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ABSTRACT

Clustering is a hard discrete optimization problem. Nonconvex approaches such as
low-rank semidefinite programming (SDP) have recently demonstrated promising
statistical and local algorithmic guarantees for cluster recovery. Due to the combi-
natorial structure of the K -means clustering problem, current relaxation algorithms
struggle to balance their constraint feasibility and objective optimality, presenting
tremendous challenges in computing the second-order critical points with rigorous
guarantees. In this paper, we provide a new formulation of the K-means prob-
lem as a smooth unconstrained optimization over a submanifold and characterize
its Riemannian structures to allow it to be solved using a second-order cubic-
regularized Riemannian Newton algorithm. By factorizing the K -means manifold
into a product manifold, we show how each Newton subproblem can be solved
in linear time. Our numerical experiments show that the proposed method con-
verges significantly faster than the state-of-the-art first-order nonnegative low-rank
factorization method, while achieving similarly optimal statistical accuracy.

1 INTRODUCTION

Clustering is a cornerstone of modern unsupervised learning, where the goal is to group similar
observations into meaningful clusters. The problem is commonly approached through the K -means

formulation, which seeks to partition n data points X1, X5, ..., X, € R?into K disjoint groups
G4, ..., Gk by maximizing the total intra-cluster similarity:
Ko K
max Z (X X;) |_| = 1)
G1,...,.Gk | k| ‘
k=1 ,j€EGY k=1

Here, the inner product (X;, X;) = X, X is used to measure pairwise similarity, |G}, | denotes the
cardinality of Gy, and U denotes disjoint union. Most common algorithms for K -means clustering,
including Lloyd’s algorithm (Lloyd) |1982) and spectral clustering (Ng et al., |2001; [von Luxburg,
2007)), can be understood as heuristics for finding “good enough” solutions to the discrete optimization
(I). These methods do not come with any guarantees of local optimality, let alone global optimality.
Indeed, it is commonly argued that globally solving (1) is NP-hard in the worst-case (Dasgupta, |2007;
Aloise et al.||2009), and would lead to statistically meaningless clustering that overfits the data.

Yet in average-case regimes, globally solving the K -means optimization problem (I]) can be both
computationally tractable as well as statistically optimal. In particular, when the data X, ..., X,
arise from a Gaussian mixture model with sufficiently well-separated components, |Chen & Yang
(2021b)) showed that a well-known semidefinite programming (SDP) relaxation of [Peng & Wei|(2007),
written

T 0,7 : n — dn = =
Zg%%n{wx ,Z>+ui§j:10g(zm)+ Z1, = 1., tr(Z) = K, Z_o}, @)

globally optimal clusters G7, ..., G for (1) in the limit 4 — 07 in polynomial time, that in turn
recover the ground truth partitions. Note that the formulation (2)) is equivalent to the standard K-
means SDP formulation with the elementwise nonnegativity constraint Z; ; > 0 in Peng & Wel
(2007); |Chen & Yang| (2021b) (see Appendix [A| for more discussions). Moreover, this recovery

where X = [Xi,...,X,,]" and log(Zi’j)i:: log(max{Z; ;,0}), is guaranteed to compute the
1)
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occurs as soon as the separation between the clusters is large enough for it to be possible. Put in
another way, if solving does not recover the ground truth partitions, then the clusters are too
closely spaced in a way that makes recovery inherently impossible in an information-theoretic limit
sense, see Section 2.1] for more details.

Unfortunately, the SDP (2) is not a practical means of solving (1) to global optimality, due to its need
to optimize over an n. X n matrix to cluster n samples. Following Burer & Monteiro| (2003)); Boumal
et al. (2020), a natural alternative is to factor Z = UU " into its n. x r factor matrix U for rank
parameter r > K, impose the logarithmic penalty over U instead of Z, and then directly optimize
over U:

max {(XXT, UUT) + > log(Uig)+ : UUTL, = 1, r(UUT) = K}. 3)
UeRnxr o

This reduces the number of variables and constraints from O(n?) down to O(n), but at the cost

of giving up the convexity of the SDP. In general, we can at best hope to compute critical points,

which may be spurious local minima or saddle points. The core motivation for our approach, and the

impetus for this paper, is the surprising empirical observation that all second-order critical points are

global optima in this setting; this is formalized as the following assumption.

Assumption 1 (Benign nonconvexity). In the average-case regime when (2)) globally solves (), all
approximate second-order critical points in (B) are within a neighborhood of a global optimum.

The phenomenon of benign nonconvexity is well-documented in the unconstrained version—
optimizing over semidefinite Z > 0 by factorizing Z = UU " —dating back to the early works
of Burer & Monteiro| (2003). In contrast, it is rarely seen in our nonnegative variant, which adds the
elementwise constraint /' > 0 to enforce doubly nonnegativity in Z = UU . Despite a superficial
similarity, the two formulations differ in fundamental ways, with the nonnegative case known to admit
numerous spurious critical points; see Section[I.2]for some classic and recent examples. Nevertheless,
we consistently observe that all second-order critical points correspond to global optima, that in turn
successfully recover the optimal clusters.

1.1 CONTRIBUTIONS: CHEAP AND FAST CONVERGENCE TO SECOND-ORDER CRITICAL
POINTS

Under Assumption [I] globally solving the K -means optimization problem reduces to that of
computing a second-order critical point for (3). Unfortunately, in the constrained nonconvex setting,
there is no general-purpose algorithm that is rigorously guaranteed to compute a second-order
critical point. The core issue is the need to maintain feasibility, i.e. for each iterate U to satisfy the
nonconvex constraints UU ' 1,, = 1,, and tr(UU ") = K, while making progress towards optimality.
General-purpose solvers like fmincon (Byrd et al.|[2000) and knitro (Byrd et al.l 2006) promise
convergence only to critical points of an underlying merit function, which may be infeasible for the
original problem. Augmented Lagrangian methods guarantee convergence only to first-order critical
points, and only when starting within a local neighborhood (Zhuang et al.| 2024). This is a significant
departure from the unconstrained nonconvex setting, where a diverse range of algorithms—both cheap
first-order algorithms like gradient descent, as well as rapidly-converging second-order methods like
trust-region Newton’s method—globally converge to a second-order critical point starting from any
initial point.

Our first contribution is to present an interpretation of (3) as a smooth unconstrained optimization
over a Riemannian manifold. This allows the immediate benefit of extending the wide array of
unconstrained optimization algorithms to the constrained setting, as well as their accompanying
guarantees for first- and second-order optimality. For the first time in the context of K -means, we
open the possibility to guarantee global convergence to first- and second-order optimality.

Our second contribution is to show that second-order Riemannian algorithms can be implemented
with linear per-iteration costs with respect to the number of samples n. In other words, of all practical
algorithms to compute second-order critical points, we show that the one with the best iteration
complexity (second-order methods) can be improved to have the same per-iteration costs as first-order
methods. Our final algorithm computes € second-order points in n - € 3/2 . poly(r, d) time.
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1.2  RELATED WORK

Benign nonconvexity in the unconstrained Burer—Monteiro factorization Z = UU ' has been
empirically observed since the early 2000s (Burer & Monteiro, 2003), and widely exploited in
nonconvex low-rank algorithms in machine learning. In the past decade, theory has been developed to
explain this phenomenon under some specialized settings (Bhojanapalli et al., [2016} |Ge et al., 2016;
Bandeira et al., 2016} [Boumal et al., [2016;|Ge et al.,|2017). Unfortunately, these guarantees tend to
be conservative in the number of samples or the level of noise; they capture the general phenomenon
but cannot rigorously explain what is broadly observed in practice.

In contrast, the nonnegative Burer—Monteiro factorization Z = UU T with U > 0 is widely
understood not to exhibit benign nonconvexity. To give two simple examples, the functions
f(U) = (SU,U) and f(U) = |[UUT — U,U, ||% are easily confirmed to exhibit benign non-
convexity over U € R™*". But imposing U > 0 causes spurious local minima to proliferate; this
is unsurprising because both problems, namely copositive testing (Murty & Kabadil [1987) and
complete positive testing (Dickinson & Gijben, [2014), are well-known to be NP-hard. For a more
sophisticated example, the function f(U) = [[A(UU " — U,U,")|? is well known to exhibit benign
nonconvexity when the linear operator A4 : S™(R) — R™ satisfies the restricted isometry property
(RIP) (Bhojanapalli et al., 2016). In this context, a recent arXiv preprint (Zhang, |2025) gave a strong
counterexample for the equivalent statement over U > 0.

