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Abstract

This paper presents the first large-scale multi-species dataset of acoustic recordings1

of mosquitoes tracked continuously in free flight. Mosquitoes are well-known2

carriers of diseases such as malaria, dengue and yellow fever. The motivation3

for collecting such a large dataset comes from the need to gather information,4

help predict outbreaks, and inform data-driven policy. The task of detecting5

mosquitoes from their wingbeats is made challenging due to the difficulty in6

collecting recordings from realistic scenarios. To address this, as part of the7

HumBug project, we have conducted global experiments to record mosquitoes8

ranging from those bred indoors in culture cages to mosquitoes captured in the wild.9

As a result, the audio recordings vary widely in signal-to-noise ratio and contain10

a broad range of indoor and outdoor background environments from Tanzania,11

Thailand, Kenya, the USA and the UK. The audio recordings have been labelled12

by domain experts, aided by Bayesian neural networks. As a result, we present 2013

hours of mosquito audio recordings expertly labelled with tags precise in time, of14

which 18 hours are annotated from 36 different species. We provide our data from15

a regularly maintained database, which captures important metadata such as the16

capture method, age, feeding status and gender of the mosquitoes. Additionally, we17

provide code to extract features and train Bayesian convolutional neural networks18

that can distinguish mosquito sounds from their corresponding background. Our19

contribution is to provide a dataset that is both challenging to machine learning20

researchers focusing on acoustic identification, and critical to entomologists, geo-21

spatial modellers and other domain experts to understand mosquito behaviour,22

model their distribution, and manage the threat they pose to humans.23
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1 Introduction24

There are over 100 genera of mosquito in the world containing over 3,500 species and they are found25

on every continent except Antarctica [Harbach, 2013]. Only one genus (Anopheles) contains species26

capable of transmitting the parasites responsible for human malaria. Anopheles contain over 47527

formally recognised species, of which approximately 75 are vectors of human malaria, and around 4028

are considered truly dangerous [Sinka et al., 2012]. These 40 species are inadvertently responsible29

for more human deaths than any other creature. In 2019, for example, malaria caused around 22930

million cases of disease across more than 100 countries resulting in an estimated 409,000 deaths31

[World Health Organization, 2020]. It is imperative therefore to accurately locate and identify the32

few dangerous mosquito species amongst the many benign ones to achieve efficient mosquito control.33

Mosquito surveys are used to establish vector species’ composition and abundance, human biting34

rates and thus the potential to transmit a pathogen. Traditional survey methods, such as human35

landing catches, which collect mosquitoes as they land on the exposed skin of a collector, can be36

time consuming, expensive, and are limited in the number of sites they can survey. They can also be37

subject to collector bias, either due to variability in the skill or experience of the collector, or in their38

inherent attractiveness to local mosquito fauna. These surveys can also expose collectors to disease.39

Moreover, once the mosquitoes are collected, the specimens still need to undergo post sampling40

processing for accurate species identification. Consequently, an affordable automated survey method41

that detects, identifies and counts mosquitoes could generate unprecedented levels of high-quality42

occurrence and abundance data over spatial and temporal scales currently difficult to achieve. It is43

for this reason that we utilise low-cost smartphones as acoustic mosquito sensors to solve this task.44

The exponential increase in smartphone ownership is a worldwide phenomenon. Governments and45

independent companies are continuing to extend connectivity across the African continent [Friederici46

et al., 2017]. More than half of sub-Saharan Africa is expected to be connected to a mobile service by47

2025 [GSMA, 2020]. With this expanding coverage of mobile phone networks across Africa, there is48

an emerging opportunity to collect huge datasets, as exemplified by the World’s Bank Listening to49

Africa Initiative [World Bank Organisation, 2017]. Our target application (Section 3.1) uses a free50

downloadable app, which means that every smartphone can be a mosquito monitor.51

Our contribution In order to assist research in methods utilising the acoustic properties of52

mosquitoes, as part of the HumBug project (described in Section 3.1) we contribute:53

• Data: http://doi.org/10.5281/zenodo.4904800: A vast database of 20 hours of54

finely labelled mosquito sounds, and 15 hours of associated non-mosquito control data,55

constructed from carefully defined recording paradigms. Data was collected over the course56

of five years in a global collaboration with mosquito entomologists. Recordings were57

captured from 36 species (or species complexes1) with a mix of low-cost smartphones58

and professional-grade recording devices, to capture both the most accurate noise-free59

representation, as well as the sound that is likely to be recorded in areas most in need. A60

diverse range of wild and lab culture mosquitoes is included to capture the biodiversity of61

naturally occurring species. Our data is stored and maintained in a PostgreSQL database,62

ensuring label correctness and data integrity. We export all of the audio across a vast range63

of experiments with a single line in Python, and the metadata we require for experiments64

with a single SQL query (Appendix C). This allows us to add to our database and re-release65

data in a reliable and efficient manner.66

• Code: https://github.com/HumBug-Mosquito/HumBugDB: Detailed tutorial code for67

training state-of-the-art baseline Bayesian neural network models (a range of ResNet and68

deep CNN models) for the task of distinguishing mosquitoes of any species from their69

background surroundings, such as other insects, speech, urban, and rural noise. This baseline70

model was used to automatically tag a subset of mosquito recordings in this database with71

a very low false positive rate, by making use of uncertainty metrics such as the predictive72

entropy and mutual information [Kiskin et al., 2021].73

• To ensure learnt models are tested on diverse and realistic data splits, we withheld two74

test sets: one which captures free-flying mosquitoes around specifically adapted bednets75

