were unavailable). Random seeds were fixed across all experiments to ensure
reproducibility. For additional implementation details, please refer to our open-source codebase’.

B ABLATION STUDIES FOR DIFFERENT NUMBERS AND TYPES OF AGENTS.
Table Al: Object Detection Results by Lighting Conditions Across Different Agent Combinations.

| Overall | Daytime | Dusk | Nighttime
Method | AP30 AP50 | AP30 AP50 | AP30 AP50 | AP30 AP50
Vehicle + Infra + Drone
‘When2comm 23.0 20.5 21.5 20.8 24.8 20.6 154 15.0
CoBEVT 429 29.8 37.1 242 48.4 35.1 10.5 2.0
Where2comm 44.8 37.0 425 35.7 479 38.6 234 21.4
V2XViT 46.4 39.1 46.8 41.1 47.8 39.0 19.3 16.2
HEAL 49.2 45.5 49.2 46.9 49.9 44.7 32.8 31.7
STAMP 479 42.7 47.6 41.6 48.0 39.7 19.8 16.9
Vehicle + Infra
When2comm 16.26.8] 16.1 44 16.45.1) 12.68.2) 19.05.8] 12.185] 7976, 7.279)
CoBEVT 35.17.8) 21.78.10 28.4387] 19.4 48] 429550 31.24.0] 9.21.3] 0.7 1.3]
Where2comm 37474, 32.94.0) 34.58.0) 31.642) 413 6.60 35.03.6. 17.6 58] 14.86.5]
V2XViT 40.559] 32.86.3] 43.632] 35.16.0) 43345 35435 12.7 6.60 12.3 4.0,
HEAL 45339] 42.63.0] 44.54.7] 43534 46.435) 39.552] 22.8 10.0) 16.7 15.00
STAMP 45.029] 40.8 1.90 45520 40.0 1.6] 459210 38.01.70 18.8 1.0) 15.01.90
Vehicle only
When2comm 1131170 1.2 193] 10.6 10.90 0.8 20.04 12.0 12.8] 1.8 1890 3.0 124] 0.4147]
CoBEVT 23.719.2] 8.021.8) 2541170 5.119.10 25.722.7) 5.529.64 5352 0.51.5]
Where2comm 24.5203] 533170 23.119.4] 4.731.0) 26.121.8] 583270 7.0 16.4] 2.4189]
V2XViT 2851790 9.329.8] 26.8 20.0). 9.631.4] 29.518.2) 9.229.8] 11.28.0] 1.8 14.4]
HEAL 32.4169] 12.932.7] 29.7 19.5] 13.4335] 33.3 16.6] 14.0 30.70 12.5203) 1.7 3004
STAMP 31.0 16.9) 13.4293] 28.6 189 13.827.8) 33.1 1490 12.7 27.0) 10.29.6) 1.8 15.1)

Table A2: Object Detection Results by Environ-

This section analyzes the impact of differ- ! Oy
ments Across Different Agent Combinations.

ent agent types (vehicles, infrastructure, and

drones) on perception performance across vari- Urban Rural

ous environmental conditions and scenarios. Method |  AP30 APS0 |  AP30 AP50

As shown in Table A1, when examining over- _ Vehicle + Infra + Drone

all performance, removing drone agents leads =~ When2comm 253 22.4 16.1 155

: : CoBEVT 513 37.4 13.8 35

to a moderate performance; drop, while using (o0 e 0 e 560

only vehicle agents results in a severe degrada-  voxvit 52.1 4338 28.7 25.1

tion. The performance decline is particularly =~ HEAL 52.8 489 3638 34.1
STAMP 52.8 445 28.6 25.7

pronounced in AP50 metrics, where vehicle-
only configurations suffer decreases of up to _Vehicle + Infra
32.7% for models like HEAL. This suggests = When2comm | 20844, 15074, | 12833, 10.055)

: : » : CoBEVT 472410 29481, | 8948, 3301,

Fhat 1nfra.structure agents provide cptlcal spatial Wherezeomm | 40155, 36439, | 26561, 230300
information that complements vehicle perspec-  vaxviT 44676, 40831, | 22959, 165860
tives. For nighttime scenarios, the contribution =~ HEAL 52108, 465251 | 33334, 30536
STAMP 52306, 43410, | 25927, 23.027|

of drone agents becomes especially valuable,
with their removal causing HEAL’s AP50 score _ Vehicle only
to drop by 15.0%. This highlights drones’ abil- ~ When2comm | 133120, 14210) | 451160 04151)

