
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

SCALABLE SECOND-ORDER RIEMANNIAN OPTIMIZA-
TION FOR K-MEANS CLUSTERING

Anonymous authors
Paper under double-blind review

ABSTRACT

Clustering is a hard discrete optimization problem. Nonconvex approaches such as
low-rank semidefinite programming (SDP) have recently demonstrated promising
statistical and local algorithmic guarantees for cluster recovery. Due to the combi-
natorial structure of the K-means clustering problem, current relaxation algorithms
struggle to balance their constraint feasibility and objective optimality, presenting
tremendous challenges in computing the second-order critical points with rigorous
guarantees. In this paper, we provide a new formulation of the K-means prob-
lem as a smooth unconstrained optimization over a submanifold and characterize
its Riemannian structures to allow it to be solved using a second-order cubic-
regularized Riemannian Newton algorithm. By factorizing the K-means manifold
into a product manifold, we show how each Newton subproblem can be solved
in linear time. Our numerical experiments show that the proposed method con-
verges significantly faster than the state-of-the-art first-order nonnegative low-rank
factorization method, while achieving similarly optimal statistical accuracy.

1 INTRODUCTION

Clustering is a cornerstone of modern unsupervised learning, where the goal is to group similar
observations into meaningful clusters. The problem is commonly approached through the K-means
formulation, which seeks to partition n data points X1, X2, . . . , Xn ∈ Rd into K disjoint groups
G1, . . . , GK by maximizing the total intra-cluster similarity:

max
G1,...,GK

{
K∑

k=1

1

|Gk|
∑

i,j∈Gk

⟨Xi, Xj⟩ :
K⊔

k=1

Gk = [n]

}
. (1)

Here, the inner product ⟨Xi, Xj⟩ = X⊤
i Xj is used to measure pairwise similarity, |Gk| denotes the

cardinality of Gk, and ⊔ denotes disjoint union. Most common algorithms for K-means clustering,
including Lloyd’s algorithm (Lloyd, 1982) and spectral clustering (Ng et al., 2001; von Luxburg,
2007), can be understood as heuristics for finding “good enough” solutions to the discrete optimization
(1). These methods do not come with any guarantees of local optimality, let alone global optimality.
Indeed, it is commonly argued that globally solving (1) is NP-hard in the worst-case (Dasgupta, 2007;
Aloise et al., 2009), and would lead to statistically meaningless clustering that overfits the data.

Yet in average-case regimes, globally solving the K-means optimization problem (1) can be both
computationally tractable as well as statistically optimal. In particular, when the data X1, . . . , Xn

arise from a Gaussian mixture model with sufficiently well-separated components, Chen & Yang
(2021b) showed that a well-known semidefinite programming (SDP) relaxation of Peng & Wei (2007),
written

max
Z∈Rn×n

{
⟨XX⊤, Z⟩+ µ

∑
i,j

log(Zi,j)+ : Z1n = 1n, tr(Z) = K, Z ⪰ 0
}
, (2)

where X = [X1, . . . , Xn]
⊤ and log(Zi,j)+ := log(max{Zi,j , 0}), is guaranteed to compute the

globally optimal clusters G⋆
1, . . . , G

⋆
K for (1) in the limit µ → 0+ in polynomial time, that in turn

recover the ground truth partitions. Note that the formulation (2) is equivalent to the standard K-
means SDP formulation with the elementwise nonnegativity constraint Zi,j ≥ 0 in Peng & Wei
(2007); Chen & Yang (2021b) (see Appendix A for more discussions). Moreover, this recovery

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

occurs as soon as the separation between the clusters is large enough for it to be possible. Put in
another way, if solving (2) does not recover the ground truth partitions, then the clusters are too
closely spaced in a way that makes recovery inherently impossible in an information-theoretic limit
sense, see Section 2.1 for more details.

Unfortunately, the SDP (2) is not a practical means of solving (1) to global optimality, due to its need
to optimize over an n× n matrix to cluster n samples. Following Burer & Monteiro (2003); Boumal
et al. (2020), a natural alternative is to factor Z = UU⊤ into its n × r factor matrix U for rank
parameter r ≥ K, impose the logarithmic penalty over U instead of Z, and then directly optimize
over U :

max
U∈Rn×r

{
⟨XX⊤, UU⊤⟩+ µ

∑
i,j

log(Ui,j)+ : UU⊤1n = 1n, tr(UU⊤) = K
}
. (3)

This reduces the number of variables and constraints from O(n2) down to O(n), but at the cost
of giving up the convexity of the SDP. In general, we can at best hope to compute critical points,
which may be spurious local minima or saddle points. The core motivation for our approach, and the
impetus for this paper, is the surprising empirical observation that all second-order critical points are
global optima in this setting; this is formalized as the following assumption.

Assumption 1 (Benign nonconvexity). In the average-case regime when (2) globally solves (1), all
approximate second-order critical points in (3) are within a neighborhood of a global optimum.

The phenomenon of benign nonconvexity is well-documented in the unconstrained version—
optimizing over semidefinite Z ⪰ 0 by factorizing Z = UU⊤—dating back to the early works
of Burer & Monteiro (2003). In contrast, it is rarely seen in our nonnegative variant, which adds the
elementwise constraint U ≥ 0 to enforce doubly nonnegativity in Z = UU⊤. Despite a superficial
similarity, the two formulations differ in fundamental ways, with the nonnegative case known to admit
numerous spurious critical points; see Section 1.2 for some classic and recent examples. Nevertheless,
we consistently observe that all second-order critical points correspond to global optima, that in turn
successfully recover the optimal clusters.

1.1 CONTRIBUTIONS: CHEAP AND FAST CONVERGENCE TO SECOND-ORDER CRITICAL
POINTS

Under Assumption 1, globally solving the K-means optimization problem (1) reduces to that of
computing a second-order critical point for (3). Unfortunately, in the constrained nonconvex setting,
there is no general-purpose algorithm that is rigorously guaranteed to compute a second-order
critical point. The core issue is the need to maintain feasibility, i.e. for each iterate U to satisfy the
nonconvex constraints UU⊤1n = 1n and tr(UU⊤) = K, while making progress towards optimality.
General-purpose solvers like fmincon (Byrd et al., 2000) and knitro (Byrd et al., 2006) promise
convergence only to critical points of an underlying merit function, which may be infeasible for the
original problem. Augmented Lagrangian methods guarantee convergence only to first-order critical
points, and only when starting within a local neighborhood (Zhuang et al., 2024). This is a significant
departure from the unconstrained nonconvex setting, where a diverse range of algorithms—both cheap
first-order algorithms like gradient descent, as well as rapidly-converging second-order methods like
trust-region Newton’s method—globally converge to a second-order critical point starting from any
initial point.

Our first contribution is to present an interpretation of (3) as a smooth unconstrained optimization
over a Riemannian manifold. This allows the immediate benefit of extending the wide array of
unconstrained optimization algorithms to the constrained setting, as well as their accompanying
guarantees for first- and second-order optimality. For the first time in the context of K-means, we
open the possibility to guarantee global convergence to first- and second-order optimality.

Our second contribution is to show that second-order Riemannian algorithms can be implemented
with linear per-iteration costs with respect to the number of samples n. In other words, of all practical
algorithms to compute second-order critical points, we show that the one with the best iteration
complexity (second-order methods) can be improved to have the same per-iteration costs as first-order
methods. Our final algorithm computes ϵ second-order points in n · ϵ−3/2 · poly(r, d) time.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

1.2 RELATED WORK

Benign nonconvexity in the unconstrained Burer–Monteiro factorization Z = UU⊤ has been
empirically observed since the early 2000s (Burer & Monteiro, 2003), and widely exploited in
nonconvex low-rank algorithms in machine learning. In the past decade, theory has been developed to
explain this phenomenon under some specialized settings (Bhojanapalli et al., 2016; Ge et al., 2016;
Bandeira et al., 2016; Boumal et al., 2016; Ge et al., 2017). Unfortunately, these guarantees tend to
be conservative in the number of samples or the level of noise; they capture the general phenomenon
but cannot rigorously explain what is broadly observed in practice.

In contrast, the nonnegative Burer–Monteiro factorization Z = UU⊤ with U ≥ 0 is widely
understood not to exhibit benign nonconvexity. To give two simple examples, the functions
f(U) = ⟨SU,U⟩ and f(U) = ∥UU⊤ − U⋆U

⊤
⋆ ∥2F are easily confirmed to exhibit benign non-

convexity over U ∈ Rn×r. But imposing U ≥ 0 causes spurious local minima to proliferate; this
is unsurprising because both problems, namely copositive testing (Murty & Kabadi, 1987) and
complete positive testing (Dickinson & Gijben, 2014), are well-known to be NP-hard. For a more
sophisticated example, the function f(U) = ∥A(UU⊤ − U⋆U

⊤
⋆)∥2 is well known to exhibit benign

nonconvexity when the linear operator A : Sn(R)→ Rm satisfies the restricted isometry property
(RIP) (Bhojanapalli et al., 2016). In this context, a recent arXiv preprint (Zhang, 2025) gave a strong
counterexample for the equivalent statement over U ≥ 0.

Therefore, even though K-means is widely known to admit a nonnegative Burer–Monteiro reformu-
lation (Peng & Wei, 2007), there have been only two prior works that actually follow this approach,
to the best of our knowledge. Neither of these can rigorously guarantee global optimality under
Assumption 1. The first is the first-order Riemannian method introduced by Carson et al. (2017). It
solves the following:

min
U∈M′

{
−⟨XX⊤, UU⊤⟩+ λ∥U−∥2F

}
(4)

whereM′ := {U ∈ Rn×K : U⊤U = IK , UU⊤1n = 1n}, U− = max{−U, 0} is the (entrywise)
negative part of U and λ ≥ 0 is the penalty parameter for U ≥ 0. Although superficially similar, their
approach fundamentally lacks a convergence guarantee to a second-order critical point, due to: (i)
their nonsmooth objective; (ii) their use of a smooth penalty, which cannot truly enforce feasibility
U ≥ 0; (iii) their use of a first-order method, which can get trapped at a saddle point. Moreover, their
manifold is geometrically complicated, necessitating an expensive retraction that costs O(n2) time,
which prevents their method from scaling to large datasets.

The second work is the nonnegative low-rank (NLR) method of Zhuang et al. (2024). This is a simple
projected gradient descent that directly projects U onto the nonnegative spherical constraint and
deals the row sum constraint UU⊤1n = 1n via the augmented Lagrangian method. It is a first-order
primal-dual method that can only achieve local linear convergence in a neighborhood of its global
solution. Like Carson et al. (2017), it is unclear whether there is a pathway that this algorithm can
lead to a global optimality guarantee, or even to second-order optimality.