1Species complexes are closely related sibling species that are morphologically identical but can have hugely
diverse behaviours that allows one to be a prominent and dangerous vector, and another to be harmless.
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(mimicking the intended target application as closely as possible), and another which76

contains caged mosquitoes recorded in free flight in very challenging noisy conditions.77

The rest of the paper is structured as follows. Section 2 details related datasets and describes how78

ours contributes to the literature uniquely. Section 3 shows the primary intended use case for the79

data and model released in this paper for our overall aims to assist in the eradication of insect-borne80

diseases. Section 4 describes in detail the sources and collection methods of data present, as well as81

how and why we perform our train-test split. Section 5 suggests additional use cases for the data,82

and details the steps taken to train a benchmark model, including an overview of feature extraction,83

model training and evaluation code. We discuss the results that our models achieve, and the open84

challenges remaining that our test sets motivate. We conclude by summarising our contribution to85

various communities in Section 6.86

We provide comprehensive instructions for using our baseline models and feature extraction code in87

Appendix B, and supply additional details on all the metadata in Appendix C. The datasheet (Appendix88

D) details the dataset’s composition (D.2), the data acquisition process (D.3), preprocessing (D.4),89

past and suggested use cases (D.5), sources of data bias and mitigation strategies (D.6), and database90

maintenance policies (D.7).91

2 Related work92

Mosquitoes have particularly short, truncated wings allowing them to flap their wings faster than any93

other insect of equivalent size – up to 1,000 beats per second [Simões et al., 2016, Bomphrey et al.,94

2017]. This produces their very distinct flight tone and has led many researchers to try and use their95

sound to attract, trap or kill them [Perevozkin and Bondarchuk, 2015, Johnson and Ritchie, 2016,96

Jakhete et al., 2017, Fanioudakis et al., 2018, Mukundarajan et al., 2017]. However, there have been97

very few large datasets released to the public to aid this research. We summarise key statistics of a98

range of datasets available publicly in Table 1, and discuss the varying sensor modalities separately99

due to their inherent differences in acoustic properties.100

Table 1: A comparison of related mosquito acoustic and pseudo-acoustic datasets released publicly.
The ‘Average mosquito length’ is the approximate length of audible mosquito recording per sample.
This length can not be estimated for Mukundarajan et al. [2017], as the data is crowdsourced,
unlabelled and uncurated. Crowdsourced data recording or labels are marked with (*). ‘Type’ format:
majority, (minority), represents if the mosquitoes have been captured as individuals in the wild, or
grown and reproduced in controlled conditions in lab colonies. Where not known, ‘Mosquito’ is
estimated from the mosquito average mosquito sample duration multiplied by the number of positive
samples in dataset.

Dataset Sensor Mosquito
(Background)

Average
mosquito length Species Type

Chen et al. [2014, UCR] Opto-
acoustic

17 min
(N/A) ≈ 0.02 s 6 Lab

Fanioudakis et al. [2018] Opto-
acoustic

39 hr
(N/A) ≈ 0.5 s 6 Lab

Vasconcelos et al. [2020] Acoustic 15 min
(N/A) 0.3 s 3 Lab

Mukundarajan et al. [2017]
(*) Acoustic N/A

(N/A) N/A 20 Lab,
(wild)

Kiskin et al. [2019, 2020]
(*) Acoustic 2 hr

(20 hr) 1 s N/A Lab,
(wild)

HumBugDB Acoustic 20 hr
(15 hr) 9.7 s 36 Wild,

(lab)

Opto-acoustic approaches ‘Wingbeats’ [Fanioudakis et al., 2018] and ‘UCR Flying Insect Clas-101

sification’ [Chen et al., 2014] are high-SNR pseudo-acoustic datasets collected via optical sensors.102

We note this is a different, but complementary, approach. Due to the directionality of the recording103
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method, typical sample durations are encountered from “only a few hundredths of a second” [Chen104

et al., 2014] to approximately half a second [Fanioudakis et al., 2018]. The approach therefore does105

not capture the acoustical properties of mosquito sound in free flight which aid mosquito detection in106

purely acoustic approaches [Vasconcelos et al., 2020]. Furthermore, these datasets survey lab-grown107

mosquito colonies which do not capture the biodiversity of mosquitoes encountered in the wild [Huho108

et al., 2007, Hoffmann and Ross, 2018].109

Acoustic approaches The authors of a recent acoustic mosquito dataset [Vasconcelos et al., 2020]110

motivated its release by stating that none of the published datasets include environmental noise, which111

is essential to fully characterise mosquitoes in real-world scenarios. Their dataset consists of 300 ms112

snippets, amounting to a total of 15 minutes of mosquito recordings. This is an excellent first step.113

