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Abstract

Online learning methods, like the seminal Passive-Aggressive (PA) classifier, are
still highly effective for high-dimensional streaming data, out-of-core processing,
and other throughput-sensitive applications. Many such algorithms rely on fast
adaptation to individual errors as a key to their convergence. While such algorithms
enjoy low theoretical regret, in real-world deployment they can be sensitive to
individual outliers that cause the algorithm to over-correct. When such outliers
occur at the end of the data stream, this can cause the final solution to have
unexpectedly low accuracy. We design a weighted reservoir sampling (WRS)
approach to obtain a stable ensemble model from the sequence of solutions without
requiring additional passes over the data, hold-out sets, or a growing amount of
memory. Our key insight is that good solutions tend to be error-free for more
iterations than bad solutions, and thus, the number of passive rounds provides an
estimate of a solution’s relative quality. Our reservoir thus contains K previous
intermediate weight vectors with high survival times. We demonstrate our WRS
approach on the Passive-Aggressive Classifier (PAC) and First-Order Sparse Online
Learning (FSOL), where our method consistently and significantly outperforms the
unmodified approach. We show that the risk of the ensemble classifier is bounded
with respect to the regret of the underlying online learning method.

1 Introduction

Online learning algorithms are especially attractive when working with high-volume and high-
dimensional streaming data, out-of-core processing, and other throughput-sensitive applications [1].
For example, the seminal Vowpal Wabbit uses importance-weighted online learning algorithms [2]
to reach high quality solutions quickly, with an optional second pass using LBFGS to refine the
solution. The MOA library still uses the Pegasos algorithm as its linear classifier [3]. Most relevantly,
online learning algorithms are particularly appealing for binary classification tasks, such as web spam
classification [1]. Such algorithms often enjoy fast theoretical convergence rates due to their fast
adaptation to errors on individual data points, as opposed to batch or offline learning.

However, in real-world deployment, online algorithms can be very sensitive to noisy observations
in the data stream and over-correct, resulting in out-of-sample performance dropping precipi-
tously between timesteps. Indeed, in many cases (see Figure 1), an online learning algorithm might
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Figure 1: Test accuracies (y-axis) over timestep (x-axis) for PAC-WRS and FSOL-WRS on Avazu
(App) and News20. Light grey lines: test accuracies of the baseline methods — PAC or FSOL — at
each timestep. Solid black lines: test accuracies of the “oracle" models, computed as the cumulative
maximum of the baselines. Solid blue lines: test accuracies of WRS-enhanced models. Note massive
fluctuations of grey lines and stability of blue lines. All variants shown are using standard sampling
weights for WRS, with simple-averaging.

achieve over 90% test accuracy after a given timestep, but then see its test accuracy drop by 20−30%
after over-correcting on the next observation in the data stream. In many real-world settings, it may
be infeasible computationally or memory-wise to maintain a hold-out evaluation set to select the
highest-performance solutions learned by our online algorithm. It may also be practically infeasible
to train our classifier over multiple passes of a given dataset or when online algorithms are used for
“any-time” ready predictions.

In this paper, we introduce a weighted reservoir sampling (WRS) [4] based approach that dramatically
mitigates the aforementioned accuracy fluctuations. Our proposed method, WRS-Augmented Training
(WAT), neither requires a hold-out evaluation set nor additional passes over the training data. Most
importantly, WAT can be used to stabilize any passive-aggressive online learning algorithm. We
demonstrate the promise of our WAT method on the Passive Aggressive Classifier (PAC) [5] and
First-Order Sparse Online Learning (FSOL) [1] methods — creating two new methods PAC-WRS
and FSOL-WRS. Strikingly, across 16 benchmark datasets, WAT is able to mitigate test accuracy
fluctuations in all 16 datasets on FSOL and 14 datasets on PAC. To analyze the theoretical
effectiveness of our method, we situate our approach in the online-to-batch conversion literature,
enabling us to obtain generalization bounds on i.i.d. data streams.

2 Review of related work

Our work is motivated in part by a real-world need in malware detection [6], in which large datasets
make online methods particularly attractive [7, 8], and a naturally noisy labeling process inhibits
standard passive-aggressive methods [9–12]. We show results for the EMBER malware benchmark
in Appendix C.

Online learning. In online learning for linear binary classification, one maintains a solution vector
wt ∈ RD, where D is the dimensionality of our data points (usually quite large), and t represents
the timestep. At each timestep t, we observe a single observation (xt, yt) from a high-throughput
data stream, with feature vector xt ∈ RD and class label yt ∈ {+1,−1}. Given (xt, yt), an online
learning algorithm will make a minor (potentially no effect) update to wt to output wt+1, before
receiving the next (xt+1, yt+1) in the data stream. The classification rule using wt on any test
point x∗ is simply ŷ∗ = sign(w⊤

t x
∗). The goal is that as t → ∞, the sequence of wt will enjoy

2



low cumulative loss. Towards this end, many online learning algorithms with various update rules
have been proposed in the literature, including the Passive-Aggressive Classifier (PAC) [5], the
Adaptive Regularization of Weight Vectors (AROW) methods [13] and the Adaptive Subgradient
method (ADAGRAD) [14]. Some online learning algorithms have also been designed to specifically
learn sparse solutions for wt (proportion of zero entries), such as Truncated Gradient method [15],
Stochastic MIrror Descent Algorithm made Sparse method (SMIDAS) [16], Regularized Dual
Averaging (RDA) method [17], and First-Order and Second-Order Sparse Online Learning methods
(FSOL and SSOL) [1]. In general, these sparsity-inducing methods are powered by some combination
of solution truncation and L1 norm minimization.

Passive-aggressive online learning. Within the family of online learning algorithms, a passive-
aggressive algorithm is one whose update rule makes no update to wt if (xt, yt) is classified correctly
with sufficient margin. That is, we passively leave wt+1 = wt. If a margin error occurs, we
aggressively update wt+1 such that the error is fully correct (though a regularization penalty C
will tamper the degree of aggressiveness). Usually, correct classification with sufficient margin is
defined using the hinge loss ℓ — the algorithm remains passive at timestep t if ℓ (wt; (xt, yt)) =
max

(
1− ytw

⊤
t xt, 0

)
= 0. Next, we introduce the two passive-aggressive algorithms that we will

use to test our WRS-Augmented Training method.

Passive-Aggressive Classifier (PAC). Introduced by Crammer et al., PAC is actually a family of three
algorithms: PA, PA-I, and PA-II [5]. The base PA algorithm update rule seeks to solve the following
constrained optimization problem:

wt+1 = argmin
w∈RD

1

2
∥w −wt∥2 s.t. ℓ(w; (xt, yt)) = 0.

Because of the hard constraint of forcing wt+1 to satisfy ℓ(w; (xt, yt)) = 0, the optimization
is particularly vulnerable to noisy data. As such, Crammer et al. introduce a new constrained
optimization function with a slackness hyperparameter Cerr to allow for some residual hinge loss
and induce less aggressive, but presumably more stable updates:

wt+1 = argmin
w∈RD

1

2
∥w −wt∥2 + Cerrϵ

m s.t. ℓ(w; (xt, yt)) ≤ ϵ and ϵ ≥ 0,

where setting m = 1 corresponds to PA-I and m = 2 to PA-II. From initial testing, PA-I and PA-II
performed very similarly, with a slight edge to PA-II. As such, for this paper, we will focus on
PA-II, which performs the following closed-form update when in aggressive mode [5]: wt+1 =

wt +
ℓ(wt;(xt,yt))

∥xt∥2+ 1
2Cerr

ytxt. For the remainder of this paper, “PAC" will refer to PA-II.

First-Order Sparse Online Learning (FSOL). Introduced by Zhao et al. [1], FSOL is a passive-
aggressive algorithm which attempts to find sparse solutions for wt. Governed by a learning rate η
and a sparsity parameter λ, FSOL keeps track of two vectors θt,wt ∈ RD and performs the following
update rules when in aggressive mode [1]:

θt+1 = θt + ηytxt; wt+1 = sign(θt+1)⊙ [|θt+1| − λt]+,

where λt = ηλ and [v]+ takes the maximum of each element in v and 0. Zhao et al. note that the
above update rules are identical to that of Xiao’s RDA method with soft 1-norm regularization [17, 1].

Weighted Reservoir Sampling (WRS). Suppose we have a collection of items V = {v1, . . . ,vT },
with corresponding nonnegative weights w1, . . . , wT . Our goal is to collect a size-K weighted
random sample from V in one pass (imagine this process is indexed by time), where the population
size T = |V | is potentially unknown. Introduced by Efraimidis and Spirakis [4], weighted random
sampling with a reservoir, which we shorten to weighted reservoir sampling (WRS), is an algorithm
that allows us to collect such a size-K weighted random sample under the aforementioned conditions.
Specifically, as we are making our one pass through the items in V , at each timestep t, we maintain
and update a reservoir — a temporary storage unit with a maximum capacity of K items, with each
item in the reservoir a potential candidate for our final size-K sample. At time T , the K items that
are currently in the reservoir will constitute our sample of size-K. We invite the interested reader to
look at Algorithm A in [4] for specific details.