Therefore, even though K-means is widely known to admit a nonnegative Burer—Monteiro reformu-
lation (Peng & Wei, [2007), there have been only two prior works that actually follow this approach,
to the best of our knowledge. Neither of these can rigorously guarantee global optimality under
Assumption[I} The first is the first-order Riemannian method introduced by [Carson et al.|(2017). It
solves the following:
. T T 2

gin {—(XXT,007) + AU- I3} @
where M" == {U e R"™*E . UTU = I, UU1,, = 1,,}, U_ = max{—U, 0} is the (entrywise)
negative part of U and A > 0 is the penalty parameter for U > 0. Although superficially similar, their
approach fundamentally lacks a convergence guarantee to a second-order critical point, due to: (i)
their nonsmooth objective; (ii) their use of a smooth penalty, which cannot truly enforce feasibility
U > 0; (iii) their use of a first-order method, which can get trapped at a saddle point. Moreover, their
manifold is geometrically complicated, necessitating an expensive retraction that costs O(n?) time,
which prevents their method from scaling to large datasets.

The second work is the nonnegative low-rank (NLR) method of Zhuang et al.|(2024). This is a simple
projected gradient descent that directly projects U onto the nonnegative spherical constraint and
deals the row sum constraint UU ' 1,, = 1,, via the augmented Lagrangian method. It is a first-order
primal-dual method that can only achieve local linear convergence in a neighborhood of its global
solution. Like |Carson et al.|(2017), it is unclear whether there is a pathway that this algorithm can
lead to a global optimality guarantee, or even to second-order optimality.

2 BACKGROUND

2.1 SDP RELAXATION OF K-MEANS

Despite the worst-case NP-hardness of the K-means clustering optimization problem (IJ), common
practical heuristics and relaxed formulations like Lloyd’s algorithm (Lloyd, |1982), spectral cluster-
ing (Ng et al., 2001} [von Luxburg, |2007), nonnegative matrix factorization (NMF) (He et al.l 2011}
Kuang et al.|[2015;[Wang & Zhang, [2012) and SDPs (Peng & Weil, |2007; Royer;, [2017; [Fei & Chenl
2018;/Chen & Yang, |2021a) work surprisingly well at solving it for real-world data. To explain this
discrepancy between theory and practice, suppose that the data X7, ..., X,, € R? are generated from
a standard Gaussian mixture model (GMM)

Xi=p+ei, e " N(0,0%,), forie G, 5)

where G} denotes the ground truth clusters. (Chen & Yang|(2021b) proved that the SDP (2)) of [Peng
& Wei|(2007) (as p — 0T) achieves a sharp phase transition on the separation of centroids for the
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clustering problem, in any dimension d and sample size n. Let

. Kd
0 = 402 (1 +. )1+ ) log 7, 6)
nlogn

and O in = mini <j<r<r || 1t — px|| be the minimum centroid separation. Assume that m = n/K is
an integer without loss of generality and consider any o > 0. As soon as the exact recovery becomes
possible in the regime O,i, > (1 + «)©, the SDP approach (2)) solves the /& -means problem without
clustering error with high probability. For precise statements on the information-theoretic threshold,
please refer to Theorem [3|in Appendix |[Bl As an immediate consequence of the global optimality
guarantee of the K-means SDP in (2)), we deduce that the global solution of the nonconvex low-rank
SDP in (3) solves the K-means clustering problem in (I)) in the exact recovery regime.

Next, from the membership matrix Z, we would like to convert it to the cluster label.

Lemma 1. Let Z = Z " € R™*" be the symmetric block diagonal matrix defined by Z;; = 1/|Gy|
ifi,j € Gy, and Z;; = 0 otherwise. Then for any integer r € [K,n|, there is a unique (up to column

permutation) U € RiXK such that Z = UU ". Moreover, U can be recovered from any U e Rmr
satisfying Z = UUT inn - poly(r) time.

For each block diagonal membership matrix Z, the unique U € R} K in Lemma is the associated
group assignment matrix, i.e. the k-th column of U provides a one-hot encoding of membership in
the k-th cluster.

2.2 CRITICAL POINTS IN CONSTRAINED OPTIMIZATION

The problems considered in this paper are instances of the following

: _ nxr ., T _
min f(U),  M={UeR™ : AUUT) +BU) =c}, %)

where the linear operators A: R"*"” — R™ and B: R"*" — R™ and right-hand side ¢ € R™
together are assumed to satisfy the independence constraint qualification (LICQ)

AAT WU +BT(y) =0 = y=0 VYU € M. (8)

In this context, U € R™*" is said to be feasible if it satisfies U € M. The feasible point U is an
e-first-order critical point if it satisfies

exists y € R™ s.t. HVf(U) +2[AT ()|U + BT(y)H <k, )
and an e-second-order critical point if it additionally satisfies
(V2F(U) +2[AT (). UUT) 2 Vel|lU|* YU € Ty M (10)

over the tangent space of M at the point U, given by Ty M = {U € R™*" : AUUT +UUT) +
B (U ) = 0}. Under LICQ , every local minimum (and hence the global minimum) is guaranteed
to be an e-second-order critical point (for any € > 0). Unfortunately, there is no general-purpose
algorithm that is guaranteed to converge to a critical point, due to the need to achieve and maintain
feasibility across all iterates.

2.3  SECOND-ORDER RIEMANNIAN OPTIMIZATION

Riemannian algorithms are special algorithms that maintain feasible iterates through a problem-
specific retraction operator, and are hence able to rigorously guarantee convergence to critical points.
The basic idea is to improve a feasible iterate U € M by tracing a smooth curve on the feasible set
~: [0,€) = M that begins at v(0) = U and proceeds in a direction of descent 4(0) = U € Ty M.
In analogy with unconstrained algorithms, a good choice of U € Ty M is found through a local
Taylor expansion

F(v(1) = F(U) + tgrad f(U), U) + *(Hess f(U)[U], U) + O(t%), (11)
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where grad f and Hess f are respectively the Riemannian gradient and Riemannian Hessian of f on
the manifold M. Afterwards, we trace the curve v(t) = Ry (tU) using a second-order retraction
operator Ry : Ty M — M satistying

d d?

Ry (0) = U. — Ry (tU =U — Ry (tU 1T
v(0) =0, o u( )t:O ) 72 ul )t:O u M,

forall U € M and all U € Ty M. After choosing step-size ¢ so that Uyew = () makes a
sufficient improvement over U, we repeat the algorithm until it reaches an e-second-order critical
point satisfying ||grad f(U)|| < € and Ain (Hess f(U)) > —+/€, which incidentally corresponds
exactly to (9) and (T0). Proofs for the following convergence result can be found in[Zhang & Zhang
(2018)); Boumal et al.|(2019); /Agarwal et al.|(2021)); we have chosen the simplest but most restrictive
settings to ease the exposition.

Theorem 1 (Riemannian cubic-regularized Newton). Suppose that mingen f(U) > —oo, and that

the pullback f = f o Ry has Lipschitz continuous Hessian for all U € M. Then, there exists a
sufficiently large regularizer L such that Uy, = Ry, (Uy) where

Ui = argmin F(U) + {grad f(U),0) + L (Hess f(U)[0],0) + 10"
UeTy M

converges to an e-second order critical point in 0(6_3/ 2) iterations, independent of dimension.

Each iteration of Riemannian cubic-regularized Newton solves an expensive Newton subproblem.
Although it converges in far fewer iterations compared to gradient methods, it is practically competi-
tive only when the added cost of solving the Newton subproblem can be offset by the corresponding
reduction in iteration count.

3 FORMULATION AND SOLUTION OF K-MEANS AS MANIFOLD OPTIMIZATION

We now explain how we solve (3) using a Riemannian optimization approach. As a first attempt, we
can indeed verify that the the constraint set in @), written

M=M,={UeR™ :UU'L, =1,, r(UUT) =K}, (12)

is a manifold by checking that (8] holds (cf. Lemma]in the appendix). In fact, directly applying
Riemannian optimization techniques results in a /{-means algorithm very similar to the one proposed
in |Carson et al.| (2017). The immediate and critical difficulty with this approach is the lack of an
efficient retraction operator, which must be called at every iteration to keep iterates feasible U € M.
For example, [Carson et al. (2017) used a complicated exponential retraction that costs O(n?) time,
hence bottlenecking the entire algorithm and preventing it from scaling to large n.

