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Abstract

Effective condition monitoring in complex systems requires identifying change points (CPs)
in the frequency domain, as the structural changes often arise across multiple frequencies.
This paper extends recent advancements in statistically significant CP detection, based on
Selective Inference (SI), to the frequency domain. The proposed SI method quantifies the
statistical significance of detected CPs in the frequency domain using p-values, ensuring that
the detected changes reflect genuine structural shifts in the target system. We address two
major technical challenges to achieve this. First, we extend the existing SI framework to
the frequency domain by appropriately utilizing the properties of discrete Fourier transform
(DFT). Second, we develop an SI method that provides valid p-values for CPs where changes
occur across multiple frequencies. Experimental results demonstrate that the proposed
method reliably identifies genuine CPs with strong statistical guarantees, enabling more
accurate root-cause analysis in the frequency domain of complex systems.

1 Introduction

To detect failures in complex systems, it is crucial to accurately identify the frequencies where the significant
changes occur. By pinpointing these specific frequencies, the root causes of faults in the systems can be
identified. In this paper, we address the change point (CP) detection problem in the frequency domain
and propose a method that can identify statistically significant changes in specific frequencies. Quantifying
statistical significance in CP detection ensures that the detected changes in the frequency domain reflect
genuine structural alterations rather than random noise. Measures such as p-values provide a quantitative
framework to differentiate real changes from spurious ones, effectively mitigating the risk of incorrect decisions
in data-driven systems.

This study was motivated by recent developments in statistically significant CP detection based on Selective
Inference (SI) (Taylor & Tibshirani, 2015; Fithian et al., 2015; Lee & Taylor, 2014). Prior to SI, quantifying
the significance of detected CPs was challenging due to the issue of double dipping, i.e., using the same data
to both identify and test CPs inflates false positive findings. Traditional statistical approaches prior to SI
primarily focused on testing only whether a CP exists or not within a certain range using multiple testing
framework based on asymptotic distribution (Page, 1954; Mika et al., 1999). Therefore, providing statistical
significance measures, such as p-values, for specific points or frequencies was not feasible. SI is a novel
statistical inference framework designed for data-driven hypotheses. In the context of CP detection, it enables
the evaluation for the statistical significance of detected CPs conditional on a specific CP detection algorithm,
thereby resolving the aforementioned double dipping issue. The use of SI for statistically significant CP
detection in the time domain has been actively studied recently (Hyun et al., 2018; Duy et al., 2020). Our
contribution in this study is to extend these methods and realize statistically significant CP detection in the
frequency domain.

One of the difficulties in frequency-domain CP detection is that changes often appear across multiple fre-
quencies due to shared underlying phenomena influencing broad signal characteristics. Figure 1 shows an
example of frequency-domain CP detection problems along with the statistically significant CPs identified
using our proposed SI method. Panel (a) shows a time series transformed into signals across five frequencies.
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Panel (b) presents the CP detection results for each individual frequency d ∈ {d0, d1, d2, d3, d4} 1. Panel (c)
integrates CPs across multiple frequencies, detecting three changes A, B, and C (at CP A, changes occur in
frequencies d1 and d2; at CP B, in d2 and d3; and at CP C, only in d0). In table (d), the obtained p-values for
changes A, B, and C using the proposed method are 0.008, 0.006, and 0.752 (denoted as selective p-values),
respectively, indicating that at a significance level of 0.05

3 ≈ 0.0167 decided by Bonferroni correction, changes
A and B are statistically significant CPs2.

Time
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e

(a) Time series signal. (b) CP detection result for each
frequency component.

(c) CP detection result after in-
tegrating CPs across multiple
frequencies.

(d) Statistical test for the CPs detected in (c).

Time Point A B C

Detection True True Wrong

Proposed p-value 0.008 0.006 0.752

Naive p-value 0.000 0.000 0.000

Figure 1: Demonstration of the proposed method. Panel (a) shows the original time series signal. Panel (b)
illustrates the result of CP detection for each time variation of the five frequency components, and panel (c)
represents the CPs merged across multiple frequencies. In panel (c), the CPs for frequency d1 at time point 28
and d2 at 30, and those for d2 at 68 and d3 at 74 merge into one CP at 28 (A) and 70 (B), respectively.
Actually, the CPs A and B are truely detected, while a CP C for d0 at 97 is wrong detection. Table (d)
shows the results of statistical test for the CPs detected in (c). The proposed p-value is enough large
for falsely detected CP C, while the naive metod causes a false positive because the p-value is too small.
Furthermore, the proposed method provides sufficiently small p-values for truely detected CPs A and B,
which are statistically significant.

1Note that while the “amplitude” spectra are presented in the figures of this paper to visualize the temporal variations of
spectral sequences and the means for each segment, the “complex” spectra are utilized in the actual CP detection and the
hypothesis testing (see Section 2 and the subsequent sections for details).

2In Figure 1, the values labeled as naive p-values are inappropriate because they fail to account for double-dipping, leading
to excessively small values and an inflated rate of false positive findings.
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To perform statistically significant CP detection, as illustrated in Figure 1, two key technical challenges must
be addressed. The first challenge is to extend the SI framework to the frequency domain. We tackle this by
formulating the test statistic and the conditioning on the hypothesis selection that accurately account for
the properties of discrete Fourier transform (DFT). The second challenge involves quantifying the statistical
significance of CPs shared across multiple frequencies. Addressing this requires solving a combinatorial
optimization problem, which is computationally infeasible to solve globally optimally, necessitating a heuristic
approach to obtain the approximate solution. In this study, we employ a method based on simulated
annealing (SA) (Kirkpatrick et al., 1983; Černỳ, 1985) and implement the SI framework to appropriately
quantify the statistical significance of the approximate solution derived from the heuristic algorithm.

The proposed CP detection method consists of two stages. In the first stage, CP candidates in the frequency
domain are selected. Since the selection of these CP candidates is formulated as a combinatorial optimization
problem, a heuristic algorithm is used to derive an approximate solution. In the second stage, the statistical
significance of each CP candidate selected in the first stage is quantified in the form of p-values using the
SI framework. Among the CP candidates, only those with p-values below a significance level (e.g., 0.05 or
0.01) are eventually detected as final CPs. The probability of the final detected CPs being false positives is
theoretically guaranteed to be below the specified significance level.

The rest of the paper is organized as follows. Section 2 formulates the problem. Section 3 explains the
heuristic algorithm used to select CP candidates in the first stage of the proposed method. Section 4 describes
the method for quantifying the statistical significance of CP candidates using the SI framework in the
second stage. In Section 5, we demonstrate the effectiveness of our proposed method through comprehensive
numerical experiments using both synthetic and real-world data. For reproducibility, our implementation is
available at supplementary materials. Finally, Section 6 concludes the paper.

Our Contributions. The main contribution of this study is the development of a statistical testing
method, based on the framework of SI, to quantify the statistical significance of detected CPs in the fre-
quency domain. While CP detection in the frequency domain is an important problem in engineering and
several algorithms have been proposed, to the best of our knowledge, no existing method properly quantifies
the statistical significance of CPs in the form of p-values. By leveraging the recently advancing SI framework,
we provide a solution to this unresolved issue. There are various CP detection algorithm in the frequency
domain. In this study, as an example, we consider a CP detection algorithm that identifies changes common
across multiple frequencies using dynamic programming (DP) and simulated annealing. It should be noted
that our contribution does not lie in this CP detection algorithm itself, but in proposing a statistical test to
quantify the significance of the detected CPs.

Related Work. The CP detection problem has long been studied with various applications in a variety
of fields, such as finance (Fryzlewicz & Subba Rao, 2014; Pepelyshev & Polunchenko, 2017), bioinformat-
ics (Chen & Wang, 2008; Muggeo & Adelfio, 2011; Pierre-Jean et al., 2015), climatology (Reeves et al., 2007;
Beaulieu et al., 2012), and machine monitoring (Lu et al., 2017; 2018). In the statistics and machine learning
communities, various methods have been proposed for identifying multiple CPs from univariate sequences.
The most straightforward approach is repeatedly applying single CP detection algorithms, such as binary
segmentation (Scott & Knott, 1974). Examples of such approaches include circular binary segmentation (Ol-
shen et al., 2004) and wild binary segmentation (Fryzlewicz, 2014). Another line of research has proposed
numerous approaches based on penalized likelihood, such as Segment Neighbourhood (Auger & Lawrence,
1989), Optimal Partitioning (Jackson et al., 2005), PELT (Killick et al., 2012), and FPOP (Maidstone et al.,
2017). In these studies, dynamic programming is employed to solve the penalized likelihood minimization
problem. While most CP detection studies focus on the time domain, a few studies have targeted the
frequency domain, such as Adak (1998), Last & Shumway (2008), and Preuss et al. (2015).

Most existing studies for statistical inference on detected CPs have relied on asymptotic theory under re-
strictive assumptions, such as weak dependency. For single CP detection problems, approaches such as
the CUSUM score (Page, 1954), Fisher discriminant score (Mika et al., 1999; Harchaoui et al., 2009), and
MMD (Li et al., 2015) conduct statistical inference on the detected CPs based on asymptotic distribution
of some discrepancy measures. For multiple CP detection problems, methods such as SMUCE (Frick et al.,
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2014) and the MOSUM procedure (Eichinger & Kirch, 2018) also employ asymptotic inference. However,
these methods primarily focus on testing whether a CP exists within a certain range rather than directly
quantifying the statistical significance of the location of the CP itself. Furthermore, asymptotic approaches
often fail to control the false positive (type I error) rate effectively, or resulting in conservative testing with
low statistical power (Hyun et al., 2018).

