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Abstract

Spatial Transcriptomics technologies enable capturing gene expression within the native tissue con-
text. Platforms such as 10x Visium and Visium HD integrate gene expression with histological
imaging, providing a multi-dimensional view of tissue organisation. Motivated by the success of
generative models in computer vision and natural language processing, we investigate the largely
unexplored task of synthesising histological images directly from gene expression profiles. Lever-
aging recent advancements in Spatial Transcriptomics, particularly the 10X Visium HD platform,
we introduce the first two-stage conditional generative framework to infer tissue morphology from
near-whole transcriptome profiles. Competitive FID scores and a study involving multiple pathol-
ogists confirm that the synthesised images are plausible and that our framework generalises well
to unseen standard Visium samples. Furthermore, model interpretation reveals connections be-
tween structurally relevant gene sets and specific morphological patterns, opening new avenues for
studying the relationship between gene expression and tissue morphology.
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1 Introduction

Spatial Transcriptomics (ST) is an innovative technology that allows the capture of gene expres-
sion (GEX) profiles within their natural tissue environment. Unlike bulk RNA sequencing, which
provides average GEX across the entire processed sample, ST delivers spatially resolved molecular
data, paving the way for detailed study of tissue diversity, cellular interactions and disease progres-
sion. In recent years, a variety of ST technologies have been developed (Hahn et al., 2025), some
of which, such as Visium and VisiumHD, combine GEX data with histological images, enabling
simultaneous analysis of molecular and morphological characteristics.

While many studies have focused on predicting GEX from tissue morphology (Nonchev et al.,
2025; Pizurica et al., 2024; Xie et al., 2023), comparatively little attention has been paid to the in-
verse problem—understanding how GEX profiles shape morphological features. Yet, uncovering
this relationship can be crucial for tasks such as predicting the structural impact of gene pertur-
bations and detecting early morphological changes linked to disease onset. Considering the tight
coupling between structure and function in biological systems, it can be hypothesised that certain
aspects of tissue morphology are encoded within the GEX profile. However, this relationship is
complex and indirect: GEX leads to protein production, but the final tissue structure and func-
tion are primarily governed by protein-level processes such as post-translational modifications and
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protein-protein interactions. Consequently, a given GEX profile may correspond to multiple mor-
phological patterns, as the path from GEX to tissue structure involves several intermediate steps
and regulatory mechanisms. Inspired by the effectiveness of generative models in text-to-image
synthesis, we developed a two-stage conditional generative framework that models this relationship
as a GEX-conditional probability distribution over histological images. Our framework synthe-
sises plausible histology-like images, confirmed by competitive FID scores and expert pathologist
reviews. Interpretability analyses further point to associations between certain GEX patterns and
distinct morphological traits, setting the stage for future work to identify genes whose disruption
may contribute to disease or drug-induced toxicity. To the best of our knowledge, this is the first ap-
proach to integrate high-resolution ST and conditional generative modelling to predict histological
images. The code and data are publicly available https://github.com/lohmannf/genes2morphology.