Online-to-batch conversion. Online learning algorithms such as PAC generally do not impose any
restrictions on the distribution of the training data sequence. Their regret bounds aim to control
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the cumulative loss MT of the algorithm over any sequence of data, compared with a minimal-loss
fixed model ŵ: regT :=

∑T
t=1 ℓ(wt; zt)−

∑T
t=1 ℓ(ŵ; zt) = MT −

∑T
t=1 ℓ(ŵ; zt). When using a

fixed model to classify unseen data, we need to impose an i.i.d. assumption on the data stream in
order to measure the risk, or expected generalization error, of the model. Note that the distribution
D itself is arbitrary and can still permit outliers or mixtures. Then the population risk is defined as
RD(w) := Ez∼D[ℓ(w; z)].

To theoretically describe our algorithm, we leverage work on online-to-batch conversion, which takes
an online algorithm with known regret bounds on an i.i.d. sequence of data and extracts a stable final
model with low risk. For example, in the online perceptron algorithm, earlier work studied the pocket
approach, which selects the longest-surviving model in the sequence as the final model [18, 19]. Other
well-known approaches use the uniform average of the whole model sequence or the best-performing
model over a validation set [20].

As will be seen, our method generalizes these approaches to utilize multiple long-survival models
as an ensemble model. Furthermore, we will introduce novel improvements, including a limited-
size reservoir with probabilistic sampling. The risk bounds for our WAT model leverage improved
techniques from [21, 22]. Our experimental results also demonstrate that our novel conversion
technique outperforms prior baselines (see Appendix D).

3 Our method: WRS-Augmented Training (WAT)

In one extreme, if a candidate solution wt from a passive-aggressive algorithm had perfect clas-
sification with sufficient margin on any given data point, then the subsequent number of passive
steps taken after time t (i.e., number of timesteps that our algorithm is in passive mode before going
aggressive again) would be infinite. In the other extreme, if a candidate solution wt had extremely
low performance, then our passive-aggressive algorithm is likely to go aggressive very soon after time
t, implying a very small subsequent number of passive steps after time t. In short, our key insight
is that high-performing solutions wt tend to be error-free for more iterations than low-performing
solutions. As such, the subsequent number of passive steps taken after the formation of wt provides
an estimate of wt’s relative quality (i.e., test accuracy).

However, we do not want to take the intermediate solution wt that had the most passive updates
as this, too, can be noise (and luck) sensitive. Ideally, we would like to sample from the merging
distribution of wt as they occur, and take an average of those solutions to obtain a singular, highly
robust, solution vector that performs well with little variance. But, we do not wish to store all wt due
to intractability.

Putting these thoughts together, our WRS-Augmented Training (WAT) method functions as follows.
Given a base passive-aggressive algorithm (e.g., PAC or FSOL), we will run said algorithm through
our data stream {(xt, yt)}⊤t=1, as normal, but keep a size-K reservoir of promising candidate solutions.
The reservoir approach allows us to run through our data stream and collect a weighted random
sample of candidate solutions of size-K, weighted by their subsequent number of passive steps and
without storing all intermediate solutions.

Naturally, this setup is suited for Efraimidis and Spirakis’s WRS algorithm. Procedurally, every
timestep that our algorithm goes aggressive, we obtain a new active candidate solution. Right before
we apply our aggressive mode update rule, we will add the outgoing candidate solution to our size-K
reservoir (and remove a current resident of the reservoir, if necessary) following the steps of the WRS
algorithm. At any timestep t, we can form an ensemble solution wWRS by taking an average of the
candidate solutions currently in our reservoir. Hopefully, at any timestep t, wWRS will have more
stable test performance than the current active candidate solution wt.

3.1 WAT variants

We will experiment with a few additional variants of the WAT method. First, instead of weighting
using the subsequent number of passive steps (which we denote as standard weights), what if we
weight using the exponentiated subsequent number of passive steps (which we denote as exponential
weights)? The idea with exponential weights is that it is closer in practice to deterministically picking
the candidate solutions with the largest number of subsequent passive steps, while still maintaining
some stochasticity — i.e., a “greedier" policy. Second, when constructing our ensemble solution
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Algorithm 1 WRS-Augmented Training (WAT)
Input: w - initial solution vector, {(xt, yt)}Tt=1 - data stream, K - reservoir size, WS - weighting

scheme (“Standard" or “Exponential"), AS - averaging scheme (“Simple Average" or “Weighted
Average"), VZ - voting-based zeroing (True or False), and other base-method-specific hyperpa-
rametersH (e.g., for PAC or FSOL)

Output: WRS-stabilized solution vector wWRS.
1: function WAT(w, {(xt, yt)}Tt=1;K,WS,AS,VZ,H)
2: # Initializing intermediate data structures
3: s→ 0 ▷ Counter for subsequent passive steps of current solution candidate
4: R → [] ▷ Size-K reservoir for storing promising solutions, as array
5: b,k→ [], [] ▷ Size-K arrays for weights br and auxiliary kr values for solutions inR
6: # At each timestep, we observe (xt, yt)
7: for t← 1 to T do
8: if ℓ(w;xt, yt) > 0 then ▷ If made error, in aggressive mode
9: # Terminate current solution, probabilistically add to reservoir using WRS [4]

10: Draw u∗ ∼ Unif(0, 1)
11: if WS == “Standard” then
12: b∗ ← s
13: else if WS == “Exponential” then
14: b∗ ← exp(s)

15: k∗ ← (u∗)
1

b∗+ϵ ▷ ϵ = 10−8 to prevent division by 0
16: τ ← minj∈1,...,K k[j]; i← argminj∈1,...,K k[j]
17: if k∗ > τ orR is not full with K solutions then
18: R[i]← w, b[i]← b∗,k[i]← k∗

19: # Base method update rule
20: w← w + g(. . . ) ▷ g(. . . ) specific to base algorithm (e.g., PAC or FSOL)
21: s← 0 ▷ Reset number of subsequent passive steps
22: else ▷ correctly-classified, still in passive mode
23: s← s+ 1 ▷ Increment number of subsequent passive steps
24: # Forming our PAC-WRS solution
25: if AS == “Simple Average” then
26: wWRS ← 1

K

∑K
j=1R[j] ▷ Simple average of solutions in reservoir

27: else if AS == “Weighted Average” then
28: wWRS ←

∑K
j=1 b[j]R[j]/(

∑K
j=1 b[j]) ▷ Weighted avg. of solutions in reservoir

29: # Voting-based zeroing for extra sparsity
30: if VZ is True then
31: Zero out entries in wWRS where the majority of solutionsR[j] contain zeroes.
32: Return wWRS.

wWRS, should we take a simple average of the residents in our reservoir or a weighted average?
Third, there are reasonable concerns that constructing wWRS via averaging might negate the sparsity
advantages of a method like FSOL, due to different candidates in the reservoir containing 0s in
different entries. However, if the majority of candidate solutions in the reservoir contain 0s at a given
entry, what if we tried zeroing out said entry in wWRS, as it is likely to be uninformative? We denote
this add-on as voting-based zeroing.

We present the WAT method in full detail in Algorithm 1. To clarify, the elements in the data
structuresR, b, and k (all of which are size-K arrays) are paired with each other, so that when we
add/remove an element inR, the corresponding elements in b and k are removed as well. To be fully
clear, R contains candidate solution vectors R[1], . . . ,R[K], with each R[k] ∈ RD. The vector b
contains scalar values b[1], . . . , b[K], and likewise for the vector k.

3.2 Theoretical Analysis

One of the goals of our method is to choose a set of effective models as the algorithm runs live,
without the need for expensive evaluation on a validation set. In this section we first provide validity
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arguments for using observed survival as a proxy to select high-accuracy models. These are finite-
sample bounds based on reasoning about the reservoir R. Note that we are interested in studying
generalization to unseen data, a complementary setting to prior work which shows convergence in
terms of training set error for the perceptron model [19]. After establishing validity, we will turn to
learning bounds for our ensemble model risk in the i.i.d. setting. Proofs are deferred to Appendix A.

Validity analysis. We assume a given dataset zT1 = {zt}Tt=1 is an i.i.d. sequence sampled from a
generating distribution D. We first suppose that ℓ(w; z) is the 0-1 loss, that is ℓ(w; (x, y)) = 1(ŷ ̸=
y). Then the risk RD(w) is the probability that a random z ∼ D is misclassified by w. At any
time t, we have an online model wt, for which we define the survival time swt to be the number of
subsequent correct classifications, stopping when wt misclassifies a sample. As wt does not change
until an error occurs, at any finite time we only collect K updated models {w(j)}Kj=1 intoR.

Our first result bounds the difference in risk among two models inR: (1) the minimal-risk hypothesis
w̃ = argminRD(w

(j)) which we do not know, and (2) the longest-surviving hypothesis ws =
argmin sw(j) which we observe. We also denote sw̃ and sws

to be their respective survival times.

Theorem 1. Let w(1), . . . ,w(k) ∈ R be the updated outputs of an online PA algorithm on inputs
ZT
1 ∼ D. Also define rm as the minimal achievable risk of any model, such that rm ≤ RD(w̃)

almost surely. Then

P (RD(ws) > RD(w̃) + ε) ≤ min

{
K

rm
2rm + ε− rm(rm + ε)

, e−rKm(rm+ε)

}
This immediately leads to

Corollary 1. With prob. 1− δ, RD(ws) ≤ RD(w̃) + min

{
1−δ−rK+1

m

rKm
, rm(K−δ(2−rm))

δ(1−rm)

}
.