SI was initially introduced as a method of statistical inference for feature selection in linear models (Taylor
& Tibshirani, 2015; Fithian et al., 2015) and later extended to various feature selection algorithms, including
marginal screening (Lee & Taylor, 2014), stepwise feature selection (Tibshirani et al., 2016), and Lasso (Lee
et al., 2016). The core concept of SI is to derive the exact null distribution of the test statistic conditional
on the hypothesis selection event, thereby enabling valid statistical inference with controlled type I error
rate. Recently, significant attention has been given to applying SI to more complex supervised learning
algorithms, such as kernel models (Yamada et al., 2018), boosting (Rügamer & Greven, 2020), tree-structured
models (Neufeld et al., 2022), and neural networks (Duy et al., 2022; Miwa et al., 2023; Shiraishi et al., 2024b).
Furthermore, SI has proven valuable for unsupervised learning tasks, including clustering (Lee et al., 2015;
Chen & Witten, 2023; Gao et al., 2024), outlier detection (Chen & Bien, 2020; Tsukurimichi et al., 2022),
domain adaptation (Duy et al., 2024), and segmentation (Tanizaki et al., 2020; Duy et al., 2022). SI was
first used for CP detection problem in Hyun et al. (2018), which focused on Fused Lasso algorithm. Since
then, the framework has been explored in various CP detection algorithms, including the CUSUM-based
method (Umezu & Takeuchi, 2017), binary segmentation and its variants (Hyun et al., 2021), dynamic
programming (Duy et al., 2020), and other related problems (Sugiyama et al., 2021; Jewell et al., 2022;
Carrington & Fearnhead, 2024; Shiraishi et al., 2024a). Existing studies on CP detection have focused on
the time domain, making this the first to offer valid statistical inferences for frequency-domain CPs using
the SI framework.

2 Problem Setup

In this section, we first desrcribe the probabilistic model of time series on which the statistical inference is
based, and then formulate the problem of CP detection in the frequency domain.

2.1 Probabilistic Model for Time Series Data

For statistical inference, we interpret that the observed time series data is a realization of a random sequence
following a certain probabilistic model. Let us denote the univariate random sequence with length N by

X = (X1, . . . , XN )⊤ = s + ϵ, ϵ ∼ N (0, σ2IN ), (1)

where s ∈ RN is the unknown true signal vector, and ϵ ∈ RN is the normally distributed noise vector with
the covariance matrix σ2IN

3. In other words, we assume that the observed time series data is sampled from
the probabilistic model X ∼ N

(
s, σ2IN

)
.

Then, consider applying discrete short-time Fourier transform (STFT) to the random sequence X using
rectangular window of width M without overlapping. In this case, the computations of DFT are required
T =

⌊
N
M

⌋
times, where we assume T = N

M , i.e., N is a multiple of M for simplicity. We denote M -point
DFT matrix as

WM =
(

w
(0)
M , . . . , w

(M−1)
M

)
∈ CM×M ,

where w
(d)
M =

(
ω0

M , ωd
M , . . . , ω

(M−1)d
M

)⊤
, and ωM = e−j( 2π

M ) for frequency d ∈ {0, . . . , M − 1} in which j is

the imaginary unit. Using w
(d)
M , we consider multiple spectral sequences across D =

⌊
M
2
⌋

+ 1 frequencies
due to the symmetry property of the spectrum. For frequency d, the sequence of spectra is written as

F (d) =
(

F
(d)
1 , . . . , F

(d)
T

)⊤
∈ CT , d ∈ {0, . . . , D − 1},

3In the following discussion, the noise ϵ must be an independent and identically distributed Gaussian vector with prede-
termined covariance matrix. The robustness of our proposed method for unknown noise variance, non-Gaussian noise, and
correlated noise is discussed in Appendix D.3.
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where F
(d)
t =

(
1t:t ⊗w

(d)
M

)⊤
X, and 1s:e ∈ RT is a vector whose elements from position s to e are set to 1,

and 0 otherwise for 1 ≤ s ≤ e ≤ T .

2.2 Statistically Significant CP Detection in the Frequency Domain

As mentioned above, for statistical inference, we interpret that the observed time series is randomly sampled
from the probabilistic model in (1), which is denoted by

x = (x1, . . . , xN )⊤ ∈ RN . (2)

Similarly, the sequence of spectra for frequency d, obtained by applying the aforementioned STFT to the
observed time series x, is written as

f (d) =
(

f
(d)
1 , . . . , f

(d)
T

)⊤
∈ CT , d ∈ {0, . . . , D − 1}. (3)

The goal of this study is to detect changes in the true signals of frequency spectral sequences
{F (d)}d∈{0,...,D−1} based on the observed sequences {f (d)}d∈{0,...,D−1}.

Among variety of changes, we focus in this paper on mean-shift of frequency spectral sequences. Let us
denote the mean spectrum of frequency d at time point t by

µ
(d)
t = E[F (d)

t ], (d, t) ∈ {0, . . . , D − 1} × [T ],

where the expectation operator E[·] is taken with respect to the probabilistic model in (1)4, and [T ] =
{1, . . . , T} indicates the set of natural numbers up to T .

Considering a segment from time points s to e with 1 ≤ s ≤ e ≤ T , we say that there is a mean-shift change
in the frequency d at time point t ∈ {s, . . . , e− 1} if and only if

1
t− s + 1

t∑
t′=s

µ
(d)
t′ ̸=

1
e− t

e∑
t′=t+1

µ
(d)
t′ .

As discussed in Section 1, we have prior knowledge that simultaneous changes occur across multiple distinct
frequencies. In Section 3, we introduce a heuristic algorithm that generates CP candidates by incorporating
this prior knowledge. Subsequently, in Section 4, we present an SI framework to quantify the statistical
significance of each CP candidate in the form of p-values. Finally, we select the candidates with p-values
smaller than the user-specified significance level (e.g., 0.05 or 0.01) as our final CPs.

3 Heuristic Algorithm for CP Candidate Selection in Multiple Frequencies

As discussed in Section 1, the types of problems occurring in sensor signals can be systematically determined
by simultaneously detecting CPs across multiple frequencies, such as the harmonics and sidebands of the
characteristic frequencies. Thus, we formulate CP candidate selection as an optimization problem that aims
to not only estimate the optimal number and location of CPs for each frequency, but also reduce the total
number of change locations across all frequencies by aligning the positions.

3.1 Objective Function for CP Candidate Selection

Let K(d) be the number of selected CP candidates and τ (d) = {τ (d)
1 , . . . , τ

(d)
K(d)} ⊆ [T−1] be the ordered set of

CP candidates (τ (d)
1 < · · · < τ

(d)
K(d) and τ

(d)
0 = 0, τ

(d)
K(d)+1 = T ) for frequency d ∈ {0, . . . , D−1}. Furthermore,

we define the set of CP candidate locations as

τ =
D−1⋃
d=0

τ (d) = {τ1, . . . , τK} ⊆ [T − 1], (4)

4Since the frequency spectral sequences are obtained through linear transformations of Gaussian random variables, the
existence of their expectations is guaranteed.
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where we denote the total number of CP candidate locations as K = |τ |.

Let T = (τ (0), . . . , τ (D−1)) be the collection of all CP candidates across all the D frequencies. Then, given
an observed time-series data x in (2), the objective function of our CP candidates T is written as

E(T , x) =
D−1∑
d=0

K(d)+1∑
k=1

C
(

f
(d)
τ

(d)
k−1+1:τ(d)

k

)
+ β(d)K(d) + γK. (5)

The first term of the obejective function in (5) indicates the cost for quantifying the variability of segments
between two adjacent CP candidates, where C

(
f

(d)
s:e

)
indicates the cost function for a segment f

(d)
s:e =

(f (d)
s , f

(d)
s+1, . . . , f

(d)
e )⊤ specifically defined as

C
(

f (d)
s:e

)
= c(d)

sym

e∑
t=s

∣∣∣∣∣f (d)
t − 1

e− s + 1

e∑
t′=s

f
(d)
t′

∣∣∣∣∣
2

,

where

c(d)
sym =

{
1 if d = 0, M

2
2 if d ̸= 0, M

2
, (6)

because the frequency spectra have complex conjugate symmetry. The second term indicates the penalty
term for the number of CP candidates in each frequency, while the third term indicate the penalty for the
number of total CP candidate locations where (β(0), . . . , β(D−1)) ∈ RD, and γ ∈ R are hyper-parameters for
controlling the balance between the three terms (the details of how to determine these hyper-parameters are
presented in Appendix A). The third penalty term indicates that we take into account the trade-off between
cost and penalty term for not only K(d) but also K in (5), hence CP candidates of multiple frequencies tend
to be detected at the same time point.

3.2 Approximately Optimizing the Objective Function by Simulated Annealing

Unfortunately, since minimizing the objective function in (5) is a challenging combinatorial optimization
problem, we must rely on approximate solutions derived from heuristic algorithms. Following the approach
in Lavielle (1998), we employ simulated annealing (Kirkpatrick et al., 1983; Černỳ, 1985) to approximately
solve the combinatorial optimization problem. Simulated annealing is a meta-heuristic algorithm widely
applied to various practical problems, as it converges asymptotically to a global solution with high probability
under specific conditions.

To approximately optimize the objective function in (5), we perform the following two steps:

• Step 1: Individually estimate the CP candidates for each frequency. Specifically, we minimize
the objective function in (5) with γ = 0. This can be optimally achieved by applying dynamic
programming to each sequence.

• Step 2: Refine the CP candidates for each frequency estimated in step 1 using simulated annealing
to estimate the changes shared across multiple frequencies.

The reason for obtaining approximate solutions using simulated annealing is that the global minimization
of the objective function in (5) across multiple frequencies cannot be achieved by directly extending the
dynamic programming approach used in step 1. This inability to obtain the global optimum stems from
the fact that it is impossible to construct a Bellman equation for this optimization problem; specifically,
additional information which is not preserved in the solutions of subproblems may be needed at later-stage
decisions.