2 Related Work

The emergence of generative architectures such as generative adversarial networks (GANs) and de-
noising diffusion probabilistic models has greatly enhanced synthetic histological image generation
(Rashidi et al., 2025). One particularly promising direction is conditional generation, where mod-
els are guided to produce images with specific characteristics (Dolezal et al., 2023), enabling the
creation of synthetic data for rare morphological classes. While conditioning on discrete values
such as tissue type or disease has been widely explored, fewer studies focus on continuous fea-
tures like GEX profiles. The generation of histopathology images from global GEX profiles has
been investigated by Carrillo-Perez et al. (2023), who introduced RNA-GAN, a model for gener-
ating H&E brain and lung image tiles conditioned on bulk RNA-seq data. However, since bulk
RNA-seq obscures intra-sample heterogeneity by averaging GEX signals across the entire tissue
section, their model cannot capture or generate distinct morphological regions within the tissue. As
a result, RNA-GAN lacks the ability to control finer morphological details or reproduce region-
specific variations in tissue structure. Similarly, Carrillo-Perez et al. (2024) proposed RNA-CDM,
a cascaded diffusion model for generating H&E image tiles from five cancer types while condi-
tioning on bulk RNA-seq data from whole tissue samples. RNA-CDM inherits the same limitation
as RNA-GAN: bulk sequencing data provides generalized information averaged across the sample
and lacks spatial information. Navidi et al. (2024) introduced MorphoDiff, a latent diffusion model
designed for generating Cell Painting fluorescent microscopy image tiles conditioned on chemical
or genetic perturbations. Their method encodes specific few-gene perturbations using the single-
cell foundational model scGPT (Cui et al., 2024), providing a more nuanced approach to modelling
cellular responses. With the rise of imaging-based ST technologies, such as Xenium and CosMXx,
new methods have emerged to condition the generation of immunofluorescence images (IF) on GEX
data. Wu and Koelzer (2024) proposed SST-Editing, a method built on StyleGAN2 (Karras et al.,
2020) to generate spatially resolved IF image patches. The model was trained on DAPI-stained
image tiles from CosMx and Xenium datasets, focusing on individual cells, with corresponding
GEX data injected as an additional style code. Furthermore, they developed an inverted GAN to
enable bidirectional editing of real images, allowing transitions between tumor and non-tumor mor-
phologies. This concept was extended in their follow-up work (Wu et al., 2023), where they scaled
GEX-based editing from single cells to entire whole-slide images (WSIs) using Xenium data. How-
ever, the generation in both approaches remains limited to a small, targeted gene panel, making
hypothesis-agnostic investigation of the link between GEX and morphology difficult (Hahn et al.,
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Figure 1. a) Data Processing strategy and b) two-phase modeling framework

2025). In contrast, sequencing-based ST technologies like Visium and Visium HD offer unbiased,
near whole-transcriptome coverage but remain unexplored in the context of histological image gen-
eration. Visium HD, in particular, achieves sub-single-cell resolution with 2um barcoded bins cov-
ering the tissue area without gaps, allowing precise spatial localization of transcripts. To the best of
our knowledge, no existing work has specifically addressed the challenge of generating histological
H&E images from near-whole transcriptome GEX data.

3 Method

In this work, we characterise the mapping from GEX profiles to tissue morphology as a one-to-many
mapping and model it using a two-phase conditional generative approach. The workflow is depicted
in Fig. 1b.

3.1 Phase 1: Contrastive Representation Learning

In the first step, we align tissue morphology and GEX by mapping them into a common repre-
sentation space. The goal of this phase is dimensionality reduction of the GEX profiles to avoid
overfitting in the second phase. While selecting highly variable genes (HVGs) or spatially variable
genes (SVGs) is common practice, they have to be determined across all training and testing sam-
ples to be meaningful, limiting generalizability to new unseen samples. To mitigate this issue, we
instead take a contrastive approach to dimensionality reduction. Inspired by prior work (Xie et al.,
2023; Min et al., 2024; Lee et al., 2024), we train a bimodal contrastive model composed of an
image encoder and a GEX encoder that integrates the two modalities into a shared latent space. The
GEX encoder is a Multi-Layer Perceptron (MLP) with a projection head, while the image encoder
combines the fixed pathology foundation model UNI (Chen et al., 2024) with a trainable projection
head. The representations of matching data pairs are aligned using the CLIP loss (Radford et al.,
2021).
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3.2 Phase 2: Conditional Generation

In the second phase, the learned GEX representations are used to condition an image generative
model. This phase is agnostic to the specific conditional generative architecture. We illustrate this
flexibility by applying it to two major types of generative models: Generative Adversarial Networks
(GANs) and diffusion models. For GANs, we adapt the StyleGAN-T architecture (Sauer et al.,
2023) as StyleGAN-G, while for diffusion models, we use Stable Diffusion (SD) (Rombach et al.,
2022). Both models are conditioned on the GEX embeddings obtained with the fixed GEX encoder
pretrained in the first phase. The StyleGAN-T architecture is modified so that the discriminator
incorporates a feature extractor trained on histological images instead of ImageNet (Dosovitskiy
et al., 2020; Filiot et al., 2024), and it is trained from scratch. Similarly to StyleGAN-T, to ensure
alignment between the GEX condition and the generated image, the spherical distance between the
GEX embedding and the generated image embedding obtained with the pretrained image encoder
is used as an additional guidance loss term. On the other hand, due to computational costs, the
SD model was fine-tuned (U-Net part) on histological image data while conditioning on the GEX
embeddings following the approach of Navidi et al. (2024). To mirror the usage of CLIP guidance
in the GAN-based approach and improve prompt alignment, we employ classifier-free guidance (Ho
and Salismans, 2022) with different strengths w at inference time. Training details for both models
are described in Appendix A.