While this bound explains the use of top-1 survival in the worst case, we further justify the use of an
ensemble (or reservoir) of top-surviving models. Specifically, given the use of top-B models, there is
always a certain probability that the top-(B + 1) can lower the risk. Since B = 1 is a base case, this
implies that any value of B is worthy of consideration, until this probability decays to 0.

To simplify the notation, we sort the models in R by decreasing survival time s′1, . . . , s
′
k, with

corresponding re-indexed weights w′
1, . . . , w

′
k and risks R′

1, . . . , R
′
k. We also add an assumption,

that there is a partition of R = Rg ∪ Rb such that Rg = {w ∈ R : rm ≤ RD(w) ≤ rm + ε} and
Rb = {w ∈ R : rm + ε < RD(w) ≤ rm + 3ε}, and that |Rb| ≥ B. That is, there is a set of good
and bad models in terms of risk. In the Appendix we show that the assumption is readily satisfied.
Theorem 2. Let R̄D(wB) be the averaged risk of the top-B surviving models, and let R̄D(wB+1)
be the averaged risk including the next highest survival model. Then R̄D(wB+1) ≤ R̄D(wB) with
probability at least |Rg|

(|Rb|
B

)
r2m(rm + 3ε)|Rb|−B(1− rm − 3ε)B .

Finally note that we can define an averaged model (weighted or unweighted) w̄B . For any convex
ℓh(w; z) with risk Rh

D, such as the hinge loss, Jensen’s inequality gives Rh
D(w̄B+1) ≤ R̄D(wB+1).

Learning bounds. Now we turn to generalization bounds of our method, when run to a fixed stopping
time T . We assume more generally that ℓ(w; z) is convex, such as the hinge loss. Furthermore we
suppose that the loss of any point in the training set is bounded by C. This is a safe assumption for
many passive-aggressive algorithms, where the input data is normalized and the update steps are not
too large.
Theorem 3. Suppose ℓ is convex and bounded from above by C. By time T , suppose the reservoir
contains KT models, with survival time of each at least sT . Let Mwrs =

∑T
t=1 πtℓ(wt−1; zt) be the

cumulative loss of the WAT reservoir sequence, with πt formally defined in the proof. Then w.p. 1− δ,

RD(wwrs) ≤
Mwrs

KT sT
+

√√√√2C log
(

T
δ

)
Mwrs

(KT sT )2
+

7C log
(

T
δ

)
KT sT

The result shows that the risk of the ensemble model is stochastically bounded by the cumulative
loss of the online procedure. By applying known regret bounds for the underlying online algorithms
(e.g. PAC or FSOL), we can further bound the risk in terms of the original learner, and subsequently
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the optimal risk. In particular, we can “abstract out” the actual online learning method in the proof,
as a generic regret bound of form MT

T ≤ 1
T

∑T
t=1 ℓ(w; zt) +

r(T )
T , for any w. Depending on the

algorithm often r(T ) = O(
√
T ) or even O(1).

With this in hand, we can show that the risk actually approaches the minimal risk. One additional
assumption is required: Mwrs/

∑T
t=1 πt ≤ 1

T

∑
t ℓ(wt−1; zt) =

MT

T (the WRS sequence has lower
cumulative loss than the original learner). By definition, the reservoir contains the models which have
longest survivals, and hence lowest regret density. So this statement is readily satisfied, as long as
the distributions of non-zero losses are not different among the two sequences. In fact, under certain
conditions, the inequality is likely strict which further improves the bound. Altogether we obtain:

Theorem 4. Given a PA algorithm, let MT be its cumulative loss, and r(T ) be the algorithm-specific
excess regret. Then with probability 1 − δ, the deviation in risk of our WRS model wwrs from the
optimal model w∗ is bounded as

RD(wwrs) ≤ RD(w
∗) +

r(T )

T
+

√√√√2C log
(

2T
δ

)
MT

TKT sT
+

7C log
(

2T
δ

)
KT sT

+ C

√√√√ log
(

2
δ

)
2T

Table 1: Sizes, dimensions, and sparsities of all datasets used for numerical experiments.

Dataset D N Ntrain Ntest Sparsity

Avazu (App) [23] (via LIBSVM) 1000000 14596137 10217295 4378842 0.999985
Avazu (Site) [23] (via LIBSVM) 1000000 25832830 18082981 7749849 0.999985
Criteo (via LIBSVM) 1000000 51882752 36317926 15564826 0.999961
Dexter [24] 20000 600 420 180 0.995319
Dorothea [25] 100000 1150 805 345 0.990909
KDD2010 (Algebra) [26] (via LIBSVM) 20216830 8918054 6242637 2675417 0.999998
MNIST8 (4+9) [27, 28] (via LIBSVM) 784 1591785 1114249 477536 0.757170
News20 [29] (via LIBSVM) 1355191 19954 13967 5987 0.999664
Newsgroups (Binary, CS) [30, 31] (via sklearn) 101631 18311 12817 5494 0.999049
PCMAC [32] 3289 1943 1360 583 0.985418
RCV1 [33] (via LIBSVM) 47236 697641 488348 209293 0.998451
Real-Sim (McCallum via LIBSVM) 20958 72201 50540 21661 0.997549
SST-2 [34] 13757 67337 47135 20202 0.999421
URL [35] (via LIBSVM) 3231961 2396130 1677291 718839 0.999964
W8A [36] (via LIBSVM) 300 59245 41471 17774 0.957585
Webspam [37] (via LIBSVM) 254 350000 244999 105001 0.664833

4 Numerical experiments

We combine WAT with base PAC and FSOL, forming two new methods PAC-WRS and FSOL-WRS1.
We evaluate their performances across 16 binary classification datasets listed in Table 1. Please see
Appendix B for more dataset details. We are interested in three metrics: 1) Final test accuracy:
proportion of test set data points correctly-classified by solution obtained after making one pass
through the training data. 2) Final sparsity: proportion of zeroes in our classification solution
obtained after making one pass through the training data. 3) Relative oracle performance (ROP):
let pt,base be the test accuracy of our base model (either PAC or FSOL) at time t and pt be the
test accuracy of our model of interest (either base PAC, base FSOL, PAC-WRS, or FSOL-WRS).
Then, define pt,oracle = maxbase pt,base to be the cumulative maximum test accuracy of the base
method at time t. In other words, pt,oracle represents the highest performance we could obtain if we
had an oracle telling us which candidate solution vector we encountered was best. Then, define
ROP = 1

T

∑⊤
t=1(pt,oracle − pt). Intuitively, if a method has very stable test accuracy over time with

minimal fluctuations, then ROP should be close to 0, or negative (i.e. achieving a higher test accuracy
than the oracle). In contrast, a large, positive ROP suggests fluctuations in test accuracy.

Because we are interested in the stability of WAT’s test-set accuracy over the entirety of the training
run, it is most illustrative to look at figures when possible. Representative figures will be shown in the

1Code available at https://github.com/FutureComputing4AI/Weighted-Reservoir-Sampling-Augmented-Training
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Figure 2: Relative oracle performances (y-axis) of base PAC and PAC-WRS using standard weights
over reservoir sizes K (x-axis) on 3 representative datasets. Error bars represent the minimum and
maximum values achieved across 5 randomized trials. Blue: WRS-augmented variants via simple
average of reservoir members. Red: WRS-augmented variants via weighted average of reservoir
members. Dotted lines: indicates voting-based zeroing was performed for additional sparsity. Lower
values indicate more stable performance.

main paper, with all figures for all datasets in the appendix. When running any algorithm (PAC, FSOL,
PAC-WRS, or FSOL-WRS) on any dataset, we perform a random 70/30 train-test split. We begin by
tuning the Cerr, η, and λ hyperparameters for base PAC and FSOL, with details located in Appendix
B. For PAC-WRS and FSOL-WRS, we use the hyperparameters for the corresponding base models,
but try all possible WAT variants of weighting scheme (standard or exponential), averaging scheme
(simple vs. weighted), voting-based zeroing (True or False), and reservoir size K ∈ {1, 4, 16, 64}.
We perform five trials for each PAC-WRS and FSOL-WRS variant with randomized shuffles of
the training and test data, running through the training data only once for each trial. All candidate
solutions are initialized as the 0 vector. Please see more experimental details in Appendix B.

4.1 Stabilizing test performance

Figure 1 shows visually how PAC-WRS and FSOL-WRS are highly-effective at stabilizing base PAC
and FSOL’s wildly-fluctuating test accuracy on Avazu (App) and News20. Corresponding figures for
all 16 datasets and PAC-WRS/FSOL-WRS variants can be found in Appendix G.2. From Figure 2,
we see that PAC-WRS is highly-effective at reducing ROP compared to base PAC, and that the larger
the reservoir size K, the more stable the resultant test accuracy for wWRS becomes. Furthermore,
looking more carefully at MNIST8 (4+9), we observe that many PAC-WRS variants were able to
achieve negative ROP values, suggesting that wWRS could achieve higher test accuracies than even
the oracle. Corresponding figures for all 16 datasets can be found in Appendix G.1.