: T 1 s CoBEVT 3201931 63311 | 67710  3.6021
ity to maintain visibility in low-light condltlops Where2eomm | 27.52100 613420 | 140 186, 2.7 234,
where ground-based agents struggle. The aerial ~ vaxviT 3391830 1083300 | 105183, 4.7204]
perspective provided by drones offers a strate-  HEAL 3781504 165324 | 125242  4.6295]

STAMP 36.4 165, 16.2283] | 119168, 3.3224]

gic advantage in maintaining perception relia-
bility across varying environmental conditions, particularly in scenarios with compromised lighting.

https://github.com/taco-group/AirV2X-Perception
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Table A2 shows that in urban set-
tings, HEAL and STAMP demon- Table A3: Object Detection Results by Drones’ Navigation
strate remarkable robustness to drone  Strategies Across Different Agent Combinations.

removal, with minimal AP30 drops \ Hover \ Patrol \ Escort

of 0.8 and 0.6% respectively, sug-  yehoq | AP0 APSO | AP30 APSO | AP30  AP50
gesting that the dense infrastructure
in urban areas can partially compen-

Vehicle + Infra + Drone

. When2comm | 15.4 15.0 217 21.0 25.0 20.6
sate for the glevated perspective that  § broT 105 20 P 543 s 0.0
drones provide. The multiple per-  Where2comm| 23.4 21.4 57.8 48.4 319 25.7
ception points available from infras- ~ V2XViT 19.3 16.2 8.8 509 347 288
truct ts in urb . s HEAL 328 317 56.1 53.8 418 36.6
ructure agents in urban environments  grapp 19.8 169 59.8 517 34.7 29.2

appear sufficient to maintain reliable
detection performance even without
aerial data streams. Rural environ-

Vehicle + Infra

When2comm | 7976, 7.279] | 16453, 13.872] |20.050/, 15.650]

: ) CoBEVT 82231 07131 [57.17.11 456871 | 15.164) 113237
ments tell a different story, with every  Where2comm| 17.6 551 14865, | 52454, 42360, [ 288301 21344}
agent type providing crucial informa- V2XViT 127660 1234.0J | 55.83.0, 4496.1] | 28958, 20.484]
: . HEAL 228100, 16.7150,|57.6 151 49.048] | 41.305] 36.402]
tion. The absence of dense infras-  gpyvp 18810, 15019] | 58612 51.106] |35.1051 27.2200
tructure in rural settings makes drone -
Vehicle only

perspectives particularly valuable, as

evidenced by performance drops of When2comm | 3.0 12.4] 0.4 147] | 16.156] 1.9192] | 65185, 0.819.8]

CoBEVT 5352) 0515 [359282] 13.5408]| 12987, 3.555]
2.7%-6.1% AP30 when drones are re- Where2comm | 7.0 164 2.4 189 [36.421.4] 9.8386) |13.1188] 1.624.1]
moved. The vehicle-only configura- ~ V2XViT 11280, 1.8 14.4] [41.117.8] 1533561 [15.8 189] 4.7 24.11
. . . HEAL 12,5203 1.730.0/ |45.510.6) 249289 [18.023.8 5.830.8)
tion performs drastically worse inru-  gravp 1029.6) 1.8 1510 |44.4 154] 22.729.0, |17.0 17.7, 4.6 24.6)

ral settings, with HEAL experiencing
a29.5% decrease in AP50, highlight-
ing the challenges vehicles face in rural perception without additional perspectives. This significant
disparity underscores how the collaborative perception benefits vary substantially based on environ-
mental context.

Table A4: Object Detection Results by Weather Conditions Across Different Agent Combinations.