3.3 Data

We conducted experiments on six formalin-fixed paraffin-embedded (FFPE) healthy mouse kid-
ney samples, profiled using two spatial transcriptomics platforms: Visium HD (one sample) and
standard Visium (five samples). Visium HD offers much higher spatial resolution, capturing gene
expression in 2um bins, compared to the 55um spots of standard Visium. To leverage the high res-
olution of Visium HD samples, we aggregated adjacent 2p4m bins into ~ 300, 000 “pseudo-spots”
by summing gene expression profiles over 27 x 27 2um bins with a stride of 5 bins. We retained
18,248 genes common to both platforms and normalised and log-transformed gene expression pro-
files per sample. To obtain GEX-morphology data pairs, the corresponding tissue morphology to
each (pseudo-)spot is extracted from the Macenko stain-normalised (Macenko et al., 2009) WSI as
a bbum x bdum patch at the (pseudo-)spot’s spatial location. We resize patches to 128 x 128 pixels
to ensure uniform absolute resolution. The preprocessing workflow is illustrated in Fig. 1a. Given
the need for a large training dataset, Visium HD data were used for model training, while standard
Visium samples served as test data. Additional details on datasets and preprocessing are provided
in Appendix B.

4 Results

We performed various experiments to quantitatively and qualitatively evaluate the plausibility of the
generated images. Additionally, we analyzed the interpretability of the gene expression encoder and
its relation to the biological relevance of the generated morphologies.

4.1 Image Plausibility

Figure 2 shows histological patches generated using multiple noise vectors (columns) and gene
expression inputs (rows). The GEX profiles corresponding to real patches (shown in the leftmost
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Figure 2. 128 x 128px images generated from different gene expression prompts with StyleGAN-G and Stable Diffusion
(guidance strength w = 3). Corresponding reference image shown in the leftmost column. Columns correspond to the
same random noise vector.

column) are used as input. The generated images accurately capture the tissue morphology of their
corresponding reference images and can be visually compared to real tissue patches shown in Ap-
pendix C. Notably, the generated images more closely resemble the training data in hue and overall
quality (Appendix C, top row), as the model does not explicitly account for experimental variations
such as tissue preparation. To quantitatively measure the quality of generated images, Table 1 re-
ports Fréchet Inception Distance (FID) (Heusel et al., 2017) and Kernel Inception Distance (KID)
(Binkowski et al., 2018) for both the GAN- and diffusion-based models. Since predicting tissue
morphology from GEX using ST platforms such as Visium has not been previously addressed, there
are no directly comparable methods. Therefore, we compare our results to the most closely related
approaches. In this setting, StyleGAN-G achieves substantially better FID scores than prior GAN-
based methods (e.g., RNA-GAN, FID = 83.89 (Carrillo-Perez et al., 2023)), while the diffusion-
based model performs comparably to related diffusion methods (MorphoDiff, FID > 78 (Navidi
et al., 2024)). We attribute the relatively lower performance of SD-models in this setting to the lim-
ited generalizability of pretrained diffusion models to histopathology data, as noted in prior work

Table 1. FID and KID on 36528 generated images

MODEL FID | KID |

STYLEGAN-G 18.41 0.0127(0.0015)
SD (w = 1) 84.28 0.0666(0.0035)
SD (w = 3) 78.99  0.0784(0.0043)
SD (w =7) 84.69 0.0925(0.0045)
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(Miiller-Franzes et al., 2023). Due to the substantial training requirements of dedicated diffusion
models and the limited availability of data, we selected the StyleGAN-G architecture for subsequent
experiments. However, as more ST datasets become available, diffusion models specifically tailored
to histopathology may outperform the GAN-based approach. To further assess the morphological
plausibility of the generated images, we conducted an expert validation study with a panel of 10
veterinary pathologists. We presented each expert with a morphologically diverse, balanced dataset
of 50 real and generated images and asked to classify them. The average classification performance
across the dataset is shown in Tab. 2. The expert panel achieved a near-random accuracy of 0.486
on the entire dataset, confirming that the images generated with StyleGAN-G are highly realistic.
In Appendix D, we compare the distributions of real and synthetic images in the learned image
embedding space of the contrastive model as an additional evaluation of generated image quality.