However, for deep learning algorithms the dataset is not readily useable due to its size. Moreover,114

state-of-the-art models for acoustic classification use training example sizes of at least 0.96 seconds115

for a variety of audio event detection tasks [Hershey et al., 2017] and often greater depending on116

the importance of long-range temporal context [Pons et al., 2017, Pons and Serra, 2019, Shimada117

et al., 2020]. Our dataset consists of mosquito samples with an average duration of 10 seconds118

and, additionally, we supply equal quantities of corresponding background to form a balanced class119

distribution of mosquito and noise (see Section 4).120

Mukundarajan et al. [2017] have released an acoustic dataset recorded in free flight with smartphones.121

However, due to a lack of a rigorous recording protocol, the subsequent quality of the recordings122

is inconsistent, and there is a lack of metadata recording external factors which influence mosquito123

sound. There are no labels to exactly timestamp the mosquito events in files where mosquito sound is124

only sporadic, detracting from the overall utility of the dataset. Our database is specifically designed125

to eliminate these issues based on previous experience with acoustic mosquito recordings.126

Kiskin et al. [2019, 2020] released extensive data spanning 22 hours of audio recordings, with127

crowdsourced labels covering overlapping two-second sections. However, of these, only 2 hours were128

labelled as containing mosquito sound. In addition, the accuracy of the labels is unknown, and the129

task of labelling was made difficult as clips were presented in isolation, lacking the expert knowledge130

and relevant background information that specialists utilised for their labels. Curated data of that131

release is a subset of the release of this paper, in which we improve upon the past release thanks to a132

dedicated joint effort between the zoological and machine learning communities.133

Nevertheless, we do stress that experimentation which combines information from all of the datasets134

found in the literature is highly encouraged, and may help find solutions to cover multiple recording135

modalities, such as opto-acoustic and smartphone acoustic sensors.136

3 Data for mosquito-borne disease prevention137

3.1 The HumBug project138

The HumBug project is a collaboration between the University of Oxford, Royal Botanic Gardens,139

Kew, and mosquito entomologists worldwide [HumBug, 2021]. One of the goals of the project is to140

develop a mosquito acoustic sensor that can be deployed into the homes of people in malaria-endemic141

areas to help monitor and identify the mosquito species, allowing targeted and effective vector142

control. Due to the rarity of mosquito events, as part of the pipeline we require a robust method for143

distinguishing mosquito events from background noise. This constitutes the primary use case for144

the baseline models of Section 5. We discuss alternate use cases further in Section 5 and Appendix145

D.5. In the following paragraphs we describe the role of our overall pipeline of Figure 1 by each146

component.147

Capturing mosquito with smartphones We developed a power-efficient app to record mosquito148

flight tone using the in-built microphone on a smartphone (MozzWear [Marinos et al., 2021]). We149

used 16-bit mono PCM wave audio sampled at 8,000 Hz, based on prior acoustic low-cost smartphone150

recording solutions for mosquitoes [Li et al., 2017b, Kiskin et al., 2018].2 To make mosquitoes151

fly close enough to a smartphone, we have developed an adapted bednet that utilises the inherent152

behaviour of host-seeking mosquitoes (Figure 2) [Sinka et al., 2021, Sec. 2.1.2]. The combination of153

2The latest version records in 32 kbps aac in Tanzanian rural areas where bandwidth is critically limited.
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Figure 1: Schematic of project workflow. MozzWear is the mobile phone application used to capture
the audio. The app synchronises to a central server, where audio enters the BNN model. Successful
detections are used to updated a curated database. Information feeds back to improve the model.

the bednets and smartphones constitutes the intended use case, for which we construct Test set A (see154

Table 2).155

Central server Following app recording, audio is synchronised by the app, automatically or156

initiated by the user, to a central file server for the storage of sound recordings, and a MongoDB157

[MongoDB Inc, 2021] instance for the storage of metadata. The server possesses a frontend dashboard158

where recordings and predictions fed back from the model can be accessed. The unstructured nature159

of the NoSQL engine allows for additional flexibility in storing metadata, especially when new160

information becomes available.161

BNN detection The classification engine deploys a Bayesian convolutional neural network (BCNN),162

which provides predictions with uncertainty metrics [Kiskin et al., 2021] with Monte Carlo (MC)163

dropout [Gal and Ghahramani, 2016]. The raw predictions of the model are fed back to the central164

server, and positive predictions alongside uncertainty estimates are accessible via an HTML dashboard.165

Positive predictions are then filtered by the probability, mutual information and predictive entropy166