2 BACKGROUND

2.1 SDP RELAXATION OF K-MEANS

Despite the worst-case NP-hardness of the K-means clustering optimization problem (1), common
practical heuristics and relaxed formulations like Lloyd’s algorithm (Lloyd, 1982), spectral cluster-
ing (Ng et al., 2001; von Luxburg, 2007), nonnegative matrix factorization (NMF) (He et al., 2011;
Kuang et al., 2015; Wang & Zhang, 2012) and SDPs (Peng & Wei, 2007; Royer, 2017; Fei & Chen,
2018; Chen & Yang, 2021a) work surprisingly well at solving it for real-world data. To explain this
discrepancy between theory and practice, suppose that the data X1, . . . , Xn ∈ Rd are generated from
a standard Gaussian mixture model (GMM)

Xi = µk + εi, εi
i.i.d.∼ N (0, σ2Id), for i ∈ G∗

k, (5)

where G∗
k denotes the ground truth clusters. Chen & Yang (2021b) proved that the SDP (2) of Peng

& Wei (2007) (as µ→ 0+) achieves a sharp phase transition on the separation of centroids for the

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

clustering problem, in any dimension d and sample size n. Let

Θ
2
:= 4σ2

(
1 +

√
1 +

Kd

n log n

)
log n, (6)

and Θmin := min1≤j<k≤K∥µj−µk∥ be the minimum centroid separation. Assume that m = n/K is
an integer without loss of generality and consider any α > 0. As soon as the exact recovery becomes
possible in the regime Θmin ≥ (1+α)Θ, the SDP approach (2) solves the K-means problem without
clustering error with high probability. For precise statements on the information-theoretic threshold,
please refer to Theorem 3 in Appendix B. As an immediate consequence of the global optimality
guarantee of the K-means SDP in (2), we deduce that the global solution of the nonconvex low-rank
SDP in (3) solves the K-means clustering problem in (1) in the exact recovery regime.

Next, from the membership matrix Z, we would like to convert it to the cluster label.

Lemma 1. Let Z = Z⊤ ∈ Rn×n be the symmetric block diagonal matrix defined by Zij = 1/|Gk|
if i, j ∈ Gk, and Zij = 0 otherwise. Then for any integer r ∈ [K,n], there is a unique (up to column
permutation) U ∈ Rn×K

+ such that Z = UU⊤. Moreover, U can be recovered from any Û ∈ Rn×r

satisfying Z = Û Û⊤ in n · poly(r) time.

For each block diagonal membership matrix Z, the unique U ∈ Rn×K
+ in Lemma 1 is the associated

group assignment matrix, i.e. the k-th column of U provides a one-hot encoding of membership in
the k-th cluster.

2.2 CRITICAL POINTS IN CONSTRAINED OPTIMIZATION

The problems considered in this paper are instances of the following

min
U∈M

f(U), M = {U ∈ Rn×r : A(UU⊤) + B(U) = c}, (7)

where the linear operators A : Rn×n → Rm and B : Rn×r → Rm and right-hand side c ∈ Rm

together are assumed to satisfy the independence constraint qualification (LICQ)

2[A⊤(y)]U + B⊤(y) = 0 ⇐⇒ y = 0 ∀U ∈M. (8)

In this context, U ∈ Rn×r is said to be feasible if it satisfies U ∈ M. The feasible point U is an
ϵ-first-order critical point if it satisfies

exists y ∈ Rm s.t.
∥∥∥∇f(U) + 2[A⊤(y)]U + B⊤(y)

∥∥∥ ≤ ϵ, (9)

and an ϵ-second-order critical point if it additionally satisfies

⟨∇2f(U) + 2[A⊤(y)], U̇ U̇⊤⟩ ≥ √ϵ∥U̇∥2 ∀U̇ ∈ TUM (10)

over the tangent space ofM at the point U , given by TUM = {U̇ ∈ Rn×r : A(UU̇⊤ + U̇U⊤) +

B(U̇) = 0}. Under LICQ (8), every local minimum (and hence the global minimum) is guaranteed
to be an ϵ-second-order critical point (for any ϵ ≥ 0). Unfortunately, there is no general-purpose
algorithm that is guaranteed to converge to a critical point, due to the need to achieve and maintain
feasibility across all iterates.

2.3 SECOND-ORDER RIEMANNIAN OPTIMIZATION

Riemannian algorithms are special algorithms that maintain feasible iterates through a problem-
specific retraction operator, and are hence able to rigorously guarantee convergence to critical points.
The basic idea is to improve a feasible iterate U ∈M by tracing a smooth curve on the feasible set
γ : [0, ϵ)→M that begins at γ(0) = U and proceeds in a direction of descent γ̇(0) = U̇ ∈ TUM.
In analogy with unconstrained algorithms, a good choice of U̇ ∈ TUM is found through a local
Taylor expansion

f
(
γ(t)

)
= f(U) + t⟨grad f(U), U̇⟩+ t2⟨Hess f(U)[U̇], U̇⟩+O(t3), (11)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

where grad f and Hess f are respectively the Riemannian gradient and Riemannian Hessian of f on
the manifoldM. Afterwards, we trace the curve γ(t) = RU (tU̇) using a second-order retraction
operator RU : TUM→M satisfying

RU (0) = U,
d

dt
RU (tU̇)

∣∣∣∣
t=0

= U̇ ,
d2

dt2
RU (tU̇)

∣∣∣∣
t=0

⊥ TUM,

for all U ∈ M and all U̇ ∈ TUM. After choosing step-size t so that Unew = γ(t) makes a
sufficient improvement over U , we repeat the algorithm until it reaches an ϵ-second-order critical
point satisfying ∥grad f(U)∥ ≤ ϵ and λmin

(
Hess f(U)

)
≥ −√ϵ, which incidentally corresponds

exactly to (9) and (10). Proofs for the following convergence result can be found in Zhang & Zhang
(2018); Boumal et al. (2019); Agarwal et al. (2021); we have chosen the simplest but most restrictive
settings to ease the exposition.

Theorem 1 (Riemannian cubic-regularized Newton). Suppose that minU∈M f(U) > −∞, and that
the pullback f̂ = f ◦ RU has Lipschitz continuous Hessian for all U ∈ M. Then, there exists a
sufficiently large regularizer L such that Uk+1 = RUk

(U̇k) where

U̇k = argmin
U̇∈TU M

f(U) + ⟨grad f(U), U̇⟩+ 1

2
⟨Hess f(U)[U̇], U̇⟩+ L

6
∥U̇∥3

converges to an ϵ-second order critical point in O(ϵ−3/2) iterations, independent of dimension.

Each iteration of Riemannian cubic-regularized Newton solves an expensive Newton subproblem.
Although it converges in far fewer iterations compared to gradient methods, it is practically competi-
tive only when the added cost of solving the Newton subproblem can be offset by the corresponding
reduction in iteration count.

3 FORMULATION AND SOLUTION OF K-MEANS AS MANIFOLD OPTIMIZATION

We now explain how we solve (3) using a Riemannian optimization approach. As a first attempt, we
can indeed verify that the the constraint set in (3), written

M :=Mr =
{
U ∈ Rn×r : UU⊤1n = 1n, tr(UU⊤) = K

}
, (12)

is a manifold by checking that (8) holds (cf. Lemma 4 in the appendix). In fact, directly applying
Riemannian optimization techniques results in a K-means algorithm very similar to the one proposed
in Carson et al. (2017). The immediate and critical difficulty with this approach is the lack of an
efficient retraction operator, which must be called at every iteration to keep iterates feasible U ∈M.
For example, Carson et al. (2017) used a complicated exponential retraction that costs O(n2) time,
hence bottlenecking the entire algorithm and preventing it from scaling to large n.

Instead, our first contribution in this paper is to reformulate (3) by establishing a submersion from the
product manifold M̃ = V ×Orth(r) toM, where V = {V ∈ Rn×(r−1) : 1⊤

n V = 0, tr(V V ⊤) =
K − 1} and Orth(r) =

{
Q ∈ Rr×r : QQ⊤ = Ir

}
. In words, V is a projected hypersphere and

Orth(r) is the set of r × r orthonormal matrices.

Theorem 2. We haveM = φ(M̃) for φ(V,Q) =
[
1̂n V

]
Q, where 1̂n := (1/

√
n)1n. Moreover,

the Jacobian Dφ : TM̃ → TM is surjective for all (V,Q) ∈ M̃, i.e., φ is a submersion.

Having established the submersion property of φ, it is a standard result that every ϵ-second order
point of M̃ is also an cϵ-second order point on M for some constant rescaling factor c; see e.g.
Example 3.14 and the surrounding text in Levin et al. (2025). Therefore, to solve (3), we equivalently
solve

min
(V,Q)∈M̃

⟨C, V V ⊤⟩ − µ
∑
i,j

log
(
φi,j(V,Q)

)
+
, (13)

where C = −XX⊤ is the (negative) data Gram matrix, and φi,j is the (i, j)-th element of the
operator φ in Theorem 2. A basic but critical benefit of the reformulation (13) is that the product

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

0 250 500 750
Iterations

10−10

10−6

10−2

102

Global Suboptimality

0 250 500 750
Iterations

10−6

10−3

100

103

106
Gradient Norm

0 250 500 750
Iterations

−400

−200

0

200

Minimum Hessian Eigenvalue

Figure 1: Local convergence to second-order critical points yields global optimality. In the
case of GMMs, where ground truths can be planted, we consistently observe local convergence
to global optimality, yielding zero clustering error. This provides strong numerical evidence that
near-second-order critical points are near-globally optimal, as hypothesized in Assumption 1.

manifold M̃ admits a simple second-order retraction via its Euclidean projection (Boumal, 2023,
Sec. 5.12)

R(V,Q)(V̇ , Q̇) =
[
ΠV(V + V̇) ΠOrth(r)(Q+ Q̇)

]
,

where ΠV(V) =
√
K − 1(V −n−11n1

⊤
n V)/∥V −n−11n1

⊤
n V ∥ and ΠOrth(r)(Q) = (QQ⊤)−1/2Q.

It is easy to check that the retraction above costs just O(nr + r3) time to evaluate. In Section C.2,
we give explicit expressions for the Riemannian gradient and Hessian and explain how they can be
computed in O(nr + r3) time.

The appearance of the logarithmic penalty in (13) presents two difficulties. First, as a practical
concern, any algorithm for (13) must begin at a strictly feasible point (V0, Q0) ∈ M̃ that additionally
satisfies φ(V0, Q0) > 0. In Section C.4, we provide a good strictly feasible initial point, and prove
that points exist only if the search rank is over-parameterized as r > K. Second, some special care
is needed to rigorously apply the guarantees from Section 2.3, given that the penalty φ(V,Q) is
Lipschitz only when restricted to a closed and strictly feasible subset; see Section C.5 for details.

Together, these ingredients allow us to apply Riemannian gradient descent (Boumal et al., 2019) to
(13) to compute an ϵ-first-order critical point in (n/ϵ) · poly(r, d,K) time. In practice, the algorithm
often converges to an ϵ-second-order critical point, though this is not rigorously guaranteed without a
carefully-tuned noise perturbation. Alternatively, we can apply the conjugate-gradients (CG) variant
of the Riemannian trust-region algorithm (RTR), a general-purpose solver available in packages like
MANOPT (Boumal et al., 2014) or PYMANOPT (Townsend et al., 2016), to guarantee convergence
to an ϵ-second-order critical point. Unfortunately, in our experiments, we observed that all of these
algorithms experience unsatisfactorily slow convergence, due to the severe ill-conditioning introduced
by the logarithmic penalty.

Instead, our best numerical results were obtained by the Riemannian cubic-regularized Newton
(Theorem 1). Our key insight is that the algorithm can be implemented with just O(nr3) time
per-iteration, by exploiting the underlying block-diagonal-plus-low-rank structure of the Riemannian
Hessian. To explain, our core difficulty is to efficiently solve the Newton subproblem

min
Ap=0

g⊤p+
1

2
p⊤Hp+

L

6
∥p∥3,

where g and H denote the vectorized Riemannian gradient and Hessian respectively, and A imple-
ments the tangent space constraint (V̇ , Q̇) ∈ T(V,Q)M. We can verify that the subproblem contains
n(r− 1) + r2 = O(nr) variables and is subject to m = r+ r(r+ 1)/2 = O(r2) constraints. Given
that the subproblem has only linear constraints, its local minima must always satisfy the first- and
second-optimality conditions (9) and (10), which read[

H + λI A⊤

A 0

] [
p
q

]
=

[
−g
0

]
, λ =

L

2
∥p∥, ξ⊤(H + λI)ξ ≥ 0 for all ξ satisfying Aξ = 0.