4.2 GEX Latent Embedding Space

To assess the quality of the learned embedding space, we applied sample-wise Leiden cluster-
ing (Traag et al., 2019) on the GEX embedding space (GEX data projected using the pretrained
gene expression encoder). For visualization, we combine all samples together and project them us-
ing UMAP (Mclnnes et al., 2018). The hyperparameters of the clustering are chosen to ensure the
identification of key kidney regions within each sample, including the cortex (CX), outer stripe of
the outer medulla (OSOM), brown adipose tissue (BAT), inner stripe of the outer medulla ISOM),
and inner medulla&papilla IM&P) (Kumaran and Hanukoglu, 2024). Figure 3a+b presents the
UMAP of the GEX embedding space. In Fig. 3a, embeddings are color-coded by Leiden clustering
results, while Fig. 3b displays colors corresponding to sample origin. Figure 3d-h maps these clus-
ters onto test set images, demonstrating successful identification of key kidney regions across all
samples. The embedding space exhibits two important properties. GEX embeddings from different
samples are well-integrated as demonstrated in Fig. 3b. Additionally, clusters representing identical
tissue regions from various samples consistently localize to similar areas within the latent space, as
shown in Fig. 3a. In contrast, in the UMAP space of the GEX data, a clear separation between sam-
ples can be observed (Fig. 3c). To quantify the alignment in the embedding space, we performed
joint clustering across all test samples both in the GEX embedding and GEX space and compared it
to sample-wise clustering and sample index using the Adjusted Rand Index (ARI). A visualization
of the joint clustering can be found in Appendix E. The results show a strong alignment with sepa-
rately identified clusters (ARI = 0.79) and minimal correlation with the sample index (ARI = 0.005)
in the embedding space. In contrast, the overlap between clustering and sample index in GEX space
is significant (ARI = 0.588), indicating stronger batch effects.

Table 2. Average expert classification performance on 50 images

ACCURACY T  PRECISION T RECALL 1
0.486(0.095) 0.492(0.096) 0.488(0.111)
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Figure 3. UMAP of the gene expression embedding space colored by (a) clusters found on each sample individually and
(b) sample index. (c) UMAP of the gene expression space of samples 1-5 colored by sample index. Tissue cuts with spots
colored by clusters found in gene expression embedding space for samples (d) 1, (e) 2, (f) 3, (g) 4, and (h) 5. Colors in
(a) and (d)-(h) refer to the same clusters.

Table 3. Significantly enriched GO:CC terms in sample 4 with more than 4 leading genes.

TERM NES 1 QUERY REFERENCE
L1PID DROPLET 1.710422 BAT IM&P
BASOLATERAL PLASMA MEMBRANE 1.702832 CX BAT
BASOLATERAL PLASMA MEMBRANE 1.660759 CX OSOM
ENDOPLASMATIC RETICULUM LUMEN 2.098712 IM&P OSOM
INTRACELLULAR ORGANELLE LUMEN 2.002516 IM&P OSOM
COLLAGEN-CONTAINING EXTRACELLULAR MATRIX 1.936724 IM&P OSOM