| Rainy | Foggy | Cloudy | Clear
Method ‘ AP30 AP50 ‘ AP30 AP50 ‘ AP30 AP50 ‘ AP30 AP50
Vehicle + Infra + Drone
When2comm 17.2 16.4 32.7 26.4 25.3 22.4 22.7 22.1
CoBEVT 15.7 4.7 27.7 13.6 51.3 37.4 494 35.7
Where2comm 35.0 27.5 314 26.0 48.6 40.3 454 39.3
V2XViT 323 28.6 38.4 31.3 52.1 43.8 50.7 443
HEAL 38.5 35.7 45.6 39.3 52.8 48.9 54.8 52.8
STAMP 32.0 29.2 38.5 31.6 52.8 44.5 52.1 45.0
Vehicle + Infra
When2comm 11.0 624 9.56s, 28.9 35 20.0 6.4, 20.8 44, 15.0 741 18.5 431 16951,
CoBEVT 13.5 22, 3.3 141 23.2 45, 7.2 641 47.2 41y 29.4 5.1, 42.6 631 31.2 45,
‘Where2comm 27.6 74, 24.0 351 22.8 561 19.8 62, 40.1 85, 36.4 39, 39.7 551 36.0 54,
V2XViT 26.6 57, 23.0 560 35232, 26.0 54, 44.6 76, 40.8 3.1, 46.4 43, 36.1 52,
HEAL 36.4 21, 33.8 194 43.8 15, 38.6 06, 50.1 251 46.5 25, 50.6 43, 46.6 62|
STAMP 30.2 181 26.9 24 36.7 181 31.1 054 52.3 06l 43.4 10, 50.5 151 44.1 09y
Vehicle only
When2comm 5.1 1210 0.4 1601 8.3 244y 1.2 2524 13.3 120y 1.4 210, 14.3 54, 1.1 2100
CoBEVT 5.5 1011 2.7 201 15.2 125y 2.8 1081 32.0 1931 6.3 311 32.0 1741 10.2 255
Where2comm 15.9 1914 2.8 247y 13.0 184 1.5 245, 27.5 2110 6.1 342, 25.7 197, 5.8 3360
V2XViT 10.8 2151 5.8 22 21.1 173y 5.6 255, 33.9 1531 10.8 3301 36.6 142, 12.0 223,
HEAL 12.2 2631 5.0 307, 21.0 2464 8.0 3131 37.8 1504 16.5 3.4y 38.3 1661 19.1 3361
STAMP 12.8 1931 3.8 254 21.1 1741 5.8 257, 36.4 165, 16.2 283, 37.4 147, 19.0 26.04

Table A3 displays the impact of different drone flight patterns on performance. In hover scenarios,
drones provide essential overhead perspectives, with their removal causing significant decreases in
AP50 (1.9%-15.0%). Vehicle-only configurations suffer catastrophic degradation in hover scenarios,
with AP50 decreases of up to 30.0% for HEAL. For patrol scenarios, where drones follow prede-
termined routes, HEAL surprisingly shows a 1.5-point AP30 improvement when removing drones,
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indicating potential conflicts between drone and ground agent information during this pattern. How-
ever, this anomaly is not reflected in AP50 metrics, where all models show performance drops.
The escort pattern reveals interesting dynamics, with STAMP showing a slight 0.5% improvement
in AP30 when removing drones, suggesting that closely following drone patterns may sometimes
introduce redundant or conflicting information.

Table AS: Semantic Segmentation Results by Lighting Conditions, Environments, and Weather
Conditions Across Different Agent Combinations.

Method | Overall | Day Dusk Night | Urban Rural | Rainy  Foggy  Cloudy Clear

Vehicle + Infra + Drone

When2comm 15.0 16.2 14.3 15.1 17.9 13.6 11.5 14.0 17.9 16.4
CoBEVT 33.9 33.1 34.2 343 33.7 27.0 28.3 30.7 33.7 327
Where2comm 29.2 32.8 36.5 31.7 31.6 28.6 24.1 28.7 31.6 30.0
V2XViT 32.7 34.7 35.0 32.7 36.4 28.1 29.7 28.8 36.4 339
HEAL 339 33.1 34.2 343 33.7 27.0 28.3 30.7 33.7 32.7
STAMP 271 26.1 335 26.3 36.1 25.1 222 27.4 36.1 335

Vehicle + Infra

When2comm | 13.6 13| | 14714 13.113, 13813] | 16316/ 12313/ (10410, 12.713] 16316, 14915]

CoBEVT 2796.1, | 27.160] 28.06.1] 28262 | 27.66.1] 22.14.8]|23.35.1) 25256/ 27.66.1, 26.859]
Where2comm | 24.05.2 | 26959 2996.6] 26.057, | 25957 23.552](19.843] 23.652] 25957, 24.654]
V2XViT 26.859] | 28.563] 28763, 26.859] |29.865] 23.150) (24453 23.652] 29.865, 27.86.1]
HEAL 2796.1) | 27.160) 28161, 28.162] |27.76.1] 22.148(2335.1] 25255 27761, 26.859]
STAMP 227500 | 21447 27560, 21.547) | 29.665] 20.64.5] |18.34.0] 22549, 29.665, 27.560]
Vehicle only