Instead, our first contribution in this paper is to reformulate (3) by establishing a submersion from the
product manifold M = V x Orth(r) to M, where V = {V € R**( =D : 1TV =0, tr(VVT) =
K — 1} and Orth(r) = {Q e R™": QQ" = I,.}. In words, V is a projected hypersphere and
Orth(r) is the set of r x r orthonormal matrices.

Theorem 2. We have M = (M) for o(V, Q) = 1, V]Q wherel, = (1/\/n)1,. Moreover,
the Jacobian D ¢ : T M = T Mis surjective for all (V,Q) € M, ie., @ is a submersion.

Having established the submersion property of ¢, it is a standard result that every e-second order
point of M is also an ce-second order point on M for some constant rescaling factor c; see e.g.
Example 3.14 and the surrounding text inLevin et al.| (2025). Therefore, to solve (3), we equivalently
solve

min_ (C,VVT) =) log vi;i (V,Q)) ., (13)
i S es(es(1,),
where C = —X X T is the (negative) data Gram matrix, and @i ; is the (i, j)-th element of the

operator ¢ in Theorem[2] A basic but critical benefit of the reformulation is that the product
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Figure 1: Local convergence to second-order critical points yields global optimality. In the
case of GMMs, where ground truths can be planted, we consistently observe local convergence
to global optimality, yielding zero clustering error. This provides strong numerical evidence that
near-second-order critical points are near-globally optimal, as hypothesized in Assumptionm

manifold M admits a simple second-order retraction via its Euclidean projection 1, 2023,

Sec. 5.12) o ) )
Ru,g)(V,Q) = [Iy(V+V) Hownmn (@ + Q)]

where TTy (V) = VE = 1(V ~n~ 11,17 V)/IV —n 11,17V and Toren (@) = (QQT)/2Q.
It is easy to check that the retraction above costs just O(nr + r3) time to evaluate. In Section
we give explicit expressions for the Riemannian gradient and Hessian and explain how they can be
computed in O(nr + r?) time.

The appearance of the logarithmic penalty in (I3 presents two difficulties. First, as a practical
concern, any algorithm for must begin at a strictly feasible point (Vp, Qo) € M that additionally
satisfies o(Vp, Qo) > 0. In Section we provide a good strictly feasible initial point, and prove
that points exist only if the search rank is over-parameterized as » > K. Second, some special care
is needed to rigorously apply the guarantees from Section [2.3] given that the penalty ¢(V, Q) is
Lipschitz only when restricted to a closed and strictly feasible subset; see Section [C.5] for details.

Together, these ingredients allow us to apply Riemannian gradient descent (Boumal et all,[2019) to
(13) to compute an e-first-order critical point in (n/€) - poly(r, d, K') time. In practice, the algorithm
often converges to an e-second-order critical point, though this is not rigorously guaranteed without a
carefully-tuned noise perturbation. Alternatively, we can apply the conjugate-gradients (CG) variant
of the Riemannian trust-region algorithm (RTR), a general-purpose solver available in packages like
MANOPT (Boumal et al.} 2014) or PYMANOPT (Townsend et al., 2016)), to guarantee convergence
to an e-second-order critical point. Unfortunately, in our experiments, we observed that all of these
algorithms experience unsatisfactorily slow convergence, due to the severe ill-conditioning introduced
by the logarithmic penalty.

Instead, our best numerical results were obtained by the Riemannian cubic-regularized Newton
(Theorem . Our key insight is that the algorithm can be implemented with just O(nr?) time
per-iteration, by exploiting the underlying block-diagonal-plus-low-rank structure of the Riemannian
Hessian. To explain, our core difficulty is to efficiently solve the Newton subproblem

1 L
ming'p+ g Hp+ S bl
where g and H denote the vectorized Riemannian gradient and Hessian respectively, and A imple-
ments the tangent space constraint (V, Q) € T(v,qg) M. We can verify that the subproblem contains
n(r — 1) +r? = O(nr) variables and is subject to m = r + r(r + 1) /2 = O(r?) constraints. Given
that the subproblem has only linear constraints, its local minima must always satisfy the first- and
second-optimality conditions (9) and (T0), which read

T _
[H ;” % } [g] - [ 09] o= §||p||, €T (H + AI)¢ > 0 for all € satisfying A = 0.

The following standard result shows that, with sufficient regularization L, the global minimum
corresponds to the unique second-order critical point.
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Figure 2: Real-world benchmark on CyTOF data. We compared our method to NLR, the previous
state-of-the-art, as well as classical benchmarks SC, NMF, and KM++. Our method and NLR achieve
the most consistently accurate clustering, with the smallest variance and the fewest outliers (left), but
we outperform NLR in ground truth recovery (right).

Lemma 2. Let A have full row-rank (i.e. AAT = 0) and let Ay, = ming|¢=1,4¢=0 ETHE. For
T T1-1
A > —Amin, the parameterized solution p(\) = [é} {H ;)\I 1% } [_Og} is well-defined and

[lp(N)]| is monotonously decreasing with respect to .

The same lemma also suggests solving the Newton subproblem by simple bisection search. Indeed,
the solution is just p(Aop), Where Aqpy is the solution to the monotone equation 2\ = L||p(\)]| (via
Lemma . Thus, we pick a very small A\, & —Anin such that ||[p(Ap)]| > 2/ L, a very large Ay,
such that 2\, /L > ||p(Aw)||, and then perform bisection until 2Aqpe = L||p(Aopt) || is approximately
found. For each A, if 2\ < L||p())]|, then we increase \; otherwise, we decrease A.

The main cost of the bisection search is the computation of p(\), which naively costs O(n3r?) time.
For our specific problem, we explain in Appendix [E|how a block-diagonal-plus-low-rank structure in
the Hessian H reduces the computation cost to just n - poly(r, d) time. Applying Theorem [I| shows
that the overall method computes an e-second-order critical point in (n/€*°) - poly(r, d, K) time.

4 NUMERICAL RESULTS

In this section, we showcase the superior performance of our proposed Riemannian second-order
method for clustering on both synthetic Gaussian mixture models (GMM) and real-world mass
cytometry (CyTOF) datasets. Compared to existing state-of-the-art methods, such as the nonnegative
low-rank (NLR) factorization (Zhuang et al., |2024) and prior Riemannian K -means algorithms
(Carson et al.,|2017)), our approach achieves faster convergence, higher clustering accuracy, and more
reliable recovery of ground-truth cluster memberships. These results highlight the convergence and
accuracy advantages of second-order methods when they can be implemented with per-iteration costs
of just O(n) time. The implementation details are deferred to Appendix G|

Datasets. We conducted experiments on both synthetic and real datasets. The synthetic data was
generated from a standard K-component, d-dimensional Gaussian mixture model (GMM), with

. . . . . —2 —. . .
centroids placed at simplex vertices such that their separation equals 7O, where O is the information-
theoretic threshold for exact recovery in (6)), and ~y controls separation. The real dataset came from
mass cytometry (CyTOF) (Levine et al., [2015; [Weber}, 2015)). It consists of 265,627 cell protein
expression profiles across 32 markers, labeled into 14 gated cell populations. Following|Zhuang et al.
(2024)), we uniformly sample 1,800 cells from K = 4 unbalanced clusters (labels 2, 7, 8, 9) from
individual 1 for our experiment.

Global optimality at second-order critical points (validation of Assumption[I). Figure[I|shows
the convergence behaviors of loss function (I3) for GMMs (n = 500,y = 1.2, u = 0.01) with
50 randomized initializations. We consistently observe that: (i) the loss value steadily decreases
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over iterations and converges rapidly near the globally optimal point; (ii) the Riemannian gradient
norm dynamics suggest that our algorithm initially attempts to escape saddle points (with increased
gradient norm) and eventually converges to second-order local optimality, where zero-loss is achieved,
indicating global optimality. To verify second-order local optimality, we also plot the minimum
eigenvalue of the Riemannian Hessian. This provides strong numerical evidence that near-second-
order critical points are near-globally optimal, as posited by Assumption [T}

Benchmark on real world data. Prior studies on mass cytometry (CyTOF) and computer vision
(CIFAR-10) datasets identified the nonnegative low-rank (NLR) factorization (Zhuang et al.| 2024)
as the most reliable clustering solver, attaining the lowest average mis-clustering error and the
tightest variance compared to classical baselines such spectral clustering (SC), nonnegative matrix
factorization (NMF), and K-means++ (Arthur & Vassilvitskii, [2007) (K M++). Our algorithm
optimizes the same nonnegative low-rank model, so it inherits this reliability. Because it applies
second-order Hessian updates rather than first-order gradients, it refines each iterate more thoroughly
and therefore recovers the ground-truth membership matrix more accurately. Figure 2]illustrates this
on CyTOF: both methods keep mis-clustering near zero, yet our solver achieves a smaller Frobenius
gap to the oracle solution. The experiment was repeated 50 times on random subsamples of size
n = 1800.