We note that approximately solving the combinatorial optimization problem in (5) is NOT our novel con-
tribution (our key contribution, detailed in Section 4, lies in providing a theoretical guarantee for the false
positive detection probability of the obtained approximate solution). For example, a similar approach has
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been used for analogous problems in studies such as Lavielle (1998). Moreover, we do NOT claim that
simulated annealing is the optimal approach for this problem; it is simply one of the reasonable choices, and
other meta-heuristics could also be used as alternatives.

3.3 Step 1: Generating Initial Solution by Dynamic Programming

We need to generate an initial solution T init = (τ init(0)
, . . . , τ init(D−1)) before applying simulated annealing.

To obtain the initial solution, we first set γ = 0 in (5) to detect CP candidates for each frequency and
formulate an optimization problem as

τ init(d) = arg min
τ (d)

K(d)+1∑
k=1

C
(

f
(d)
τ

(d)
k−1+1:τ(d)

k

)
+ β(d)K(d). (7)

This optimization problem can be solved efficiently using dynamic programming algorithm which is called
Optimal Partitioning (Jackson et al., 2005). This method employs the Bellman equation that recursively
determines optimal solutions for simpler subproblems. Given Dinit as the set of frequencies for which at
least one CP candidate is detected, it is sufficient to apply simulated annealing only to d ∈ Dinit because
introducing an additional CP to any frequency d requires a minimum penalty of β(d) as shown in (5). Thus,
we reduce the number of optimal solution candidates, and the computational cost of simulated annealing
can be decreased without degrading the solution quality.

3.4 Step 2: Refining Solution by Simulated Annealing

We perform multivariate CP candidate selection in the frequency domain using simulated annealing that is
applied for solving large combinatorial optimization problems for which finding global optima is difficult. In
each step of simulated annealing, the Metropolis algorithm is used to accept transitions not only to improving
solutions that decrease the objective function, i.e., ∆E(T ′, T , x) = E(T ′, x) − E(T , x) ≤ 0, where T and
T ′ are current and new solutions, respectively, but also to deteriorating solutions that increase the objective
function, i.e., ∆E(T ′, T , x) > 0, with the probability controlled by a temperature parameter c, which allows
escape from the local solution. The pseudo code of the Metropolis algorithm is shown in Algorithm 1.

Local search. In this paper, we consider four types of neighborhood operations applied to the current
solution, i.e., adding, removing, and moving a CP (Lavielle, 1998) for a uniformly selected frequency d,
and merging two adjacent CP locations uniformly sampled from τ at a random position between them.
Schematic illustrations of these four operations are provided in Figures 2 and 3. We set the number of
searching iterations at a specific temperature c equal to the size of neighborhoods, i.e., |Dinit| · T (Aarts &
Korst, 1989). Each operation is uniformly selected from adding, removing, and moving one CP. Subsequently,
two adjacent CP locations are merged only once because this operation significantly fluctuates the objective
function value. When the operation is not possible (e.g., removing operation for a frequency with no CP),
it is skipped. If no transition to neighborhoods occurs when these operations are repeated sufficiently at a
certain temperature c, the search is terminated.

Algorithm 1 metropolis_algorithm

Input: Difference of objective function values ∆E, temperature c
1: Uniformly sample θ from [0, 1)
2: if ∆E + c ln θ < 0 then
3: status ← Acceptance
4: else
5: status ← Rejection
6: end if

Output: status
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(a) Adding at 57. (b) Removing at 30. (c) Moving from 68 to 73.

Figure 2: Illustrations of the three local search operations for frequency d. (a) Adding is to insert a CP
at a randomly selected time point with no CP. (b) Removing means to delete a CP at a randomly selected
time point with a CP. (c) Moving is to shift a CP that is randomly selected from τ (d) to a random position
between its adjacent CPs.

68 74

Figure 3: Illustration of the local search operation which merges two adjacent CP locations. In this figure,
CP for frequency d2 at time point 68 and CP for d3 at 74 are merged at 70.
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The setting of initial temperature. We determine the initial temperature c0 by setting an acceptance
ratio

χ(c0) = # accepted transitions
# proposed transitions

to a desired value in a preliminary experiment of simulated annealing. In practice, we start by setting the
temperature to a sufficiently small positive value, then multiply it with a constant factor λ+, larger than 1,
as follows:

c+
i+1 = λ+c+

i ,

where c+
i represents the i-th temperature in the initial value setting, until the acceptance ratio exceeds the

predefined criterion (Aarts & Korst, 1989). Therefore, the initial temperature c0 is specified as the final
value of c+

i .

Decrement of temperature. We employ a geometric cooling schedule, which is used as a practical
method of temperature control, altough it does not guarantee the convergence to a global optimum. The
decrement function of the i-th temperature ci is given as

ci+1 = λci,

where λ is a constant factor smaller than but close to 1. The value typically lies between 0.8 and 0.99 (Aarts
& Korst, 1989). That is because the decreasing rate must be sufficiently slow to obtain a better solution for
the optimization problem.

The overall procedure of the CP candidate selection using simulated annealing is shown in Algorithm 2.

Algorithm 2 CP candidate selection using simulated annealing
Input: Time sequence x

1: Obtain spectral sequences f (d) for d ∈ {0, . . . , D − 1} in (3) by applying STFT to x
2: Initialize the CP candidates T as T init in (7) using dynamic programming
3: Determine the initial temperature c in a preliminary experiment
4: while true do
5: while The number of local search is less than |Dinit| · T do
6: Frequency d is uniformly sampled from Dinit

7: The operation is uniformly sampled from adding, removing, and moving a CP for d
8: Obtain T ′ by applying the operation to T
9: status ← metropolis_algorithm(∆E(T ′, T , x), c)

10: if status is Acceptance then
11: T ← T ′

12: end if
13: end while
14: Obtain T ′ by merging uniformly sampled two adjacent CP locations in T
15: status ← metropolis_algorithm(∆E(T ′, T , x), c)
16: if status is Acceptance then
17: T ← T ′

18: end if
19: if no transition to neighborhoods occured at c then
20: break
21: end if
22: Update the temperature using a constant factor λ as c← λc
23: end while
Output: CP candidates T

9
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4 Selective Inference on CP candidate Locations

In this section, using the SI framework, we quantify the statistical significance of all locations selected as CP
candidates by the algorithm in Section 3 in the form of p-values. By setting the significance level α (e.g.,
0.05 or 0.01) and considering CP candidate locations with the p-value < α as the final CPs, it is theoretically
guaranteed that the false positive detection probabilities (type I error rates) of these final CPs is controlled
below the specified significance level α.

To formalize the SI framework, let us write the CP candidate selection algorithm in Section 3 as A : X 7→
T 5. As detailed in Section 3, the output of this algorithm is a collection of CP candidates represented as
T = (τ (0), . . . , τ (D−1)), where each τ (d) = {τ (d)

1 , . . . , τ
(d)
K(d)} ⊆ [T − 1] is the ordered set of CP candidates

for frequency d ∈ {0, . . . , D − 1}. The final set of selected CP candidate locations τ is obtained by taking
the union of these sets of CP candidates, i.e., τ =

⋃D−1
d=0 τ (d) = {τ1, . . . , τK} ⊆ [T − 1]. Subsequently, we

quantify the statistical significance of each CP candidate location τk ∈ τ for k ∈ [K], in the form of p-values
within the SI framework. Therefore, without loss of generality, we formulate the hypothesis testing problem
for the k-th CP candidate location τk for simplicity.

4.1 Statistical Test on CP Locations

Hypotheses. To test the statistical significance of CP candidate location τk, we consider whether a mean-
shift occurs before and after this location τk at any frequency for which this location was selected as a CP
candidate. To formalize this, let Dk denote the set of frequencies where τk is selected as a CP candidate
location, i.e., Dk = {d ∈ {0, . . . , D − 1} | τk ∈ τ (d)}. For each d ∈ Dk, let τ

(d)
pre and τ

(d)
suc represent the CP

candidate locations immediately before and after τk at frequency d, respectively. Note that although τ
(d)
pre

and τ
(d)
suc depend on τk, this dependence is omitted from the notation for simplicity. Given these notations,

we formulate the null hypothesis H0,k and alternative hypothesis H1,k as follows:

H0,k : 1
τk − τ

(d)
pre

τk∑
t=τ

(d)
pre +1

µ
(d)
t = 1

τ
(d)
suc − τk

τ(d)
suc∑

t=τk+1
µ

(d)
t , ∀d ∈ Dk, (8)

v.s.