The following standard result shows that, with sufficient regularization L, the global minimum
corresponds to the unique second-order critical point.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Ours NLR SC NMF KM++

0.0

0.1

0.2

0.3

0.4

Mis-clustering Error

Ours NLR

0.4

0.6

0.8

1.0

1.2

Frobenius Distance to Z∗

Figure 2: Real-world benchmark on CyTOF data. We compared our method to NLR, the previous
state-of-the-art, as well as classical benchmarks SC, NMF, and KM++. Our method and NLR achieve
the most consistently accurate clustering, with the smallest variance and the fewest outliers (left), but
we outperform NLR in ground truth recovery (right).

Lemma 2. Let A have full row-rank (i.e. AA⊤ ≻ 0) and let λmin = min∥ξ∥=1,Aξ=0 ξ
⊤Hξ. For

λ > −λmin, the parameterized solution p(λ) =

[
I
0

]⊤ [
H + λI A⊤

A 0

]−1 [−g
0

]
is well-defined and

∥p(λ)∥ is monotonously decreasing with respect to λ.

The same lemma also suggests solving the Newton subproblem by simple bisection search. Indeed,
the solution is just p(λopt), where λopt is the solution to the monotone equation 2λ = L∥p(λ)∥ (via
Lemma 2). Thus, we pick a very small λlb ≈ −λmin such that ∥p(λlb)∥ > 2λlb/L, a very large λub
such that 2λub/L > ∥p(λub)∥, and then perform bisection until 2λopt = L∥p(λopt)∥ is approximately
found. For each λ, if 2λ < L∥p(λ)∥, then we increase λ; otherwise, we decrease λ.

The main cost of the bisection search is the computation of p(λ), which naively costs O(n3r3) time.
For our specific problem, we explain in Appendix E how a block-diagonal-plus-low-rank structure in
the Hessian H reduces the computation cost to just n · poly(r, d) time. Applying Theorem 1 shows
that the overall method computes an ϵ-second-order critical point in (n/ϵ1.5) · poly(r, d,K) time.

4 NUMERICAL RESULTS

In this section, we showcase the superior performance of our proposed Riemannian second-order
method for clustering on both synthetic Gaussian mixture models (GMM) and real-world mass
cytometry (CyTOF) datasets. Compared to existing state-of-the-art methods, such as the nonnegative
low-rank (NLR) factorization (Zhuang et al., 2024) and prior Riemannian K-means algorithms
(Carson et al., 2017), our approach achieves faster convergence, higher clustering accuracy, and more
reliable recovery of ground-truth cluster memberships. These results highlight the convergence and
accuracy advantages of second-order methods when they can be implemented with per-iteration costs
of just O(n) time. The implementation details are deferred to Appendix G.

Datasets. We conducted experiments on both synthetic and real datasets. The synthetic data was
generated from a standard K-component, d-dimensional Gaussian mixture model (GMM), with
centroids placed at simplex vertices such that their separation equals γΘ

2
, where Θ is the information-

theoretic threshold for exact recovery in (6), and γ controls separation. The real dataset came from
mass cytometry (CyTOF) (Levine et al., 2015; Weber, 2015). It consists of 265,627 cell protein
expression profiles across 32 markers, labeled into 14 gated cell populations. Following Zhuang et al.
(2024), we uniformly sample 1,800 cells from K = 4 unbalanced clusters (labels 2, 7, 8, 9) from
individual 1 for our experiment.

Global optimality at second-order critical points (validation of Assumption 1). Figure 1 shows
the convergence behaviors of loss function (13) for GMMs (n = 500, γ = 1.2, µ = 0.01) with
50 randomized initializations. We consistently observe that: (i) the loss value steadily decreases

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

over iterations and converges rapidly near the globally optimal point; (ii) the Riemannian gradient
norm dynamics suggest that our algorithm initially attempts to escape saddle points (with increased
gradient norm) and eventually converges to second-order local optimality, where zero-loss is achieved,
indicating global optimality. To verify second-order local optimality, we also plot the minimum
eigenvalue of the Riemannian Hessian. This provides strong numerical evidence that near-second-
order critical points are near-globally optimal, as posited by Assumption 1.

Benchmark on real world data. Prior studies on mass cytometry (CyTOF) and computer vision
(CIFAR-10) datasets identified the nonnegative low-rank (NLR) factorization (Zhuang et al., 2024)
as the most reliable clustering solver, attaining the lowest average mis-clustering error and the
tightest variance compared to classical baselines such spectral clustering (SC), nonnegative matrix
factorization (NMF), and K-means++ (Arthur & Vassilvitskii, 2007) (KM++). Our algorithm
optimizes the same nonnegative low-rank model, so it inherits this reliability. Because it applies
second-order Hessian updates rather than first-order gradients, it refines each iterate more thoroughly
and therefore recovers the ground-truth membership matrix more accurately. Figure 2 illustrates this
on CyTOF: both methods keep mis-clustering near zero, yet our solver achieves a smaller Frobenius
gap to the oracle solution. The experiment was repeated 50 times on random subsamples of size
n = 1800.

101 103 105

Iterations

0.0

0.2

0.4

0.6

Mis-clustering Error

Ours
NLR

0 10 20
Time Elapsed (sec)

0.0

0.2

0.4

0.6

Mis-clustering Error

Ours
NLR

102 103 104 105

Sample Size

10−4

10−3

10−2

10−1

100
Per-iteration Time Cost (sec)

Ours
NLR

Figure 3: Comparison with previous state-of-the-art NLR on GMM. Our second-order method
reaches optimality in 152 iterations, while NLR needs 80k. Even though each second-order iteration
costs ≈30–100 NLR steps, the total runtime is still two to four times shorter. (Left and middle)
clustering accuracy vs log iterations and linear time; (right) per-iteration time vs sample size n.

Comparison with NLR. Next, we compare our method directly to the nonnegative low-rank (NLR)
factorization. Figure 3 shows experimental results for GMM with n = 100, γ = 0.8, µ = 0.1, and
with varying n. Main observations: (i) Each Newton step is solved in O(n) time, matching the theory
in Section 3. (ii) A Newton step is about 30–100 times costlier than a single NLR update. This is
to be expected because the Newton step solves several linear systems, while NLR performs only a
single matrix-vector product. (iii) Our solver reaches the optimum in hundreds of iterations, whereas
NLR needs tens of thousands. The orders-of-magnitude reduction in iterations more than offsets the
costlier step, so wall-clock time drops by a factor of two to four.

Ours λ1 λ2 λ3 λ4

0.0

0.2

0.4

0.6

Mis-clustering Error

Ours λ1 λ2 λ3 λ4

0.5

1.0

1.5

2.0

2.5
Frobenius Distance to Z∗

λ1 λ2 λ3 λ4

0.0

0.5

1.0

1.5

Norm of the Negative Part

Figure 4: Comparison with prior Riemannian K-means method of Carson et al. (2017) on
real-world data. Each run is warm-started from the previous and the penalty is stepped through
λi = 0, 104, 106, 107. However: (Left) average mis-clustering exceeds 30%; (Middle) the recovery
error ∥Z − Z⋆∥F remains large; (Right) the infeasibility ∥U−∥ never vanishes. Our Riemannian
method, shown for reference, enforces U− = 0 by design and achieves near-zero error in both metrics.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Comparison with prior Riemannian K-means methods. We evaluate the clustering performance
of the algorithm proposed by Carson et al. (2017) to solve the penalized formulation (4) on the
CyTOF data. Figure 4 presents the performance of this first-order manifold method. Unfortunately,
we were unable to identify a sequence of λ that would produce acceptable clustering results. While
increasing the penalty parameter λ improves feasibility, it also degrades clustering performance. This
highlights the difficulty in solving (4) using the method of Carson et al. (2017), as it struggles to
balance strict constraint satisfaction with objective optimality in the K-means problem.

0 500 1000 1500 2000

10−11

10−8

10−5

10−2

101

Global Suboptimality

Ours
RTR

0 5000 10000 15000 20000

10−6

10−3

100

103

106 Gradient Norm

Ours
RTR

Figure 5: Comparison with classical Riemannian Trust Region (RTR) on GMM. Our method
drives both loss and gradient norm to machine precision in around 360 iterations. In contrast, RTR
stagnates for over 21k iterations due to the extreme ill-conditioning induced by the log penalty.

0.3 0.4 0.5 0.6 0.7
µ

0.0

0.2

0.4

0.6

Mis-clustering error

5 6 7 8 9 10 11 12
r

0.000

0.025

0.050

0.075

0.100

0.125

Mis-clustering Error

Figure 6: Dependence on hyperparameters. (Left) Error exhibits phase transition as penalty
parameter µ gets too large. (Right): Error seems insensitive to the search rank r = K + 1, . . . , 3K.

Comparison with classical Riemannian algorithms. As discussed in Section 3, Problem (13) can
be solved with CG or RTR as the gradient, Hessian, and retraction are all available. Nevertheless,
both CG and RTR perform poorly because the log-barrier induces an extremely ill-conditioned
landscape. To illustrate this, we solve (13) on GMM data using PYMANOPT’s implementation of
CG and RTR. For CG, we were unable to tune the method to produce a meaningful solution, as its
updates frequently lead to infeasible points. While RTR can converge to a solution comparable to
ours, it requires significantly more iterations and time, as shown in Figure 5.

Effect of hyperparameters. Our method displays a sharp phase transition with respect to the
regularization parameter µ. Below a critical threshold, the algorithm consistently converges to
optimal solutions and remains robust to variations in µ. However, once µ exceeds this threshold,
the method fails to yield meaningful results. This behavior is illustrated in Figure 6 where we used
GMM synthetic data with four clusters and separation γ = 0.8. Figure 6 also shows the clustering
errors evaluated across different search ranks r. Clustering performance appears insensitive to r,
so the smallest feasible r = K + 1 should be used in practice. A brief discussion on the choice of
hyperparameters is provided in Appendix F.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

The experimental setups are described in detail in Section 4 and Appendix F. While the provided code
does not encompass every experiment reported in the paper, all of them can be readily reproduced
based on the descriptions.

LLM USAGE DISCLOSURE

A large language model (LLM) was used solely to polish the writing and improve clarity of expression.
No part of the research ideation, discovery, or substantive content was generated by the LLM.

REFERENCES

P-A Absil, Jochen Trumpf, Robert Mahony, and Ben Andrews. All roads lead to newton: Feasible
second-order methods for equality-constrained optimization, 2009. Technical Report.

Naman Agarwal, Nicolas Boumal, Brian Bullins, and Coralia Cartis. Adaptive regularization with
cubics on manifolds. Mathematical Programming, 188:85–134, 2021.

Daniel Aloise, Amit Deshpande, Pierre Hansen, and Preyas Popat. NP-hardness of Euclidean
sum-of-squares clustering. Machine learning, 75(2):245–248, 2009.

David Arthur and Sergei Vassilvitskii. k-means++: the advantages of careful seeding. In Proceed-
ings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’07, pp.
1027–1035, USA, 2007. Society for Industrial and Applied Mathematics. ISBN 9780898716245.

