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Abstract. nnU-Net serves as a good baseline for many medical image
segmentation challenges in recent years. It works pretty well for fully-
supervised segmentation tasks. However, it is less efficient for inference
and cannot effectively make full use of unlabeled data, both of which are
vital in real clinical scenarios. To this end, we revisit nnU-Net and find
the trade-off between efficiency and accuracy in this framework. Based
on the default nnU-Net settings, we design a co-training framework con-
sisting of two strategies to generate high-quality pseudo labels and make
efficient inference respectively. Specifically, we first design a resource-
intensive nnU-Net to iteratively generate high-quality pseudo labels for
unlabeled data. Then we train another light-weight 3D nnU-Net using la-
beled data and selected unlabeled data, with high-quality pseudo labels
used for the latter to achieve efficient segmentation. We conduct ex-
periments on the FLARE22 challenge. Our resource-intensive nnU-Net
achieves the mean DSC of 0.9064 on 13 abdominal organ segmentation
tasks and ranks first on the validation leaderboard. Our light-weight nnU-
Net shows the mean DSC of 0.8773 on the validation leaderboard but it
makes a better trade-off between accuracy and efficiency. On the test set,
it shows the mean DSC of 0.8864, the mean NSD of 0.9465, and the aver-
age inference time of 14.59s and wins the championship of the FLARE22
challenge. Our code is publicly available at https://github.com/Ziyan-
Huang/FLARE22.

Keywords: Segmentation · Semi-supervised learning · Computational
Efficiency

1 Introduction

Abdominal organ segmentation is an important prerequisite of many clinical
applications. In recent years, deep learning based methods are widely used to
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segment abdominal organs automatically. One of the most important baselines
among these methods is nnU-Net[5] and many top solutions for medical image
segmentation challenges in recent years are built based on it. Although nnU-
Net can achieve state-of-the-art performance in a fully supervised manner, two
distinct issues are observed: (1) the default nnU-Net has quadratic computation
complexity to volume shape due to sliding-window inference; (2) the default
nnU-Net does not support semi-supervised training. However, both the time
budget for model inference and the number of labeled data are limited in real
clinical scenarios. So, there is a great need for a framework that can make use
of unlabeled data and make efficient inference simultaneously.

The Fast and Low-resource Semi-supervised Abdominal Organ Segmentation
Challenge 2022 (FLARE22) is a competition that aims at efficiently segmenting
13 organs in CT images from 20+ medical groups. In addition to evaluating the
abdominal organ segmentation accuracy, it also takes model efficiency into con-
sideration. By studying the top methods in FLARE21 [7], we find that although
the nnU-Net based method [4] can achieve the best DSC and NSD scores, all
the top-5 methods do not use nnU-Net. This is probably due to its high resource
consumption and low inference speed, making it only rank ninth. We summa-
rized the main efficiency takeoffs from the winning methods in FLARE21: (1)
use a small model and low-resolution images; (2) input whole volume image and
use two-stage segmentation. Obviously, nnU-Net can also benefit from a small
model and low-resolution input. However, inputting the whole volume images
will lose the spacing information of medical images. We thus argue that keeping
the spacing information and using the sliding-window strategy in nnU-Net is
still necessary. The goal of two-stage segmentation is to first locate the region of
interest (ROI) with a small computational cost and then conduct fine segmen-
tation only on the ROI to achieve high efficiency. However, the default sliding
window inference strategy in nnU-Net spends too much time on the background
area, which heavily increases the inference time, especially in whole-body CT
images.

The distinction between FLARE22 and FLARE21 is that challenge this year
is the semi-supervised learning (SSL) task. In addition to 50 well-annotated im-
ages, 2000 unlabeled images are also provided. This setting is reasonable as the
pixel-wise annotation is expensive and laborious especially when each pixel of
thousands of CT images needs to be annotated into 13 different abdominal or-
gans. Semi-supervised learning method, as a solution to such a dilemma, can
be mainly divided into two types: (1) consistency-regularization-based method;
(2) pseudo-label-based method. We pick the pseudo-label-based method and
combine it with the nnU-Net framework for its simplicity. To achieve high per-
formance, the quality and reliability of pseudo labels are essential. However, we
can hardly achieve both efficiency and accuracy using only one model. Thus,
we use an efficient small model for inference, while adopting a large model to
generate high-quality pseudo labels to train such a small model.