H1,k : 1
τk − τ

(d)
pre

τk∑
t=τ

(d)
pre +1

µ
(d)
t ̸= 1

τ
(d)
suc − τk

τ(d)
suc∑

t=τk+1
µ

(d)
t , ∃d ∈ Dk. (9)

Test statistic. We define the test statistic to test with the null hypothesis (8) and alternative hypothesis (9)
as follows. First, for each frequency d ∈ Dk, we consider the difference between the average values of the
complex spectra in the two segments before and after the location τk. Then, we aggregate these differences
across all frequencies d ∈ Dk to define the test statistic. Therefore, the test statistic Tk(X) is formulated as

Tk(X) = σ−1

√√√√∑
d∈Dk

a
(d)
lenc

(d)
sym

M

∣∣∣∣F̄ (d)
τ

(d)
pre +1:τk

− F̄
(d)
τk+1:τ(d)

suc

∣∣∣∣2, (10)

where a
(d)
len = (τ (d)

suc − τk)(τk − τ
(d)
pre)/(τ (d)

suc − τ
(d)
pre) ∈ R is a scaling factor for correcting the segment lengths

before and after the location τk for each frequency d ∈ Dk, c
(d)
sym ∈ R defined in (6) is required for considering

the complex conjugate symmetry of the spectrum, and F̄
(d)
s:e ∈ C is the average value of the complex spectra

in the segment from time points s to e for frequency d ∈ Dk, i.e.,

F̄ (d)
s:e = 1

e− s + 1

e∑
t=s

F
(d)
t = 1

e− s + 1

(
1s:e ⊗w

(d)
M

)⊤
X. (11)

5Note that, to ensure deterministic behavior of the algorithm A, the random seed is fixed to a constant value at the beginning
of the procedure.
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An important point when conducting the statistical test within the SI framework is that the test statistic
is represented as the norm of a projection of the data, i.e., Tk(X) = σ−1||PkX||, where Pk ∈ PN×N is a
projection matrix that depends on the observed time series x only through the selected CP candidates A(x)
(see the next subsection for further details). We now define the orthogonal projection matrix Pk as

Pk =
∑

d∈Dk

a
(d)
lenc

(d)
sym

M
v(d)v(d)∗⊤ ∈ RN×N , (12)

where
v(d) = 1

τk − τ
(d)
pre

(
1

τ
(d)
pre +1:τk

⊗w
(d)
M

)
− 1

τ
(d)
suc − τk

(
1

τk+1:τ(d)
suc
⊗w

(d)
M

)
∈ CN (13)

is a vector that depends on the selected CP candidates A(x), and v(d)∗ is the complex conjugate of v(d).
Using (10)–(13), the test statistic Tk(X) can be rewritten as

Tk(X) = σ−1

√√√√∑
d∈Dk

a
(d)
lenc

(d)
sym

M
|v(d)⊤X|2

= σ−1

√√√√X⊤

(∑
d∈Dk

a
(d)
lenc

(d)
sym

M
v(d)v(d)∗⊤

)
X

= σ−1
√

X⊤PkX = σ−1||PkX|| (∵ Pk = P 2
k , Pk = P ⊤

k ). (14)

4.2 Computing Selective p-values

Selective Inference (SI). To compute the p-value, we need to identify the sampling distribution of the
test statistic Tk(X). However, as the projection matrix Pk within the test statistic Tk(X) depends on the CP
candidates A(X) (which, in turn, depends on the sequence X through the CP candidate selection algorithm
A), the sampling distribution of the test statistic Tk(X) is too complicated to characterize. Within the SI
framework, to address this challenge, we consider the sampling distribution of the test statistic conditional
on the event that the selected CP candidates A(X) for a random sequence X is the same as A(x) for the
observed sequence x, that is,

Tk(X) | {A(X) = A(x)}. (15)

To compute a selective p-value based on the conditional sampling distribution in (15), we introduce an
additional condition on the sufficient statistic of the nuisance parameter Q(X), which is defined as

Q(X) = (V(X), U(X)) ∈ RN × RN , (16)

with
V(X) = σPkX

∥PkX∥
∈ RN , U(X) = (IN − Pk)X ∈ RN .

This additional conditioning on Q(X) is a standard approach for computational tractability in the SI liter-
ature (Loftus & Taylor, 2015). Based on the additional conditioning on Q(X), the following theorem tells
that the conditional distribution of the test statistic can be represented as a truncated χ-distribution.

Theorem 1 Consider a random sequence X ∼ N (s, σ2IN ) and an observed sequence x. Let A(X) and A(x)
be the detected CP candidates, by applying a CP candidate selection algorithm to X and x, respectively.
Let Pk ∈ RN×N be a projection matrix depending on A(x), and consider a test statistic in the form of
Tk(X) = σ−1||PkX||. Furthermore, define the nuisance parameter Q(X) = (V(X), U(X)) as in (16).

Then, under the null hypothesis that the norm of the true signal vector s projected by Pk is zero (i.e.,
∥Pks∥ = 0), the conditional distribution of the test statistic

Tk(X) | {A(X) = A(x),Q(X) = Q(x)}

11
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is a truncated χ-distribution TC(tr(Pk),Z) with the degrees of freedom tr(Pk) and the truncation region Z.
The truncation region Z is defined as

Z = {z ∈ R | A(a + bz) = A(x)} , a = U(x), b = V(x).

The proof of Theorem 1 is deferred to Appendix B.1. By using the sampling distribution of the test statistic
Tk(X) conditional on A(X) = A(x) and Q(X) = Q(x) in Theorem 1, we can define the selective p-value as

pselective
k = PH0,k

(Tk(X) ≥ Tk(x) | A(X) = A(x),Q(X) = Q(x)) . (17)

Theorem 2 The selective p-value defined in (17) satisfies the property:

PH0,k

(
pselective

k ≤ α | A(X) = A(x)
)

= α, ∀α ∈ (0, 1).

Then, the selective p-value also satisfies the following property of a valid p-value:

PH0,k
(pselective

k ≤ α) = α, ∀α ∈ (0, 1).

The proof of Theorem 2 is deferred to Appendix B.2. This theorem guarantees that the selective p-value is
uniformly distributed under the null hypothesis H0,k, and thus can be used to conduct the valid statistical
inference in (8) and (9). Figure 4 schematically illustrates the SI framework presented in this section.

Once the truncation region Z is identified, the selective p-value in (17) can be easily computed by Theorem 1.
Thus, the remaining task is reduced to identifying the truncation region Z. In this study, to identify the
truncation region Z, we adopt the method based on parametric-programming technique proposed by Duy
& Takeuchi (2022). For further details, refer to Appendix C.

Figure 4: Schematic illustration of the SI framework. A point in the data space RN corresponds to a sequence
with length N . The darkly shaded regions in the data space indicate that, if we input a point in these regions
into the algorithm A, the CP candidates are the same as A(x) obtained from the observed sequence x. By
conditioning on these regions and Q(X) = Q(x), the conditional sampling distribution of the test statistic
Tk(X) is represented as a truncated χ-distribution. Thus, selective p-values are defined based on the tail
probability of such a truncated χ-distribution.
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5 Numerical Experiments

5.1 Methods for Comparison

In our experiments, we compared the proposed method (Proposed) using pselective
k in (17) with the following

methods in terms of type I error rate control and power.

• OC: In this method, that is, a simple extension of SI literature to our setting, we consider p-values
with additional conditioning (over-conditioning) described in Appendix C.1.

• OptSeg-SI-oc, OptSeg-SI (Duy et al., 2020): These methods use p-values conditioned only on the
dynamic programming algorithm, disregarding the conditioning on simulated annealing.

• Naive: This method is a conventional statistical inference.

• Bonferroni: This method applies Bonferroni correction for multiple testing correction.

The details of these comparison methods are provided in Appendix D.1.

5.2 Synthetic Data Experiments

Experimental setup. In all synthetic experiments, we set window size M ∈ {512, 1024}, the number of
frequencies D =

⌊
M
2
⌋

+ 1, the length of sequence N = M ·T , where T was specified for each experiment, the
sampling rate fs = 20480, and each element of mean vector s as

sn =
∑

d∈{d1,d2,d3}

A(d)
n sin

(
ω(d)(n− 1)

)
(1 ≤ n ≤ N),

where frequencies d1, d2, d3 ∈ {0, ..., D−1} were randomly selected without replacement for each simulation,
A

(d)
n was defined for each experiment, and ω(d) ∈

{
2π( fs

M )d
∣∣ d = 0, . . . ,

⌊
M
2
⌋}

. We used BIC for the choice
of penalty parameters β and γ as indicated in Appendix A, and set the parameters of simulated annealing as
c+

0 = 1000, λ+ = 1.5, χ(c0) = 0.5 and λ = 0.8 in Section 3.4. After detecting CP candidates, a CP location
τdet

k randomly selected from τ det was tested at the significance level α = 0.05.

In the experiments conducted to evaluate the control of type I error rate, we generated 1000 null sequences,
which did not contain true CPs in the frequency domain, x = (x1, . . . , xN )⊤ ∼ N

(
s, σ2IN

)
, where A

(d)
n =

A(d) was randomly sampled from [0, 1) for d in each simulation, and σ = 1, for each T ∈ {40, 60, 80, 100}.

Regarding the experiments to compare the power, we generated sequences x = (x1, . . . , xN )⊤ ∼ N
(
s, σ2IN

)
,

where

A(d)
n =


A(d) if 1 ≤ t ≤M · t(d)

1

A(d) + ∆ if M · t(d)
1 + 1 ≤ t ≤M · t(d)

2

A(d) + 2∆ if M · t(d)
2 + 1 ≤ t ≤ T

,

with A(d1), A(d2), A(d3) ∈ [0, 1) which were randomly sampled in each simulation,
(

t
(d1)
1 , t

(d2)
1 , t

(d3)
1

)
=

(18, 20, 22),
(

t
(d1)
2 , t

(d2)
2 , t

(d3)
2

)
= (38, 40, 42), an intensity of the change ∆ ∈ {0.04, 0.08, 0.12, 0.16} and σ = 1,

for T = 60. In each case, we ran 1000 trials. Since we tested only when a CP candidate location was correctly
detected, the power was defined as follows:

Power (or Conditional Power) = # correctly detected & rejected
# correctly detected .

We considered the CP candidate location τk to be correctly detected if it satisfied the following two conditions:

• The set Dk of frequencies containing at least one CP candidate was a subset of {d1, d2, d3}.
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• For Dk satisfying the above condition, either min
d∈Dk

t
(d)
1 ≤ τk ≤ max

d∈Dk

t
(d)
1 or min

d∈Dk

t
(d)
2 ≤ τk ≤ max

d∈Dk

t
(d)
2

held, that is, τk was detected within the true CP locations for the frequencies in Dk.