When2comm | 12.524] | 13.62.6] 12.123] 12724, | 15029, 11422/]9.618, 11.822) 15029, 13.826]
CoBEVT 2371020 | 23299 23.9103] 240103, |23.610.1] 18.98.1][19.885, 21.592] 23.610.1] 22998
Where2comm | 20.58.8) | 22.99.8] 25.6109] 22.29.5] | 22.195], 20.08.6/|16.97.3] 20.186] 22.195] 21.09.0]

V2XViT 22998 (243104 244105, 22.998] [254109) 19.7841120.789] 20.286) 254109 23.710.2]
HEAL 2381020 | 232990 239102 24.1103] |23.610.1] 18881, |19.885] 21.592) 23.610.1, 22.998]
STAMP 19.483) | 183790 235100, 18.479] (253109, 17575, [15.667, 19.282] 253109, 23.410.1]

Table A5 presents semantic segmentation
performance across various conditions. For
semantic segmentation, removing drone Table A6: Semantic Segmentation Results by
agents causes approximately 4.5%-6.5% de- Drones’ Navigation Strategies Across Different
creases across most models and conditions. Agent Combinations.

When comparing vehicle-only to vehi- Method | Hover | Pawol | Escort
cle+infrastructure, we observe an additional
3.0$-4.5% drop, indicating that while drones

Vehicle + Infra + Drone

id luabl 1 ted t f ‘When2comm 15.1 14.8 15.8
provide valuable elevated perspectives for CoBEVT 343 103 284
segmentation tasks, infrastructure agents also Where2comm 317 33.8 27.6
contribute significantly to boundary delineation VIXVIT 327 405 38.9

. HEAL 34.3 403 38.4
and contextual understanding. STAMP 263 3.1 30.7
Table A6 reveals that drone flight patterns sig- Vehicle + Infra
nificantly impact semantic segmentation per- When2comm 138130 134 14] 144 1.4]
formance. The patrol pattern, where drones CoBEVT 282621 33.073) 233514
foll det ined t ields the hichest Where2comm 26.05.7] 27.86.10 22.65.0]
ollow predetermined routes, yields the highes V2XViT 26.8 59 33273 319700
baseline performance across all models. Re- HEAL 28.16.24 33.173) 315694
moving drones during patrol scenarios causes STAMP 215474 | 263581 | 251564
substantial performance drops (5.8%-7.3%). Vehicle only
The vehicle-only configuration experiences the When2comm 12.724] 12.524] 13225
most severe degradation (9.6%-12.1%) in pa- CoBEVT 240103, | 282121 | 19985)
trol . fi that thi tt Where2comm 22295 23.7 10.1) 19.483
Trol scenarios, suggesting that this pattern pro- V2XViT 229980 | 2831210 | 272117L
vides complementary information that cannot HEAL 241103, | 2821210 | 2691150
be recovered from ground perspectives. For es- STAMP 18.47.9) 225961 214924

cort patterns, where drones follow specific ve-
hicles, the performance drops are more consis-
tent across models, with 5.0%-7.0% decreases when removing drones. The hover pattern shows
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slightly less sensitivity to drone removal (4.7%-6.2%), suggesting that the aerial perspectives are
limited in the hover mode because the drones are stationary.

In conclusion, our comprehensive ablation studies demonstrate that each agent type contributes
uniquely to perception performance, with their relative importance varying across environmental
conditions, scenarios, and perception tasks. Overall, both drone agents and infrastructure agents
provide valuable perspectives multi-agent collaborative perception.

C DATASET VISUALIZATION

Figures A1 and A2 provide qualitative insight into the breadth and fidelity of the AirV2X-Perception
dataset. Each scene is captured synchronously by heterogeneous sensing platforms—including road-
side units (RSUs), connected vehicles, and drones. (i) The top panels in both figures highlight the
raw RGB imagery acquired by the surround camera matrix on RSUs and vehicles. (ii) The middle
panels display bird’s-eye-view (BEV) camera image from the drone (left), a semantic BEV map
(middle), and a perspective LiDAR point cloud with 3-D bounding boxes (right). (iii) The bottom
panel displays the full LIDAR sweep onto the BEV plane axis-aligned bounding boxes. For the
complete dataset, please refer to our open-sourced dataset link”.