Afonso S Bandeira, Nicolas Boumal, and Vladislav Voroninski. On the low-rank approach for
semidefinite programs arising in synchronization and community detection. In Conference on
learning theory, pp. 361–382. PMLR, 2016.

Srinadh Bhojanapalli, Behnam Neyshabur, and Nati Srebro. Global optimality of local search for low
rank matrix recovery. Advances in Neural Information Processing Systems, 29, 2016.

N. Boumal, B. Mishra, P.-A. Absil, and R. Sepulchre. Manopt, a Matlab toolbox for optimization
on manifolds. Journal of Machine Learning Research, 15(42):1455–1459, 2014. URL https:
//www.manopt.org.

Nicolas Boumal. An Introduction to Optimization on Smooth Manifolds. Cambridge University Press,
2023. doi: 10.1017/9781009166164. URL https://www.nicolasboumal.net/book.

Nicolas Boumal, Vlad Voroninski, and Afonso Bandeira. The non-convex burer-monteiro approach
works on smooth semidefinite programs. Advances in Neural Information Processing Systems, 29,
2016.

Nicolas Boumal, Pierre-Antoine Absil, and Coralia Cartis. Global rates of convergence for nonconvex
optimization on manifolds. IMA Journal of Numerical Analysis, 39(1):1–33, 2019.

Nicolas Boumal, Vladislav Voroninski, and Afonso S Bandeira. Deterministic Guarantees for Burer-
Monteiro Factorizations of Smooth Semidefinite Programs. Communications on Pure and Applied
Mathematics, 73(3):581–608, 2020.

S.P. Boyd and L. Vandenberghe. Convex Optimization. Number pt. 1 in Berichte über verteilte
messysteme. Cambridge University Press, 2004. ISBN 9780521833783. URL https://books.
google.com/books?id=mYm0bLd3fcoC.

Samuel Burer and Renato D. C. Monteiro. A nonlinear programming algorithm for solving semidef-
inite programs via low-rank factorization. Mathematical Programming, 95(2):329–357, 2003.
ISSN 1436-4646. doi: 10.1007/s10107-002-0352-8. URL https://doi.org/10.1007/
s10107-002-0352-8.

Richard H Byrd, Jean Charles Gilbert, and Jorge Nocedal. A trust region method based on interior
point techniques for nonlinear programming. Mathematical programming, 89:149–185, 2000.

10

https://www.manopt.org
https://www.manopt.org
https://www.nicolasboumal.net/book
https://books.google.com/books?id=mYm0bLd3fcoC
https://books.google.com/books?id=mYm0bLd3fcoC
https://doi.org/10.1007/s10107-002-0352-8
https://doi.org/10.1007/s10107-002-0352-8

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Richard H Byrd, Jorge Nocedal, and Richard A Waltz. Knitro: An integrated package for nonlinear
optimization. Large-scale nonlinear optimization, pp. 35–59, 2006.

Timothy Carson, Dustin G. Mixon, Soledad Villar, and Rachel Ward. Manifold optimization for
k-means clustering. In 2017 International Conference on Sampling Theory and Applications
(SampTA), pp. 73–77, 2017. doi: 10.1109/SAMPTA.2017.8024388.

Xiaohui Chen and Yun Yang. Hanson–Wright inequality in Hilbert spaces with application to
K-means clustering for non-Euclidean data. Bernoulli, 27(1):586 – 614, 2021a. doi: 10.3150/
20-BEJ1251. URL https://doi.org/10.3150/20-BEJ1251.

Xiaohui Chen and Yun Yang. Cutoff for exact recovery of Gaussian mixture models. IEEE Transac-
tions on Information Theory, 67(6):4223–4238, 2021b.

Sanjoy Dasgupta. The hardness of k-means clustering. Technical Report CS2007-0890, University of
California, San Diego, 2007.

Peter JC Dickinson and Luuk Gijben. On the computational complexity of membership problems
for the completely positive cone and its dual. Computational optimization and applications, 57:
403–415, 2014.

Yingjie Fei and Yudong Chen. Hidden integrality of sdp relaxations for sub-gaussian mixture
models. In Sébastien Bubeck, Vianney Perchet, and Philippe Rigollet (eds.), Proceedings of the
31st Conference On Learning Theory, volume 75 of Proceedings of Machine Learning Research,
pp. 1931–1965. PMLR, 06–09 Jul 2018. URL https://proceedings.mlr.press/v75/
fei18a.html.

Rong Ge, Jason D Lee, and Tengyu Ma. Matrix completion has no spurious local minimum. Advances
in neural information processing systems, 29, 2016.

Rong Ge, Chi Jin, and Yi Zheng. No spurious local minima in nonconvex low rank problems: A
unified geometric analysis. In International Conference on Machine Learning, pp. 1233–1242.
PMLR, 2017.

Zhaoshui He, Shengli Xie, Rafal Zdunek, Guoxu Zhou, and Andrzej Cichocki. Symmetric non-
negative matrix factorization: Algorithms and applications to probabilistic clustering. IEEE
Transactions on Neural Networks, 22(12):2117–2131, 2011. doi: 10.1109/TNN.2011.2172457.

Wen Huang, Meng Wei, Kyle A. Gallivan, and Paul Van Dooren. A riemannian optimization approach
to clustering problems. Journal of Scientific Computing, 103(1):8, Feb 2025. ISSN 1573-7691.
doi: 10.1007/s10915-025-02806-3.

V. Kalofolias and E. Gallopoulos. Computing symmetric nonnegative rank factorizations. Linear
Algebra and its Applications, 436(2):421–435, 2012. ISSN 0024-3795. doi: 10.1016/j.laa.
2011.03.016. URL https://www.sciencedirect.com/science/article/pii/
S0024379511002199. Special Issue devoted to the Applied Linear Algebra Conference (Novi
Sad 2010).

Etienne Klerk. Aspects of Semidefinite Programming. Springer New York, NY, 2006. ISBN
978-0-306-47819-2. doi: 10.1007/b105286.

Da Kuang, Sangwoon Yun, and Haesun Park. SymNMF: nonnegative low-rank approximation of a
similarity matrix for graph clustering. Journal of Global Optimization, 62:545–574, 2015.

Eitan Levin, Joe Kileel, and Nicolas Boumal. The effect of smooth parametrizations on nonconvex
optimization landscapes. Mathematical Programming, 209(1):63–111, 01 2025. ISSN 1436-4646.
doi: 10.1007/s10107-024-02058-3.

Jacob H. Levine, Erin F. Simonds, Sean C. Bendall, Kara L. Davis, El ad D. Amir, Michelle D. Tadmor,
Oren Litvin, Harris G. Fienberg, Astraea Jager, Eli R. Zunder, Rachel Finck, Amanda L. Gedman,
Ina Radtke, James R. Downing, Dana Pe’er, and Garry P. Nolan. Data-driven phenotypic dissection
of aml reveals progenitor-like cells that correlate with prognosis. Cell, 162(1):184–197, 2015.
ISSN 0092-8674. doi: 10.1016/j.cell.2015.05.047. URL https://www.sciencedirect.
com/science/article/pii/S0092867415006376.

11

https://doi.org/10.3150/20-BEJ1251
https://proceedings.mlr.press/v75/fei18a.html
https://proceedings.mlr.press/v75/fei18a.html
https://www.sciencedirect.com/science/article/pii/S0024379511002199
https://www.sciencedirect.com/science/article/pii/S0024379511002199
https://www.sciencedirect.com/science/article/pii/S0092867415006376
https://www.sciencedirect.com/science/article/pii/S0092867415006376

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Stuart Lloyd. Least squares quantization in PCM. IEEE Transactions on Information Theory, 28:
129–137, 1982.

Jan R. Magnus and Heinz Neudecker. Matrix Differential Calculus with Applications in Statistics and
Econometrics. Wiley Series in Probability and Statistics. John Wiley, third edition, 2019. ISBN
9781119541202. doi: 10.1002/9781119541219.

Bamdev Mishra and Rodolphe Sepulchre. Riemannian preconditioning. SIAM Journal on Optimiza-
tion, 26(1):635–660, 2016.

Katta G Murty and Santosh N Kabadi. Some NP-complete problems in quadratic and nonlinear
programming. Mathematical Programming, 39:117–129, 1987.

Andrew Y. Ng, Michael I. Jordan, and Yair Weiss. On Spectral Clustering: Analysis and an algorithm.
In Advances in Neural Information Processing Systems, pp. 849–856. MIT Press, 2001.

Jorge Nocedal and Stephen J. Wright. Numerical Optimization. Springer Series in Operations
Research and Financial Engineering. Springer New York, NY, 2nd edition, 2006. ISBN 978-0-387-
40065-5. doi: 10.1007/978-0-387-40065-5.

Jiming Peng and Yu Wei. Approximating K-means-type clustering via semidefinite programming.
SIAM J. OPTIM, 18(1):186–205, 2007.

Wei Qian, Yuqian Zhang, and Yudong Chen. Structures of spurious local minima in k-means. IEEE
Transactions on Information Theory, 68(1):395–422, 2022. doi: 10.1109/TIT.2021.3122465.

Martin Royer. Adaptive clustering through semidefinite programming. In I. Guyon, U. V. Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), Advances in Neural
Information Processing Systems 30, pp. 1795–1803. Curran Associates, Inc., 2017.

James Townsend, Niklas Koep, and Sebastian Weichwald. Pymanopt: A Python Toolbox for Opti-
mization on Manifolds using Automatic Differentiation. Journal of Machine Learning Research,
17(137):1–5, 2016. URL http://jmlr.org/papers/v17/16-177.html.

Ulrike von Luxburg. A tutorial on spectral clustering. Statistics and Computing, 17(4):395–416,
2007.

Yu-Xiong Wang and Yu-Jin Zhang. Nonnegative matrix factorization: A comprehensive review.
IEEE Transactions on knowledge and data engineering, 25(6):1336–1353, 2012.

Lukas Weber. Clustering benchmark data: 32-dimensional data set from Levine et al.,
2015. URL https://github.com/lmweber/benchmark-data-Levine-32-dim.
GitHub Repository.

Junyu Zhang and Shuzhong Zhang. A cubic regularized newton’s method over riemannian manifolds,
2018. arXiv:1805.05565.

Richard Y Zhang. Nonnegative low-rank matrix recovery can have spurious local minima, 2025.
arXiv:2505.03717.

Yubo Zhuang, Xiaohui Chen, and Yun Yang. Wasserstein K-means for clustering probability
distributions. In Advances in Neural Information Processing Systems, 2022.

Yubo Zhuang, Xiaohui Chen, Yun Yang, and Richard Y. Zhang. Statistically Optimal K-means
Clustering via Nonnegative Low-rank Semidefinite Programming. In The Twelfth International
Conference on Learning Representations, 2024.

12

http://jmlr.org/papers/v17/16-177.html
https://github.com/lmweber/benchmark-data-Levine-32-dim

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A RELATIONSHIP BETWEEN SDP FORMULATIONS OF K-MEANS
CLUSTERING: STANDARD AND INTERIOR POINT VERSIONS (2)

The standard K-means clustering for data in Rd has two formulations in the literature: (i) centroid-
based optimization

min
β1,...,βK∈Rd

n∑
i=1

min
k∈[K]

∥Xi − βk∥22;

and (ii) partition-based optimization

min⊔K
k=1 Gk=[n]

K∑
k=1

∑
i∈Gk

∥Xi − X̄k∥22,

where X̄k = |Gk|−1
∑

j∈Gk
Xj is the empirical centroid of cluster Gk. Formulations (i) and (ii) are

known to be equivalent, cf. Zhuang et al. (2022, Eqn. (1)) or Qian et al. (2022, Appx. A). Using the
parallelogram law in Zhuang et al. (2022, Eqn. (5))∑

i,j∈Gk

∥Xi −Xj∥22 = 2|Gk|
∑
i∈Gk

∥Xi − X̄k∥22,

we may write the partition-based objective function as

min⊔K
k=1 Gk=[n]

K∑
k=1

1

2|Gk|
∑

i,j∈Gk

∥Xi −Xj∥22.