Experimental results. The results of experiments regarding the control of the type I error rate are
shown in Figure 5. The Proposed, OC, and Bonferroni successfully controlled the type I error rate below
the significance level, whereas the OptSeg-SI, OptSeg-SI-oc, and Naive could not. That was because
the OptSeg-SI and OptSeg-SI-oc used p-values conditioned only on the dynamic programming algorithm,
excluding the conditioning on simulated annealing, and the Naive employed conventional p-values without
conditioning. Since the OptSeg-SI, OptSeg-SI-oc, and Naive failed to control the type I error rate, we
omitted the analysis of their power. The results of power experiments are shown in Figure 6. Based on these
results, the Proposed was the most powerful of all methods that controlled the type I error rate. The power
of the OC was lower than that of the Proposed due to redundant conditions (see Appendix C for details).
Furthermore, the Bonferroni method had the lowest power because it was a highly conservative approach
that accounted for the huge number of all possible hypotheses. Additionally, we provide the computational
time of the Proposed in both experiments and the information on the computer resources in Appendix D.2.
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Figure 5: Type I Error Rate
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Additional Experiments. We also conducted the following experiments to investigate the robustness of
the Proposed in terms of type I error rate control.

• Unknown noise variance: We considered the case where the variance σ2 was estimated from the
same data.

• Non-Gaussian noise: We also considered the case where the noise followed the five types of stan-
dardized non-Gaussian distributions.

• Correlated noise: Furthermore, we considered the sequence whose noise was correlated, i.e., the
covariance matrix Σ ̸= σ2IN . In this case, although the test statistic did not theoretically follow a
χ-distribution, we conducted the hypothesis testing using our proposed framework.

In addition, a sensitivity study for the penalty parameter γ within the objective function in (5) was also
performed. These details and results are shown in Appendix D.3 and D.4, respectively.

5.3 Real Data Experiments

To demonstrate the practical applicability of the Proposed, we applied the Proposed, OC, and Naive to a
real-world dataset. We used the set No.2 of the IMS bearing dataset, which is provided by the Center for
Intelligent Maintenance Systems (IMS), University of Cincinnati (Qiu et al., 2006) and is available from
the Prognostic data repository of NASA (Lee et al., 2007). The experimental apparatus consisted of four
identical bearings (bearings 1, 2, 3, and 4) installed on a common shaft, driven at a constant rotation speed
by an AC motor under applied radial loading. In this dataset, the vibration signals were measured using
accelerometers until the outer race of bearing 1 failed at the end of the experiment, as shown in Figure 7.
The signal with the sampling rate fs = 20480 was recorded for one second at intervals of 10 minutes over a
period of about 7 days for each bearing. The analysis for the signal of bearing 1 in the frequency domain,
as conducted by Gousseau et al. (2016), had revealed that enhancements of the spectral intensity were
detected in harmonics of the characteristic frequency (236 Hz) associated with the outer race failure (Ball
Pass Frequency Outer race, BPFO) on 3–4 days. Based on this previous study, we conducted CP candidate
selection for the sensor data of bearing 1 in the frequency domain for two periods: 0.25–2.25 days when
no significant changes in the spectra existed and 2.25–4.25 days when the BPFO harmonics exhibited the
spectral amplification. For each period, we computed the DFT of M = 1024 consecutive points in the
20480 samples and repeated the procedure T = 2 days/10 min = 288 times. As a result of the DFT,
we obtained components for 513 frequencies (0, 20, ..., 10240 Hz) and conducted CP candidate selection
using 131 frequencies within the range of 1400–4000 Hz, which included the 6th to 16th harmonics of the
characteristic frequency. For other parameters related to the CP candidate selection algorithm, please refer
to the experimental setup in Section 5.2. Subsequently, we tested the detected CP candidate locations to
evaluate whether each of them was a genuine CP location. The variance σ2 for testing was estimated from
the data on 0–0.25 days that did not contain significant spectral changes and was not used in any of the
experiments. The results for the signal of bearing 1 on 0.25–2.25 days and 2.25–4.25 days are shown in
Figure 8. In panel (a), the time variation of a frequency spectrum (1920 Hz) where a CP candidate location
was falsely detected is shown for the period of 0.25–2.25 days. It shows that p-values of the Proposed and
OC are above the significance level 0.05, and therefore the result provides the validity of the inference, while
p-value of the Naive is too small. In panel (b), the time variations of the 8th and 15th harmonics of the
BPFO where CP candidate locations were correctly detected are presented for the period of 2.25–4.25 days.
In this case, p-values of the Proposed are below the significance level 0.05

2 = 0.025 decided by Bonferroni
correction, thus it indicates that the inference is valid. In contrast, p-values of the OC are too large, due
to the loss of power caused by the redundant conditions. In addition, since even the time sequences of the
healthy bearings 2, 3, and 4 had been reported to indicate spectral amplification associated with the outer
race fault in bearing 1 (Gousseau et al., 2016), we performed the same analysis for the three signals. The
results are shown in Appendix D.5.
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Figure 7: Vibration signals of the four bearings in the set No.2 of the IMS bearing dataset. Each signal was
measured using an accelerometer for about 7 days until the outer race of bearing 1 failed. We used not only
the signal of the damaged bearing 1 but also those of the other healthy bearings for the analysis because
the spectral amplification associated with the failure of bearing 1 had been reported to be observed in the
signals of all four bearings (Gousseau et al., 2016).
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4.25 days

Figure 8: Results of the CP candidate selection for the signal of bearing 1 in the frequency domain and the
subsequent inference for the detected CP candidate locations. In panel (b), note that p-values for the first
CP candidate location were actually computed by considering not only a CP candidate of the 15th harmonic
but also a CP candidate of 1900 Hz (around the 8th harmonic).
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6 Conclusion, Limitations and Future Works

In this paper, we developed a statistical inference method to quantify the statistical significance of detected
CP locations in the frequency domain. Our proposed framework contributes to various fields where time-
frequency analysis is widely employed, such as condition monitoring of machine systems using vibration,
electrical, and acoustic signals, and medical diagnosis based on biosignals. We conducted comprehensive
experiments on both synthetic and real-world datasets. The results theoretically confirmed that our method
provided an unbiased evaluation based on SI framework and demonstrated its superior performance com-
pared to existing methods. However, an important limitation is the assumption that the noise follows an
uncorrelated normal distribution, which is technically essential for deriving the conditional sampling dis-
tribution of the test statistic as a truncated χ-distribution. As future works, we will extend our method
to the case of multi-dimensional sequences. For instance, analyzing different types of time series obtained
from multiple sensors would reveal significant changes in the system unattainable through the univariate
approach, and reliability guarantee for the detections also provide a valuable future contribution.
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Vladimír Černỳ. Thermodynamical approach to the traveling salesman problem: An efficient simulation
algorithm. Journal of optimization theory and applications, 45:41–51, 1985.

Jie Chen and Yu-Ping Wang. A statistical change point model approach for the detection of dna copy number
variations in array cgh data. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 6
(4):529–541, 2008.

Shuxiao Chen and Jacob Bien. Valid inference corrected for outlier removal. Journal of Computational and
Graphical Statistics, 29(2):323–334, 2020.

Yiqun T Chen and Daniela M Witten. Selective inference for k-means clustering. Journal of Machine
Learning Research, 24(152):1–41, 2023.

Vo Nguyen Le Duy and Ichiro Takeuchi. More powerful conditional selective inference for generalized lasso
by parametric programming. Journal of Machine Learning Research, 23(300):1–37, 2022.

Vo Nguyen Le Duy, Hiroki Toda, Ryota Sugiyama, and Ichiro Takeuchi. Computing valid p-value for
optimal changepoint by selective inference using dynamic programming. In Advances in Neural Information
Processing Systems, volume 33, pp. 11356–11367, 2020.

Vo Nguyen Le Duy, Shogo Iwazaki, and Ichiro Takeuchi. Quantifying statistical significance of neural network-
based image segmentation by selective inference. Advances in Neural Information Processing Systems, 35:
31627–31639, 2022.

17



Under review as submission to TMLR

Vo Nguyen Le Duy, Hsuan-Tien Lin, and Ichiro Takeuchi. Cad-da: Controllable anomaly detection after
domain adaptation by statistical inference. In International Conference on Artificial Intelligence and
Statistics, pp. 1828–1836. PMLR, 2024.

Birte Eichinger and Claudia Kirch. A MOSUM procedure for the estimation of multiple random change
points. Bernoulli, 24:526–564, 2018.

William Fithian, Jonathan Taylor, Robert Tibshirani, and Ryan Tibshirani. Selective sequential model
selection. arXiv preprint arXiv:1512.02565, 2015.

Klaus Frick, Axel Munk, and Hannes Sieling. Multiscale change point inference. Journal of the Royal
Statistical Society Series B: Statistical Methodology, 76(3):495–580, 2014.

Piotr Fryzlewicz. Wild binary segmentation for multiple change-point detection. The Annals of Statistics,
42(6):2243–2281, 2014.

Piotr Fryzlewicz and Suhasini Subba Rao. Multiple-change-point detection for auto-regressive conditional
heteroscedastic processes. Journal of the Royal Statistical Society Series B: Statistical Methodology, 76(5):
903–924, 2014.

Lucy L Gao, Jacob Bien, and Daniela Witten. Selective inference for hierarchical clustering. Journal of the
American Statistical Association, 119(545):332–342, 2024.

William Gousseau, Jérôme Antoni, François Girardin, and Julien Griffaton. Analysis of the rolling element
bearing data set of the center for intelligent maintenance systems of the university of cincinnati. In
CM2016, Charenton, France, 2016.

Zaïd Harchaoui, Eric Moulines, and Francis R Bach. Kernel change-point analysis. In Advances in neural
information processing systems, pp. 609–616, 2009.

Sangwon Hyun, Max G’sell, and Ryan J Tibshirani. Exact post-selection inference for the generalized lasso
path. Electronic Journal of Statistics, 12(1):1053–1097, 2018.