Table 2: Numbers of datasets out of 16 where each
PAC-WRS or FSOL-WRS variant with K = 64
outperformed its corresponding base method (PAC
or FSOL), as measured by ROP averaged across 5
randomized trials.

Simple Average Weighted Average
Standard Exp. Standard Exponential

PAC 13 14 13 11
FSOL 16 13 16 11

From Table 2, we observe that FSOL-WRS with
standard weights and simple averaging success-
fully stabilized test accuracy in all 16 tested
datasets compared to base FSOL, as measured
via ROP.

PAC-WRS with exponential weights and simple
averaging successfully stabilized test accuracy
in 14 of 16 tested datasets compared to base
PAC. Following the best practices in [38, 39],
we perform Wilcoxon signed-rank tests for sta-
tistical significance on the differences in ROP between PAC/FSOL-WRS versus base PAC and FSOL,
taking into account performance on all 16 datasets. At a significance level of α = 0.05, we find
that both PAC/FSOL-WRS achieve statistically-significant reductions in ROP compared to their
corresponding base models when equipped with standard weights (p < 0.0386 in each case, see
Table 6 in Appendix F).

These results also suggest that standard weights are preferable to exponential weights. This makes
sense because using exponential weights may be too “greedy," causing the algorithm to overly trust
in the number of passive steps as an indicator of test performance, polluting the reservoir with poor
“lucky" candidate solutions, and refusing to remove them later.
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Figure 3: Final test accuracies (y-axis) of base FSOL and FSOL-WRS using standard weights
over reservoir sizes K (x-axis) on 3 representative datasets. Error bars represent the minimum and
maximum values achieved across 5 randomized trials. See Figure 2 for legend description.

A note on final test accuracy. From Figure 3, we see that the final test accuracies achieved by
FSOL-WRS are not only higher on average than base FSOL, but also have significantly lower
variance. On these datasets, there is no significant difference between FSOL-WRS variants with or
without voting-based zeroing. As expected, final test accuracy seems to be higher for larger values of
reservoir size K. However, Wilcoxon signed-rank tests to compare PAC-WRS and FSOL-WRS’s
improvements in final test accuracy over base PAC and FSOL indicate that FSOL-WRS with standard
weights yields a statistically-significant improvement in final test accuracy compared to base FSOL,
but PAC-WRS does not compared to base PAC (see Table 7 in Appendix F). One hypothesis for this
discrepancy is that it is relatively unlikely for any given training data point to cause a massive drop in
test accuracy. Furthermore, subsequent data points will usually help the base model self-correct (see
Appendix G.2). Thus, this explains why the base method’s mean final test accuracy after a particular
fixed timestep (e.g., Ntrain) will not differ significantly from that of the WRS-augmented method,
especially not across only 5 trials.

Nonetheless, there are enough data points in the training stream that these massive fluctuations in test
accuracy could still happen thousands of times throughout the training process, corroborating what
we saw in Figure 1. If such a drop in test accuracy were to occur at an unlucky timestep when the
model training is stopped, the consequences could be unacceptable. Furthermore, in continuously
updated “any-time” environments, it is hard to assess if one of these drops has occurred. As such,
WAT is valuable as a simple and effective way of preventing such fluctuations in test accuracy.

Figure 4: Final sparsities (y-axis) of base FSOL and FSOL-WRS using standard weights over
reservoir sizes K (x-axis) on 3 representative datasets. Error bars represent the minimum and
maximum values achieved across 5 randomized trials. See Figure 2 for legend description.

Table 3: Numbers of datasets out of 16 where
each top-64 PAC or FSOL variant outper-
formed its corresponding base method (PAC
or FSOL), as measured by relative oracle per-
formance averaged across 5 trials.

Simple Average Weighted Average

PAC 10 12
FSOL 15 15

Preservation of sparsity. Finally, we aim to re-
tain the favorable weight sparsity from FSOL. From
Figure 4, we observe that even with reservoir size
K = 64, the final sparsities achieved by FSOL-WRS
are quite similar to that of base FSOL. Furthermore,
we observe that with voting-based zeroing, FSOL-
WRS often achieves even higher sparsity than the
base model. Please see Appendix G.1 for additional
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errorbar-type plots and Appendix G.2 for sparsity over timestep. One explanation for why even
FSOL-WRS variants without voting-based zeroing can achieve similar sparsity to base FSOL is that
the final reservoir will likely contain candidate solutions from significantly earlier timesteps, when
weights were sparser due to fewer aggressive updates. Thus, WAT can maintain sparsity despite the
use of weight averaging.

4.2 Ablations and extensions

Top-K ablation. A natural question that one might ask is — instead of probabilistically sampling
candidate solutions, what if we deterministically picked the top-K candidate solutions with the largest
subsequent numbers of passive steps and took their simple and/or weighted average? Setting K = 64,
we see from Table 3 that the best top-64 PAC/FSOL variants are not as effective as stabilizing
test accuracy as the best PAC/FSOL-WRS variants, as shown in Table 2 and measured via ROP.
Furthermore, Wilcoxon signed-rank test p-values from Table 4 also suggest that this top-64 ablation
cannot produce as statistically-significant increases in test accuracy stability compared to WAT, as
measured via ROP. Like WAT, top-K is also ineffective at producing statistically-significant increases
in final test accuracy on PAC. On FSOL, top-K can produce statistically significant increases in final
test accuracy, but these p-values are over an order of magnitude larger than FSOL-WRS’s (see Table
7 in Appendix F). As such, WAT is still the best for stabilizing test accuracy.

Table 4: Wilcoxon signed-rank test p-values testing whether differences in relative oracle per-
formance and final test accuracy between top-64 PAC/FSOL variants and base PAC/FSOL are
statistically significant.

Relative Oracle Performance Final Test Accuracy
Simple Average Weighted Average Simple Average Weighted Average

PAC 0.162 0.0298 0.214 0.255
FSOL 0.00270 0.00270 0.0130 0.0130

Additional ablations and comparisons. For the interested reader, in Appendix D we include
empirical performance comparisons of WRS-Augmented Training against two traditional ensembling
mechanisms: moving average (e.g., averaging the most-recently-observed K = 64 weight vectors at
each timestep) and exponential average (e.g., forming an ensemble vector w̄t = γwt+(1−γ)w̄t−1 at
each timestep), where wt is the base algorithm’s candidate solution at timestep t. In short, especially
in more real-world, large-scale settings where evaluation and checking are prohibitively expensive,
WRS-Augmented Training is the fastest, most accurate, and most reliable method compared to all the
aforementioned baselines.

Modifying WAT for non-passive aggressive methods. While the main theoretical and empirical
results in this paper were primarily oriented towards passive-aggressive base models, in Appendix
E, we include empirical simulations of applying a modified form of WRS-Augmented Training
on top of three non-passive-aggressive online learning methods: Stochastic Gradient Descent with
Momentum [40], ADAGRAD [14], and Truncated Gradient Descent [15]. In general, our modified
WRS-Augmented Training effectively mitigates test accuracy when it exists, and does minimal harm
when it does not.

5 Conclusion, limitations, and future work

In this paper, we introduced WRS-Augmented Training (WAT), a procedure that can be used to
stabilize any passive-aggressive online learning algorithm, neither requiring a hold-out evaluation set
nor additional passes over the training data. We applied WAT to base PAC and FSOL, demonstrating
across 16 datasets that WAT is highly effective at mitigating the massive fluctuations in test accuracy
between timesteps that affect many online learning algorithms. WAT runs at minimal cost, with only
a fixed K multiple on memory for multiple weight vectors to be saved.

One limitation of this work is that WAT implicitly assumes that the training and test data come from
fixed distributions that do not change over time. However, some data distributions will evolve over
time. As such, a candidate solution that entered the reservoir early on due to having a large number
of subsequent passive steps might not actually retain its performance as the data distribution evolves
over time. While they may eventually be replaced, non-IID adaptions may be useful in the future.
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A Proofs

A.1 Validity analysis

Proof of Theorem 1. The main statement involves two independent bounds. See the proofs for
Theorem 5 and Theorem 6.
Theorem 5. Let w(1), . . . ,w(k) ∈ R be the updated outputs of an online PA algorithm on inputs
zT1 ∼ D. Define ws and w̃ as previously. Also define rm as the minimal achievable risk of any model,
such that rm ≤ RD(w̃) almost surely.

Then
P (RD(ws) > RD(w̃) + ε) ≤ K

rm
2rm + ε− rm(rm + ε)

Proof. First note that while RD(w) is a constant value for any fixed w, RD(ws) and RD(w̃) are
random variables induced by the distribution of ZT

1 . The sequence of observed samples affects both
the algorithm’s output w as well as the subsequent survival of w.

Next, we define the event of interest A = {RD(ws) > RD(w̃) + ε}. For a given realization of ZT
1

let the setRε = {w ∈ R : RD(w) > RD(w̃) + ε}. Then

A ⊆ {∃w ∈ R : (sw ≥ sw̃) ∩ (RD(w) > RD(w̃) + ε)}
= {∃w ∈ Rε : sw ≥ sw̃}

We aim to split this into separate events and apply a union bound, but the contents and size of R
depend on ZT

1 .