Front Cama Back Camera

/ E50 ] ,”

Vehicle

BEV Camera BEV Segmentation Lidar w/ bbox (3D view)

Drones

Lidar w/ bbox (BEV view)

Figure Al: Visualization of some representative data of a single timestamp of the AirV2X-
Perception dataset. Note that for each agent type from RSU, vehicle, and drone, only one agent
is chosen for visualization.

Shttps://huggingface.co/datasets/xiangbog/AirV2X-Perception
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y

Left Cam

AN

BEV Camera BEV Segmentation Lidar w/ bbox (3D view)

Lidar w/ bbox (BEV view)

Figure A2: Visualization of some representative data of a single timestamp of the AirV2X-
Perception dataset. Note that for each agent type from RSU, vehicle, and drone, only one agent
is chosen for visualization.

D BEYOND THE DATASET

D.1 DRONE-ASSISTED VEHICLE-TO-EVERYTHING (V2X) FOR AUTONOMOUS DRIVING

The convergence of autonomous driving technologies with unmanned aerial vehicles (UAVs)
presents compelling opportunities for intelligent transportation systems. The global drone indus-
try is experiencing remarkable growth, with annual UAV shipments projected to reach 9.5 million
units by 2029 (Hayes, 2024), corresponding to a market value of $35-54 billion in 2024. Within the
mobility domain, UAV-assisted logistics and transportation services alone are expected to double
from $5.3 billion in 2019 to $11 billion by 2026 (Afrin et al., 2024). This proliferation of UAV tech-
nology is creating new possibilities for drone-assisted Vehicle-to-Everything (V2X) frameworks to
enhance autonomous driving capabilities globally.

V2X communication, encompassing interactions between vehicles and their environment (other ve-
hicles, infrastructure, pedestrians, networks), forms the foundation of connected autonomous driv-
ing. However, accommodating the growing number of connected devices and data-intensive services
in vehicular networks challenges existing infrastructure (Wang & Zhang, 2025). Drone-assisted
V2X offers a promising solution by integrating aerial drones as dynamic sensor platforms, com-
munication relays, and edge computing nodes. UAVs effectively add a third dimension to V2X
networks, enabling more comprehensive coverage and adaptive architectures than static ground in-
frastructure alone can provide.
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D.2 CURRENT RESEARCH TRENDS AND FUTURE PROJECTIONS

Research on drone-assisted vehicular networks has accelerated, exploring innovative protocol de-
signs, efficient resource management, and energy-optimized operations for UAV nodes in V2X
ecosystems. Current research prototypes demonstrate UAVs functioning as aerial base stations,
relays, or cooperative sensing platforms in connected vehicle environments. Field trials show that
drones can wirelessly connect isolated vehicle clusters, extend coverage in rural areas, and pro-
vide aerial perspectives to detect hazards beyond a vehicle’s line-of-sight. Cooperative perception
is emerging as a particularly valuable application—drones equipped with cameras or LiDAR can
stream data to nearby vehicles, effectively enabling them to “’see” around corners or beyond ob-
structions.

Looking ahead, sixth-generation (6G) wireless architectures are expected to natively support air-
borne communication nodes, facilitating real-time coordination between dense drone swarms and
ground vehicles (Kavas-Torris et al., 2022). Researchers anticipate advanced UAV traffic manage-
ment systems and dynamically reconfigurable airborne base stations that adapt to changing traffic
conditions. Advancements in Al are projected to enhance multi-UAV collaboration, enabling au-
tonomous drone swarms to optimize their positioning for network coverage and data collection.
The trajectory of research suggests that drone-assisted V2X will evolve from today’s experimental
implementations to become a fundamental component of smart transportation within the decade.

D.3 ADVANTAGES OVER TRADITIONAL RSUS AND VEHICLE-ONLY SYSTEMS

Drone-assisted V2X systems offer advantages over traditional roadside units (RSUs) and purely
vehicle-based networks. Their primary strength lies in dynamic adaptability: unlike fixed RSUs,
UAVs can be repositioned as needed to provide coverage in response to changing traffic or network
conditions. This on-demand deployment reduces the need for ubiquitous physical infrastructure
while enabling adaptive network scaling. Studies demonstrate that “flying RSUs” significantly im-
prove connectivity in sparse vehicular networks by filling coverage gaps between distant ground
nodes (Hadiwardoyo, 2019)—particularly valuable in rural areas or developing regions where fixed
infrastructure deployment is impractical.