Mis-clustering Error Mis-clustering Error Per-iteration Time Cost (sec)
10
—v \ —— Ours —=— Ours
0.6 0.6 NLR
0.4 0.4
02 —— Ours 0.2
4
NLR 10
0.0 0.0
10! 10° 10° 0 10 20 107 10° 10* 10°
Iterations Time Elapsed (sec) Sample Size

Figure 3: Comparison with previous state-of-the-art NLR on GMM. Our second-order method
reaches optimality in 152 iterations, while NLR needs 80k. Even though each second-order iteration
costs ~30-100 NLR steps, the total runtime is still two to four times shorter. (Left and middle)
clustering accuracy vs log iterations and linear time; (right) per-iteration time vs sample size n.

Comparison with NLR. Next, we compare our method directly to the nonnegative low-rank (NLR)
factorization. Figure [3]shows experimental results for GMM with n = 100, v = 0.8, u = 0.1, and
with varying n. Main observations: (i) Each Newton step is solved in O(n) time, matching the theory
in Section[3] (ii) A Newton step is about 30—100 times costlier than a single NLR update. This is
to be expected because the Newton step solves several linear systems, while NLR performs only a
single matrix-vector product. (iii) Our solver reaches the optimum in hundreds of iterations, whereas
NLR needs tens of thousands. The orders-of-magnitude reduction in iterations more than offsets the
costlier step, so wall-clock time drops by a factor of two to four.
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Figure 4: Comparison with prior Riemannian /K-means method of |Carson et al.[(2017) on
real-world data. Each run is warm-started from the previous and the penalty is stepped through
i = 0,104,105, 107. However: (Left) average mis-clustering exceeds 30%; (Middle) the recovery
error ||Z — Z*||r remains large; (Right) the infeasibility ||U_|| never vanishes. Our Riemannian
method, shown for reference, enforces U_ = 0 by design and achieves near-zero error in both metrics.
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Comparison with prior Riemannian X -means methods. We evaluate the clustering performance
of the algorithm proposed by [Carson et al| (2017) to solve the penalized formulation (@) on the
CyTOF data. Figure ] presents the performance of this first-order manifold method. Unfortunately,
we were unable to identify a sequence of A that would produce acceptable clustering results. While
increasing the penalty parameter )\ improves feasibility, it also degrades clustering performance. This
highlights the difficulty in solving (@) using the method of [Carson et al| (2017), as it struggles to
balance strict constraint satisfaction with objective optimality in the K -means problem.

Global Suboptimality 106 Gradient Norm
10!
103 A
1072 A
10°
1073
-3
10-8 10
11 —— Ours s —— Ours
10 RTR 10 RTR

0 500 1000 1500 2000 0 5000 10000 15000 20000

Figure 5: Comparison with classical Riemannian Trust Region (RTR) on GMM. Our method
drives both loss and gradient norm to machine precision in around 360 iterations. In contrast, RTR
stagnates for over 21k iterations due to the extreme ill-conditioning induced by the log penalty.
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Figure 6: Dependence on hyperparameters. (Left) Error exhibits phase transition as penalty
parameter p gets too large. (Right): Error seems insensitive to the searchrank r = K +1,...,3K.

Comparison with classical Riemannian algorithms. As discussed in Section 3} Problem (T3] can
be solved with CG or RTR as the gradient, Hessian, and retraction are all available. Nevertheless,
both CG and RTR perform poorly because the log-barrier induces an extremely ill-conditioned
landscape. To illustrate this, we solve (I3) on GMM data using PYMANOPT’s implementation of
CG and RTR. For CG, we were unable to tune the method to produce a meaningful solution, as its
updates frequently lead to infeasible points. While RTR can converge to a solution comparable to
ours, it requires significantly more iterations and time, as shown in Figure[3]

Effect of hyperparameters. Our method displays a sharp phase transition with respect to the
regularization parameter p. Below a critical threshold, the algorithm consistently converges to
optimal solutions and remains robust to variations in u. However, once p exceeds this threshold,
the method fails to yield meaningful results. This behavior is illustrated in Figure [ where we used
GMM synthetic data with four clusters and separation y = 0.8. Figure[6also shows the clustering
errors evaluated across different search ranks r. Clustering performance appears insensitive to r,
so the smallest feasible » = K + 1 should be used in practice. A brief discussion on the choice of
hyperparameters is provided in Appendix
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REPRODUCIBILITY STATEMENT

The experimental setups are described in detail in Section[dand Appendix [F] While the provided code
does not encompass every experiment reported in the paper, all of them can be readily reproduced
based on the descriptions.

LLM USAGE DISCLOSURE

A large language model (LLM) was used solely to polish the writing and improve clarity of expression.
No part of the research ideation, discovery, or substantive content was generated by the LLM.
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A  RELATIONSHIP BETWEEN SDP FORMULATIONS OF K -MEANS
CLUSTERING: STANDARD AND INTERIOR POINT VERSIONS

The standard K -means clustering for data in R? has two formulations in the literature: (i) centroid-
based optimization

min Z min || X; — Br|2;

B ﬂKERd ke[K]

and (ii) partition-based optimization

min ZZHX X3,

K
Ui=1 Gr= k 1i€Gy

where X}, = |G|} ZjeGk X is the empirical centroid of cluster G,. Formulations (i) and (ii) are
known to be equivalent, cf.[Zhuang et al.[(2022] Eqn. (1)) or|Q1an et al.| (2022, Appx. A). Using the
parallelogram law in|[Zhuang et al.|(2022] Eqn. (5))

DX = X505 = 2IGel Y 11X — X3,

i,jEG i€Gy,
we may write the partition-based objective function as
K
Jmn S 3 IN - Xl
I—lk 1 Gr= i,jE€G K

Next, expanding the pairwise squared Euclidean distance and dropping Y, || X;||3 (no longer
depending on any partition G1,...,Gg), we arrive at (I), in the form of maximizing the total
intra-cluster similarity in terms of the Gram matrix {(X;, X;)}';_;.

For general data without a likelihood derivation as in [Chen & Yang| (2021b)), we can replace the
R?-inner product with any (positive semidefinite) kernel k: X x X — R and consider the ker-
nelized version of K -means clustering that involves data X1, ..., X, only via their Gram matrix
{k(Xi, X;)}i'j=1- Thus, our manifold formulation of this paper carries over to the general kernel
method settmg with possibly nonlinear boundary structure.

Next, we convexify the K-means problem (I} into an SDP. Note that each partition G1, ..., Gk via
one-hot encoding is equivalent to an assignment matrix H,, » x (up to cluster relabel) where the latter
is a binary matrix with exactly one non-zero entry in each row, i.e. H;;, = 1if i € Gj. With this
reparameterization, one can write (1) as a mixed zero-one integer program:
max {(XXT,HBH'):Hlg =1,}.

pomax  ((XXTHBHT) : Hlc =1,)
Now, applying the change of variables Z,,, = HBH " and noting that the membership matrix Z
and assignment matrix H are not one-to-one, we relax the K -means problem by preserving the key
properties of Z as the following constraints:

Z =0, tr(Z) = K, Z1, =1,, Z >0,
which no longer depend on the assignment matrix H. Then, we arrive at the standard SDP relaxation
for K-means clustering, cf. Peng & Wei (2007}, Eqn. (13)) or|Chen & Yang (2021b, Eqn. (11)):

max (xx",2y:Z»0,tr(2) =K, Z1,, =1,,Z > 0}. (14)
e nxn

In practice, the elementwise nonnegativity constraint Z > 0 is almost always enforced by a logarith-
mic barrier. This means that we can make (14) more explicitly in the form

zgﬁ@’in (XXT.Z)+ 1 Z log(Z; ;)+:Z = 0,tx(Z2)=K,Z1, =1,, ;, (15)
i,j=1
which is precisely how any practical interior-point solver would solve the original SDP in (14). The
barrier cost is the actual objective used internally, with y set to reflect the solver’s target accuracy, cf.
Boyd & Vandenberghe| (2004, Chapter 11) or|Nocedal & Wright (2006, Chapters 14 & 19). In other
words, we take the standard SDP in (T4), and make explicit the logarithmic penalty that is already
implicit in how such an SDP is actually solved.
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B INFORMATION-THEORETIC THRESHOLD FOR EXACT RECOVERY

The following theorem is a precise statement of the information-theoretic threshold of (Chen & Yang
(2021b).