Therefore we enumerate the models within eachRε in the order they are received: {w(1)
ε ,w

(2)
ε , . . .},

up to w
(K)
ε , enabling the index i to refer to the corresponding model w(i)

ε in any realization of ZT
1 .

Then we can split the event that a hypothesis in the reservoir has longer survival into the union of
events on each ordered hypothesis.

We have

A ⊆ {∃w ∈ Rε : sw ≥ sw̃}

⊆
⋃
i

{s
w

(i)
ε
≥ sw̃}

Applying the union bound, Lemma 1, and then Lemma 2,

P (A) ≤
∑
i

P (s
w

(i)
ε
≥ sw̃)

≤
∑
i

E
w

(i)
ε ,w̃

P (s
w

(i)
ε
≥ sw̃|w(i)

ε , w̃)

=
∑
i

E
w

(i)
ε ,w̃

P (S(w(i)
ε ) ≥ S(w̃)|w(i)

ε , w̃)

=
∑
i

E
w

(i)
ε ,w̃

RD(w̃)

RD(w
(i)
ε ) +RD(w̃)−RD(w

(i)
ε )RD(w̃)

≤ K
rm

2rm + ε− rm(rm + ε)

To further clarify, the probabilities are computed over the probability space of ZT
1 ∼ D, and w̃

depends on the realization of ZT
1 . Lemma 1 allows us to reason about the dependent model instances

as independent geometric variables, but we need to extract w̃ into a instance-independent state. Thus
we need to condition on the weight values, and then bound the probability uniformly across the
expectation, using the premise that the weight risks are ε-distant.
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Theorem 6. (Alternative bound) Let the same conditions hold as in Theorem 5. Then

P (RD(ws) > RD(w̃) + ε) ≤ e−rKm(rm+ε)

Proof. As before, let A = {RD(ws) > RD(w̃) + ε}. Then

A ⊆ {RD(ws) > RD(w̃)} ⊆ {ws ̸= w̃}
= {ws = w̃}c

= {sw̃ ≥ sw,∀w ∈ R}c

The event {ws = w̃}c implies w̃ had or was tied for the highest survival, and we make the
simplification that ties are resolved in favor of w̃. Then

P (A) ≤ 1− P (sw̃ ≥ sw,∀w ∈ R)
= 1− P (sw̃ ≥ max

w
sw,∀w ∈ R)

= 1−
∞∑
x=1

RD(w̃)(1−RD(w̃))x−1
K∏
j=1

(
1− (1−RD(w

(j)))x
)

≤ 1−
∞∑
x=1

RD(w̃)(1−RD(w̃))x−1
(
1− (1−RD(w̃)x

)K−1(
1− (1−RD(w̃)− ε)x

)
where in the third step, we apply Lemma 3. In the last step, we use the premise to suppose that there
is at least one hypothesis which is ε-worse than w̃.

Considering the first-term only,

P (A) ≤ 1−RD(w̃)(RD(w̃))K−1(RD(w̃) + ε)

= 1−RD(w̃)K(RD(w̃) + ε)

≤ exp
(
−RD(w̃)K(RD(w̃) + ε)

)
≤ exp

(
− rKm(rm + ε)

)

Remark. Note that this gives the worst-case bound presuming no knowledge over the distribution
of risks among the K hypotheses. In such a scenario, the worst case is that all hypotheses achieve
RD(w̃) except for one which is RD(w̃) + ε. This is unrealistically adversarial, but the bound can
easily be tightened by adding assumptions that the risks RD(w

(j)) are well-behaved and applying
those in the last step.

Lemma 1. Let RD(w) be the misclassification risk. Suppose an online learner outputs hypothesis
wt at time t after observing samples Zt

1. Let st be the subsequent survival time of wt, conditional
on the observed sequence Zt

1. Also let S(wt) be the survival of wt over the distribution of sample
sequences from D. Then S(wt) has a Geometric distribution with parameter R(wt). In addition

st
d
=S(w).

Proof. For the first statement, observe that when sampling z independently from D,

R(wt) = ED[1(wt(x) ̸= y)] = P(x,y)∼D(wt(x) ̸= y)

Since each i.i.d. sample has a probability R(wt) to be misclassified, the number of trials until the
first misclassification is a Geometric distribution with parameter R(wt).

For the second, we need to consider a sequence of correct/incorrect classifications by wt as a
Bernoulli process of r.v. Wi with parameter R(wt), with a stopping time τ indicated by the first
misclassification. τ is a random variable and we see that St = τ − t. Similarly S(wt) can be defined
on another Bernoulli process starting from t = 0. From the memoryless property, these have the
same distribution.
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Lemma 2. Given random variables X and Y which are independent Geometric with parameters p
and q respectively (e.g. PMF of X is P (X = k) = (1− p)k−1p, then

P (X ≥ Y ) =
q

p+ q − pq

and

P (X > Y ) =
q − pq

p+ q − pq

Proof. For the first statement,

P (X ≥ Y ) =

∞∑
y=1

P (Y = y ∩X ≥ y)

=
∞∑
y=1

P (X ≥ y|Y = y)P (Y = y)

=

∞∑
y=1

P (X ≥ y)P (Y = y)

=

∞∑
y=1

∞∑
x=y

P (X = x)P (Y = y)

=

∞∑
y=1

∞∑
x=y

(1− p)x−1p · (1− q)y−1q

= pq

∞∑
y=1

(1− q)y−1
∞∑

x=y

(1− p)x−1

= pq ·
∞∑
y=1

(1− q)y−1 · (1− p)y−1

p

=
q

1− (1− p)(1− q)

=
q

p+ q − pq

For the second, note that

P (X > Y ) = 1− P (Y ≥ X) = 1− p

p+ q − pq

=
q − pq

p+ q − pq

Lemma 3. Let Y1, . . . , Yt be independent Geometric random variables with respective parameters
q1, . . . , qt. Let X ∼ Geom(p) be independent. Then

P (X ≥ max
i

Yi) =

∞∑
x=1

p(1− p)x−1
t∏

i=1

(
1− (1− qt)

x
)
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Proof.

P (X ≥ max
i

Yi) =

∞∑
x=1

P (X = x ∩max
i

Yi ≤ x)

=

∞∑
x=1

P (X = x)P (max
i

Yi ≤ x)

=

∞∑
x=1

P (X = x)

t∏
i=1

P (Yi ≤ x)

by independence. Substitute the PMF and CMFs of the geometric distribution to finish.

Proof of Theorem 2.

Proof. Note that

A =
{ 1

B + 1

B+1∑
j=1

R′
j <

1

B

B∑
j=1

R′
j

}

=
{
B

B+1∑
j=1

R′
j < (B + 1)

B∑
j=1

R′
j

}

=
{
R′

B+1 <
1

B

B∑
j=1

R′
j

}

We now consider a subset of this event. We will compute the probability that R′
1, . . . , R

′
B ∈ Rb and

that R′
B+1 ∈ Rg . By definition, this latter event falls into A.

For this to occur, note from Lemma 1 that each survival is drawn from a Geometric distribution. We
want the chance that the B largest survivals are from setRb and then the next largest is fromRg . For
additional simplicity, we further minimize the probability of this event by assigning all entries inRg

risk rm and all entries inRb risk rm + 3ε.

Conditioning on s′B+1 = x, all entries from Rg are below x except for one, which is equal to x.
There are |Rg| ways to pick this largest one.

Then |R| − B of the models in Rb are also below x, and B are above x. There are
(|Rb|

B

)
ways to

choose such B.

Finally this probability is summed over all values of x. This is
∞∑
x=1

|Rg|(1− (1− rm)x)(1− rm)x−1rm ·
(
|Rb|
B

)
(1− (1− rm − 3ε)x)|Rb|−B(1− rm − 3ε)Bx

As before, to get a simpler expression, we just consider x = 1, yielding

P (A) ≥ |Rg|
(
|Rb|
B

)
r2m(rm + 3ε)|Rb|−B(1− rm − 3ε)B

We also discuss the additional assumption of this Theorem to show that it is readily satisfied.

Assumption. There is a partition of R = Rg ∪ Rb such that Rg = {w ∈ R : rm ≤ RD(w) ≤
rm + ε} andRb = {w ∈ R : rm + ε < RD(w) ≤ rm + 3ε}, and that |Rb| ≥ B. That is, there is a
set of good and bad models in terms of risk.

We can set ε > 0 to be any small number that satisfies a partition within the reservoir separating
"good" from "bad" models – e.g. ε = (maxk R

′
k − rm)/4 works. For demonstration, suppose the
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underlying risks of the models in the reservoir range from 0.1 to 0.3, with 0.1 being the best risk rm.
Then ε = 0.05. Rg then contains the models with risks in [0.1, 0.15] and Rb contains those with
risks in (0.15, 0.3]. The only time this isn’t satisfied for any ε is if one of the partitions always ends
up empty, which only happens if all the K models have the same risk, a highly unlikely scenario
where it is obvious that an ensemble isn’t needed.

A.2 Learning bounds

Our bound follows from the following lemma from [22]. This itself is based on martingale inequalities
from [41] and developments in [21].