[Houlsby et al., 2011], screened, and stored in a curated database. This drastically reduces the time167

spent labelling by domain experts – for our bednet data recorded in Tanzania, we estimate 1 to 2 %168

of 2,000 hours of recorded data contained mosquito events. Finding these events without assistance169

from the model was infeasible due to the vast quantity of data.170

PostgreSQL database Due to the complex requirements of variables and data storage, we designed171

a relational database in PostgresSQL [PostgreSQL Global Development Group, 2021], which ensures172

a standardisation in the labelling and metadata process. The main concept is that all audio is stored173

on a data server, and each recording is uploaded with a unique ID (the full specifics are included in174

the database documentation provided in Appendix C). The rigorous structure of this database allows175

us to validate data input and ensure consistency throughout the schema. This mitigates a major cause176

of data quality issues and time costs in field studies. Recordings are stored in wave format at their177

respective sample rates, and all the metadata in csv format. For our maintenance policy, details of178

ethics agreements, and detailed documentation refer to the datasheet for datasets (Appendix D).179

Privacy As a subset of data from the database may contain human speech, and other types of180

personal data (e.g. data recorded during trials where smartphones were actively listening continu-181

ously), we include in this paper only audio which has been assigned an explicit label of ‘mosquito’,182

‘audio’, ‘background’, or otherwise full consent from members was obtained (for example where183

entomology experts state a recording ID, and ambient conditions etc.). Additionally, since labels184

have been generated both by hand and with the use of mosquito detection algorithms, to ensure no185

speech that has not had explicit consent for release was included in the dataset, we performed voice186

activity detection using Google’s WebRTC project [Ramirez et al., 2007], which is open-source,187

lightweight, reliable and fast [Ali, 2018, Karrer, 2020]. Sahoo [2020] tested the WebRTC VAD188

method over 396 hours of data, across multiple recording types. The approach was between 77 % and189

99.8 % accurate. Any mosquito labels which overlapped with speech labels were removed, without190

truncating or re-sampling any audio to keep the format of the data in the database consistent.191
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Atlanta, USA
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Species
Experiments

133
17

1
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Mosquito (s)
Species
Experiments

9,306
5
1

Oxford, London, UK

Mosquito (s)
Species
Experiments

7,686
5
3

IHI, Tanzania

Mosquito (s)
Species
Experiments

54,116
17

2

Bednet field trial

USAMRU-Kenya

Mosquito (s)
Species
Experiments

2,475
1
1

Cup recordings

Cow-baited nets

Figure 2: Map of aggregated data acquisition sites.

4 The HumBugDB dataset192

4.1 Summary193

Our large-scale multi-species dataset contains recordings of mosquitoes collected from multiple194

locations globally, as well as via different collection methods. Figure 2 shows the different locations,195

with the availability of labelled mosquito sound (in seconds) and number of species, and the number196

of experiments conducted at each location. In total, we present 71,286 seconds (20 hours) of labelled197

mosquito data with 53,227 seconds (15 hours) of corresponding background noise to aid with the198

scientific assessment process, recorded at the sites of 8 experiments. Of these, 64,843 seconds contain199

species metadata, consisting of 36 species (or species complexes) with the distributions illustrated in200

Appendix C, Figure 6 and Table 6. Table 2 gives a more detailed summary of the type of mosquitoes201

that were captured, and Appendix C gives a complete explanation of every field in the metadata.202

In the following section we break down the data sources according to the nature of mosquitoes – bred203

within laboratory culture (Section 4.2.1) or wild (Section 4.2.2). We discuss the recording device and204

the environment the mosquitoes were recorded in – free flying in culture cages, free flying in cups205

or free flying in bednets (HumBug adapted bednets [Sinka et al., 2021, Sec. 2.1.2]). We also detail206

the methods of capture (applicable to wild mosquitoes only). These involve traditional mosquito207

sampling methods, including larval collection, human-baited nets (HBN), adapted Center for Disease208

Control Light Traps (CDC-LTs) and animal-baited nets (ABN). The method of capture is documented209

in more detail in Appendix C. We also make clear which dataset is used for training, and which set of210

experiments is used for testing the models of Section 5.211

4.2 Data collection212

4.2.1 Laboratory culture mosquitoes213

Many institutes that conduct research into mosquito-borne diseases hold laboratory cultures of214

common vector species. These include primary malaria vectors (e.g. Anopheles gambiae, An.215

arabiensis), arbovirus vectors including primary vectors of dengue virus (Aedes albopictus), yellow216

fever virus (Aedes aegypti) and west nile virus (Culex quinquefasciatus). The controlled conditions217
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Table 2: Key audio metadata and train-test partition. ‘Wild’ mosquitoes captured and placed into
paper ‘cups’ or attracted by bait surrounded by ‘bednets’. ‘Culture’ mosquitoes bred specifically for
research. Total length (in seconds) of mosquito recordings per group given, with the availability of
species meta-information in parentheses. Total length of corresponding non-mosquito recordings,
with matching environments, given as ‘Negative’. Full metadata given in Appendix C.