From a sensing perspective, drones provide superior vantage points compared to vehicle-mounted
sensors alone. Autonomous vehicles’ onboard cameras, radar, and LiDAR have limited range and
are vulnerable to occlusions from buildings or large vehicles. UAV-mounted sensors mitigate these
limitations by observing the environment from above, seeing over obstacles and surveying broader
areas simultaneously. This aerial perspective enables more comprehensive situational awareness
when integrated with vehicle data.

Communication performance also improves with drone assistance. Signal propagation for V2X
radio is often hindered by buildings, terrain, or dense traffic, especially in urban environments.
Aerial relays enjoy clearer line-of-sight paths and can maintain simultaneous links with multiple
vehicles from elevated positions. By serving as intermediate nodes, drones reduce the number of
hops or transmission distances, thereby lowering latency and increasing data rates.

Finally, drone integration can be cost-effective compared to deploying numerous fixed sensors and
RSUs. While individual drones represent sophisticated technology investments, their mobility al-
lows them to cover multiple locations over time and be shared among many users as a service. This
reduces the need for permanently installed infrastructure that might be underutilized during off-peak
hours. In scenarios like temporary events, construction zones, or disaster response, this agility and
efficiency far outperform static, traditional infrastructure approaches.

D.4 TECHNICAL CHALLENGES AND LIMITATIONS

Despite their promise, drone-assisted V2X systems face several technical challenges:

* Latency and real-time communication: Supporting safety-critical autonomous driving applica-
tions demands ultra-low latency. Introducing drones as relays adds new sources of delay (Gupta
& Fernando, 2024). The entire process from capture to broadcast must occur within milliseconds,
requiring optimized communication protocols and careful scheduling of V2X message transmis-
sions.
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* Energy constraints: Limited battery life fundamentally restricts most UAVs to 20-40 minutes
of flight time, constraining their endurance for continuous V2X support. Frequent battery swaps
or recharging would be required for persistent coverage, while energy budgets also limit onboard
sensing and computing capabilities. Energy-efficient hardware and operations (including auto-
mated docking stations and solar-powered platforms) remain active research areas.

» Safety and airspace conflict: UAVs must avoid collisions with other aircraft and prevent haz-
ards to people and property below. Mid-air collision avoidance requires reliable detect-and-avoid
systems, especially at low altitudes around buildings and traffic. Dedicated UAV-to-UAV com-
munication links have been proposed to coordinate movements and prevent incidents. Robust
fail-safe protocols (automatic parachutes, controlled emergency landings) are essential to mitigate
risks from battery depletion or malfunction.

* Coordination and scalability: Managing drone fleets alongside thousands of connected vehicles
introduces complex coordination challenges. UAVs must synchronize their trajectories, sensing
tasks, and communication resources to maximize coverage without interference. City-wide de-
ployments might require dozens or hundreds of drones, demanding sophisticated aerial traffic
management systems. Research continues to explore swarm formation control and adaptive net-
working algorithms.

* Security and privacy: Drone integration expands the attack surface of vehicular networks. Com-
munication links between UAVs and vehicles or infrastructure may be vulnerable to eavesdrop-
ping, jamming, or spoofing without proper security measures. Additionally, drone-mounted cam-
eras and sensors may capture sensitive data about individuals or businesses, raising privacy con-
cerns that must be addressed through both regulatory frameworks and privacy-preserving technical
designs.

In summary, the integration of unmanned aerial vehicles with vehicle-to-everything communications
creates research opportunities driven by both practical needs and technical challenges. While drone-
assisted V2X offers compelling advantages in enhanced perception, flexible coverage, and improved
communication reliability, it faces substantial hurdles in energy efficiency, latency management,
safety, coordination, and security. These challenges establish a rich research landscape spanning
communications, sensing, control systems, energy management, and cybersecurity. By addressing
these interconnected concerns, researchers can advance drone-assisted V2X from experimental pro-
totypes to practical implementations, ultimately transforming autonomous transportation with dy-
namic aerial support that overcomes the limitations of traditional ground-based approaches (Wang
& Zhang, 2025; Kavas-Torris et al., 2022).
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Large Language Models (LLMs) were not used to generate, analyze, or create any of the content,
results, or figures presented in this paper. LLMs were only employed after the full manuscript was
completed, and solely for light editing of grammar and phrasing. All scientific ideas, experimental
design, implementation, and writing were conducted entirely by the authors.
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