Lemma 4 (Dekel). Let L1, . . . , LT be a sequence of real-valued random variables and let
Z1, . . . , ZT be a sequence of random variables such that Lt = E[Lt|Z1, . . . , Zt]. Also assume
that Lt ∈ [0, C] for all t. Define Ut = E[Lt|Z1, . . . , Zt−1], and let L̃t =

∑t
i=1 Li. Then for any

T ≥ 4 and δ ∈ (0, 1),

P

(
∀t ∈ {1, . . . , T},

t∑
i=1

Ui > L̃t +

√
2C log

(T
δ

)
L̃t + 7C log

(T
δ

))
< δ

From this we obtain our learning bound. The proof follows analogously to the one in [22], with
modifications to handle our specific algorithm.

Proof of Theorem 3.

Proof. In our method we have a reservoirR containing K models w with associated weights bw. We
focus on the case where the weight is equal to the passive steps survived by the model. To simplify
this proof we consider a slightly modified algorithm, where all models with survival exceeding a
threshold s are included in the reservoir.

πt =


0, if s(wt) < s

s, if s(wt) = s

1, otherwise
(1)

We rewrite the weighted average of the reservoir models as a function of the entire training sequence
of length T by defining πt to be 1 if wt is in R and 0 otherwise. Furthermore on the first instance
that wt joinsR, the πt is instead set to s. This makes the weighting deterministic with respect to the
information at time t− 1, at the cost of the reservoir size not being explicitly defined. While this is
analogous to a top-k averaging scheme, the full WRS scheme will follow from the same reasoning,
with a more complicated definition of πt. This is because all decision-making is performed using
information that has already been seen.

Then we write wwrs = 1∑T
t=1 πt

∑T
t=1 πtwt, and our goal is to control RD(wwrs). Furthermore,

define the cumulative loss as Mwrs =
∑T

t=1 πtℓ(wt−1, zt). (We note that this term is a little
different from the observed cumulative WRS loss because of the requirement of reweighting on the
s-th survival.)

In the lemma, let Lt = πtℓ(wt−1, zt) and let Ut = E[πtℓ(wt−1, zt)|zt−1
1 ]. Noting that Lt is

deterministic when conditioning on zt1, the assumptions are met. Then with probability 1− δ, we

have
∑T

i=1 Ui < L̃T +

√
2C log

(
T
δ

)
L̃T + 7C log

(
T
δ

)
.

Now
∑T

i=1 Ui =
∑T

t=1 πtE[ℓ(wt−1, zt)|zt−1
1 ] =

∑T
t=1 πtRD(wt−1), where the first equality uses

the fact that πt is determined by the filtration Ft−1, and the second similarly uses the conditioning
information to fix wt−1 and the i.i.d. assumption over z.

Finally, we have RD(wwrs) = RD

(
1∑T

t=1 πt

∑T
t=1 πtwt

)
≤ 1∑T

t=1 πt

∑T
t=1 πtRD(wt) from

Jensen’s inequality.
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Dividing the previous statement by
∑T

t=1 πt, we put the pieces together to conclude

RD(wwrs) ≤
Mwrs∑

t πt
+

√√√√2C log
(

T
δ

)
Mwrs

(
∑

t πt)2
+

7C log
(

T
δ

)
∑

t πt

Finally, note that
∑

t πt is the total time steps involved with the reservoir weights, which is at least
KT sT with KT weights and sT the minimal survival time of the reservoir. Substituting completes
the proof.

Proof of Theorem 4.

Proof. Combining the penultimate form of Theorem 3 (with
∑

t πt instead of KT sT ) and the
deduction that Mwrs/

∑
t πt ≤MT /T we have

RD(wwrs) ≤
MT

T
+

√√√√2C log
(

T
δ

)
MT

T
∑

t πt
+

7C log
(

T
δ

)
∑

t πt

Next, we turn our attention to the generic base-model online regret bound. From this we get
MT /T ≤ 1

T

∑
t ℓ(w

∗; zt) + r(T )/T .

We need to bound the cumulative loss of w∗, that is 1
T

∑
t ℓ(w

∗; zt), in terms of the risk: RD(w
∗).

Using an application of Hoeffding bound, we get

1

T

T∑
t=1

ℓ(w∗, zt) ≤ RD(w
∗) + C

√√√√ log
(

1
δ

)
2T

which holds with probability 1− δ.

Combining the undesired tail events under the union bound, we get

RD(wwrs) ≤ RD(w
∗) +

r(T )

T
+

√√√√2C log
(

T
δ

)
MT

T
∑

t πt
+

7C log
(

T
δ

)
∑

t πt
+ C

√√√√ log
(

1
δ

)
2T

with probability 1− 2δ. As before, substitute in KT sT for
∑

t πt to complete.

Remark. The use of the online regret bound also indicates that the base models wt are improving
over time. This means that their risks are decreasing, and hence the observed survival times are
increasing. Thus even in the error term without T in the denominator, sT is an increasing function of
T so we expect the error terms to decay in T .
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B Additional details on methods and experimental setups

B.1 Datasets

Of the 16 datasets used in our study (see Table 1), 14 are directly from existing repositories and/or
literature, while 2 of them — Newsgroups (Binary, CS) and SST-2 — were modified from pre-existing
assets. First, Newsgroups (binary, CS) was formed by taking the original multi-class Newsgroups
dataset hosted in [31] and combining the labels “Computers" and “Science" as a +1 class, and all
other labels as the −1 class. Second, SST-2 is a sentiment classification dataset originally containing
text excerpts that we transformed into a linear classification dataset by using the CountVectorizer
from [31].

B.2 Base PAC and FSOL hyperparameter tuning

We start our set of experiments by tuning the Cerr hyperparameter for base PAC, testing values in
the set 10−3, 10−2, . . . , 102, 103. For base FSOL, following Zhao et al.’s approach, we test η values
in 2−3, 2−2, . . . , 28, 29 and λ values in 0, 10−3, 10−2, . . . , 102, 103. For each dataset, we perform
five runs of our base PAC and FSOL variants with randomized shuffles of the training and test data,
running through the training data only once for each run. For each dataset, we pick the Cerr, η, and
λ values corresponding to the base PAC and FSOL variants, within the top 2.5% in terms of final test
accuracy, that had the highest ROP, with all metrics averaged across the five runs. This experimental
choice was made to strike a balance between simulating as difficult and risky conditions as possible
and still choosing useful base model variants.

B.3 Metrics logging

Given that some of our datasets contain up to 36 million training points, it would be computationally
and storage-wise unfeasible to record metrics at each timestep. As such, for each dataset, we record
metrics at ≈ 200 evenly-spaced timesteps (exact number depends on divisibility and integer division
of Ntrain by 200) throughout the training stream, in addition to the initial and final timesteps. As such
ROP was also approximated by proxying oracle accuracy by taking the cumulative maximum base
model test accuracy across timesteps where metrics were recorded. As shown in the over-time figures
in Appendix G.2, such a reduced resolution still tells us a very clear picture, while cutting down
computation and storage requirements by many orders of magnitude.

B.4 Compute requirements and code availability

All experiments were run on a Linux computing cluster with 32 nodes, each with 40 Intel Xeon
E5-2650 CPU cores and a total of 500 GB of RAM per node, managed using SLURM. Nonetheless,
no experiments require multiprocessing or multiple cores. Depending on dataset size, some trials
could take less than a minute to run, while the largest datasets would take a couple hours at max.
However, larger datasets like Criteo will require 32 GB of RAM to load the dataset into memory.

Our source code for reproducing all experiments can be found at
https://github.com/FutureComputing4AI/Weighted-Reservoir-Sampling-Augmented-
Training/tree/main. All experiments were run on CPU.
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C Applications to Malware Classification

Given that the original motivation for this work was a real-world need in malware detection, we
present empirical results of PAC, PAC-WRS, FSOL, and FSOL-WRS on the EMBER malware
classification dataset [7]. The EMBER dataset is comprised of features extracted from 1.1M benign
and malicious Windows portable executable files and thus can be considered very close to a real-world
test case of our WRS-Augmented Training method on a real-world deployment setting.

In Figure 5, we observe that both base PAC and FSOL experience significant and frequent test
accuracy fluctuations throughout the training process. However, both PAC-WRS and FSOL-WRS
very successfully mitigate these test accuracy fluctuations and even outperform the oracle model, all
without the use of a separate validation set.

Figure 5: Test accuracies (y-axis) over timestep (x-axis) for PAC/FSOL and PAC/FSOL-WRS on the
EMBER benchmark dataset for malware classification.

Indeed, WRS-Augmented Training is a promising tool towards stabilizing test accuracy performance
in real-world deployment settings like malware detection.
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D Comparisons to other ensembling and averaging schemes

One natural question a reader may ask is: how does WRS-Augmented Training compare to traditional
weight-averaging schemes such as moving average (e.g., averaging the most-recently-observed
K = 64 weight vectors at each timestep) or exponential average (e.g., forming an ensemble vector
w̄t = γwt + (1− γ)w̄t−1 at each timestep), where wt is the base algorithm’s candidate solution at
timestep t.