Data
(mosquitoes)

Site
(country)

Recorded
in

Device
(sample rate)

Mosquito (s)
(with species) Negative (s)

Train
(wild)

Kasetsart
(Thailand)

cup
(2018)

Telinga
(44.1 kHz)

9,306
(2,869) 7,896

Train
(wild)

IHI
(Tanzania)

cup
(2020)

Telinga
(44.1 kHz)

45,998
(45,998) 5,600

Train
(culture)

Zoology
(Oxford, UK)

cup
(2017)

Telinga
(44.1 kHz)

6,573
(6,573) 1,817

Train
(culture)

LSTMH
(UK)

cup
(2018)

Telinga
(44.1 kHz)

376
(376) 147

Train
(culture)

CDC
(USA)

cage
(2016)

phone
(8 kHz)

133
(127) 1,121

Train
(culture)

USAMRU
(Kenya)

cage
(2016)

phone
(8 kHz)

2,475
(2,475) 31,930

Test A
(culture)

IHI
(Tanzania)

bednet
(2020)

phone
8 kHz

4,118
(4,118) 3,979

Test B
(culture)

Zoology
(Oxford, UK)

cage
(2016)

phone
(8 kHz)

737
(737) 2,307

All All All All 71,286
(64,843) 53,227

of laboratory cultures produce uniformly sized fully-developed adult mosquitoes which are used for a218

variety of purposes, including trialling new insecticides or examining the genome of these insects.219

UK, Kenya, USA Although the intrinsic variability found amongst natural populations of220

mosquitoes is not present in laboratory cultures, they do provide access easily to multiple species of221

concern. Thus we made recordings from the laboratory cultures at the London School of Tropical222

Medicine and Hygiene (LSTMH), the United States Army Medical Research Unit-Kenya (USAMRU-223

K), the Center for Diseases Control and Prevention (CDC), Atlanta, as well as with mosquitoes raised224

from eggs in our own laboratories at the Department of Zoology, University of Oxford. These primary225

recordings allowed us to quickly evaluate whether flight tone could allow us to distinguish between226

different species [Li et al., 2018]. Mosquitoes were recorded by placing a recording device into the227

culture cages where one or multiple mosquitoes were flying, or by placing individual mosquitoes into228

large cups and holding these close to the recording devices.229

We reserve one set of these recordings taken in culture cages by Zoology, Oxford, as one of our test230

datasets (denoted Test B in Table 2), as past models were able to achieve excellent mosquito detection231

performance when trained on data held out from the same experiment [Kiskin et al., 2018, 2017]. In232

this paper we treat this experiment as disparate from the remaining data, increasing the difficulty of233

the detection task considerably.234

Tanzania To fulfill the aim of targeted vector control through the deployment in people’s homes,235

we need to be able to passively capture the mosquito’s flight tone. Therefore, in our database we236

include mosquitoes passively recorded in the Ifakara Health Institute’s semi-field facility (‘Mosquito237

City’) at Kining’ina, that most closely resembles the intended use of the HumBug system. It is for238

this reason that a labelled subset (by an expert zoologist with the help of positive BCNN predictions)239

of this data forms our primary test set, also marked as Test A in Table 2.240

The facility houses six chambers containing purpose-built experimental huts, built using traditional241

methods and representing local housing constructions, with grass roofs, open eaves and brick walls.242

Four different configurations of the HumBug Net [Sinka et al., 2021], each with a volunteer sleeping243
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under the net, were set up in four chambers. Budget smartphones were placed in each of the four244

corners of the HumBug Net (Figure 2). Each night of the study, 200 laboratory cultured An. arabiensis245

were released into each of the four huts and the MozzWear app began recording.246

4.2.2 Wild captured mosquitoes247

Wild mosquitoes naturally exhibit far greater intra-specific variability. To study how this affects our248

ability to distinguish different species, we conducted experiments in Thailand and Tanzania.249

Thailand Across the malaria endemic world, Asia has more dominant vector species (mosquitoes250

whose abundance or propensity to bite humans makes them particularly efficient vectors of disease)251

and species complexes anywhere else. Mosquitoes were sampled using ABNs (cow-baited nets in252

Figure 2), HBNs and larval collections over a period of two months during peak mosquito season253

(May to October 2018). Sampling was conducted in Pu Teuy Village at a vector monitoring station254

owned by the Kasetsart University, Bangkok. The mosquito fauna at this site include a number255

of dominant vector species, including An. dirus and An. minimus alongside their siblings (An.256

baimaii and An. harrisoni) respectively (Appendix C, Figure 6 and Table 6 show the exact species257

distribution). Mosquitoes were collected at night, carefully placed into large sample cups and recorded258

the following day using the high-spec Telinga field microphone and a budget smartphone (Appendix259

D.3 for device details).260

Tanzania While Asia has the most diverse vector community, sub-Saharan Africa has the most261

dangerous and efficient mosquito species, namely An. gambiae. This is the species often referred262

to as the ‘most dangerous animal in the world’ and as a consequence, sub-Saharan Africa has263

the highest transmission of human malaria in the world, and the highest number of deaths [World264

Health Organization, 2020]. Using the methodology trialled in Thailand and with the help of our265

collaborators at the Ifakara Health Institute, we began a collection and recording project in the266