Next, expanding the pairwise squared Euclidean distance and dropping
∑n

i=1∥Xi∥22 (no longer
depending on any partition G1, . . . , GK), we arrive at (1), in the form of maximizing the total
intra-cluster similarity in terms of the Gram matrix {⟨Xi, Xj⟩}ni,j=1.

For general data without a likelihood derivation as in Chen & Yang (2021b), we can replace the
Rd-inner product with any (positive semidefinite) kernel k : X × X → R and consider the ker-
nelized version of K-means clustering that involves data X1, . . . , Xn only via their Gram matrix
{k(Xi, Xj)}ni,j=1. Thus, our manifold formulation of this paper carries over to the general kernel
method setting with possibly nonlinear boundary structure.

Next, we convexify the K-means problem (1) into an SDP. Note that each partition G1, . . . , GK via
one-hot encoding is equivalent to an assignment matrix Hn×K (up to cluster relabel) where the latter
is a binary matrix with exactly one non-zero entry in each row, i.e. Hik = 1 if i ∈ Gk. With this
reparameterization, one can write (1) as a mixed zero-one integer program:

max
H∈{0,1}n×K

{⟨XX⊤, HBH⊤⟩ : H1K = 1n}.

Now, applying the change of variables Zn×n = HBH⊤ and noting that the membership matrix Z
and assignment matrix H are not one-to-one, we relax the K-means problem by preserving the key
properties of Z as the following constraints:

Z ⪰ 0, tr(Z) = K, Z1n = 1n, Z ≥ 0,

which no longer depend on the assignment matrix H . Then, we arrive at the standard SDP relaxation
for K-means clustering, cf. Peng & Wei (2007, Eqn. (13)) or Chen & Yang (2021b, Eqn. (11)):

max
Z∈Rn×n

{⟨XX⊤, Z⟩ : Z ⪰ 0, tr(Z) = K,Z1n = 1n, Z ≥ 0}. (14)

In practice, the elementwise nonnegativity constraint Z ≥ 0 is almost always enforced by a logarith-
mic barrier. This means that we can make (14) more explicitly in the form

max
Z∈Rn×n

⟨XX⊤, Z⟩+ µ

n∑
i,j=1

log(Zi,j)+ : Z ⪰ 0, tr(Z) = K,Z1n = 1n

 , (15)

which is precisely how any practical interior-point solver would solve the original SDP in (14). The
barrier cost is the actual objective used internally, with µ set to reflect the solver’s target accuracy, cf.
Boyd & Vandenberghe (2004, Chapter 11) or Nocedal & Wright (2006, Chapters 14 & 19). In other
words, we take the standard SDP in (14), and make explicit the logarithmic penalty that is already
implicit in how such an SDP is actually solved.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

B INFORMATION-THEORETIC THRESHOLD FOR EXACT RECOVERY

The following theorem is a precise statement of the information-theoretic threshold of Chen & Yang
(2021b).
Theorem 3 (Average-case phase transition for exact recovery). Let α > 0 and

Θmin := min
1≤j<k≤K

∥µj − µk∥

be the minimum centroid separation. Suppose that data X1, . . . , Xn are generated from the Gaussian
mixture model (5) with equal cluster size |G∗

1| = · · · = |G∗
K | = m. Then we have the following

dichotomy.

1. If K ≤ log n/ log log(n) and Θmin ≥ (1 + α)Θ, then there exist constants C1, C2 > 0
depending only on α such that, with probability at least 1 − C1(log n)

−C2 , the SDP (2)
as µ → 0+ (cf. Appendix A for the equivalence of two SDP formulations) has a unique
solution that exactly recovers the true partition G∗

1, . . . , G
∗
K .

2. If K ≤ log n and Θmin ≤ (1− α)Θ, then there exists a constant C3 > 0 depending only
on α such that

inf
Ĝ1,...,ĜK

sup
Ξ(n,K,Θmin)

P(∃k : Ĝk ̸= G∗
k) ≥ 1− C3K

n
,

where the infimum is taken over all possible estimators (Ĝ1, . . . , ĜK) for (G∗
1, . . . , G

∗
K)

and the parameter space is defined as

Ξ(n,K,Θ) :=

{
(G1, . . . , GK , µ1, . . . , µk)

∣∣∣∣ ∥µj − µk∥ ≥ Θ, ∀j, k ∈ [K], j ̸= k

(1− δn)m ≤ |Gk| ≤ (1 + δn)m

}
with δn = C

√
K log(n)/n for some large enough constant C > 0.

C ADDITIONAL DETAILS ON OUR RIEMANNIAN FORMULATION

C.1 EQUIVALENCE BETWEEN RIEMANNIAN OPTIMIZATION AND SQP

Let us consider a constraint optimization problem,

min
u∈Rn

f(u),

s.t. gi(u) = 0 ∀i.
(16)

where LICQ: ∑
i

yi∇gi(u) = 0 ⇐⇒ yi = 0 ∀i.

holds for every u in the constraint set. ThenM := {u ∈ Rn : gi(u) = 0 ∀i} is a smooth embedded
manifold (Boumal, 2023), and we may employ Riemmanian methods to solve (16).

The Riemmanian method solves minu∈M f(u) by solving

min
u̇∈Tu M

f(u) + ⟨grad f(u), u̇⟩+ 1

2
⟨Hess f(u)[u̇], u̇⟩+ L

6
∥u̇∥3 (17)

at each iteration. One can show that this is equivalent to the SQP method that solve (16) by minimizing
the Lagrangian

min
u̇

L(u, y(u)) + ⟨∇uL(u, y(u)), u̇⟩+
1

2
⟨∇2

uuL(u, y(u))[u̇], u̇⟩+
L

6
∥u̇∥3,

s.t. ⟨∇gi(u), u̇⟩ = 0 ∀i.
(18)

where
L(u, y(u)) = f(u) +

∑
i

y
(u)
i gi(u) and y(u) = argmin

y
∥∇uL(u, y)∥.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Hence, our contribution is to efficiently solve the SQP subproblem by exploiting a block-diagonal-
plus-low-rank structure in the Hessian, and the fact that there are only r+r(r+1)/2≪ n constraints.
We provide more details in Appendix C.2 and Appendix C.3.

To establish the equivalence, we first observe that the search space of (17) and (18) are the same.
Indeed, the tangent space TuM = {u̇ : ⟨∇gi(u), u̇⟩ = 0 ∀i}. Next, we write the expressions for the
Riemannian gradient and Hessian (Proposition 3.61 and Corollary 5.16 (Boumal, 2023)):

grad f(u) := Proju
(
∇f(u)

)
, Hess f(u)[u̇] := Proju

(
Du grad f(u)[u̇]

)
, (19)

where Proju(v) := argminu̇∈Tu M∥v− u̇∥, and Du denotes the usual differential operator. We then
obtain

grad f(u) := Proju
(
∇f(u)

)
= ∇f(u) +

∑
i

y
(u)
i ∇gi(u) = ∇uL(u, y(u)). (20)

For the second equality, see Equation (7.75) in Boumal (2023).

For the second order terms, we have ⟨Hess f(u)[u̇], u̇⟩ = ⟨∇2
uuL(u)[u̇], u̇⟩ for all u̇ in TuM by the

facts that

(i) Hess f(u)[u̇] = Proju
(
∇2

uuL(u, y(u))[u̇]
)
.

(ii) ⟨Proju(v), u̇⟩ = ⟨v, u̇⟩.

We obtain fact (i) by (19) and (20):

Hess f(u)[u̇] := Proju
(
Dgrad f(u)[u̇]

)
= Proju

(
∇2f(u)[u̇] +

∑
i

(Du y
(u)
i)∇gi(u)[u̇] +

∑
i

y
(u)
i ∇2gi(u)[u̇]

)
= Proju

(
∇2f(u)[u̇] +

∑
i

y
(u)
i ∇2gi(u)[u̇]

)
= Proju

(
∇2

uuL(u, y(u))[u̇]
)
.

Inside the projection operator, the term
∑

i(Dy
(u)
i)∇gi(u) vanishes because TuM is a linear

subspace, and (TuM)⊥ = span
(
∇gi(u)

)
. Fact (ii) is due to that the projection operator is self-

adjoint and that the projection of any tangent vector is itself. For more on the connection between
SQP and Riemannian Newton method, we refer to Absil et al. (2009); Mishra & Sepulchre (2016).

C.2 GENERAL FORM OF THE RIEMANNIAN GRADIENT AND HESSIAN

Throughout this section, we use a bar over a function defined on the manifoldM to denote its smooth
extension defined on a neighborhood ofM so that the Euclidean gradient and Hessian can be defined
onM. Namely, for f :M→ Rm, we use f̄ : N(M)→ Rm to denote the smooth extension. The
notations grad f and Hess f denote the Riemmanian gradient and Hessian; ∇f̄ and ∇2f̄ denote the
Euclidean gradient and Hessian.

For manifolds that can be defined by

min
U∈M

f(U), M = {U ∈ Rn×r : A(UU⊤) + B(U) = c},

whereA : Rn×n → Rm and B : Rn×r → Rm are linear operators, and c ∈ Rm, its tangent space can
be written as:

TUM = {U̇ ∈ Rn×r : A(U̇U⊤ + UU̇⊤) + B(U̇) = 0}.
We call the function A(UU⊤) + B(U) = c as the defining function ofM. Let us denote

L(U̇) := A(U̇U⊤ + UU̇⊤) + B(U̇). (21)

Immediately, we see that TUM = ker(L), and the adjoint operator

L∗(y) = 2A⊤(y)U + B⊤(y). (22)

The projection operator onto the tangent space is defined to be

ProjU (W) := argmin
U̇∈TU M

∥W − U̇∥.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

We also know that ker(L)⊥ = image(L∗). Thus, by the orthogonal projection theorem, we may see
that

ProjU (W) = W −W⊥ = W − L∗(ỹ), (23)
where ỹ = argminy ∥W−L∗(y)∥ is the solution to the linear system W−L∗(y) ∈ ker(L) = TUM,
and both ProjU (W) and ỹ are unique.

Consequently, the Riemannian gradient and the Hessian matrix-vector product have the following
form:{

grad f(U) := ProjU (∇f̄(U)) = ∇f̄(U) + 2[A⊤(yU)]U + B⊤(yU),
Hess f(U)[U̇] := ProjU

(
Dgrad f(U)[U̇]

)
= ProjU

(
∇2f̄(U)[U̇] + 2[A⊤(yU)]U̇

)
,

(24)

where yU = −ỹ in (23) is the unique Lagrange multipliers

yU = argmin
y∈Rm

∥∥∥∇f(U) + 2[A⊤(y)]U + B⊤(y)
∥∥∥. (25)

For a detailed proof, see Boumal et al. (2020).

C.3 EFFICIENT COMPUTATION OF THE RIEMANNIAN GRADIENT AND HESSIAN

We first write down the Euclidean gradient and Hessian for our objective function, and then explain
how to compute the Riemannian counterparts efficiently. Specifically, we show that yU can be
computed in O(nr + r3) time.