Theorem 3 (Average-case phase transition for exact recovery). Let « > 0 and

Omin = min ;=

min 1§j<k§K”'u] 12 |

be the minimum centroid separation. Suppose that data X1, . .., X, are generated from the Gaussian
mixture model (5) with equal cluster size |G7| = --- = |G| = m. Then we have the following

dichotomy.

1. If K < logn/loglog(n) and © i, > (1 + «)O, then there exist constants Cy,Cy > 0
depending only on « such that, with probability at least 1 — Cy(logn)~“2, the SDP
as i — 0% (¢f. Appendix E] for the equivalence of two SDP formulations) has a unique
solution that exactly recovers the true partition G7, . .., G}.

2. If K <logn and O, < (1 — )0, then there exists a constant Cs > 0 depending only
on a such that

A K
inf sup  PEk:GL#£GL) >1-— Cs ,
G1,.-,GK E(n,K,Omin) n
where the infimum is taken over all possible estimators (G, ..., Gg) for (G, ..., G%)

and the parameter space is defined as

il > O, Vi ke [K],j 4k
E(’I’L,K,@) = {(Gla"'aGKa,ula"'a,uk) ||Iu] luk”_ g [ ]]7& }

(1=06,)m < |Gkl < (14 6p)m
with §,, = C\/ K log(n)/n for some large enough constant C' > 0.

C ADDITIONAL DETAILS ON OUR RIEMANNIAN FORMULATION

C.1 EQUIVALENCE BETWEEN RIEMANNIAN OPTIMIZATION AND SQP

Let us consider a constraint optimization problem,

min  f(u),
u€R (16)
st. gi(u) =0Vi.
where LICQ:
Z%Vgi(u) =0 < y; =0Vi.
holds for every w in the constraint set. Then M = {u € R™ : ¢g;(u) = 0 Vi} is a smooth embedded
manifold (Boumal, [2023), and we may employ Riemmanian methods to solve (T6).

The Riemmanian method solves min, e A f(u) by solving

uenTlinM f(u) + (grad f(u),a) + %(Hess Fuw)[a], @) + %”ﬁHS a

at each iteration. One can show that this is equivalent to the SQP method that solve (T6) by minimizing
the Lagrangian

min £,y ™)+ (V0L y™), i)+ 50V, L0y il i + £l
st. (Vgi(u),u) =0 Vi.

(18)

where )
L(u,y™) = f(u) + Zyi Ygi(uw) and y™ = argmin||V,L(u,y)].
i y
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Hence, our contribution is to efficiently solve the SQP subproblem by exploiting a block-diagonal-
plus-low-rank structure in the Hessian, and the fact that there are only r +7(r +1)/2 < n constraints.
We provide more details in Appendix [C.2]and Appendix [C.3]

To establish the equivalence, we first observe that the search space of and (I8)) are the same.
Indeed, the tangent space T,, M = {4 : (Vg;(u), %) = 0 Vi}. Next, we write the expressions for the
Riemannian gradient and Hessian (Proposition 3.61 and Corollary 5.16 (Boumal, [2023)):

grad f(u) == Proj, (V f(u)), Hess f(u)[] == Proj, (Dy grad f(u)[4]), (19)
where Proj,, (v) = argmingcp  |lv — ||, and D,, denotes the usual differential operator. We then
obtain

grad f(u) = Proj, (Vf(u)) = Vf(u) + Z Vg () = Vo Llu,y™). (20)

For the second equality, see Equation (7.75) in(Boumal (2023).

For the second order terms, we have (Hess f(u)[i], w) = (V2 L(u)[1], %) for all % in T, M by the
facts that

(i) Hess f(u)[i] = Proj, (V2,L(u,y™))[d]).
(i) (Proj,(v),u) = (v,4).

We obtain fact (i) by and (20):
Hess f(u)[i] := Proj, (D grad f( 10)
= Proj, (V?f(u)[a] + Z W) Vg (u)[i] + Z {2 g (w) i)

= Proj,, (V2 f(u)[a] + Zy;‘)v?gl( )[ul)

[

= Proj, (V2,L(u, y™)[]).

uu

Inside the projection operator, the term ), DyZ )Vgl( ) vanishes because T, M is a linear
subspace, and (T, M) = span(Vg;(u)). Fact (ii) is due to that the projection operator is self-
adjoint and that the projection of any tangent vector is itself. For more on the connection between
SQP and Riemannian Newton method, we refer to|Absil et al.[(2009); Mishra & Sepulchre| (2016)).

C.2 GENERAL FORM OF THE RIEMANNIAN GRADIENT AND HESSIAN

Throughout this section, we use a bar over a function defined on the manifold M to denote its smooth
extension defined on a neighborhood of M so that the Euclidean gradient and Hessian can be defined
on M. Namely, for f : M — R™, we use f : N(M) — R™ to denote the smooth extension. The
notations grad f and Hess f denote the Riemmanian gradient and Hessian; V f and V2 f denote the
Euclidean gradient and Hessian.

For manifolds that can be defined by

min f(U), M ={UeR™": AUUT) +BU) = ¢},

where A: R"*™ — R™ and B: R"*" — R are linear operators, and ¢ € R™, its tangent space can

be written as: ] ) ) )
TyM={UcR™ : AUU" +UU")+ B(U) = 0}.
We call the function A(UU ") + B(U) = c as the defining function of M. Let us denote

LU) = AUUT +UUT) + B(U). 21)
Immediately, we see that Ty M = ker(L), and the adjoint operator
L*(y) =2AT (U + B’ (y). (22)

The projection operator onto the tangent space is defined to be

Projy; (W) = argmin||W — U||.
UeTy M
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We also know that ker(L)+ = image(L*). Thus, by the orthogonal projection theorem, we may see
that

Projy(W) =W — W+ =W — L*(9), (23)
where §j = arg min, ||[W —L*(y)|| is the solution to the linear system W —L*(y) € ker(L) = Ty M,
and both Proj;; (W) and ¢ are unique.

Consequently, the Riemannian gradient and the Hessian matrix-vector product have the following
form:

{grad J(U) = Projy(VF(U)) = VIU) +2lAT (u)]U + BT (), o1
Hess f(U)[U] = Proj, (D grad f(U)[U]) = Proj, (V2f(U)[U] + 2[AT (yu)]U),
where yy = —y in is the unique Lagrange multipliers

yo = argmin | VA(U) + 2LAT ()]0 + BT ()| (25)

yER™

For a detailed proof, see Boumal et al.|(2020).

C.3 EFFICIENT COMPUTATION OF THE RIEMANNIAN GRADIENT AND HESSIAN

We first write down the Euclidean gradient and Hessian for our objective function, and then explain
how to compute the Riemannian counterparts efficiently. Specifically, we show that yy can be
computed in O(nr + r3) time.

We decompose the objective function as f = f1 + ufa, where
AV.Q) =(C,VVT),  A(V.Q)=—> loge:;(V,Q).
,J
The Euclidean gradients are respectively: Vy f1(V, Q) = 2CV, Vo f1(V,Q) = 0, and
0] ot _ [ ] yen
vV.fQ(‘/: Q) =-U I?"—l Q ) VQf?(M Q) - VT U 5

where U = ¢(V,Q) and UV is its element-wise inverse, i.e., [U"V];; = (U;;)~'. The
Euclidean Hessians are given in vectorized form as

5 _[2r,,@C 0 5 [T e 0 Hyg
I P B e R A S B P ol
where

_ 0
D:dVeC(U( 1)), JV: (QT |:Irl:| ®In>a JQ:IT®QUTa
and

Hyg = ([0 L] @ UCD) KO0 = Hy,

with dvec(U—1)) := diag[vec(U(~V)], and K™"=1 K (") denoting the commutation matrices
(Magnus & Neudecker, |2019] Sec. 3.7). We can then compute the Riemannian gradient and Hessian-
vector-product according to and (23). In the remainder of this section, we show how to efficiently

solve (23).
The manifold we consider, /T/l/ =V x Orth(r), can be written as
M={(V,Q) e R xR 1TV =0, 1, tr(VVT) = K — 1,5vec(QQ" — 1) =0},

where svec denotes the symmetric vectorization operator (Klerkl 2006, Appx. E). Note that there
are no cross terms (V Q" or QV T) in the defining functions of M. Thus, we can treat the defining
functions with respect to V' and () separately. The corresponding terms are

avv = [t | B = Y] AeQT) s
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and
Or—l
cvi= || and cq = svec(Z,.).
Mimicking and (22), we use the notation Ly, Lq, L3, and Lg, respectively. For any (y1,y2) €
R x R and y5 € R"("+1)/2 we have