In this paper, we design a framework consisting of two modified 3D nnU-Net
to generate high-quality pseudo labels and make inference efficiently respectively.
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Specifically, we design a resource-intensive nnU-Net to iteratively generate high-
quality pseudo labels for 2000 unlabeled data. Then we conduct image-level
selection based on the stability of different re-training iterations and filter out
the pseudo labels that are less reliable. To achieve high inference efficiency, we
first train a lightweight nnU-Net using the union of labeled images and selected
unlabeled images with pseudo labels. Then, we further propose an efficient sliding
window strategy based on the prior knowledge of the abdomen to reduce the
number of inference windows. Furthermore, we also rewrite the implementation
code of the time-consuming part in nnU-Net such as crop and resample.

Our main contributions are summarized as follows:

– We design a pseudo labeling framework based on nnU-Net that can generate
high-quality pseudo labels and make inference efficiently simultaneously.

– We propose an image-level pseudo label selection method based on the stabil-
ity of the pseudo labels during different re-training iterations. Models trained
using our selected pseudo labels perform better.

– We propose an efficient sliding-window inference strategy by considering the
prior knowledge of the abdominal organ volume. This strategy can greatly
reduce the number of inference windows.

– We optimize the time-consuming parts of the code in nnU-Net such as crop
and resample.

labeled images

big nnU-Net

small nnU-Net

unlabeled images

train

accurate segmentation

pseudo labels
train

efficient segmentation

test images

Fig. 1. Overview of our proposed framework.
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Table 1. Comparison of different segmentation strategies. The first two rows evaluate
model designs and the remaining rows are for inference strategies. The order of axes of
input patch size and spacing is (z,y,x).

Settings Default Accurate Efficient
channels in the first stage 32 32 16

convolution number per stage 2 3 2
downsampling times 5 5 4

input patch size (40, 224, 192) (48, 224, 224) (32, 128, 192)
input spacing (2.5, 0.8, 0.8) (2.5, 0.8, 0.8) (4.0, 1.2, 1.2)

test time augmentation yes yes no

2 Method

As illustrated in Figure 1, our framework contains two 3D nnU-Net to achieve
high-quality pseudo labeling and efficient inference respectively.

2.1 Accurate Segmentation vs Efficient Segmentation

As revealed by EfficientNet[10], deeper and wider networks trained with higher
resolution images always have better performance but also cost more computa-
tional resources. The default 3D nnU-Net prefers to keep the original resolution
of images for better accuracy and resample the spacings of all images to the
median spacings of the dataset (10th percentile of the spacings for anisotropic
axis). However, the default nnU-Net also makes a compromise on the size of
the network and input patch to make the network trainable within 10GB GPU
memory.

Based on the default setting of nnU-Net, we design a set of accurate but
resource-intensive settings and a set of efficient settings. In the accurate set-
tings, we use a bigger model and a bigger input patch size. In the efficient
setting, we not only use a smaller model and smaller input patch size but also
resample images to larger spacing. That also means the input images are with
lower resolutions for efficient settings. Test time augmentation is applied in the
default nnU-Net and our accurate setting, but we do not use it in our efficient
setting as it will cost about 8× inference time. The detailed configurations and
the comparison with default nnU-Net are listed in Table 1.

For image prepossessing, both of our accurate settings and efficient settings
follow the default nnU-Net that clips CT images to 0.5 and 99.5 percentiles of
foreground voxels and normalizes images by subtracting the mean then divides
by the standard deviation calculated on all images. We do not conduct any
postprocessing in our settings.

2.2 Iterative Pseudo Labeling by Accurate Segmentation

We adopt pseudo labeling, a simple but effective method, to leverage the un-
labeled data for training model. Considering the unsatisfactory performance of
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the efficient segmentation strategy mentioned above, which may degrade the
quality of pseudo labels, we use the accurate segmentation strategy to generate
high-quality pseudo labels for the efficient segmentation strategy.