From Figures 6 and 7, we observe that the exponential average scheme is consistently ineffective
at mitigating the test accuracy instabilities of the base models PAC and FSOL. The stability of the
exponential average scheme is usually not much better than that of the base model, which makes
sense because it still puts the majority of the weighting on the most recent candidate solution. From
these figures, we also observe that the K = 64 moving average also has very mixed effectiveness.
Overall, we see that WRS-Augmented Training is more preferable to the K = 64 moving average.
This makes sense because with WRS-Augmented Training, we are much more selective about the
quality of the candidate solutions that we retain in our reservoir, compared to moving average, which
necessarily by definition must include poor-performing solutions as they appear.

Third, from Table 5, we see that for datasets with dimension D > 100K, the moving average
method can be significantly computationally slower per iteration than WRS-Augmented Training.
For example, with PAC as the base model, the moving average method was, on average, 6.579x
slower per iteration than WRS-Augmented Training on KDD2010 (Algebra) and 10.050x slower
per iteration than WRS-Augmented Training on URL. Similar trends hold when using FSOL as the
base algorithm. These results make sense because with WRS-Augmented Training, we do not always
add candidate solutions to our reservoir for averaging, while with the moving average method, we
must always add new candidate solutions into our set. These insertion and deletion costs will accrue
over time. On smaller datasets, the moving average is faster or slower depending on the dataset, but
runtime is dominated by IO and all methods finish within minutes. However, in more real-world,
large-scale settings where evaluation and checking are prohibitively expensive, WRS-Augmented
Training is the fastest, most accurate, and most reliable method compared to all the baselines.
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Figure 6: Test accuracies (y-axis) over timestep (x-axis) for WRS-Augmented Training (K = 64),
moving average (most recent K = 64) and exponential average (γ = 0.9), using PAC as the base.
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Figure 7: Test accuracies (y-axis) over timestep (x-axis) for WRS-Augmented Training (K = 64),
moving average (most recent K = 64) and exponential average (γ = 0.9), using FSOL as the base.

Table 5: Compute times per iteration (in seconds) of moving average and exponential average relative
to WRS-augmented training, with PAC (left) and FSOL (right) as base models. For example, on
URL with PAC, moving average was, on average, 10.050x slower per iteration than WRS-augmented
training. Results were averaged over 5 randomly-seeded trials.

PAC FSOL

Dataset D Moving Avg. Expo. Avg. Moving Avg. Expo. Avg.

Webspam 254 0.953 0.717 0.738 0.613
W8A 300 0.420 0.353 0.368 0.336
MNIST8 (4+9) 784 1.125 0.885 0.968 0.887
PCMAC 3289 0.483 0.312 0.377 0.235
SST-2 13757 0.903 0.431 0.748 0.411
Dexter 20000 0.577 0.143 0.285 0.066
Real-Sim 20958 0.949 0.624 0.707 0.564
RCV1 47236 1.825 0.892 1.366 1.011
Dorothea 100000 1.194 0.190000 0.580 0.254
Newsgroups (Binary, CS) 101631 3.587 1.042 1.376 0.543
Avazu (App) 1000000 8.357 2.507 8.078 2.544
Avazu (Site) 1000000 18.704 3.207 11.612 3.683
Criteo 1000000 13.108 2.876 7.009 2.381
News20 1355191 4.288 1.356 3.376 1.153
URL 3231961 10.050 3.945 9.124 4.058
KDD2010 (Algebra) 20216830 6.579 2.402 6.778 2.301

24



E Modified WRS-Augmented Training on non-passive aggressive online
learning methods

In this section, we explore applying a modified form of WRS-Augmented Training (WAT) on top of
three non-passive-aggressive online learning methods: Stochastic Gradient Descent with Momentum
[40], ADAGRAD [14], and Truncated Gradient Descent [15], all using default hyperparameters. We
emphasize that these three methods are not passive-aggressive as they always update their weight
vectors at each time step, even if the data point was correctly classified. As such, the original WAT is
not directly applicable.

However, we can modify WAT as follows. First, we define a pseudo-passive step as one where the
current solution candidate made no classification error (i.e., no more concept of margin). Second, at a
time step when the current solution candidate does make an error, we will sample the last weight
vector before a mistake was made into our reservoir with probability proportional to the number of
pseudo-passive steps, before resetting our counter. The rest of WAT operates as normal under this
pseudo-passive step weighting.

From Figures 8 - 10, we observe that all three non-passive-aggressive online algorithms, in particular
Stochastic Gradient Descent with Momentum (SGD+M) and Truncated Gradient Descent (TGD),
are susceptible to experiencing concerning fluctuations in test accuracy. Consistently, across the
algorithms, we observe that when such fluctuations are present, modified WAT effectively mitigates
such fluctuations very well. On the other hand, when there is little fluctuation in the base model (e.g.,
see ADAGRAD), applying modified WAT will do little to no harm. We emphasize that WAT was not
designed for non-passive-aggressive algorithms, but is still demonstrably useful and adaptable to a
wider class of base models, which can constitute fruitful future work.

Figure 8: Test accuracies (y-axis) over timestep (x-axis) for modified WRS-Augmented Training
(K = 64) on Stochastic Gradient Descent with Momentum.
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Figure 9: Test accuracies (y-axis) over timestep (x-axis) for modified WRS-Augmented Training
(K = 64) on ADAGRAD.
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Figure 10: Test accuracies (y-axis) over timestep (x-axis) for modified WRS-Augmented Training
(K = 64) on Truncated Gradient Descent.
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F Tables of p-values for Wilcoxon Signed-Rank Tests

Below, we provide full tables of p-values computed using Wilcoxon Signed-Rank Tests towards prob-
ing the statistical significance of the differences in ROP and final test accuracy between PAC/FSOL-
WRS and their base model counterparts.

Table 6: Wilcoxon signed-rank test p-values testing whether differences in relative oracle perfor-
mance between K = 64 PAC/FSOL-WRS variants and base PAC/FSOL methods are statistically
significant.

Simple Average Weighted Average
Standard Exponential Standard Exponential

PAC 0.0150 0.0199 0.0386 0.325
FSOL 0.000437 0.0879 0.000437 0.0787

Table 7: Wilcoxon signed-rank test p-values testing whether differences in final test accuracy
between K = 64 PAC/FSOL-WRS variants and base PAC/FSOL methods are statistically significant.

Simple Average Weighted Average
Standard Exponential Standard Exponential

PAC 0.408 0.196 0.501 0.856
FSOL 0.00836 0.313 0.00836 0.679

28



G Additional results figures for PAC-WRS and FSOL-WRS

G.1 Uncertainty-quantified aggregate metrics across runs

Below, we provide figures with error bars (minimum and maximum across 5 trials) showing the
relative oracle performances (ROP), final test accuracies, and final sparsities of PAC-WRS and
FSOL-WRS alongside the base PAC and FSOL models, across all 16 datasets. The main takeaways
are that a) PAC-WRS and FSOL-WRS overall incur substantially-lower ROP than their corresponding
base models; b) PAC-WRS and FSOL-WRS overall achieve comparable, if not improved, final test
accuracy compared to their corresponding base models, consistently with lower variance, too; c) the
final sparsities of PAC-WRS and FSOL-WRS are overall comparable, if not higher than those of their
corresponding base models.

G.1.1 FSOL and FSOL-WRS

Figure 11: Relative oracle performances (y-axis) of base FSOL and FSOL-WRS using standard
weights over reservoir sizes K (x-axis) on all datasets. Error bars represent the minimum and
maximum values achieved across 5 randomized trials. Blue: WRS-augmented variants via simple
average of reservoir members. Red: WRS-augmented variants via weighted average of reservoir
members. Dotted lines: indicates voting-based zeroing was performed for additional sparsity. Lower
values indicate more stable performance.
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Figure 12: Final test accuracies (y-axis) of base FSOL and FSOL-WRS using standard weights over
reservoir sizes K (x-axis) on all datasets. Error bars represent the minimum and maximum values
achieved across 5 randomized trials. Blue: WRS-augmented variants via simple average of reservoir
members. Red: WRS-augmented variants via weighted average of reservoir members. Dotted lines:
indicates voting-based zeroing was performed for additional sparsity.
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Figure 13: Final sparsities (y-axis) of base FSOL and FSOL-WRS using standard weights over
reservoir sizes K (x-axis) on all datasets. Error bars represent the minimum and maximum values
achieved across 5 randomized trials. Blue: WRS-augmented variants via simple average of reservoir
members. Red: WRS-augmented variants via weighted average of reservoir members. Dotted lines:
indicates voting-based zeroing was performed for additional sparsity.
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Figure 14: Relative oracle performances (y-axis) of base FSOL and FSOL-WRS using exponential
weights over reservoir sizes K (x-axis) on all datasets. Error bars represent the minimum and
maximum values achieved across 5 randomized trials. Blue: WRS-augmented variants via simple
average of reservoir members. Red: WRS-augmented variants via weighted average of reservoir
members. Dotted lines: indicates voting-based zeroing was performed for additional sparsity. Lower
values indicate more stable performance.
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Figure 15: Final test accuracies (y-axis) of base FSOL and FSOL-WRS using exponential weights
over reservoir sizes K (x-axis) on all datasets. Error bars represent the minimum and maximum
values achieved across 5 randomized trials. Blue: WRS-augmented variants via simple average of
reservoir members. Red: WRS-augmented variants via weighted average of reservoir members.
Dotted lines: indicates voting-based zeroing was performed for additional sparsity.
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Figure 16: Final sparsities (y-axis) of base FSOL and FSOL-WRS using exponential weights over
reservoir sizes K (x-axis) on all datasets. Error bars represent the minimum and maximum values
achieved across 5 randomized trials. Blue: WRS-augmented variants via simple average of reservoir
members. Red: WRS-augmented variants via weighted average of reservoir members. Dotted lines:
indicates voting-based zeroing was performed for additional sparsity.
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G.1.2 PAC and PAC-WRS