Ly (y1,92) = Loy{ +2y2V and L} (ys) = 2smat(ys)Q,

where smat is the inverse of svec, that is, smat(svec(M)) = M for all symmetric matrices M.
Denote Gy == Vy f(V,Q) and Gg = Vo f(V, Q). By solving the linear systems

Gy — Ly (y1,92) € ker(Ly) and Gq — Lg(y3) € ker(Lg),

we obtain the following closed form solutions:

1

5 1
m@'v, V), Ys =17 svec(GoQ ' + QGCTQ)~ (26)

_ 1 .
y1 = EG;]-’H,; Y2 =

The computation of 71, §2, and 7 in total requires O(nr + r?) time. Therefore, we can compute
yu = —(91, Y2, ¥3) with the same cost. Given a Euclidean gradient and a Euclidean Hessian-vector
product, we may write out explicitly the Riemannian gradient:

1 1 GoQ' — QG|

and the Riemannian Hessian-vector product:

Projy (v2f<v, e —c v>v)

GoQ' + QG )

Hess (V. Q)[V,Q] = I
5 Q

Projg <V2f(V, Q)V,Qlo —
C.4 FEASIBLE INITIAL POINT

In this section, we show that » > K is necessary and sufficient for the existence of an interior point
of M. The following Lemma shows the necessity of » > K. When r = K, the structure of the

unique U € RiXK in Lemma|l{can be explicitly written as

U =

27)

1 1 1
1017 1G2a"'7 71G )
V1G] VIG2| VIGKk| K]

where 15, € {0,1}™ denotes the binary vector with its support being Gy.

Lemma 3 (Isolated feasibility when r = K). Let M, = M N R’}rXK and M!, = M’ N R K
where RiXK = {U € R"™X . U > 0}. Then, we have: (i) My = " (i) U € M, if and only
if U is a group assignment matrix defined in (27); (iii) if U is a group assignment matrix, then the
intersection of the tangent space Ty M and the cone Cy = {V € R*K . vi; > 0,Yu;; = 0} is
trivial, i.e., Ty M NCy = {0}.

In Lemma [5] we moreover provide a complete analytical construction for an interior point of
M when r > K. Here, we present the construction when n = ¢r is an integer multiple of r. Let

Uo= (z—y) +yl,1] , wherex =~} (1+/(r—1)(K —1))andy = r~}(v/r — 1 - VK —1).

Then U = iq ® Uy is an interior point of M. Next, we show how to compute the pair V, )
corresponding to the interior point U by SVD. For a given U € M,., let U = PUZQE be the
SVD of U. We can find (V,Q) such that U = [1,, V] Qby V = sgn(Pv1))[Pr¥]. ., and

Q= Sgn(PU(l,n)QE-
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C.5 LIPSCHITZ CONTINUITY OF PENALTY

To apply the guarantees in Section [2.3] we need to take care of the logarithmic penalty in (I3))
since it does not have Lipschitz gradients nor Hessians over its whole domain. The standard
workaround, widely used in the analysis of nonlinear interior-point methods, is to observe that all
iterates Uy, = ¢(V}, Q) remain strictly feasible. Consequently, the penalty could be modified by a
Huber-style smoothing, where 6 = min; ; (Us); ; > O:

log x x>0
r(x) = (z—68) (z—2082 (z—20)>3
log d + 5 25 + 253

r <4

The function r(z) is both concave and has Lipschitz Hessians. Therefore, the guarantees in Section[2.3|
apply. The smoothing is only needed for theoretical purposes. In practice, we apply the Riemannian
algorithms directly to log x, and not to r(x). Since we have assumed that all queries satisfy x > §,
the actual behavior remains consistent with the smoothed model.

D PROOFS

Proof of Lemmall] Note that the membership matrix Z associated to a partition G1, . . ., Gk contains
a diagonal principal submatrix of rank K. The lemma follows from Theorem 4 in [Kalofolias &
Gallopoulos|(2012). O

Proof of Lemmal2] Let N denote the null space basis of A, such that AN = 0 and N N =1.
Then, we have Apin = Amin(N T HN) and p(\) = Np(A\) where (NTHN + XI)p(A) = —NTg.
Then, A > —Apin implies that NTHN + A = 0,50 p(A) = —N(NTHN + \I)~'N " g is always
well-defined. Moreover, ||[p(\)|| = ||p(A)]| is monotonously decreasing because all the eigenvalues
of NTHN + M are strictly positive and increasing with \. O

Proof of Lemma|3| To prove the first statement, note that the implication
UeRGKANUUT, =1, N\UU=1Ix = UeRGXANUUTL, =1, A|U|% =K

is straightforward. To see the converse, note that UU Tisa (doubly) stochastic matrix, tr(UU T) =K,
and rank(UU ") = K, thus all the K eigenvalues of UU " are 1, i.e. U € St(n, K).

For the second statement, it is trivial that

1 1 K
U= |—1¢, ... ——1g ]/\ G —
N Jiax o r L G =l

— UeRGHAUUTL, =1, AUU = Ix.

The converse is also true. Let us denote Gy, = supp(uy). Observe that G; NG, = ¢ for all ¢ # j
since U > 0 and u; u; = O forall i # j. Then UU'1,, = 1,, implies uzu, 1, = 1g, and
LI, Gx = [n]. Since |lug|| = 1, we have that uj, = 1¢, /\/|Gx.

Finally, we will prove the third statement. Let U be a group assignment matrix as defined by (27).

Note that for all V' € Ty M N Cy, V must satisfy (UV' + VU )1, = 0,, (U, V) = 0, and
v;; > 0,Vu; ; = 0. Define A : [n] — [K] to be the group assigning function, i.e. A(i) =
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Zzlle kl{u;  # 0}, then
1

T = _71)» i
UV = [ ViGagl 4@
r 1 1 1 7
V1 A1) —E—=U2,A(1) ' —=——"Un A1)
VIGaw| VIG 4] VIG 4]
1 . .
S : :
I e 1,A(2)
1 ' 1
7’11 n “ . RS 71]” n
LG awm)] bA |G a(m)l A |
Observe that

(i) A(Z) = A(j) < 1 € GA(j) < j c GA(i)
>i1) ¢ ¢ GA(j) = (ui,A(j) =0A Uj A@) = 0) B (ULA(J') >0AN V) A(d) > O)

(i) (U,V) =0 <= Vj€ ], Yicq,, viag =0

Denote w := (UV' T + VU T)1, then
w Z ! v + ! v
= A T VGAG) T T A7 V4,A®)
’ icn) [Gal " [Gal ’
1 1
= Z T Vi,A() T T =——="V5.A%)
icGagyy \VIGa@)] [

1 1
t Z A ViAG) T Uj,A(i)) .
i¢Gag) < G ag)l G

By (i) and (iii), we know that

1 1
—=——="5,4() T —=—="5,40) | = \/|Gaplvjay)-
Z ( |GA(])‘ J |GA(1)| J > J J J

€Gag)

By (ii), we know that

> 0.

1 1
VA0 T T——="5,44) | =
iﬁé;;(j) <V Caal " VIGawl U)

wj = 4/ |GA(j)|vij(j) + R; forsome R; > 0.

Next, we use proof by contradiction. Suppose there exists V € Ty M N Cy such that V' #£ 0, then
there must be both positive and negative entries in V' to satisfy (U, V') = 0. This implies that there
exists jy € [n] such that v;, 4(;,) < 0 since v; 4¢;)’s are the only entries that can take negative value.
To satisfy (U, V) = 0, there must exist jo € G 4(;,) such that v, 4¢;,) > 0. Then for such js,

Wiz =\ |G agn) [V, a0) + Riz = \/ |G agn) [0, a60) + Rz > 0.

This contradicts (UV " + VU )1 = 0. Therefore, Ty M N Cy = {0}. O

Lemma 4. If K > 2, then the set M defined in satisfies linear independence constraint
qualification (LICQ) for all U € R™*", and is therefore a smooth submanifold of R™*".