We decompose the objective function as f = f1 + µf2, where

f1(V,Q) := ⟨C, V V ⊤⟩, f2(V,Q) := −
∑
i,j

logφi,j(V,Q).

The Euclidean gradients are respectively: ∇V f1(V,Q) = 2CV, ∇Qf1(V,Q) = 0, and

∇V f2(V,Q) = −U (−1)

[
0r−1

Ir−1

]
Q⊤, ∇Qf2(V,Q) = −

[
1̂⊤
n

V ⊤

]
U (−1),

where U := φ(V,Q) and U (−1) is its element-wise inverse, i.e., [U (−1)]i,j = (Ui,j)
−1. The

Euclidean Hessians are given in vectorized form as

∇2f1(V,Q) =

[
2Ir−1 ⊗ C 0

0 0

]
, ∇2f2(V,Q) =

[
J⊤
V

J⊤
Q

]
D2 [JV JQ]−

[
0 HV Q

HQV 0

]
,

where

D = dvec
(
U (−1)

)
, JV =

(
Q⊤

[
0

Ir−1

]
⊗ In

)
, JQ = Ir ⊗QU⊤,

and
HV Q =

(
[0 Ir−1]⊗ U (−1)

)
K(r,r) = H⊤

QV ,

with dvec
(
U (−1)

)
:= diag[vec(U (−1))], and K(n,r−1),K(r,r) denoting the commutation matrices

(Magnus & Neudecker, 2019, Sec. 3.7). We can then compute the Riemannian gradient and Hessian-
vector-product according to (24) and (25). In the remainder of this section, we show how to efficiently
solve (25).

The manifold we consider, M̃ := V ×Orth(r), can be written as

M̃ =
{
(V,Q) ∈ Rn×(r−1) × Rr×r : 1⊤

n V = 0r−1, tr(V V ⊤) = K − 1, svec(QQ⊤ − Ir) = 0
}
,

where svec denotes the symmetric vectorization operator (Klerk, 2006, Appx. E). Note that there
are no cross terms (V Q⊤ or QV ⊤) in the defining functions ofM. Thus, we can treat the defining
functions with respect to V and Q separately. The corresponding terms are

AV (V V ⊤) :=

[
0r−1

tr(V V ⊤)

]
, BV (V) :=

[
1⊤
n V
0

]
, AQ(QQ⊤) := svec(QQ⊤)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

and

cV :=

[
0r−1

K − 1

]
and cQ := svec(Ir).

Mimicking (21) and (22), we use the notation LV , LQ, L∗
V , and L∗

Q respectively. For any (y1, y2) ∈
Rr−1 × R and y3 ∈ Rr(r+1)/2, we have

L∗
V (y1, y2) = 1ny

⊤
1 + 2y2V and L∗

Q(y3) = 2 smat(y3)Q,

where smat is the inverse of svec, that is, smat(svec(M)) = M for all symmetric matrices M .
Denote GV := ∇V f(V,Q) and GQ := ∇Qf(V,Q). By solving the linear systems

GV − L∗
V (y1, y2) ∈ ker(LV) and GQ − L∗

Q(y3) ∈ ker(LQ),

we obtain the following closed form solutions:

ỹ1 =
1

n
G⊤

V 1n, ỹ2 =
1

2(K − 1)
⟨GV , V ⟩, ỹ3 =

1

4
svec(GQQ

⊤ +QG⊤
Q). (26)

The computation of ỹ1, ỹ2, and ỹ in total requires O(nr + r3) time. Therefore, we can compute
yU = −(ỹ1, ỹ2, ỹ3) with the same cost. Given a Euclidean gradient and a Euclidean Hessian-vector
product, we may write out explicitly the Riemannian gradient:

grad f(V,Q) =

[(
I − 1

n
1n1

⊤
n

)
GV −

1

K − 1
⟨GV , V ⟩V

GQQ
⊤ −QG⊤

Q

2
Q

]
and the Riemannian Hessian-vector product:

Hess f(V,Q)[V̇ , Q̇] =


ProjV

(
∇2f(V,Q)[V̇ , Q̇]V −

1

K − 1
⟨GV , V ⟩V̇

)
ProjQ

(
∇2f(V,Q)[V̇ , Q̇]Q −

GQQ
⊤ +QG⊤

Q

2
Q̇

)

⊤

.

C.4 FEASIBLE INITIAL POINT

In this section, we show that r > K is necessary and sufficient for the existence of an interior point
ofM. The following Lemma 3 shows the necessity of r > K. When r = K, the structure of the
unique U ∈ Rn×K

+ in Lemma 1 can be explicitly written as

U =

[
1√
|G1|

1G1
,

1√
|G2|

1G2
, . . . ,

1√
|GK |

1GK

]
, (27)

where 1Gk
∈ {0, 1}n denotes the binary vector with its support being Gk.

Lemma 3 (Isolated feasibility when r = K). LetM+ =M∩ Rn×K
+ andM′

+ =M′ ∩ Rn×K
+ ,

where Rn×K
+ = {U ∈ Rn×K : U ≥ 0}. Then, we have: (i)M+ =M′

+; (ii) U ∈ M+ if and only
if U is a group assignment matrix defined in (27); (iii) if U is a group assignment matrix, then the
intersection of the tangent space TUM and the cone CU := {V ∈ Rn×K : vij ≥ 0,∀uij = 0} is
trivial, i.e., TUM∩ CU = {0}.

In Lemma 5, we moreover provide a complete analytical construction for an interior point of
M when r > K. Here, we present the construction when n = qr is an integer multiple of r. Let
U0 = (x−y)I+y1n1

⊤
n , where x = r−1(1+

√
(r − 1)(K − 1)) and y = r−1(

√
r − 1−

√
K − 1).

Then U = 1̂q ⊗ U0 is an interior point of M. Next, we show how to compute the pair V , Q
corresponding to the interior point U by SVD. For a given U ∈ Mr, let U = PUΣQ

⊤
U be the

SVD of U . We can find (V,Q) such that U =
[
1̂n V

]
Q by V = sgn(PU (1,1))[PUΣ](:,2:r) and

Q = sgn(PU (1,1))Q
⊤
U .

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

C.5 LIPSCHITZ CONTINUITY OF PENALTY

To apply the guarantees in Section 2.3, we need to take care of the logarithmic penalty in (13)
since it does not have Lipschitz gradients nor Hessians over its whole domain. The standard
workaround, widely used in the analysis of nonlinear interior-point methods, is to observe that all
iterates Uk = φ(Vk, Qk) remain strictly feasible. Consequently, the penalty could be modified by a
Huber-style smoothing, where δ = mini,j,k(Uk)i,j > 0:

r(x) =

log x x ≥ δ

log δ +
(x− δ)

δ
− (x− δ)2

2δ2
+

(x− δ)3

2δ3
x < δ

The function r(x) is both concave and has Lipschitz Hessians. Therefore, the guarantees in Section 2.3
apply. The smoothing is only needed for theoretical purposes. In practice, we apply the Riemannian
algorithms directly to log x, and not to r(x). Since we have assumed that all queries satisfy x ≥ δ,
the actual behavior remains consistent with the smoothed model.

D PROOFS

Proof of Lemma 1. Note that the membership matrix Z associated to a partition G1, . . . , GK contains
a diagonal principal submatrix of rank K. The lemma follows from Theorem 4 in Kalofolias &
Gallopoulos (2012).

Proof of Lemma 2. Let N denote the null space basis of A, such that AN = 0 and N⊤N = I .
Then, we have λmin = λmin(N

⊤HN) and p(λ) = Np̂(λ) where (N⊤HN + λI)p̂(λ) = −N⊤g.
Then, λ > −λmin implies that N⊤HN + λI ≻ 0, so p(λ) = −N(N⊤HN + λI)−1N⊤g is always
well-defined. Moreover, ∥p(λ)∥ = ∥p̂(λ)∥ is monotonously decreasing because all the eigenvalues
of N⊤HN + λI are strictly positive and increasing with λ.

Proof of Lemma 3. To prove the first statement, note that the implication

U ∈ Rn×K
≥0 ∧ UU⊤1n = 1n ∧ U⊤U = IK =⇒ U ∈ Rn×K

≥0 ∧ UU⊤1n = 1n ∧ ∥U∥2F = K

is straightforward. To see the converse, note that UU⊤ is a (doubly) stochastic matrix, tr(UU⊤) = K,
and rank(UU⊤) = K, thus all the K eigenvalues of UU⊤ are 1, i.e. U ∈ St(n,K).

For the second statement, it is trivial that

U =

[
1√
|G1|

1G1
. . .

1√
|GK |

1GK

]
∧

K⊔
k=1

Gk = [n]

=⇒ U ∈ Rn×K
≥0 ∧ UU⊤1n = 1n ∧ U⊤U = IK .

The converse is also true. Let us denote Gk := supp(uk). Observe that Gi ∩Gj = ϕ for all i ̸= j
since U ≥ 0 and u⊤

i uj = 0 for all i ̸= j. Then UU⊤1n = 1n implies uku
⊤
k 1Gk

= 1Gk
and⊔K

k=1 Gk = [n]. Since ∥uk∥ = 1, we have that uk = 1Gk
/
√
|Gk|.

Finally, we will prove the third statement. Let U be a group assignment matrix as defined by (27).
Note that for all V ∈ TUM ∩ CU , V must satisfy (UV ⊤ + V U⊤)1n = 0n, ⟨U, V ⟩ = 0, and
vi,j ≥ 0,∀ui,j = 0. Define A : [n] → [K] to be the group assigning function, i.e. A(i) =

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

∑K
k=1 kI{ui,k ̸= 0}, then

UV ⊤ =

[
1√
|GA(i)|

vj,A(i)

]

=



1√
|GA(1)|

v1,A(1)
1√
|GA(1)|

v2,A(1) · · · 1√
|GA(1)|

vn,A(1)

1√
|GA(2)|

v1,A(2)

. . .
...

...
. . .

...
1√
|GA(n)|

v1,A(n) · · · · · · 1√
|GA(n)|

vn,A(n)


.

Observe that

(i) A(i) = A(j) ⇐⇒ i ∈ GA(j) ⇐⇒ j ∈ GA(i)

(ii) i /∈ GA(j) ⇐⇒ (ui,A(j) = 0 ∧ uj,A(i) = 0) =⇒ (vi,A(j) ≥ 0 ∧ vj,A(i) ≥ 0)

(iii) ⟨U, V ⟩ = 0 ⇐⇒ ∀j ∈ [n],
∑

i∈GA(j)
vi,A(j) = 0 .

Denote w := (UV ⊤ + V U⊤)1, then

wj =
∑
i∈[n]

(
1√
|GA(j)|

vi,A(j) +
1√
|GA(i)|

vj,A(i)

)

=
∑

i∈GA(j)

(
1√
|GA(j)|

vi,A(j) +
1√
|GA(i)|

vj,A(i)

)

+
∑

i/∈GA(j)

(
1√
|GA(j)|

vi,A(j) +
1√
|GA(i)|

vj,A(i)

)
.

By (i) and (iii), we know that∑
i∈GA(j)

(
1√
|GA(j)|

vi,A(j) +
1√
|GA(i)|

vj,A(i)

)
=
√
|GA(j)|vj,A(j).

By (ii), we know that ∑
i/∈GA(j)

(
1√
|GA(j)|

vi,A(j) +
1√
|GA(i)|

vj,A(i)

)
≥ 0.