4.3 Biological Relevance

Building on the observed alignment between GEX embedding space clusters and kidney regions
(Fig. 3), we aim to identify which genes primarily drive the differences between clusters and there-
fore relate to the underlying morphological distinctions. We employed the Integrated Gradients (I1G)
method (Sundararajan et al., 2017), as implemented by Heimberg et al. (2024), to identify genes that
contribute most significantly to differences between GEX embedding clusters. This method assigns
an attribution score to each input feature (in this case, each gene) by quantifying its importance
along a continuous path between two points in the embedding space. Therefore, we applied IG
to assess gene contributions between pairs of cluster-averaged expression profiles as identified in
Fig. 3d-h. This approach allowed us to determine which genes most significantly drive the differ-
ences between clusters in the gene expression embedding space. Our analysis involved the following
steps: 1) We averaged the GEX embedding across all data points within each cluster. 2) For each
pairwise comparison of cluster-averaged embeddings, we identified the 100 genes with the highest
attribution scores. 3) We interpreted the attribution scores as indicators of a gene’s influence on
differences between clusters, analogous to differential gene expression analysis. We hypothesized
that genes with high attribution scores would be associated with cellular components and structures
that define kidney tissue architecture. To test this hypothesis, we performed Gene Set Enrichment
Analysis (GSEA) Preranked (Subramanian et al., 2005) on these top 100 genes ranked by attribu-
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tion score. We compared the most highly attributed genes to Gene Ontology Cellular Component
(GO:CC) terms (Ashburner et al., 2000), as this ontology describes structural components rather
than biological or molecular functions. We report enriched terms at a significance level of 2%. Ta-
ble 3 illustrates the results for test sample 4, showing the normalized enrichment score (NES) of
all significantly enriched GO:CC terms with at least 4 leading genes. The results for the remain-
ing samples are provided in Appendix F. This representation highlights the most relevant structural
components associated with the highly attributed genes in this sample.

Table 3 shows an enrichment of the Lipid Droplet term in brown adipose tissue as compared to
other renal regions, which is expected given the high concentration of fat-storing adipocytes in this
region. The embeddings of Basolateral Plasma Membrane genes distinguish the cortex from both
the OSOM and brown adipose tissue. This reflects the cortex’s abundance of proximal and distal
convoluted tubules, whose extensive basolateral membranes support active secretion and absorption
of solutes. In contrast, the OSOM has fewer of these tubule segments, while the brown adipose
tissue is composed mainly of adipocytes which do not directly participate in solute transport. Con-
sequently, basolateral membrane—related genes are more characteristic of the cortex’s morphology
than those of the OSOM or brown adipose tissue. Differences between the inner medulla/papilla
and the OSOM emerge from terms linked to the extracellular matrix. The inner medulla and papilla
contain specialized connective tissue that maintains structural integrity under the high osmotic pres-
sure generated when urine is concentrated in the collecting ducts. In line with this function, renal
interstitial cells in these regions produce collagen and other extracellular matrix components, which
rationalizes the enrichment of the collagen-containing extracellular matrix term. Additionally, en-
richment of genes associated with the endoplasmic reticulum (ER) lumen and intracellular organelle
lumen further differentiates the inner medulla/papilla from the OSOM, reflecting higher levels of
protein synthesis and post-translational modification. In particular, the collecting ducts—key struc-
tures within the inner medulla and papilla—rely on these processes to carry out their specialized
functions.

The derived attribution scores offer an opportunity to identify novel gene sets that drive these
morphological differences, providing a valuable direction for future research to pinpoint genes
whose loss or alteration may contribute to disease or drug-associated toxicity.

Conclusion

We introduce, to the best of our knowledge, the first approach to synthesise histology images directly
from high-resolution GEX data. Experiments on five kidney samples demonstrate that our model
learns biologically meaningful gene expression representations, generates histologically accurate
tissue morphologies across diverse renal structures, and produces images that achieve competitive
FID scores and expert pathologists find indistinguishable from real tissue. Although our proof-of-
concept work relies on just six sections of healthy mouse kidney—hence on a single tissue type
and species—it nonetheless shows that histological images can be synthesized directly from GEX
data, opening new avenues for systematic exploration of gene-morphology links. As larger and
more diverse ST datasets emerge, this approach could evolve into a powerful tool for pinpointing
molecular drivers of early disease and for in silico simulations of the structural consequences of
gene perturbations.
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Appendix A. Training Details
A.1 CLIP

The contrastive image-gene encoder is pretrained on a subset of 10000 image-gene spot pairs drawn
uniformly at random from the VisiumHD training sample. We train for a total of 4200 iterations at
a learning rate of 5e — 6 on a NVIDIA A100-SXM4 80GB GPU. A batch size of N = 128 and a
dropout rate of p = 0.8 is used. Validation of model convergence is performed on sample 1.