Simple Pseudo Labeling Scheme Our pseudo labeling strategy includes the
following steps:
1. Train 5 big nnU-Net models by 5-fold cross-validation on the labeled data.
2. Predict one-hot hard pseudo labels on unlabeled data using our designed

accurate inference setting with a 5-fold ensemble of big nnU-Net.
3. Iterative re-train a big nnU-Net on the union of labeled data and unlabeled

data with pseudo labels and then generate new one-hot hard pseudo labels
for the next round.

4. Select pseudo labels based on the stability of pseudo labels during different
training rounds.

5. Train a small nnU-Net on the union of labeled data and selected unlabeled
data with pseudo labels for final evaluation.
Here we use the summation between Dice loss and cross-entropy loss because

compound loss functions have been proven to be robust in various medical image
segmentation tasks [6].

Pseudo Label Selection As the trained big nnU-Net may not perform well in
all the unlabeled images, some unreliable pseudo labels may harm the training
of small nnU-Net. We design a simple method to filter the unreliable pseudo
labels based on the stability during different training iterations. We assume that
the generated pseudo labels should be stable during iterative training. If some
pseudo labels vary greatly in different iterations, it indicates that the model is
very uncertain about these pseudo labels and we should not use them for training.
We calculate the uncertainty of pseudo labels using the following equation:

u =
1

K − 1

K∑
i=2

SUM(yi ̸= yi−1)

SUM(yi > 0)
(1)

where u is the uncertainty and K is the total number of iterations, yi is the
pseudo label generated in iteration i.

2.3 Efficient Sliding Window Inference
Due to the high resolution of volumetric medical images, nnU-Net adopts the
sliding-window strategy for inference. In this strategy, the total inference time
depends on the number of windows and the inference time per window. Given
input size (x, y, z), window size (px, py, pz) and inference step size s, the number
of sliding window N can be calculated as below:

N = ⌈x− px
s ∗ px

⌉ ∗ ⌈y − py
s ∗ py

⌉ ∗ ⌈z − pz
s ∗ pz

⌉ (2)

where s ∈ (0, 1] and ⌈·⌉ means round up operation.



6 Z. Huang et al.

Lower Resource Consumption For Each Window In our efficient inference
setting, we use a small model and small patch size as in Table 1 to accelerate
the inference speed for each window and also reduce the GPU memory.

Reduce Total Number of Sliding Window The default window sliding
strategy designs steps for axis x, y, and z separately and uses three layers of for
loop to traverse the whole image. However, the abdominal area occupies a small
percentage of the entire image, especially in whole-body CT images. With prior
knowledge of human anatomy, the region of abdominal organs is expected to
have a limited volume and locate in the middle of each transverse section. So we
propose to use 3× 3 windows for each transverse section with 50% overlapping.
In addition, we first do inference in the middle window, if this window has no
foreground area, we can skip surrounding windows.

Fig. 2. Illustration of our proposed efficient sliding window strategy and comparison
with nnU-Net. The red box indicates the region of interest for abdominal organs. The
middle figure is the original sliding window strategy used in nnU-Net. The right figure
is our proposed strategy that uses the middle window (brown) for every transverse
section first to determine whether to do inference for surrounding windows (blue).

3 Experiments

3.1 Dataset and evaluation measures

The FLARE2022 dataset is collected from more than 20 medical groups under
the license permission, including MSD [9], KiTS [2,3], AbdomenCT-1K [8], and
TCIA [1]. The training set includes 50 labeled CT scans with pancreas disease
and 2000 unlabelled CT scans with liver, kidney, spleen, or pancreas diseases.
The validation set includes 50 CT scans with liver, kidney, spleen, or pancreas
diseases. The testing set includes 200 CT scans where 100 cases have liver, kid-
ney, spleen, or pancreas diseases and the other 100 cases have uterine corpus
endometrial, urothelial bladder, stomach, sarcomas, or ovarian diseases. All the
CT scans only have image information and the center information is not avail-
able.
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The evaluation measures consist of two accuracy measures: Dice Similarity
Coefficient (DSC) and Normalized Surface Dice (NSD), and three running effi-
ciency measures: running time, area under GPU memory-time curve, and area
under CPU utilization-time curve. All the measures will be used to compute the
ranking. Moreover, the GPU memory consumption has a 2 GB tolerance.