Sangwon Hyun, Kevin Z Lin, Max G’Sell, and Ryan J Tibshirani. Post-selection inference for changepoint
detection algorithms with application to copy number variation data. Biometrics, 77(3):1037–1049, 2021.

Brad Jackson, Jeffrey D Scargle, David Barnes, Sundararajan Arabhi, Alina Alt, Peter Gioumousis, Elyus
Gwin, Paungkaew Sangtrakulcharoen, Linda Tan, and Tun Tao Tsai. An algorithm for optimal partitioning
of data on an interval. IEEE Signal Processing Letters, 12(2):105–108, 2005.

Sean Jewell, Paul Fearnhead, and Daniela Witten. Testing for a change in mean after changepoint detection.
Journal of the Royal Statistical Society Series B: Statistical Methodology, 84(4):1082–1104, 2022.

Rebecca Killick, Paul Fearnhead, and Idris A Eckley. Optimal detection of changepoints with a linear
computational cost. Journal of the American Statistical Association, 107(500):1590–1598, 2012.

Scott Kirkpatrick, C Daniel Gelatt Jr, and Mario P Vecchi. Optimization by simulated annealing. science,
220(4598):671–680, 1983.

Michael Last and Robert Shumway. Detecting abrupt changes in a piecewise locally stationary time series.
Journal of multivariate analysis, 99(2):191–214, 2008.

Marc Lavielle. Optimal segmentation of random processes. IEEE Transactions on signal processing, 46(5):
1365–1373, 1998.

Jason D Lee and Jonathan E Taylor. Exact post model selection inference for marginal screening. Advances
in neural information processing systems, 27, 2014.

Jason D Lee, Yuekai Sun, and Jonathan E Taylor. Evaluating the statistical significance of biclusters.
Advances in neural information processing systems, 28, 2015.

18



Under review as submission to TMLR

Jason D Lee, Dennis L Sun, Yuekai Sun, and Jonathan E Taylor. Exact post-selection inference, with
application to the lasso. The Annals of Statistics, 44(3):907–927, 2016.

Jay Lee, Hai Qiu, Gang Yu, Jing Lin, and Rexnord Technical Services. Bearing Data Set, NASA Ames Prog-
nostics Data Repository (http://ti.arc.nasa.gov/project/prognostic-data-repository), NASA
Ames Research Center, Moffett Field, CA, 2007.

Shuang Li, Yao Xie, Hanjun Dai, and Le Song. M-statistic for kernel change-point detection. In Advances
in Neural Information Processing Systems, pp. 3366–3374, 2015.

Keli Liu, Jelena Markovic, and Robert Tibshirani. More powerful post-selection inference, with application
to the lasso. arXiv preprint arXiv:1801.09037, 2018.

Joshua R Loftus and Jonathan E Taylor. Selective inference in regression models with groups of variables.
arXiv preprint arXiv:1511.01478, 2015.

Guoliang Lu, Yiqi Zhou, Changhou Lu, and Xueyong Li. A novel framework of change-point detection for
machine monitoring. Mechanical Systems and Signal Processing, 83:533–548, 2017.

Guoliang Lu, Jie Liu, and Peng Yan. Graph-based structural change detection for rotating machinery
monitoring. Mechanical Systems and Signal Processing, 99:73–82, 2018.

Robert Maidstone, Toby Hocking, Guillem Rigaill, and Paul Fearnhead. On optimal multiple changepoint
algorithms for large data. Statistics and computing, 27:519–533, 2017.

Sebastian Mika, Gunnar Ratsch, Jason Weston, Bernhard Scholkopf, and Klaus-Robert Mullers. Fisher
discriminant analysis with kernels. In Neural networks for signal processing IX: Proceedings of the 1999
IEEE signal processing society workshop (cat. no. 98th8468), pp. 41–48. Ieee, 1999.

Daiki Miwa, Vo Nguyen Le Duy, and Ichiro Takeuchi. Valid p-value for deep learning-driven salient region.
In Proceedings of the 11th International Conference on Learning Representation, 2023.

Vito M. R. Muggeo and Giada Adelfio. Efficient change point detection for genomic sequences of continuous
measurements. Bioinformatics, 27(2):161–166, 2011.

Anna C Neufeld, Lucy L Gao, and Daniela M Witten. Tree-values: selective inference for regression trees.
Journal of Machine Learning Research, 23(305):1–43, 2022.

Adam B Olshen, E Seshan Venkatraman, Robert Lucito, and Michael Wigler. Circular binary segmentation
for the analysis of array-based dna copy number data. Biostatistics, 5(4):557–572, 2004.

E. S. Page. Continuous inspection schemes. Biometrika, 41(1/2):100–115, 1954.

Andrey Pepelyshev and Aleksey S Polunchenko. Real-time financial surveillance via quickest change-point
detection methods. Statistics and Its Interface, 10(1):93–106, 2017.

Morgane Pierre-Jean, Guillem Rigaill, and Pierre Neuvial. Performance evaluation of dna copy number
segmentation methods. Briefings in bioinformatics, 16(4):600–615, 2015.

Philip Preuss, Ruprecht Puchstein, and Holger Dette. Detection of multiple structural breaks in multivariate
time series. Journal of the American Statistical Association, 110(510):654–668, 2015.

Hai Qiu, Jay Lee, Jing Lin, and Gang Yu. Wavelet filter-based weak signature detection method and its
application on rolling element bearing prognostics. Journal of sound and vibration, 289(4-5):1066–1090,
2006.

Jaxk Reeves, Jien Chen, Xiaolan L Wang, Robert Lund, and Qi Qi Lu. A review and comparison of
changepoint detection techniques for climate data. Journal of applied meteorology and climatology, 46(6):
900–915, 2007.

David Rügamer and Sonja Greven. Inference for l 2-boosting. Statistics and computing, 30(2):279–289, 2020.

19

http://ti.arc.nasa.gov/project/prognostic-data-repository


Under review as submission to TMLR

Andrew Jhon Scott and Martin Knott. A cluster analysis method for grouping means in the analysis of
variance. Biometrics, pp. 507–512, 1974.

Tomohiro Shiraishi, Daiki Miwa, Vo Nguyen Le Duy, and Ichiro Takeuchi. Selective inference for change
point detection by recurrent neural network. Neural Computation, pp. 1–33, 2024a.

Tomohiro Shiraishi, Daiki Miwa, Teruyuki Katsuoka, Vo Nguyen Le Duy, Kouichi Taji, and Ichiro Takeuchi.
Statistical test for attention maps in vision transformers. In Proceedings of the 41st International Confer-
ence on Machine Learning, 2024b.

Ryota Sugiyama, Hiroki Toda, Vo Nguyen Le Duy, Yu Inatsu, and Ichiro Takeuchi. Valid and exact
statistical inference for multi-dimensional multiple change-points by selective inference. arXiv preprint
arXiv:2110.08989, 2021.

Kosuke Tanizaki, Noriaki Hashimoto, Yu Inatsu, Hidekata Hontani, and Ichiro Takeuchi. Computing valid
p-values for image segmentation by selective inference. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pp. 9553–9562, 2020.

Jonathan Taylor and Robert J Tibshirani. Statistical learning and selective inference. Proceedings of the
National Academy of Sciences, 112(25):7629–7634, 2015.

Ryan J Tibshirani, Jonathan Taylor, Richard Lockhart, and Robert Tibshirani. Exact post-selection inference
for sequential regression procedures. Journal of the American Statistical Association, 111(514):600–620,
2016.

Toshiaki Tsukurimichi, Yu Inatsu, Vo Nguyen Le Duy, and Ichiro Takeuchi. Conditional selective inference
for robust regression and outlier detection using piecewise-linear homotopy continuation. Annals of the
Institute of Statistical Mathematics, 74(6):1197–1228, 2022.

Yuta Umezu and Ichiro Takeuchi. Selective inference for change point detection in multi-dimensional se-
quences. arXiv preprint arXiv:1706.00514, 2017.

Chihiro Watanabe and Taiji Suzuki. Selective inference for latent block models. Electronic Journal of
Statistics, 15(1):3137–3183, 2021.

Makoto Yamada, Yuta Umezu, Kenji Fukumizu, and Ichiro Takeuchi. Post selection inference with kernels.
In International conference on artificial intelligence and statistics, pp. 152–160. PMLR, 2018.

A Determination of Penalty Parameters in the Optimization Problem

In this section, we derive the penalty term in (5) used for detecting CP candidates in the frequency domain.
We begin by assuming that the true mean vector of f (d) for frequency d ∈ {0, . . . , D−1} is piecewise constant
as follows:

f
(d)
t ∼ CN

(
µ(d)

seg

(
τ

(d)
k−1 : τ

(d)
k

)
, σ2

f

)
, t ∈

{
τ

(d)
k−1 + 1, . . . , τ

(d)
k

}
, k ∈ [K(d) + 1], (18)

where µ
(d)
seg

(
τ

(d)
k−1 : τ

(d)
k

)
represents the true mean of the k-th segment in frequency d, and σ2

f denotes the
known variance such that σ2

f = Mσ2 by the property of DFT6. Then, we introduce BIC for deriving the
values of the penalty parameters β in (5). Given the assumptions of (18), the unknown parameters θ of the
sequence f (d) are expressed as

θ =
(

τ
(d)
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0 : τ

(d)
1

)
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6Although we impose the assumption of the piecewise constant mean structure for model selection based on BIC, the
theoretical validity of p-values obtained by our proposed SI method is guaranteed even when this assumption does not hold.
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Therefore, the degrees of freedom can be computed as K(d) + c
(d)
sym

(
K(d) + 1

)
. That is because the mean

vector consists of real numbers for frequency d = 0, M
2 , and complex numbers for the other frequencies.