Kilombero Valley, Tanzania. HBNs, larval collections and CDC-LTs were used to sample wild267

mosquitoes and record them in sample cups in the laboratory. An. gambiae and An. funestus (another268

highly dangerous mosquito found across sub-Saharan Africa), are also siblings within their respective269

species complexes. Thus, standard polymerase chain reaction (PCR) identification techniques [Scott270

et al., 1993] were used to fully identify mosquitoes from these groups.3 For all the cup recordings in271

Thailand and Tanzania, environmental conditions (temperature, humidity) were monitored throughout272

the recording process. The Tanzanian sampling has collected 17 different species including: An.273

arabiensis (a member of the gambiae complex), An. coluzzii, An. funestus, An. pharoensis (see274

Appendix C, Figure 6, Table 6 for a full breakdown).275

5 Benchmark276

To showcase the utility of the data, we supply baseline models that function as acoustic mosquito277

event detectors. Other use cases include, but are not limited to, species classification, harmonic278

analysis, and the study of inter-species variability. For a more thorough consideration of these279

use cases refer to Appendix D.5. We discuss possible data biases arising from species imbalance,280

mosquito types, and multiple recording devices, and suggest mitigation strategies in Appendix D.6.281

For the task of mosquito event detection, we hold out Test set A of labelled field data which most282

closely resembles the target application. Achieving good performance on that set does not guarantee283

good scalability to other use cases in itself, and for this reason we use Test set B – a shorter, but very284

difficult low-SNR dataset as a performance marker. The prominent species in this experiment is also285

not as well represented, providing a further challenge. The statistics of the training and test sets are286

given in the rows of Table 2. In the upcoming section we will give an overview of the code we supply287

for our benchmarks. In Section 5.2 we describe the steps taken to train our models, and in Section288

5.3 we detail how we define the performance metrics and evaluate the models supplied.289

5.1 Code use290

The top-level Jupyter notebook (Appendix B for data directory tree, code access, and layout) performs291

data partitioning, feature extraction and segmentation in get_train_test_from_df(), model292

3The database gives the PCR identification within the species column, or the genus/complex if not available.
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training in train_model(), and model evaluation in get_results(). The code is configured with293

config.py, where data directories are specified for the data, metadata and outputs, and feature294

transformation parameters are supplied. Model hyperparameters are given in config_keras.py or295

config_pytorch.py. The notebook supports both Keras [Chollet et al., 2015] and PyTorch [Paszke296

et al., 2019] with a common interface for convenience. In more detail, each top-level function is297

described as follows:298

• get_train_test_from_df(df_train, df_test_A, df_test_B) extracts, reshapes,299

strides, and normalises librosa features for use as tensors, and saves them to300

config.dir_out, if features with that particular configuration do not exist already. The301

data is split into train and test based on the matches of experiment ID to the audio tracks302

from the metadata given in df_train, df_test_A, df_test_B. It is important that no303

test recordings from these experiments are seen during training in advance, as otherwise304

model performance is overestimated. Appendix B.3, Table 5 shows the result of feature305

extraction with baseline feature parameters.306

• train_model(X_train, y_train, X_val=None, Y_val=None) trains the BNNs on307

the data supplied (with validation data optional). The assumed input shape is that of the308

features produced by get_train_test_from_df(). The model architecture and training309

strategies may be changed in runKeras.py or runTorch.py.310

• get_results(model, X, y, n_samples=1) evaluates the model object on test data {X,311

y} with the number of MC dropout samples as n_samples. If using deterministic networks,312

leaving the input argument blank will default to a single evaluation.313

5.2 Model architecture and training314

We extract 128 log-mel spectrogram features with a time window of 30 feature frames and a stride315

of 5 frames for training. Each frame spans 64 ms, forming a single training example Xi ∈ R128×30316

with a temporal window of 1.92 s. Test data is strided with the stride length equal to the window size.317

We list all our parameters affecting the feature transformation in Appendix B.3, Table 4, and include318

a discussion with general recommendations for feature parameterisation. We supply two benchmark319

BNN model classes for this dataset:320

• Keras BNN: A CNN with four convolutional, two max-pooling, and one fully connected321

layer augmented with dropout layers (shown in Appendix B.4, Figure 3). Its structure is322

based on prior models that have been successful in assisting domain experts in curating parts323

of this dataset by thresholding with uncertainty metrics [Kiskin et al., 2021].324

• PyTorch ResNet BNN: ResNet has achieved state-of-the-art performance in audio tasks325

[Palanisamy et al., 2020] motivating its use as a baseline model in this paper. We augment326

the model with dropout layers in the appropriate building blocks to approximate a BNN. We327

opt to use the pre-trained model for a warm start to the weight approximations. We describe328

our modifications to the model class in Appendix B.4.329

For both models the validation accuracy on a random split of the training data has been used to330

checkpoint the best-performing model. The code was developed on Ubuntu 20.04 with an i7-8700K331