Thus we can write
wj =

√∣∣GA(j)

∣∣vj,A(j) +Rj for some Rj ≥ 0.

Next, we use proof by contradiction. Suppose there exists V ∈ TUM∩ CU such that V ̸= 0, then
there must be both positive and negative entries in V to satisfy ⟨U, V ⟩ = 0. This implies that there
exists j1 ∈ [n] such that vj1,A(j1) < 0 since vj,A(j)’s are the only entries that can take negative value.
To satisfy ⟨U, V ⟩ = 0, there must exist j2 ∈ GA(j1) such that vj2,A(j1) > 0. Then for such j2,

wj2 =
√∣∣GA(j2)

∣∣vj2,A(j2) +Rj2 =
√∣∣GA(j2)

∣∣vj2,A(j1) +Rj2 > 0.

This contradicts (UV ⊤ + V U⊤)1 = 0. Therefore, TUM∩ CU = {0}.
Lemma 4. If K ≥ 2, then the set M defined in (12) satisfies linear independence constraint
qualification (LICQ) for all U ∈ Rn×r, and is therefore a smooth submanifold of Rn×r.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Proof of Lemma 4. Following Boumal et al. (2020), the set M = {U ∈ Rn×r : ⟨Ai, UU⊤⟩ =
bi for all i} is a smooth submanifold of Rn×r if LICQ holds for all U ∈M, i.e., that

∑
yiAiU = 0

if and only y = 0. For the definition in (12), we can verify that∥∥∥∑ yiAiU
∥∥∥2
F
= ∥(1y⊤ + y1⊤ + y0I)U∥2F
= ∥(1y⊤ + y1⊤)U∥2F + 2⟨(1y⊤ + y1⊤)U, y0U⟩+ y20∥U∥2F
= [ny⊤(I + UU⊤)y + 2(1⊤y)2] + 4y0(1

⊤y) + y20K

≥ [2(1⊤y)2 + 4y0(1
⊤y) + y20] + n∥y∥2 + (K − 1)y20

= (21⊤y + y0)
2 + n∥y∥2 + (K − 1)y20

≥ ∥y∥2 + y20 .

The third line is because ⟨(1y⊤ + y1⊤)U,U⟩ = 2⟨y, UU⊤1⟩ = 2(y⊤1) and∥∥(1y⊤ + y1⊤)U
∥∥2
F
= tr[(1y⊤ + y1⊤)UU⊤(1y⊤ + y1⊤)]

= tr[1y⊤UU⊤y1⊤ + y1⊤UU⊤1y⊤ + 2 · 1y⊤UU⊤1y⊤]

= tr[1y⊤UU⊤y1⊤ + y1⊤1y⊤ + 2 · 1y⊤1y⊤]
= ny⊤UUy + ny⊤y + 2(1⊤y)2.

Lemma 5 (Interior point construction forMr). Given a K ∈ N, for any r such that r > K, for
large enough n, we have the following two cases:
Case 1: n ≡ 0 (mod r)
Denote q := n/r, let U0 = (x− y)I + y11⊤, where

x =
1

r

(
1 +

√
(r − 1)(K − 1)

)
, y =

1

r

(√
r − 1−

√
K − 1

)
.

Then U = (1/
√
q)1q ⊗ U0 is an interior point ofMr.

Case 2: n ̸≡ 0 (mod r)
Let us denote q := ⌊n/r⌋ and p := n mod r. Construct the block matrix B ∈ Rr×r:

B =

[
B1,1 B1,2

B2,1 B2,2

]
,

where

B1,1 = (x− y)I + y1p1
⊤
p , B1,2 = z1p1

⊤
r−p,

B2,2 = (w − z)I + z1r−p1
⊤
r−p, B2,1 = y1r−p1

⊤
p ,

The coefficients x, y, z and w depends on n, K and r. They will be specified in the proof. Then

U = [In 0] (1q ⊗B)

is an interior point ofMr.

Proof of Lemma 5. For a general large enough n, n is either divisible or nondivisible by r. We
present two different constructions of an interior point ofMr corresponding to the two cases.
Case 1: n ≡ 0 (mod r)
We first construct a U0 ∈ Rr×r such that U0U

⊤
0 1r = 1r, and ∥U0∥2F = K. Using the ansatz

U0 = (x− y)I + y11⊤, where x, y > 0, we can find x and y by solving the system:{
x+ (r − 1)y = 1 (U0U

⊤
0 1r = 1r)

x2 + (r − 1)y2 = K/r (∥U0∥2F = K)
.

The first equation gives x = 1− (r − 1)y. By substituting into the second equation, we obtain the
following quadratic equation of y:

r(r − 1)y2 − 2(r − 1)y + 1− K

r
= 0.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

By the quadratic formula and x, y > 0, we have the following solution
x = 1− (r − 1)y =

1

r
(1 +

√
(r − 1)(K − 1)),

y =
r − 1−

√
(r − 1)(K − 1)

r(r − 1)
=

1

r
(
√
r − 1−

√
K − 1).

Note that if r = K, we can still solve the quadratic equation, but without an all positive solution.
Denote q := n/r, then U = (1/

√
q)1q ⊗ U0 is an interior point ofMr.

Case 2: n ̸≡ 0 (mod r)
Let us denote q := ⌊n/r⌋ and p := n mod r. We consider the ansatz

U = [In 0] (1q ⊗B) for some block matrix B =

[
B1,1 B1,2

B2,1 B2,2

]
∈ Rr×r,

where

B1,1 = (x− y)I + y1p1
⊤
p , B1,2 = z1p1

⊤
r−p,

B2,2 = (w − z)I + z1r−p1
⊤
r−p, B2,1 = y1r−p1

⊤
p .

Additional to the constraints ∥U∥2F = K, and UU⊤ = 1n, we assume that U1r = cr1n, U⊤1n =
cc1r, and crcc = 1 for some cr and cc, which are sufficient for UU⊤ = 1n. Then we can find x, y,
z, and w by solving the system:

x+ (p− 1)y + (r − p)z = py + w + (r − p− 1)z,

(q + 1)x+ q(r − 1)y + (p− 1)y = qw + q(r − 1)z + pz,

(py + w + (r − p− 1)z)(qw + q(r − 1)z + pz) = 1,

(q + 1)p(x2 + (p− 1)y2 + (r − p)z2) + q(r − p)(py2 + w2 + (r − p− 1)z2) = K.

(28)

The four equations correspond to the following constraints, respectively: U1r = cr1n, U⊤1n = cc1r,
crcc = 1, and ∥U0∥2F = K. From the first two equations, we can express x and y in terms of z and
w (note that n = qr + p):

x =

(
1− 1

n

)
w +

1

n
z, y =

(
1 +

1

n

)
z − 1

n
w. (29)

By substituting (29) to the third and fourth equations of (28), we are left with a system of quadratic
equations of two variables: {

a1z
2 + a2zw + a3w

2 + c1 = 0,

b1z
2 + b2zw + b3w

2 + c2 = 0,
(30)

where

a1 = nr − qr + p− p(2q + 1)/n, a2 = 2p(1 + 2q − n)/n,

a3 = n− p(2q + 1)/n, b1 = (r + p/n− 1)(n− q),

b2 = (1− p/n)(n− q) + q(r + p/n− 1), b3 = q(1− p/n),

c1 = −K, c2 = −1.
Now our goal is to solve (30). By multiplying the first equation with b1 and the second one with a1
and subtraction, we can express z in terms of w:

z = aw +
b

w
with a =

a3b1 − a1b3
a1b2 − a2b1

, b =
c1b1 − a1c2
a1b2 − a2b1

. (31)

Suppose that w ̸= 0, we substitute (31) into the second equation and multiply by w2. The result is a
quintic equation:

(b1a
2 + b2a+ b3)w

4 + (2abb1 + bb2 + c2)w
2 + b2b1 = 0. (32)

By solving (32) with z = aw + b/w > 0, we obtain

w =

√
−(2abb1 + bb2 + c2) +

√
(2abb1 + bb2 + c2)2 − 4(a2b1 + ab2 + b3)b2b1
2(a2b1 + ab2 + b3)

. (33)

The proof is completed by combining (29), (31), and (33).

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Proof of Theorem 2. For “⊇,” if U =
[
1̂n V

]
Q, then UU⊤ = (1/n)1n1

⊤
n + V V ⊤ and hence

UU⊤1 = 1 and tr(UU⊤) = K respectively, because 1⊤
n V = 0 and tr(V V ⊤) = K−1. For “⊆,” let

U = PΣQ denote the singular value decomposition with P⊤P = QQ⊤ = Ir. Since UU⊤1n = 1n,
the decomposition can be chosen so that PΣe1 = (1/

√
n)1n = 1̂n. So if V = PΣ[e2, . . . , er], then

1⊤
n V = e⊤1 [e2, . . . , er] = 0 and ∥V ∥2 = ∥U∥2 − ∥PΣe1∥2 = K − 1.

In the final part, we first construct the inner approximation S of the tangent space

T(V,Q)M̃ = {(V̇ , Q̇) : 1⊤
n V̇ = 0, ⟨V, V̇ ⟩ = 0, QQ̇⊤ + Q̇Q⊤ = 0}

⊇
{
(V̇ , Q̇) : 1⊤

n V̇ = 0, ⟨V, V̇ ⟩ = 0, Q̇Q⊤ =

[
0 −h⊤

h 0

]}
= S.

We observe that [
1̂n V

]
Q̇ =

[
1̂n V

] [0 −h⊤

h 0

]
Q =

[
V h 1̂nh

⊤
]
Q

and therefore the Jacobian operator is injective for all (V̇ , Q̇) ∈ S:∥∥∥Dφ(V,Q)[V̇ , Q̇]
∥∥∥2 =

∥∥∥[0 V̇
]
Q+

[
1̂n V

]
Q̇
∥∥∥2

=
∥∥[0 V̇

]∥∥2 + ∥∥[V h 1̂nh
⊤
]∥∥2 ≥ ∥V̇ ∥2 + ∥h∥2 ≥ 1√

2

∥∥∥(V̇ , Q̇)
∥∥∥2

where we used the fact that 1⊤
n V̇ = 0. Hence, the Jacobian operator is surjective, as claimed:

dim
(
image(Dφ(V,Q))

)
≥ dim(S) = n(r − 1)− 1 = dim(TUM).

E EFFICIENT IMPLEMENTATION AND COST OF BISECTION SEARCH

To implement the proposed method, we vectorize the input as u =
[
vec(V ⊤) vec(Q)

]⊤
. The cost

function we used is
f(u) = −∥X⊤V ∥2 − µ1⊤

n log
(
φ(V,Q)

)
1n,

and the constraint functions are defined as

g1(u) = ∥V ∥2 − (K − 1), g2(u) = 1⊤
n V, g3(u) = svec(Q⊤Q− Ir).

The Jacobian J and Hessian H are computed analytically, as in Appendix C.3, in order to exploit
their sparsity.

For convenience, we list some of the derivatives in this section. The (Euclidean) Jacobian of the
constraints can be written in block form as

J =

[
J1v 0
J2v 0
0 J3q

]
,

where

J1v = 2vec(V ⊤), J2v = (Ir−1 ⊗ 1⊤
n)K

(r−1,n), J3q = 2Ψ⊤
r (Ir ⊗Q⊤),

with Ψr being the orthogonal basis matrix of size-r symmetric matrices.