Consequently, the BIC of this model is given by

BIC = −2 log L(θ) +
(

K(d) + c(d)
sym

(
K(d) + 1

))
log T,

where L denotes the likelihood function for this model, and it can be rewritten by ignoring the terms that
do not contribute to its minimization as

BIC =
K(d)+1∑

k=1
C
(

f
(d)
τ

(d)
k−1+1:τ(d)

k

)
+
((

c(d)
sym + 1

)
Mσ2 log T

)
K(d).

Comparing the BIC with (7), β(d) can be defined as

β(d) =
(

c(d)
sym + 1

)
Mσ2 log T. (19)

While β can be determined based on the BIC, to the best of our knowledge, there is no theoretical method
to define γ. Therefore, referring to (19), we employ the value scaled by Mσ2 log T as γ, which is given by

γ = κMσ2 log T, (20)

where κ is a hyper-parameter determined by users based on problem settings. We heuristically set κ = 0.5
in the synthetic data experiments, and κ = 3 in the real data experiment.

B Proofs

B.1 Proof of Theorem 1

Proof. According to the condition on Q(X) = Q(x), i.e., U(X) = U(x) and V(X) = V(x), we have

U(X) = U(x)
⇔ (IN − Pk)X = U(x)

⇔X = U(x) + V(X)z
⇔X = U(x) + V(x)z (∵ V(X) = V(x))
⇔X = a + bz,

where a = U(x), b = V(x), and z = Tk(X) = σ−1||PkX||. Then, we have

{X ∈ RN | A(X) = A(x),Q(X) = Q(x)}
={X ∈ RN | A(X) = A(x), X = a + bz, z ∈ R}
={X = a + bz ∈ RN | A(a + bz) = A(x), z ∈ R}
={X = a + bz ∈ RN | z ∈ Z}.

Therefore, by noting that ∥Pks∥ is zero, we obtain

T (X) | {A(X) = A(x),Q(X) = Q(x)} ∼ TC(tr(Pk),Z).

B.2 Proof of Theorem 2

Proof. The sampling distribution of the test statistic conditional on A(X) = A(x) and Q(X) = Q(x)
denoted by

Tk(X) | {A(X) = A(x),Q(X) = Q(x)}
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is a truncated χ-distribution with the degrees of freedom tr(Pk) and the truncation region Z defined in
Theorem 1. Thus, by applying the probability integral transform, under the null hypothesis,

pselective
k | {A(X) = A(x),Q(X) = Q(x)} ∼ Unif(0, 1),

which leads to
PH0,k

(
pselective

k ≤ α | A(X) = A(x),Q(X) = Q(x)
)

= α, ∀α ∈ (0, 1).
Next, for any α ∈ (0, 1), we have

PH0,k
(
pselective

k ≤ α | A(X) = A(x)
)

=
∫

PH0,k
(
pselective

k ≤ α | A(X) = A(x),Q(X) = Q(x)
)
PH0,k (Q(X) = Q(x) | A(X) = A(x)) dQ(x)

= α

∫
PH0,k(Q(X) = Q(x) | A(X) = A(x))dQ(x)

= α.

Therefore, we obtain the result in Theorem 2 as follows:

PH0,k
(
pselective

k ≤ α
)

=
∑
A(x)

PH0,k
(
pselective

k ≤ α | A(X) = A(x)
)
PH0,k(A(X) = A(x))

= α
∑
A(x)

PH0,k(A(X) = A(x))

= α.

C Identification of Truncation Region

In general, it is difficult to identify the truncation region Z in Theorem 1 directly because conditioning
only on the result of the CP candidate selection, i.e., A(a + bz) = A(x), is intractable. In this case, we
have to enumerate all patterns where A(x) appears as a result of simulated annealing algorithm, which is
computationally impractical. To address this issue, we first compute the region conditioned on the process of
the algorithm A. That is to say, it is guaranteed that the process remains identical within the region. This
additional conditioning is often denoted as “over-conditioning” because it is redundant for valid inference.
In the case of SI with over-conditioning, the type I error rate can still be controlled at the significance level,
while the power tends to be low (Lee et al., 2016; Liu et al., 2018; Duy & Takeuchi, 2022). Therefore, we
apply an efficient line search method based on parametric programming to compute Z where the redundant
conditioning is removed for the purpose of improving the power (Duy & Takeuchi, 2022). In the following,
we first compute the over-conditioned region in Appendix C.1, and then identify the truncation region Z
using parametric programming in Appendix C.2.

C.1 Characterizing using Over-conditioning

Since we only need to consider one-dimensional data space in RN , we define the over-conditioned region Zoc

where the process of the algorithm A remains unchanged as

Zoc(a + bz) = {r ∈ R | SDP(r) = SDP(z),Spre-SA(r) = Spre-SA(z),SSA(r) = SSA(z)}, (21)

where SDP, Spre-SA and SSA are the events characterized by the process of dynamic programming for gen-
erating an initial solution, the preliminary experiment to determine the initial temperature, and simulated
annealing for making the solution more sophisticated, respectively. This conditioning is redundant because
Zoc(a + bz) is a subset of the minimum conditioned region Z.

Over-conditioning on dynamic programming. We compute {r ∈ R | SDP(r) = SDP(z)} by condi-
tioning on all the operations based on the Bellman equation which is used in the dynamic programming
algorithm to obtain the optimal solution in (7). Since the Bellman equation consists of the cost C(·) and
the penalty β, the condition is finally represented by a quadratic inequality, as in the following discussion of
simulated annealing. The detail derivation is presented in Duy et al. (2020).
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Over-conditioning on simulated annealing containing the preliminary experiment. Considering
the algorithm of simulated annealing, we find that the procedure depends on X = a+bz at only one specific
point, that is, the Metropolis algorithm, which is given by

status is


Acceptance if ∆E(T i,l, T i,l−1, a + br) + ci ln(θi,l) < 0

Rejection if ∆E(T i,l, T i,l−1, a + br) + ci ln(θi,l) ≥ 0
,

where ∆E(T i,l, T i,l−1, a + br) = E(T i,l, a + br)−E(T i,l−1, a + br), and T i,l−1, T i,l respectively represent
CP candidates before and after a transition to the neighborhood in the l-th iteration with a parameter θi,l

for the i-th temperature ci. Thus, to compute the region {r ∈ R | SSA(r) = SSA(z)} where the process of
simulated annealing is identical, we need to condition on all results of the Metropolis algorithm at each
temperature. This condition consists of multiple inequalities as follows:

{r ∈ R | SSA(r) = SSA(z)}

=
Iz⋂

i=0

Lz⋂
l=1

{
r ∈ R

∣∣∣∣∣
{

∆E(T i,l, T i,l−1, a + br) + ci ln(θi,l) < 0 if status is Acceptance
∆E(T i,l, T i,l−1, a + br) + ci ln(θi,l) ≥ 0 if status is Rejection

}
, (22)

where Iz and Lz denote the number of temperature updates and operations at each temperature for z,
respectively.

We subsequently consider solving this inequality for r. The cost C
(
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used in the objective function

E can be expressed as a quadratic form of X such that
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and u
(d)∗
s+1:e,t is the complex conjugate of u

(d)
s+1:e,t. Therefore, the objective function E(T , a + br) in (5) can

be rewritten as follows:

E(T , a + br) = (a + br)⊤

D−1∑
d=0

K(d)+1∑
k=1
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(d)
τ

(d)
k−1+1:τ(d)
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d=0

β(d)K(d) + γK

= e2r2 + e1r + e0, (23)
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Thus, the multiple inequalities in (22) can be easily solved after computing the coefficients in (23).

Note that the region {r ∈ R | Spre-SA(r) = Spre-SA(z)} can be computed similarly to (22) because the
preliminary experiment is also based on the Metropolis algorithm. Therefore, this condition is formulated as

{r ∈ R | Spre-SA(r) = Spre-SA(z)}

=
I+

z⋂
i=0

L+
z⋂

l=1

{
r ∈ R

∣∣∣∣∣
{

∆E(T +
i,l, T +

i,l−1, a + br) + c+
i ln(θ+

i,l) < 0 if status is Acceptance
∆E(T +

i,l, T +
i,l−1, a + br) + c+

i ln(θ+
i,l) ≥ 0 if status is Rejection

}
,

where T +
i,l, c+

i , θ+
i,l, I+

z and L+
z in the preliminary experiment correspond to the respective parameters in (22),

and T +
i,0 = T init.

Based on the above discussion, since the conditioning in (21) is represented as the intersection of multiple
quadratic inequalities, the region Zoc(a + bz) can be computed by solving them as

Zoc(a + bz) =
Rz⋃
r=1

[Loc
z(r), Uoc

z(r)],

where, for z, Loc
z(r) and Uoc

z(r) denote the lower and upper bounds of the r-th over-conditioned region, respec-
tively, and Rz represents the number of the intervals.

C.2 Parametric Programming

Having derived Zoc(a + bz) in the previous analysis, the region Z in Theorem 1 conditioned on the result of
the algorithm A can be obtained using a computational method called parametric programming as follows:

Z =
⋃

z∈R|A(a+bz)=A(x)

Zoc(a + bz). (24)

The overall procedure for computing selective p-values of the detected CP candidate locations is presented
in Algorithm 3. Furthermore, the line search method based on (24) for obtaining the region Z required for
the computation of pselective

k is detailed in Algorithm 4. An overview of the proposed search method is shown
in Figure 9.

Watanabe & Suzuki (2021) proposed a selective inference method for model selection using simulated an-
nealing in latent block models; however, this approach was limited to the specific algorithm and computed an
approximated truncation region. In contrast, our proposed method can be applied to not only CP detection
in the frequency domain which is the subject of this paper, but also a wide range of optimization problems
solved using simulated annealing. Even in such a general case, we consider the over-conditioning based
on the process of algorithm as in (21) and can obtain the “exact” truncation region using the parametric
programming approach in (24).