CPU, 32 GB RAM and a Titan Xp GPU with 12 GB VRAM, but models were trained and optimised332

with lower end hardware (Windows 10, Intel i7-4790K CPU with 16 GB RAM and a GTX970 GPU333

with 4 GB VRAM). We give the number of epochs, the learning rate, dropout rate, the batch size, and334

discuss ways to further optimise the memory usage in Appendix B.4.335

5.3 Test results336

As a benchmark, we define the test performance with three metrics: the receiver operating character-337

istic area-under-curve score (ROC AUC), the true positive rate (TPR), also known as the recall, and338

the true negative rate (TNR), to account for class imbalances in the test sets. These are evaluated339

over 1.92 second audio chunks. The number of audio samples in each test set following test feature340

extraction is given in column one of Table 3. Test features are strided by the length of the window to341

evaluate non-overlapping sections. To simplify the problem, edge cases where the data cannot be342

partitioned into full 1.92 second sections are removed from the test set. On feature extraction, all343
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Table 3: Test performance of the four-conv-layer Keras CNN, and two ResNet configurations over
the two test sets. The number of 1.92 second samples over which the scores are evaluated is given
for mosquitoes by Nmozz and for noise as Nnoise respectively. Scores are reported as the mean ±
standard deviation over 10 MC dropout samples.

Data Metric BNN-Keras-4conv BNN-ResNet-50 BNN-ResNet-18

Test A
Nmozz = 1, 714
Nnoise = 2, 068

ROC AUC 0.960± 0.003 0.959± 0.001 0.918± 0.001
TPR (%) 71.0± 0.71 95.6± 0.24 72.64± 0.41
TNR (%) 98.0± 0.25 73.4± 0.43 90.86± 0.22

Test B
Nmozz = 430
Nnoise = 1, 015

ROC AUC 0.349± 0.055 0.545± 0.004 0.670± 0.006
TPR (%) 2.16± 0.48 2.70± 0.50 1.42± 0.22
TNR (%) 99.8± 0.07 99.4± 0.25 99.71± 0.03

labels shorter than that window duration are not included in the test set, though this is an area that is344

left for future work. When comparing performance, we suggest using a test set which has the window345

size as currently implemented in the code (within get_feat() in feat_util.py).346

Table 3 shows the results that our baselines models were able to achieve. For the intended use case347

of Test A, all of the models were able to achieve ROC AUC above 0.91. The choice of model to348

deploy would depend on the preference over error types. For example, ResNet-50 performs better at349

recalling mosquito events, at the expense of a 26 % false positive rate. On the other hand, the Keras350

model achieves a false positive rate of only 2 %, but at the expense of missing 29 % of mosquito351

events. However, performance on Test B is unacceptable by all models, with all of the models352

categorising nearly all the audio as noise. To verify that the issue does not lie in the test set, after353

manually verifying each label resulting from feature extraction, we trained the models on half of354

Test B’s recordings, and predicted on the second half, to achieve an ROC AUC of 0.915 (Appendix355

B.5, Figure 4). Furthermore, prior work was able to achieve ROC AUCs of 0.871 to 0.952 with356

smaller neural networks which were optimised for use with scarce data [Kiskin et al., 2017]. The task357

presented in this paper, however, is to be able to achieve good performance over Test B, in addition to358

Test A, without the model having access to any data (or covariates) from both Test A and Test B.359

6 Conclusion360

In this paper we present a vast database of 20 hours of finely labelled mosquito sounds, and 15 hours361

of associated non-mosquito control data, constructed from carefully defined recording paradigms.362

Our recordings capture a diverse mixture of 36 species of mosquitoes from controlled conditions in363

laboratory cultures, as well as mosquitoes captured in the wild. The dataset is a result of a global co-364

ordination as part of the HumBug project. The HumBug project is ongoing and the robust recording365

pipeline described in this paper means that the database will continue to grow in the coming years. A366

major contribution of this paper has therefore been to link together all the moving parts, from the367

smartphone sensors and in-house apps, to the curation of a PostgreSQL database with the help of368

Bayesian neural networks.369

Despite decades of work, mosquito-borne diseases are still dangerous and prevalent, with malaria370

alone contributing to hundreds of thousands of death each year. Therefore a further contribution of371

this work is to make available mosquito data that is still a scarce commodity. In addition, we have372

highlighted that our dataset contains real field data collected from smartphones, as well as varying373

background environments and different experimental settings. As a result, this multi-species data374

set will continue to help domain-experts in the bio-sciences study the spread of mosquito-carrying375

diseases, as well as the myriad of factors that affect acoustic flight tone.376

Finally, our dataset will be of interest to machine learning researchers working with acoustic data,377

both in the availability of a real-world acoustic dataset, as well as in the way that we use Bayesian378

neural networks in the labelling pipeline. We provide simple functions for data manipulation and379

baseline models in both Keras and PyTorch, alongside extensive documentation. As a result, we380

make it easy for researchers to start building their own models. It is our aim, by releasing this dataset,381

to encourage further work in the detection of mosquitoes leading to improved models and better382

mosquito detection algorithms in the future.383
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1. For all authors...509