Thus we can write
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Proof of LemmaM] Following [Boumal et al.| (2020), the set M = {U € R"*" : (A,, uuTy =
b; for all ¢} is a smooth submanifold of R"*" if LICQ holds for all U € M, i.e., that >y, A;U =0
if and only y = 0. For the definition in (I2), we can verify that

HZ%A UH 11y +y17 +yo)U|[5

1Ly " +y1 )OI +2((1y " +y1 U, 30U) + y5llU 1%
= [nyT(I+UUT )y +2(179)%] + 4901 7y) + 3 K

> [2(17y)* +4yo(1Ty) + 3] + nllyll* + (K — Dyg

= (217y +y0)* + nllyll* + (K - Dyp

> [lyll* + v

The third line is because ((1y " +y1")U,U) = 2(y, UUT1) = 2(y " 1) and

[(1y" +y17) UHF =tr[(ly" +y1HUU (1y" +917)]
=tr[ly' U "y1" +y1TUU 1y 421y UU "1y "]
=tr[ly"UU Tyl + 9171y +2-1y "1y 7]
=ny UUy+ny'y+2(17y)>
O

Lemma 5 (Interior point construction for M,.). Given a K € N, for any r such that r > K, for
large enough n, we have the following two cases:

Case I1: n =0 (mod r)

Denote q :=n/r, let Uy = (x — y)I +y117, where

A VEIET). on (T vE),

Then U = (1/,/q)1, ® Uy is an interior point of M.
Case2: n # 0 (mod )
Let us denote q :== |n/r| and p := n mod r. Construct the block matrix B € R"*":

_|Bi1 Bip
B= [32,1 B2,2} ’

where
By =(x— )I-i-ylplT Bi2=21 lr >
Byo=(w—2)+21,_ pl By1 = ylr,pl
The coefficients x,vy, z and w depends on n, K and r. They will be specified in the proof. Then
U=, 0](1,®B)

r—p’ P

is an interior point of M.

Proof of Lemma[3] For a general large enough n, n is either divisible or nondivisible by r. We
present two different constructions of an interior point of M,. corresponding to the two cases.

Case 1: n =0 (mod r)

We first construct a Uy € R" " such that UoU, 1, = 1,, and ||Up||% = K. Using the ansatz
Up=(z—y) + y11T, where z,y > 0, we can find z and y by solving the system:

{1‘ +(r-1y=1 (UoUp 1, = 1,)
2+ (r =1y’ =K/r (Vo =K)

The first equation gives z = 1 — (r — 1)y. By substituting into the second equation, we obtain the
following quadratic equation of y:

K
r(r—l)y2—2(r—1)y+1—7:0.
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By the quadratic formula and x,y > 0, we have the following solution
1
p=1=(r=1y=—(+i-DE-1),

r—1 (r—1)(K 1)21(\/7T—\/m)
r(r—1) T
Note that if r = K, we can still solve the quadratic equation, but without an all positive solution.
Denote ¢ := n/r, then U = (1/,/q)14 ® Uy is an interior point of M,..
Case2: n #0 (mod r)
Let us denote ¢ := |n/r] and p := n mod r. We consider the ansatz

y:

U=[I, 0](1,®B) forsome block matrix B = [g;j g;j € R™",
where
B111 = ((E — y)] —+ y].p].;—, BLQ = Z]_p]_;!—_p,
By o= (w—2)I+ zlr,pllp, By = ylr,plg.

Additional to the constraints ||U||% = K,and UU " = 1,,, we assume that U1, = ¢,1,,U "1, =
cel,, and ¢,.c, = 1 for some ¢, and c,, which are sufficient for UU " = 1,,. Then we can find z, 7,
z, and w by solving the system:

z+(p-Dy+(r—pz=py+w+(r—p-1)z

(¢+Dz+q(r—Dy+(p—1y=qw+q(r—1)z+pz,

(py+w+ (r—p—1)z)(quw+q(r — 1)z +pz) =1,

@+ Dp(a® + (p = 1)g* + (r = p)2°) + a(r = p)(py* + v’ + (r —p—1)z°) = K.
The four equations correspond to the following constraints, respectively: U1, = ¢, 1,,U "1, = c.1,.,

crce = 1, and |Up||% = K. From the first two equations, we can express = and y in terms of z and
w (note that n = qr + p):

1 1 1 1
xz(l—)w—!—z, yz(l—l—)z—w. 29)
n n n n

By substituting (29) to the third and fourth equations of [28), we are left with a system of quadratic
equations of two variables:

(28)

a122 + aszw + a3w2 +c1 =0,
9 5 (30)
b12° + bozw + byw* 4+ ¢co = 0,
where
ap =nr—qr+p-p2q+1)/n, az =2p(1+2q —n)/n,
az =n—p(2q+1)/n, bi=(r+p/n—1)(n—q),
by = (1—=p/n)(n—q)+q(r+p/n—-1), bs = q(1 —p/n),
Cc1 = —K, Coy = —1.

Now our goal is to solve (30). By multiplying the first equation with b; and the second one with a;
and subtraction, we can express z in terms of w:
azby — a1bs c1by —aico

b
i aw w Wit @ a1b2 — a2b1 ’ a1b2 — a2b1 ( )

Suppose that w # 0, we substitute into the second equation and multiply by w?. The result is a
quintic equation:

(bra® 4 bya + bs)w* + (2abby + bbs + co)w? + b2b; = 0. (32)
By solving with z = aw + b/w > 0, we obtain

w— \/—(2abb1 + bby + 02) + \/(2abb1 + bby + 02)2 — 4(a2b1 + abs + b3)b2b1

33
2(a2b1 + abg + bg) ( )
The proof is completed by combining (29), (31), and (33). O
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Proof of Theorem2] For “2,"if U = [1, V]Q,then UU" = (1/n)1,1,}] + VV T and hence
UUT™ =1andtr(UUT) = K respectively, because 1, V = 0 and tr(rVVT) = K —1. For “C,” let
U = PXQ denote the singular value decomposition with PT P = QQ " = I,.. Since UU '1,, = 1,,,

the decomposition can be chosen so that PXe; = (1/y/n)1, = 1,. Soif V = PY[es, ..., e,], then
1)V =c¢llea,...,e.]=0and |V|? = ||U|? - |Pes|? = K — 1

In the final part, we first construct the inner approximation S of the tangent space
TwoM={(V,Q): 1,V =0,(V,V) =0,QQ" +QQ" =0}
. . . . _hKT
>{@av—owi -0 =) -5
We observe that
i, v]o=[i. v][® " o= i@
n n h O n
and therefore the Jacobian operator is injective for all (V, Q) es:
.2 . . 12
Ipev.@.ql = Vie+[i. v]Q|
s 12 ~ 2 . 1 .12
=lfo VI +llva hT)P 2 VI + 0P 2 (7. Q)f

where we used the fact that 1; V =0. Hence, the Jacobian operator is surjective, as claimed:
dim (image(D ¢(V,Q))) > dim(S) = n(r — 1) — 1 = dim(Ty M).

E EFFICIENT IMPLEMENTATION AND COST OF BISECTION SEARCH

To implement the proposed method, we vectorize the input as u = [vec(V') vec(Q)] " The cost

function we used is
flu) ==X TV|? = p1,) log(o(V, Q) 1n,
and the constraint functions are defined as
g(w) = VIP=(K=1),  gu)=1,V,  gs(u) =svec(Q'Q—I.).

The Jacobian J and Hessian H are computed analytically, as in Appendix [C.3] in order to exploit
their sparsity.

For convenience, we list some of the derivatives in this section. The (Euclidean) Jacobian of the
constraints can be written in block form as

Ji, O
J=1J2w 0],
0 Js
where
Jip=2vec(VT),  Joy=L1®@1)KCt gy =20 (I, ®QT),
with U,. being the orthogonal basis matrix of size-r symmetric matrices.

Computing the second-order derivatives of g1, go are trivial, since Ji, is linear in V' and Jo, is
constant. The second-order derivatives of g3 can be computed explicitly by noticing that the entries
of svec(Q T Q) can be expressed as inner products with bases outer products, i.e.

<Ei,j7 QTQ> = VeC(Q)T(Ei,j & IT) VeC(Q)a

where -
eie; 1= 7,
Eij =9 ee] +eel
a7
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It follows then the second-order derivative w.r.t. each entry is given by 2(E; ; ® I.).

Collecting results, we have
e (Hm, — BBT H,,q>

H‘IU qu
with
B=V2(X®I,_,) (34)
Hyp = pK™ Q@ I,) dvec(UT)(QT @ I,) K1) 4 24,1, 35)
Hyy = p(I, ® VT)dvec(U( ))( V) + 2(I, ® smat(gs)), (36)
and

Hyg=—p(UY @[0,1 L_1)) + p(l, ® Q) dvec(U)(I, @ V) = H},,  (37)
where Q = [0,_1 1,_1]Q.V := [1,, V], and 2,7 follow (26).