3.2 Implementation details

The development environments and requirements are presented in Table 2. The
training protocols of big nnU-Net and small nnU-Net are listed in Table 3 and 4
respectively. We adopt data augmentation of additive brightness, gamma, rota-
tion, scaling, and elastic deformation on the fly during training. It is noticeable
that we use mirror data augmentation for the big model but abandons it for the
small model as the small model does not do test time augmentation (TTA) of
flipping during inference.

Table 2. Development environments and requirements.

System version CentOS Linux release 7.6.1810
CPU Dual AMD Rome 7742@3.4GHz
RAM 32×32GB; 3200MT/s
GPU (number and type) 8x NVIDIA A100 80GB Tensor Core GPUs
CUDA version 11.2
Programming language Python 3.8.0
Deep learning framework Pytorch (Torch 1.10.1)
Specific dependencies nnU-Net 1.7.0
Code https://github.com/Ziyan-Huang/FLARE22

Table 3. Training protocols for big nnU-Net.

Network initialization "He" normal initialization
Batch size 2
Patch size 48×224×224
Total epochs 1000
Optimizer SGD with nesterov momentum (µ = 0.99)
Initial learning rate (lr) 0.01
Lr schedule Poly learning rate policy: (1− epoch/1000)0.9

Training time 24 hours
Loss function Dice loss and cross entropy loss
Number of model parameters 82M
Number of flops 776G
CO2eq 34.01 Kg

https://github.com/Ziyan-Huang/FLARE22
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Table 4. Training protocols for small nnU-Net.

Network initialization "He" normal initialization
Batch size 2
Patch size 32×128×192
Total epochs 1500
Optimizer SGD with nesterov momentum (µ = 0.99)
Initial learning rate (lr) 0.01
Lr schedule Poly learning rate policy: (1− epoch/1500)0.9

Training time 12 hours
Loss function Dice loss and cross entropy loss
Number of model parameters 5.4M
Number of flops 136G
CO2eq 11.08 Kg

4 Results and discussion

4.1 Quantitative results on validation set

For iterative pseudo labeling, we repeatedly generate pseudo labels for three
iterations by using the big nnU-Net and then filter out 76 unreliable pseudo
labels in the final iteration. The 76 unreliable pseudo labels is chosen by Equation
(1) when the threshold of µ is set to 0.1. That is, we have 50 labeled images and
1924 images with reliable pseudo labels in the end. We compare the performance
of both big nnU-Net and small nnU-Net trained with or without 1924 reliable
pseudo labels. We report the results of DSC on the validation leaderboard1 in
Table 5.

Table 5. DSC of accurate segmentation and efficient segmentation with and without
selected pseudo labels on online validation leaderboard.

Model Training Images Liver RK Spleen Pancreas Aorta IVC RAG LAG
Big nnU-Net Labeled Only 0.9707 0.8894 0.9228 0.8688 0.9576 0.8950 0.8105 0.8414
Big nnU-Net With Pseudo Labels 0.9802 0.9508 0.9696 0.8965 0.9731 0.9088 0.8481 0.8469

Small nnU-Net Labeled Only 0.9564 0.8655 0.9134 0.8011 0.9292 0.8632 0.7466 0.7005
Small nnU-Net With Pseudo Labels 0.9708 0.9382 0.9537 0.8764 0.9529 0.8909 0.7740 0.8038

Model Training Images Gallbladder Esophagus Stomach Duodenum LK Mean
Big nnU-Net Labeled Only 0.8375 0.8696 0.9067 0.7755 0.8903 0.8797
Big nnU-Net With Pseudo Labels 0.8459 0.8894 0.9142 0.8363 0.9233 0.9064

Small nnU-Net Labeled Only 0.6556 0.7931 0.8483 0.7077 0.8485 0.8176
Small nnU-Net With Pseudo Labels 0.7660 0.8653 0.8949 0.8052 0.9127 0.8773

1 https://flare22.grand-challenge.org/evaluation/challenge/leaderboard/

https://flare22.grand-challenge.org/evaluation/challenge/leaderboard/
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As shown in Table 5, training models with labeled data and selected data with
pseudo labels can improve models’ performance compared to training models
with only labeled data. Moreover, the improvement is more significant for small
models with an efficient inference strategy.