A2 StyleGAN-G

StyleGAN-G is trained on all available data pairs from the VisiumHD sample at a learning rate of
2e — 3. Training is conducted in 2 progressive growing steps on 2 NVIDIA A100-SXM4 80GB
GPUs. First, we train at 64 x64 resolution for 16,000 iterations. For subsequent training at 128 x
128, we keep all layers up to 64 x64 resolution fixed and train for 50,000 iterations. We use a total
batch size of 128 and a per-GPU batch size of 8. The guidance strength was set to A = 0.2.

A.3 Stable Diffusion

The Stable Diffusion Pipeline was fine-tuned for 55 epochs on a NVIDIA A100-SXM4 80GB GPU,
keeping all components except the U-Net frozen. We use the HuggingFace implementation of SD
and fine-tune at a batch size of 32 and a learning rate of 1e — 5. To enable classifier-free guidance,
the GEX embedding prompt is set to the embedding of the vector of all zeroes with probability
Puncond = 0.1. We use the definition of classifier-free guidance reported in Saharia et al. (2022),
where w = 1 corresponds to using no guidance.

Appendix B. Data Details

The Visium HD processed training sample and the standard Visium processed sample 1 were
sourced from 10XGenomics (2024, 2021) and represent the coronal section of a kidney. The re-
maining standard Visium processed samples 2-5 originate from a proprietary dataset and represent
the transverse section of a kidney. Samples 1-5 yield 3124, 1490, 1670, 1421, and 1427 data pairs
respectively. In Visium HD data, the location of the center 2pm bin is used as the spatial location
of the pseudo-spot. The stain normalisation is applied to each WSI individually before extracting
image patches.

10
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Appendix C. Real Image Data

Training sample

Figure C.1. Representative example patches from the training data (top row) and samples 1-5 (bottom)

Appendix D. Image Embedding Space

e Real
» StyleGAN-G

Figure D.1. UMAP of CLIP image embedding space

Figure D.1 displays a UMAP of the image embedding space generated using our CLIP model on
both synthetic and real images (see also Tab. 1). It demonstrates that synthetic and real images are

11
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well mixed and thus further strengthens the claim that the generated images accurately reflect the

true data distribution.

Appendix E. ARI Reference Clusters

(a) GEX Embedding
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Figure E.1. Clusters found by clustering jointly across samples in (a) gene expression embedding space (b) gene expres-
sion space. Used as reference to compute Adjusted Rand Index.

Appendix F. Significant GO:CC Terms

Table F.1. Significantly enriched GO:CC terms in sample 2 with more than 4 leading genes

Term NES 1t Query Cluster Reference Cluster
Intracellular Membrane-Bounded Organelle  1.852065 Inner Medulla & Papilla Cortex
Basolateral Plasma Membrane 1.631743 Inner Medulla & Papilla Brown Adipose Tissue
Basolateral Plasma Membrane 1.661647 Cortex OSOM
Endoplasmatic Reticulum Lumen 1.951187 Inner Medulla & Papilla OSOM
Intracellular Organelle Lumen 1.729963  Inner Medulla & Papilla OSOM

Table F.2. Significantly enriched GO:CC terms in sample 3 with more than 4 leading genes

Term NES 1 Query Cluster Reference Cluster
Vesicle -1.853656  Brown Adipose Tissue OSOM
Intracellular Organelle Lumen 1.78486 Brown Adipose Tissue OSOM
Endoplasmatic Reticulum Lumen 1.703005  Inner Medulla & Papilla OSOM
Basolateral Plasma Membrane 1.918574  Inner Medulla & Papilla Cortex

Nucleus 1.852569  Inner Medulla & Papilla Cortex
Intracellular Membrane-Bounded Organelle  1.700012  Inner Medulla & Papilla Cortex
Basolateral Plasma Membrane 1.701396  Inner Medulla & Papilla ~ Brown Adipose Tissue
Nucleus -1.687745 ISOM Inner Medulla & Papilla

12
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Table F.3. Significantly enriched GO:CC terms in sample 5 with more than 4 leading genes

Term NES 1t Query Cluster Reference Cluster
Endoplasmatic Reticulum Lumen  1.937943  Inner Medulla & Papilla OSOM
Intracellular Organelle Lumen 1.72107  Inner Medulla & Papilla OSOM
Basolateral Plasma Membrane 1.938538  Inner Medulla & Papilla Cortex
Nucleus -1.677389 ISOM Inner Medulla & Papilla

13
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