To solve the saddle point problem with bisection search, we solve the linear system

Hm; + /\I — BBT ‘ qu J;T Dv —Gv
Hgy, Hog+ AL Jq bg | = | ~Yq
Jo Jy 0 T 0

Repartition along the lines shown to yield the following

K | Kip 1| _ | b

Ko ‘ Ko T2 ba
with dimensions x1,b; € R™("=1) and T9, by € R +m, Critically, we observe that the block
K1, which corresponds to the Riemannian Hessian with respect to the v variable, has the form

K11 = D11 — BB, where Dy; = H,, + M is block-diagonal, with n blocks of » — 1, and B has
at most dr columns. Therefore, we instead solve

Dy | Kz B || o by
Ko | Koo O g | =1 b
BT 0 I z 0

First, it costs n(r — 1)3 = O(nr3) time to invert D;. Afterwards, forming and solving the size
m + r2 + rd Schur complement problem:

_ j b _
(Las — L{, Dy L1o) H — [02] — LDy, (38)

where

K. 0
Ly :=[Ka B Loy = [ 022 I} ;

cost O(nr3(d + r) + r% 4+ r3d>) time. In the end, we substitute to recover

o= Dy <b1 — H)

in O(nr3(d +r)) time, and apply retractions to © and ¢. In total, it takes O(nr®(d +r) 4+ r® +r3d3)
time to solve the system, which is indeed n - poly(r, d). Putting pieces together, a pseudo-code of
our Riemannian method is shown in Algorithm I]
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F ADDITIONAL NUMERICAL DETAILS
‘We collect additional numerical results in this section.

Hardware information. All experiments in this work were conducted on a machine equipped with
a single Intel Core 19-14900K CPU and 32 GB of RAM.

License of assets. The MANOPT solver is distributed under the terms of the GPLv3 license; the
PYMANOPT solver is released under the 3-Clause BSD license; the CyTOF dataset is the work of

Levine et al|(2015)), cleaned and distributed by Weber (2015) under the MIT license.

Dataset visualization. [Figure 7| and [Figure 8| display the first two principal components of the
GMM dataset and CyTOF dataset, respectively.

y=2 y=0.5

7.5

5.0

2.5

0.0

-2.5

-5.0

-7.5
=5

Figure 7: Visualizing the effect of the separation parameter in GMMs. As «y decreases, the clusters
become increasingly difficult to distinguish.

—5.0 —-2.5 0.0 2.5

Figure 8: Visualization of the CyTOF dataset. Two clusters exhibit significant overlap, implying the
difficulty of clustering.

Hyperparameters tuning. In the various numerical experiments, we observed that a smaller value
of 1 led to more accurate solutions but at the cost of slower convergence. Therefore, we recommend
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selecting the largest possible p that does not trigger the phase transition. A good heuristic we found is
to choose such that the initial penalty term p fo remains less than 20 times the main term f7 in the loss
function. The onset of phase transition is also easy to notice, as the algorithm will quickly stagnate
and terminate in just a few iterations. If higher accuracy is desired, one can reduce p gradually, using
the solution obtained with a larger 4 as initialization. This warm-start strategy significantly speeds up
convergence compared to using a small from the start.

The other hyperparameters in Algorithm [I]primarily influence the speed of the inner optimization.
The initial multiplier A affects only the number of inner steps required during the first iteration.
We recommend doing a simple trial run with only two iterations; the resulting optimization history
typically offers a reliable guide for choosing an appropriate initial scale for A. For the other two
parameters, we suggest setting x_ slightly smaller than x . Empirically, we found x_ = 1.1 and
K4+ = 1.3 work well.

Robustness to initialization. As illustrated by Figure|l} our method is robust to initialization, all
50 trials successfully converged to second-order optimal solutions. Although the solutions differ
(Figure[9), their corresponding membership matrices Z are close to each other (Figure[I0), and yield
identical clustering result. Moreover, the minimum eigenvalues upon convergence form distinct
clusters that align with clusters in the recovered membership matrix Z, as shown in Figure[T0] These
local critical points consistently produce perfect clustering, indicating that they remain close to the

global optimum.
-0.10
-0.08
0.06
0.04
0.02
0.00
0o 1 2 3 4 0o 1 2 3 4 o 1 2 3 4 0o 1 2 3 4

Figure 9: Difference between the solutions. First 25 rows of selected solution U obtained from the
global optimality experiment described in Section E}

4 20
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-0.014
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- 0.004

- 0.002

484542393633302724211815129 6 3 0

- 0.000
0 3 6 9 12151821242730333639424548

Figure 10: Similarities of the membership matrices. Frobenius distances between the membership
matrices Z obtained from the global optimality experiment in Section 4] sorted according to their
corresponding minimum Hessian eigenvalues.
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Comparison with another Riemannian clustering method. Inexact Accelerated Manifold Proxi-
mal Gradient Method (I-AManPG) by |Huang et al.|(2025) is a recent first-order Riemannian method
for solving general problems of the form

min  f(X) + Al X[|1,
X (39)
st. XeF, ={X:X"X=1,vespan(X)}.

We evaluated its performance on the clustering problem using the on the CyTOF dataset with 50
repetitions (same settings as in Figure[2). The results are shown in Figure[TT] While I-AManPG is
generally fast and accurate, its median error is higher than that of our methods. In particular, several
runs of [-AManPG exhibited large errors, indicating convergence failures.

Mis-clustering Error

0.4 e
0.3
0.2 8
(o)
[e]
0.1
—_— L
0.0

Ours I-AManPG

Figure 11: Comparison with I-AManPG using CyTOF. Performance of I-AManPG is comparable
to other clustering methods. However, it suffers from convergence failures from time to time and
requires careful tuning. Our method again demonstrated its accuracy and stability.

Additional convergence plots. Figure[12] Figure[T3] and Figure[T4]illustrate the convergence of
our method on GMM with different parameters and on the CyTOF dataset, demonstrating its stability
across different datasets.

Global Suboptimality Gradient Norm Minimum Hessian Eigenvalue
10° 2000
103
103 0
10!
100 —2000
- —4000
107! 10-3
—6000
0 100 200 300 0 100 200 300 0 100 200 300
Iterations Iterations Iterations

Figure 12: Convergence of our method on synthetic Gaussian mixture data with perfect separation
(n =500,y = 1.0). The loss value steadily decreases over iterations and converges rapidly near the
optimal point. This example achieved a perfect final clustering result in the end.
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Global Suboptimality Gradient Norm 500 Minimum Hessian Eigenvalue

10 10*
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10! 10
—500
10! 10°2 ~1000
1073 103 —1500
—2000

0 100 200 0 100 200 0 100 200
Iterations Iterations Iterations

Figure 13: Convergence of our method on synthetic Gaussian mixture data with low separation
(n =500,y = 0.25).

Global Suboptimality : Gradient Norm Minimum Hessian Eigenvalue
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Figure 14: Convergence behavior of our method on real world CyTOF dataset.

G PSEUDOCODE

This section presents the pseudocode of our implementation. For the derivation, see Appendix [E}
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Algorithm 1 Riemannian Second-order Method

Require: Data X,

1:
2:
3:
4:
5.
6
7
8

9:
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:

Initial point (Vp, Qo),
Initial multiplier \,

Increment/decrement factors (k4, k_),

log-barrier penalty p,

Max number of outer/inner iterations 1" and B.

(V,Q) < (Vo, Qo)
fori=1,...,T do

Vectorize input u < [vec(V "), vec(Q)] .

Compute current loss £ = f(u).

Compute Riemannian gradient d + V f(u) and Jacobian J < D g(u).
Compute Riemannian Hessians Hy < V2f(u) and H; < D? g;(u).
Solve y,, = min,||d 4+ Jy|| by least-squares.

Compute V, L(u,yy): G < d+ Jy.

Compute V2L (u,y,): H < Hf + Z?:l(yu)iHi

forj=1,...,Bdo
0, ¢ < SOLVEINNER(H, G, J, \)
Reconstruct V', () from vector v, ¢
(V,Q) < Retrv,q)(V, Q)
Compute new loss £ from (V, Q)
if £ > L' then

A AK_

break
else
L A < )\ K4

20: output (V, Q)
21:
22: function SOLVEINNER(H, G, J, \)

23:

24
25:

26:

27:
28:

Adding AI to the V' and @ blocks of H
Forming block matrices as in (38)
S ¢ Ly — L{, D' L1s

i

i« D! (b1 — L [g])

return v, ¢
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