Figure 17: Relative oracle performances (y-axis) of base PAC and PAC-WRS using standard
weights over reservoir sizes K (x-axis) on all datasets. Error bars represent the minimum and
maximum values achieved across 5 randomized trials. Blue: WRS-augmented variants via simple
average of reservoir members. Red: WRS-augmented variants via weighted average of reservoir
members. Dotted lines: indicates voting-based zeroing was performed for additional sparsity. Lower
values indicate more stable performance.
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Figure 18: Final test accuracies (y-axis) of base PAC and PAC-WRS using standard weights over
reservoir sizes K (x-axis) on all datasets. Error bars represent the minimum and maximum values
achieved across 5 randomized trials. Blue: WRS-augmented variants via simple average of reservoir
members. Red: WRS-augmented variants via weighted average of reservoir members. Dotted lines:
indicates voting-based zeroing was performed for additional sparsity.
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Figure 19: Final sparsities (y-axis) of base PAC and PAC-WRS using standard weights over
reservoir sizes K (x-axis) on all datasets. Error bars represent the minimum and maximum values
achieved across 5 randomized trials. Blue: WRS-augmented variants via simple average of reservoir
members. Red: WRS-augmented variants via weighted average of reservoir members. Dotted lines:
indicates voting-based zeroing was performed for additional sparsity.
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Figure 20: Relative oracle performances (y-axis) of base PAC and PAC-WRS using exponential
weights over reservoir sizes K (x-axis) on all datasets. Error bars represent the minimum and
maximum values achieved across 5 randomized trials. Blue: WRS-augmented variants via simple
average of reservoir members. Red: WRS-augmented variants via weighted average of reservoir
members. Dotted lines: indicates voting-based zeroing was performed for additional sparsity. Lower
values indicate more stable performance.
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Figure 21: Final test accuracies (y-axis) of base PAC and PAC-WRS using exponential weights over
reservoir sizes K (x-axis) on all datasets. Error bars represent the minimum and maximum values
achieved across 5 randomized trials. Blue: WRS-augmented variants via simple average of reservoir
members. Red: WRS-augmented variants via weighted average of reservoir members. Dotted lines:
indicates voting-based zeroing was performed for additional sparsity.
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Figure 22: Final sparsities (y-axis) of base PAC and PAC-WRS using exponential weights over
reservoir sizes K (x-axis) on all datasets. Error bars represent the minimum and maximum values
achieved across 5 randomized trials. Blue: WRS-augmented variants via simple average of reservoir
members. Red: WRS-augmented variants via weighted average of reservoir members. Dotted lines:
indicates voting-based zeroing was performed for additional sparsity.
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G.2 Test accuracies and sparsities over time

Below, we provide figures showing test accuracies and sparsities over time on individual runs of
PAC-WRS and FSOL-WRS, compared against their base model counterparts, on all 16 datasets.
The main takeaways are that a) test accuracies over time on PAC-WRS and FSOL-WRS are overall
much stabler, if not also higher, than their base model counterparts (and much closer to that of the
oracle); b) applying WAT to PAC and FSOL does not significantly impact sparsity — in some cases,
especially with voting-based zeroing, sparsity actually increases compared to the base model!

G.2.1 FSOL and FSOL-WRS

Figure 23: Test accuracies (y-axis) over timestep (x-axis) for FSOL-WRS with reservoir size
K = 64 using standard weighting on all 16 tested datasets. Light grey lines: test accuracies of the
FSOL baseline methods at each timestep. Solid black lines: test accuracies of the “oracle" models,
computed as the cumulative maximum of the FSOL baselines. Blue: corresponds to FSOL-WRS
variants ensembled via simple averaging. Red: corresponds to FSOL-WRS variants ensembled via
weighted averaging. Dotted lines: indicate whether voting-based zeroing was applied for additional
sparsity.
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Figure 24: Sparsity (y-axis) over timestep (x-axis) for FSOL-WRS with reservoir size K = 64
using standard weighting on all 16 tested datasets. Light grey lines: sparsities of the FSOL baseline
methods at each timestep. Blue: corresponds to FSOL-WRS variants ensembled via simple averaging.
Red: corresponds to FSOL-WRS variants ensembled via weighted averaging. Dotted lines: indicate
whether voting-based zeroing was applied for additional sparsity.
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Figure 25: Test accuracies (y-axis) over timestep (x-axis) for FSOL-WRS with reservoir size
K = 64 using exponential weighting on all 16 tested datasets. Light grey lines: test accuracies of the
FSOL baseline methods at each timestep. Solid black lines: test accuracies of the “oracle" models,
computed as the cumulative maximum of the FSOL baselines. Blue: corresponds to FSOL-WRS
variants ensembled via simple averaging. Red: corresponds to FSOL-WRS variants ensembled via
weighted averaging. Dotted lines: indicate whether voting-based zeroing was applied for additional
sparsity.
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Figure 26: Sparsity (y-axis) over timestep (x-axis) for FSOL-WRS with reservoir size K = 64
using exponential weighting on all 16 tested datasets. Light grey lines: sparsities of the FSOL
baseline methods at each timestep. Blue: corresponds to FSOL-WRS variants ensembled via simple
averaging. Red: corresponds to FSOL-WRS variants ensembled via weighted averaging. Dotted
lines: indicate whether voting-based zeroing was applied for additional sparsity.
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G.2.2 PAC and PAC-WRS

Figure 27: Test accuracies (y-axis) over timestep (x-axis) for PAC-WRS with reservoir size K = 64
using standard weighting on all 16 tested datasets. Light grey lines: test accuracies of the PAC
baseline methods at each timestep. Solid black lines: test accuracies of the “oracle" models,
computed as the cumulative maximum of the PAC baselines. Blue: corresponds to PAC-WRS
variants ensembled via simple averaging. Red: corresponds to PAC-WRS variants ensembled via
weighted averaging. Dotted lines: indicate whether voting-based zeroing was applied for additional
sparsity.

45



Figure 28: Sparsity (y-axis) over timestep (x-axis) for PAC-WRS with reservoir size K = 64 using
standard weighting on all 16 tested datasets. Light grey lines: sparsities of the PAC baseline methods
at each timestep. Blue: corresponds to PAC-WRS variants ensembled via simple averaging. Red:
corresponds to PAC-WRS variants ensembled via weighted averaging. Dotted lines: indicate whether
voting-based zeroing was applied for additional sparsity.
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Figure 29: Test accuracies (y-axis) over timestep (x-axis) for PAC-WRS with reservoir size K = 64
using exponential weighting on all 16 tested datasets. Light grey lines: test accuracies of the
PAC baseline methods at each timestep. Solid black lines: test accuracies of the “oracle" models,
computed as the cumulative maximum of the PAC baselines. Blue: corresponds to PAC-WRS variants
ensembled via simple averaging. Red: corresponds to PAC-WRS variants ensembled via weighted
averaging. Dotted lines: indicate whether voting-based zeroing was applied for additional sparsity.
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Figure 30: Sparsity (y-axis) over timestep (x-axis) for PAC-WRS with reservoir size K = 64 using
exponential weighting on all 16 tested datasets. Light grey lines: sparsities of the PAC baseline
methods at each timestep. Blue: corresponds to PAC-WRS variants ensembled via simple averaging.
Red: corresponds to PAC-WRS variants ensembled via weighted averaging. Dotted lines: indicate
whether voting-based zeroing was applied for additional sparsity.
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paper’s contributions and scope?

Answer: [Yes]

Justification: Please see our Abstract and Introduction.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Please see Section 5.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: Please see Section 3.2 and Appendix A.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Please see Section 4 and Appendix B.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: Please see our GitHub at https://github.com/FutureComputing4AI/Weighted-
Reservoir-Sampling-Augmented-Training/tree/main, with a detailed README.md file.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Please see Algorithm 1, Section 4, and Appendix B, as well as
our GitHub at https://github.com/FutureComputing4AI/Weighted-Reservoir-Sampling-
Augmented-Training/tree/main.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Please see error bars and significance tests in Section 4 and Appendix G.1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Please see Appendix B.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have carefully read the NeurIPS Code of Ethics and have made sure that
our research conforms to it.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This paper introduces a foundational research method that does not have any
direct paths to negative societal impacts, aside from the general interactions of machine
learning with society.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This paper does not involve any data or models that have a high risk for misuse.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We enumerate and cite all datasets in Table 1. Aside from our own preprocessed
versions of Newsgroups (Binary, CS) and SST-2, the 14 other datasets are all publicly
available.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: Please see the README.md file in our accompanying GitHub
https://github.com/FutureComputing4AI/Weighted-Reservoir-Sampling-Augmented-
Training/tree/main.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: No crowdsourcing or work with human subjects was performed for this paper.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This paper does not have any study participants and/or crowdsourcing.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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