Algorithm 3 SI for detected CP candidate locations
Input: Time seaquence x

1: T ← A(x)
2: Obtain τ by (4)
3: for τk ∈ τ do
4: Z ← compute_solution_path(x, T , τk)
5: Compute pselective

k by (17)
6: end for

Output: Detected CP candidate locations and the corresponding selective p-values
{(

τk, pselective
k

)}K

k=1
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Algorithm 4 compute_solution_path

Input: Time seaquence x, CP candidates T , CP candidate location τk

1: zobs ← Tk(x) in (14)
2: Compute a and b defined in Theorem 1
3: Obtain Zoc(a + bzobs) by (21)
4: S ← Z ← Zoc(a + bzobs)
5: while Sc ̸= ∅ do
6: Obtain Zoc(a + bz) for z ∈ Sc by (21)
7: S ← S ∪ Zoc(a + bz)
8: if A(a + bz) = A(a + bzobs) then
9: Z ← Z ∪ Zoc(a + bz)

10: end if
11: end while
Output: Truncation region Z

Parametrized line 

Truncation region:   

Dynamic programming

Preliminary experiment 
for initial temperature

Simulated annealing: 
Adding a CP for d2

at time point 57

Simulated annealing: 
Moving a CP for d1

from time point 74 to 66

Accept

Reject

Accept

Reject Reject Reject Reject

AcceptReject Accept Accept

Reject

Reject Accept Accept

…
Simulated annealing: 

The last operation

Figure 9: Schematic illustration of the proposed line search method for the identification of the trunca-
tion region. We first compute the over-conditioned region where the process of the algorithm A remains
unchanged. Then, we identify the truncation region Z by removing the redundant conditioning using para-
metric programming.

D Details of the Numerical Experiments

D.1 Detailed descriptions of comparison methods

In our experiments, we compared the proposed method (Proposed) with the following methods.

• OC: In this method, we consider p-values conditioned on the process of the algorithm A. The p-value
is computed by obtaining the over-conditioned region Zoc in (21) for the observed test statistic
Tk(x). This method is computationally efficient, however, its power is low due to over-conditioning.

• OptSeg-SI-oc (Duy et al., 2020): This method uses a p-value conditioned only on the event SDP
in (21), that is, we consider conditioning on the process of dynamic programming algorithm.

• OptSeg-SI (Duy et al., 2020): This method removes over-conditionning from OptSeg-SI-oc, that is,
the p-value is conditioned only on the result of dynamic programming.
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• Naive: This method uses a conventional p-value without conditioning, which is computed as

pnaive
k = PH0,k (Tk(X) ≥ Tk(x)) .

• Bonferroni: This is a method to control the type I error rate by applying Bonferroni correction
which is widely used as multiple testing correction. Since the number of all possible hypotheses is
m = (2D − 1)(T − 1), the bonferroni p-value is computed by pbonferroni

k = min(1, m · pnaive
k ).

D.2 Computational Time and Computer Resources

We measured the computational time of our proposed method for the synthetic data experiments presented
in Section 5.2 and computed the medians for each settings. The results for the type I error rate and power
experiments are shown in Figure 10. Panels (a) and (b) indicate that the computational time increases
exponentially with the sequence length. In addition, the computational time becomes shorter as the signal
intensity increases in panels (c) and (d). This may be because the results of hypothesis testing in the case of
high intensity are more likely to be obvious, and the inference process can be terminated early. All numerical
experiments were conducted on a computer with a 96-core 3.60GHz CPU and 512GB of memory.

D.3 Robustness of Type I Error Rate Control

We evaluated the robustness of the Proposed in terms of the type I error rate control. For this purpose, we
conducted experiments under three distinct noise conditions: (i) unknown noise variance, (ii) non-Gaussian
noise, and (iii) correlated noise. The details of each experiment are given below.

Unknown noise variance. We generated 1000 null sequences in the same manner as the type I error rate
experiment with known variance presented in Section 5.2. To estimate the variance σ2 from the same data,
we first applied CP candidate selection algorithm to identify the segments, and then computed the empirical
variance of each segment for all frequencies. Since the estimated variance tended to be smaller than the true
value, we adopted the maximum value for each frequency. Given σ̂f as the average of the values, σ could be
estimated from the property of DFT as σ̂ = σ̂f√

M
. The results for the significance levels α = 0.01, 0.05, 0.1

are shown in Figure 11 and the Proposed still could properly control the type I error rate.

Non-Gaussian noise. We considered the case where the noise followed the five non-Gaussian distributions:

• skewnorm: Skew normal distribution family.

• exponnorm: Exponentially modified normal distribution family.

• gennormsteep: Generalized normal distribution family whose shape parameter β is limited to be
steeper than the normal distribution, i.e., β < 2.

• gennormflat: Generalized normal distribution family whose shape parameter β is limited to be
flatter than the normal distribution, i.e., β > 2.

• t: Student’s t distribution family.

To generate sequences used in the experiment, we first obtained a noise distribution such that the 1-
Wasserstein distance from the standard normal distribution N (0, 1) was {0.01, 0.02, 0.03, 0.04} in each afore-
mentioned distribution family. Subsequently, we standardized the distribution to have a mean of 0 and a
variance of 1. Then, we generated 1000 null sequences x = (x1, . . . , xN )⊤, where the mean vector was speci-
fied in the same manner as described in the type I error rate experiment with known variance, and the noise
followed the obtained distribution, for T = 60. We applyed hypothesis testing using the test statistic with
σ = 1 for the detected CP candidate locations. The results for the significance levels α = 0.05 are shown in
Figure 12 and the Proposed could properly control the type I error rate for all non-Gaussian distributions.
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Figure 10: Computational time in the type I error rate and the power experiments.
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Figure 11: Robustness of type I error control for estimated variance.
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(b) M = 1024

Figure 12: Robustness of type I error control for non-Gaussian noise.
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Correlated noise. We generated 10000 null sequences x = (x1, . . . , xN )⊤ ∼ N (s, Σ), where mean vector
s was specified in the same manner as described in the type I error rate experiment with known variance, and
covariance matrix Σ was defined as Σ = σ2 (ρ|i−j|)

ij
∈ RN×N with σ = 1 and ρ ∈ {0.025, 0.05, 0.075, 0.1},

for T = 60. After CP candidate selection, we conducted the hypothesis testing using the test statistic with
σ = 1. The results for the significance levels α = 0.01, 0.05, 0.1 are shown in Figure 13. For weak covariance,
the Proposed could properly control the type I error rate. However, the type I error rate could not be
controlled with increasing noise correlation. This remains a challenge for future work.

D.4 Sensitivity Study for the Impact of the Penalty Parameter

This section presents a sensitivity study for the penalty parameter within the objective function in (5). As
shown in Appendix A, the penalty parameter β(d) for each frequency d can be theoretically derived using
the BIC, leaving the penalty parameter γ to be determined heuristically by users. Thus, we focus on the
sensitivity study for γ in this section. Specifically, we conducted the experiments for the type I error rate
(T = 60) and power (∆ = 0.08) on synthetic data as described in Section 5.2, while varying the hyper-
parameter κ in (20) across the values {1.0, 1.5, 2.0, 2.5}. The results for the type I error rate and power
experiments are shown in Figures 14 and 15, respectively. In Figure 14, the Proposed can control the type I
error rate at the significance levels α = 0.01, 0.05, 0.1 for all values of κ. Additionally, Figure 15 shows that
the power of the Proposed is the highest of all methods, regardless of the settings of κ. In particular, for
the experiment with M = 512, as the value of κ increases, the power of the Proposed tends to be higher.
This may be because a larger penalty makes distinct spectral changes more likely to be the subject of the
hypothesis testing.

D.5 More Results on Real Data Experiments

Additional results for the signals of bearings 2, 3, and 4 before and after the spectral intensity enhancements
occurred in the BPFO harmonics of bearing 1 are shown in Figures 16, 17, and 18. In panel (a) of each figure,
the time variation of frequency spectra where CP candidate locations were falsely detected are shown for the
period of 0.25–2.25 days when significant spectral changes in bearing 1 did not actually exist. The results
indicate that the inferences using p-values of the Proposed and OC are valid. In panel (b), the time variations
of the BPFO harmonics where CP candidate locations were correctly detected are presented for the period
of 4–6 days (bearing 2), 4.75–6.75 days (bearing 3), and 4–6 days (bearing 4), respectively. In these cases,
although the detection was delayed by several days relative to the occurrence of spectral amplification in
bearing 1, the outer race fault signatures were successfully identified in all bearings using the Proposed.
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Figure 13: Robustness of type I error control for correlation of noise.
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Figure 14: Sensitivity study of type I error rate control for the hyper-parameter κ in the penalty parameter γ.

1.0 1.5 2.0 2.5
0.0

0.2

0.4

0.6

0.8

1.0

Po
we

r

Proposed
OC
Bonferroni

(a) M = 512

1.0 1.5 2.0 2.5
0.0

0.2

0.4

0.6

0.8

1.0

Po
we

r

Proposed
OC
Bonferroni

(b) M = 1024

Figure 15: Sensitivity study of power for the hyper-parameter κ in the penalty parameter γ.
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Figure 16: Results of bearing 2. In panel (b), p-values were actually computed by considering CP candidates
of the 6th harmonic, 3240 Hz, and 3460 Hz (around the 14th and 15th harmonics).
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Figure 17: Results of bearing 3.
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monic) on 0.25–2.25 days
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Figure 18: Results of bearing 4. In panel (b), p-values were actually computed by considering not only a CP
candidate of the 6th harmonic but also a CP candidate of 3440 Hz (around the 15th harmonic).
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