Computing the second-order derivatives of g1, g2 are trivial, since J1v is linear in V and J2v is
constant. The second-order derivatives of g3 can be computed explicitly by noticing that the entries
of svec(Q⊤Q) can be expressed as inner products with bases outer products, i.e.

⟨Ei,j , Q
⊤Q⟩ = vec(Q)⊤(Ei,j ⊗ Ir) vec(Q),

where

Ei,j =


eie

⊤
j i = j,

eie
⊤
j + eje

⊤
i√

2
i ̸= j.

.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

It follows then the second-order derivative w.r.t. each entry is given by 2(Ei,j ⊗ Ir).

Collecting results, we have

H =

(
Hvv −BB⊤ Hvq

Hqv Hqq

)
,

with

B =
√
2(X ⊗ Ir−1) (34)

Hvv = µK(n,r−1)(Q̂⊗ In) dvec
(
U (−2)

)
(Q̂⊤ ⊗ In)K

(r−1,n) + 2ỹ2I, (35)

Hqq = µ(Ir ⊗ V̂ ⊤) dvec
(
U (−2)

)
(Ir ⊗ V̂) + 2

(
Ir ⊗ smat(ỹ3)

)
, (36)

and
Hvq = −µ(U (−1) ⊗ [0r−1 Ir−1]) + µ(In ⊗ Q̂) dvec

(
U (−2)

)
(Ir ⊗ V̂) = H⊤

qv, (37)

where Q̂ := [0r−1 Ir−1]Q, V̂ :=
[
1̂n V

]
, and ỹ2, ỹ3 follow (26).

To solve the saddle point problem with bisection search, we solve the linear system Hvv + λI −BB⊤ Hvq J⊤
v

Hqv Hqq + λI Jq
Jv Jq 0

 pv
pq
r

 =

 −gv−gq
0

 .

Repartition along the lines shown to yield the following[
K11 K12

K21 K22

] [
x1

x2

]
=

[
b1
b2

]
with dimensions x1, b1 ∈ Rn(r−1) and x2, b2 ∈ Rr2+m. Critically, we observe that the block
K11, which corresponds to the Riemannian Hessian with respect to the v variable, has the form
K11 = D11 −BB⊤, where D11 = Hvv + λI is block-diagonal, with n blocks of r − 1, and B has
at most dr columns. Therefore, we instead solve D11 K12 B

K21 K22 0
B⊤ 0 I

 v̇
q̇
z

 =

 b1
b2
0

 .

First, it costs n(r − 1)3 = O(nr3) time to invert D11. Afterwards, forming and solving the size
m+ r2 + rd Schur complement problem:(

L22 − L⊤
12D

−1
11 L12

) [q̇
z

]
=

[
b2
0

]
− L⊤

12D
−1
11 b1, (38)

where

L12 := [K21 B] L22 :=

[
K22 0
0 I

]
,

cost O(nr3(d+ r) + r6 + r3d3) time. In the end, we substitute to recover

v̇ = D−1
11

(
b1 − L12

[
q̇
z

])
in O(nr3(d+ r)) time, and apply retractions to v̇ and q̇. In total, it takes O(nr3(d+ r) + r6 + r3d3)
time to solve the system, which is indeed n · poly(r, d). Putting pieces together, a pseudo-code of
our Riemannian method is shown in Algorithm 1.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

F ADDITIONAL NUMERICAL DETAILS

We collect additional numerical results in this section.

Hardware information. All experiments in this work were conducted on a machine equipped with
a single Intel Core i9-14900K CPU and 32 GB of RAM.

License of assets. The MANOPT solver is distributed under the terms of the GPLv3 license; the
PYMANOPT solver is released under the 3-Clause BSD license; the CyTOF dataset is the work of
Levine et al. (2015), cleaned and distributed by Weber (2015) under the MIT license.

Dataset visualization. Figure 7 and Figure 8 display the first two principal components of the
GMM dataset and CyTOF dataset, respectively.

−5 0 5
−7.5

−5.0

−2.5

0.0

2.5

5.0

7.5

γ = 2

−5.0 −2.5 0.0 2.5 5.0
−6

−4

−2

0

2

4

γ = 0.5

Figure 7: Visualizing the effect of the separation parameter in GMMs. As γ decreases, the clusters
become increasingly difficult to distinguish.

−5.0 −2.5 0.0 2.5

−2

0

2

4

6

Figure 8: Visualization of the CyTOF dataset. Two clusters exhibit significant overlap, implying the
difficulty of clustering.

Hyperparameters tuning. In the various numerical experiments, we observed that a smaller value
of µ led to more accurate solutions but at the cost of slower convergence. Therefore, we recommend

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

selecting the largest possible µ that does not trigger the phase transition. A good heuristic we found is
to choose such that the initial penalty term µf2 remains less than 20 times the main term f1 in the loss
function. The onset of phase transition is also easy to notice, as the algorithm will quickly stagnate
and terminate in just a few iterations. If higher accuracy is desired, one can reduce µ gradually, using
the solution obtained with a larger µ as initialization. This warm-start strategy significantly speeds up
convergence compared to using a small from the start.

The other hyperparameters in Algorithm 1 primarily influence the speed of the inner optimization.
The initial multiplier λ affects only the number of inner steps required during the first iteration.
We recommend doing a simple trial run with only two iterations; the resulting optimization history
typically offers a reliable guide for choosing an appropriate initial scale for λ. For the other two
parameters, we suggest setting κ− slightly smaller than κ+. Empirically, we found κ− = 1.1 and
κ+ = 1.3 work well.

Robustness to initialization. As illustrated by Figure 1, our method is robust to initialization, all
50 trials successfully converged to second-order optimal solutions. Although the solutions differ
(Figure 9), their corresponding membership matrices Z are close to each other (Figure 10), and yield
identical clustering result. Moreover, the minimum eigenvalues upon convergence form distinct
clusters that align with clusters in the recovered membership matrix Z, as shown in Figure 10. These
local critical points consistently produce perfect clustering, indicating that they remain close to the
global optimum.

0 1 2 3 4

0
2

4
6

8
10

12
14

16
18

20
22

24

0 1 2 3 4 0 1 2 3 4 0 1 2 3 4
0.00

0.02

0.04

0.06

0.08

0.10

Figure 9: Difference between the solutions. First 25 rows of selected solution U obtained from the
global optimality experiment described in Section 4.

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48

0
3

6
9

12
15

18
21

24
27

30
33

36
39

42
45

48

Frobenius Distance

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

Figure 10: Similarities of the membership matrices. Frobenius distances between the membership
matrices Z obtained from the global optimality experiment in Section 4, sorted according to their
corresponding minimum Hessian eigenvalues.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Comparison with another Riemannian clustering method. Inexact Accelerated Manifold Proxi-
mal Gradient Method (I-AManPG) by Huang et al. (2025) is a recent first-order Riemannian method
for solving general problems of the form

min
X

f(X) + λ∥X∥1,

s.t. X ∈ Fv := {X : X⊤X = I, v ∈ span(X)}.
(39)

We evaluated its performance on the clustering problem using the on the CyTOF dataset with 50
repetitions (same settings as in Figure 2). The results are shown in Figure 11. While I-AManPG is
generally fast and accurate, its median error is higher than that of our methods. In particular, several
runs of I-AManPG exhibited large errors, indicating convergence failures.

Ours I-AManPG

0.0

0.1

0.2

0.3

0.4

Mis-clustering Error

Figure 11: Comparison with I-AManPG using CyTOF. Performance of I-AManPG is comparable
to other clustering methods. However, it suffers from convergence failures from time to time and
requires careful tuning. Our method again demonstrated its accuracy and stability.

Additional convergence plots. Figure 12, Figure 13, and Figure 14 illustrate the convergence of
our method on GMM with different parameters and on the CyTOF dataset, demonstrating its stability
across different datasets.

0 100 200 300
Iterations

10−1

101

103

Global Suboptimality

0 100 200 300
Iterations

10−3

100

103

106

Gradient Norm

0 100 200 300
Iterations

−6000

−4000

−2000

0

2000

Minimum Hessian Eigenvalue

Figure 12: Convergence of our method on synthetic Gaussian mixture data with perfect separation
(n = 500, γ = 1.0). The loss value steadily decreases over iterations and converges rapidly near the
optimal point. This example achieved a perfect final clustering result in the end.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

0 100 200
Iterations

10−3

10−1

101

103

Global Suboptimality

0 100 200
Iterations

10−5

10−2

101

104
Gradient Norm

0 100 200
Iterations

−2000

−1500

−1000

−500

0

500
Minimum Hessian Eigenvalue

Figure 13: Convergence of our method on synthetic Gaussian mixture data with low separation
(n = 500, γ = 0.25).

0 100 200
Iterations

10−9

10−5

10−1

103

Global Suboptimality

0 100 200
Iterations

10−3

10−1

101

103

105
Gradient Norm

0 100 200
Iterations

−6000

−4000

−2000

0

Minimum Hessian Eigenvalue

Figure 14: Convergence behavior of our method on real world CyTOF dataset.

G PSEUDOCODE

This section presents the pseudocode of our implementation. For the derivation, see Appendix E.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Algorithm 1 Riemannian Second-order Method

Require: Data X ,
Initial point (V0, Q0),
Initial multiplier λ,
Increment/decrement factors (κ+, κ−),
log-barrier penalty µ,
Max number of outer/inner iterations T and B.

1: (V,Q)← (V0, Q0)
2: for i = 1, . . . , T do
3: Vectorize input u← [vec(V ⊤), vec(Q)]⊤.
4: Compute current loss L = f(u).
5: Compute Riemannian gradient d← ∇f(u) and Jacobian J ← D g(u).
6: Compute Riemannian Hessians Hf ← ∇2f(u) and Hi ← D2 gi(u).
7: Solve yu = miny∥d+ Jy∥ by least-squares.
8: Compute ∇uL(u, yu): G← d+ Jyx
9: Compute ∇2

uL(u, yu): H ← Hf +
∑3

i=1(yu)iHi

10: for j = 1, . . . , B do
11: v̇, q̇ ← SOLVEINNER(H,G, J, λ)

12: Reconstruct V̇ , Q̇ from vector v̇, q̇
13: (V,Q)← Retr(V,Q)(V̇ , Q̇)
14: Compute new loss L′ from (V,Q)
15: if L > L′ then
16: λ← λ/κ−
17: break
18: else
19: λ← λ · κ+

20: output (V,Q)
21:
22: function SOLVEINNER(H,G, J, λ)
23: Adding λI to the V and Q blocks of H
24: Forming block matrices as in (38)
25: S ← L22 − L⊤

12D
−1
11 L12

26:

[
q̇
z

]
←
[
b2
0

]
− L⊤

12D
−1
11 b1

27: v̇ ← D−1
11

(
b1 − L12

[
q̇
z

])
28: return v̇, q̇

28

	Introduction
	Contributions: Cheap and fast convergence to second-order critical points
	Related work

	Background
	SDP relaxation of K-means
	Critical points in constrained optimization
	Second-order Riemannian optimization

	Formulation and solution of K-means as manifold optimization
	Numerical results
	Relationship between SDP Formulations of K-means Clustering: Standard and Interior Point Versions (2)
	Information-theoretic Threshold for Exact Recovery
	Additional Details on our Riemannian Formulation
	Equivalence between Riemannian Optimization and SQP
	General form of the Riemannian gradient and Hessian
	Efficient computation of the Riemannian gradient and Hessian
	Feasible initial point
	Lipschitz continuity of penalty

	Proofs
	Efficient Implementation and Cost of Bisection Search
	Additional Numerical Details
	Pseudocode