Sup Only
Re-train #1

Re-train #2
Re-train #3

Re-train Selected
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0.90
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big nnUNet
small nnUNet

Fig. 3. Effectiveness of iterative training and label selection

We examine the effectiveness of iterative training and model selection in
Figure 3. We can see that retraining models for more iteration can help improve
performance but the performance gain is gradually flattening. We also observe
that filtering out some noisy labels can further improve the models’ performance.

4.2 Qualitative results on validation set

Figure 4 shows 4 representative segmentation results of our small nnU-Net
trained on 50 labeled data and 1924 selected pseudo labels for final submis-
sion. For Case #21 and Case #35, the network successfully identifies all organs
with high accuracy. For Case #42 and Case # 48, it is easy to see that some
under-segmentation and over-segmentation errors occurred. We argue that this
is due to the small nnU-Net lack of reprehensibility and images after resampling
to low resolution lose some important details.

4.3 Segmentation efficiency results

We build our small nnU-Net with an efficient inference strategy as a docker
image for final submission. In Table 6, we report the efficiency evaluation results
on our personal computer with 32 GB RAM, CPU i7-8700 and GPU 1070 using
the official evaluation code 2.
2 https://github.com/JunMa11/FLARE/tree/main/FLARE22/Evaluation

https://github.com/JunMa11/FLARE/tree/main/FLARE22/Evaluation
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Fig. 4. Qualitative results of our small nnU-Net on two easy cases (Case #21 and Case
#35) and two hard cases (Case #42 and Case #48).

Table 6. Efficiency evaluation results of our submitted docker. All metrics reported
are the average values on 50 validation cases

Time GPU memory AUC GPU Time CPU Utilization AUC CPU Time
12.8s 1762MiB 15990 71.8% 242
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4.4 Results on final testing set

Our method wins the championship among 47 submissions on the final testing
set. Table 7 and Table 8 shows the detail evaluation metrics of our method on
final testing set.

Table 7. Testing results of our proposed method. All metrics reported are the average
values on 200 testing cases.

DSC NSD Time AUC GPU Time AUC CPU Time
0.8864 0.9465 14.59s 14307 295

Table 8. Evaluation metrics of average±standard deviation of DSC and NSD per
substructure on 200 testing cases.

Substructure Mean DSC Mean NSD
Liver 0.9743±0.0110 0.9863±0.0243

Right Kidney 0.9466±0.1179 0.9700±0.1161
Spleen 0.9432±0.1288 0.9624±0.1370

Pancreas 0.8528±0.1042 0.9537±0.1009
Aorta 0.9559±0.0239 0.9884±0.0289

Inferior Vena Cava 0.9040±0.0619 0.9224±0.0688
Right Adrenal Gland 0.8280±0.0941 0.9568±0.1020
Left Adrenal Gland 0.8286±0.0929 0.9591±0.0830

Gallbladder 0.8340±0.2548 0.8486±0.2631
Esophagus 0.8122±0.1174 0.9176±0.1183
Stomach 0.9237±0.0746 0.9609±0.0757

Duodenum 0.7904±0.1325 0.9236±0.1106
Left Kidney 0.9291±0.1396 0.9539±0.1397

It is noticeable that our method achieves very good performance in terms of
NSD. We argue that the sliding window inference strategy plays an important
role in boundary segmentation.

4.5 Limitation and future work

Pseudo labeling is a simple and conventional method for semi-supervised learn-
ing, but the pseudo label can still be noisy even after the uncertainty-based
pseudo label selection. We will refer to the updated research progress to improve
the quality of pseudo labels in our future work.
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5 Conclusion

In this paper, we design a framework based on nnU-Net to use the unlabeled
data for training and make inference efficiently. We believe that our proposed
framework can serve as a good baseline for semi-supervised learning and efficient
inference for medical image segmentation.

Acknowledgements The authors of this paper declare that the segmentation
method they implemented for participation in the FLARE 2022 challenge has not
used any pre-trained models nor additional datasets other than those provided
by the organizers. The proposed solution is fully automatic without any manual
intervention.
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