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s510

contributions and scope? [Yes] Claim: first large-scale multi-species dataset, supported511

with evidence in Section 2. Claim: BNNs for labelling, supported with evidence in512

Section 5, with code instructions. Further detail is given in Appendix B.513

(b) Did you describe the limitations of your work? [Yes] We describe the limitations of the514

baseline models in Section 5.3. We also describe how we had to withhold certain data515

due to potential privacy issues in Section 3.516

(c) Did you discuss any potential negative societal impacts of your work? [Yes] We discuss517

how we mitigated potential negative impacts by incorporating a paragraph on privacy518

(Section 3.1). We mitigate the risk of people misusing models from a misunderstanding519

of performance generalisation (e.g. by making claims they have may have solved520

the task of mosquito detection and seek to deploy in countries without a fail-safe) by521

ensuring a robust train-test split of data. An assertion check in the code is performed522

ensure no audio recordings feature in both train and test sets, and we explain in detail523

how performance figures can be misinterpreted on the test sets in question.524

13

https://www.postgresql.org/docs/9.3/app-psql.html
https://www.postgresql.org/docs/9.3/app-psql.html
https://www.postgresql.org/docs/9.3/app-psql.html
https://www.worldbank.org/en/programs/listening-to-africa
https://www.worldbank.org/en/programs/listening-to-africa
https://www.worldbank.org/en/programs/listening-to-africa
https://www.who.int/news-room/fact-sheets/detail/vector-borne-diseases
https://www.who.int/news-room/fact-sheets/detail/vector-borne-diseases
https://www.who.int/news-room/fact-sheets/detail/vector-borne-diseases


(d) Have you read the ethics review guidelines and ensured that your paper conforms525

to them? [Yes] This project involves the study of potentially lethal mosquitoes, and526

therefore, explicit permission was obtained from the relevant Ethics committees for527

research. These are listed in the datasheet for datasets in Appendix D. Any personally528

identifiable information was removed, and explicit consent was obtained from all529

individuals that may feature in audio recordings throughout (see section on Privacy 3).530

2. If you are including theoretical results...531

(a) Did you state the full set of assumptions of all theoretical results? [N/A] Results are532

experimental and empirical.533

(b) Did you include complete proofs of all theoretical results? [N/A]534

3. If you ran experiments (e.g. for benchmarks)...535

(a) Did you include the code, data, and instructions needed to reproduce the main experi-536

mental results (either in the supplemental material or as a URL)? [Yes] The links to537

code, data, and instructions are given in Section 1. Additionally, we supply extra meta538

analysis to assist with code useage in Appendix B. We also describe the reasoning for539

our metadata format by explaining the underlying database schema and commands540

used to generate the metadata in Appendix C.541

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they were542

chosen)? [Yes] The data splits are a key factor of performance and are clearly described543

in Section 4 and Section 5.3. Our reasoning and the selection of hyperparameters is544

given in Appendix B.4.545

(c) Did you report error bars (e.g., with respect to the random seed after running experi-546

ments multiple times)? [Yes] The randomness resulting from stochastic predictions547

with BNNs is described with a mean and standard deviation in Section 5.3. Due to the548

nature of random initialisation of weights during model training, we also include the549

trained models used to generate the predictions, and all random seeds used for data550

manipulation in the codebase.551

(d) Did you include the total amount of compute and the type of resources used (e.g., type552

of GPUs, internal cluster, or cloud provider)? [Yes] We describe the computational553

resources for development and testing in Section 5.554

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...555

(a) If your work uses existing assets, did you cite the creators? [Yes] All software packages556

were credited to the developers (e.g. Keras, PyTorch, Audacity)557

(b) Did you mention the license of the assets? [Yes] The licenses of any software used are558

given in the datasheet for datasets in Appendix D.3.559

(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]560

Yes, in both Section 1 and Appendix B.1.561

(d) Did you discuss whether and how consent was obtained from people whose data you’re562

using/curating? [N/A] The dataset is original, and consent was obtained from the563

relevant ethics reviews and members of the teams (see datasheet for datasets, Appendix564

D.3).565

(e) Did you discuss whether the data you are using/curating contains personally identifiable566

information or offensive content? [Yes] Discussed in the Privacy paragraph of Section567

3, as well as in the datasheet for datasets, Appendix D.568

5. If you used crowdsourcing or conducted research with human subjects...569

(a) Did you include the full text of instructions given to participants and screenshots, if570

applicable? [N/A] For the data collection of this paper, our collaborators were working571

closely with us, the research was done by humans and not on human subjects.572

(b) Did you describe any potential participant risks, with links to Institutional Review573

Board (IRB) approvals, if applicable? [N/A]574

(c) Did you include the estimated hourly wage paid to participants and the total amount575

spent on participant compensation? [N/A]576

14


	Introduction
	Related work
	Data for mosquito-borne disease prevention
	The HumBug project

	The HumBugDB dataset
	Summary
	Data collection
	Laboratory culture mosquitoes
	Wild captured mosquitoes


	Benchmark
	Code use
	Model architecture and training
	Test results

	Conclusion

