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Domain Shared and Specific Prompt Learning for
Incremental Monocular Depth Estimation

Anonymous Authors
ABSTRACT
Incremental monocular depth estimation aims to continuously learn
from new domains while maintaining their performance on old
domains. The catastrophic forgetting problem is the key challenge
when the model adapts the dynamic scene variations. Previous
methods usually address this forgetting problem by storing raw
samples from the old domain, allowing the model to review the
knowledge of the old domain. However, due to the concerns of
data privacy and security, our objective is to tackle the incremental
monocular depth estimation problem in more stringent scenarios
without the need for replaying samples. In this paper, we attribute
the cross-domain catastrophic forgetting to the domain distribu-
tion shifts and continuous variations of depth space. To this end,
we propose Domain Shared and Specific Prompt Learning (DSSP)
for incremental monocular depth estimation. In detail, to alleviate
the domain distribution shift, complementary domain prompt is
designed to learn the domain-shared and domain-specific knowl-
edge which are optimized by the inter-domain alignment and intra-
domain orthogonal loss. To mitigate the depth space variations,
we first introduce a pre-trained model to generate the domain-
shared depth space. Then, we design 𝑆2-Adapter that quantizes
depth space variations with scale&shift matrices and converts the
domain-shared depth space to domain-specific depth space. Our
method achieves state-of-the-art performance under various sce-
narios such as different depth ranges, virtual and real, different
weather conditions, and the few-shot incremental learning setting
on 12 datasets. We will release the source codes and pre-trained
models.

CCS CONCEPTS
• Computing methodologies→ Computer vision; Lifelong
machine learning; Scene understanding.

KEYWORDS
Monocular depth estimation, incremental learning, domain prompt
learning

1 INTRODUCTION
Monocular depth estimation aims to generate dense depth maps
from a single RGB image, which is an important scene perception
technique. In practice, new domains substantially emerge with
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Figure 1: Overview of our method (b). Compared with typi-
cal approaches (a) that rely on rehearsal buffers to alleviate
forgetting, DSSP mitigates domain distribution shifts and
depth space variations through the complementary domain
prompt and 𝑆2-Adapter.

environmental variations, such as weather and illumination condi-
tions. Incremental monocular depth estimation intends to facilitate
continuous learning and adaptation of the model in such dynamic
environments while maintaining its depth estimation performance
in the old domain.

In incremental monocular depth estimation, the catastrophic
forgetting problem is the key challenge that is caused by domain
distribution shifts and depth space variations. 1) Each domain has
a unique data distribution corresponding to the environmental fac-
tors, which leads to severe domain gaps among them. Consequently,
when the model adapts to a new domain, the shift of feature dis-
tribution leads to the phenomenon of forgetting old knowledge. 2)
Different domains usually have different depth ranges and spatial
structures, so the depth space exhibits scale and shift variations
across domains. When the model adapts to these variations on new
domains, it may result in the forgetting of old knowledge.

To address the aforementioned problems, some approaches [28,
29] attempt to reduce the domain gaps by employing multi-domain
learning across as many domains as possible and alleviate the influ-
ence of the depth space variations by predicting relative depth maps.
However, exhaustively covering all domains in the real world is im-
practical, and retraining the model from scratch consumes plenty
of time and computational resources. Other methods [6, 11, 40]
try to continuously fine-tune the model and ease the forgetting
problem by maintaining a replay buffer involving samples from old
domains which enables the model to review them while learning
new knowledge. Such as LL-MonoDepth [11] stores 500 samples in
each domain for reviewing old knowledge while employing mul-
tiple predictors to adapt the depth space variations on different
domains. However, storing samples may not always be feasible,
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especially for scenarios where long-term storage of data is not per-
mitted owing to privacy or data use legislation [34]. Therefore, we
aim to address the incremental monocular depth estimation in a
more strict protocol without the need for replay samples.

Recently, pre-trained models embed knowledge into enormous
parameters, and this empowers them with a better capability of
mitigating forgetting. Researchers leverage prompt learning with
pre-trained models to learn task-specific knowledge in the new do-
main. Inspired by this, we introduce learnable prompts to capture
and retain domain-specific knowledge, which represents domain
distribution information through several parameters, thereby sav-
ing storage costs and avoiding concerns of data privacy and security.
Furthermore, prompts can also learn unified feature representations
across domains to reduce domain gaps and enhance the generaliza-
tion capability of the model.

Therefore, we propose Domain Shared and Specific Prompt
Learning (DSSP) for incrementalmonocular depth estimation, which
designs complementary domain prompts and Scale&Shift Adapters
(𝑆2-Adapter) to mitigate domain distribution shifts and depth space
variations. Specifically, we first design domain-shared prompts to
continually learn across all domains and prevent knowledge forget-
ting by domain shift through inter-domain alignment constraint,
while we design domain-specific prompts solely to learn in the
corresponding domain to enhance the adaptability of the model
and retain knowledge in their parameters. Additionally, we intro-
duce an intra-domain orthogonal loss to constrain these two types
of prompts to focus on the unified inter-domain representation
and individual domain distribution respectively. Both two types of
prompts are maintained in the prompt bank. Therefore, we lever-
age the frozen pre-trained model with the complementary domain
prompts to predict a relative depth map. Furthermore, to capture
the depth space variations and convert the relative depth into met-
ric depth, we devise the lightweight 𝑆2-Adapter which precisely
learns the map between the relative depth andmetric depth through
quantifying depth space variations into scale&shift matrices. As
illustrated in Figure 1, in contrast to previous replay-based meth-
ods, DSSP generates complementary domain prompts by learning
domain-shared prompts and domain-specific prompts, facilitating
the learning of new knowledge while retaining previous knowledge
without data privacy and security concerns.

During the inference phase, we predict the domain of the test
image according to the domain-specific prompt. Then, we generate
complementary domain prompt and subsequently inject them into
the pre-trained model to predict the relative depth map. Next, the
𝑆2-Adapter is selected by the domain identity to restore the depth
space transformation and predict the final depth. Experiments on
12 datasets demonstrate our DSSP outperforms the SOTA methods.

Themain contribution of our work can be summarized as follows:

• We propose domain shared and specific prompt learning to
alleviate the catastrophic forgetting problem of incremen-
tal monocular depth estimation without data privacy and
security concerns.
• We devise a 𝑆2-Adapter which quantifies depth space varia-
tions into scale&shift matrices to capture the map between
relative depth and metric depth and mitigate the influences
of depth space variations.

• Extensive experiments on multiple domain incremental se-
quences show our method achieves superior incremental
monocular depth estimation performance.

2 RELATEDWORK
2.1 Monocular Depth Estimation
As a technique for scene perception, monocular depth estimation
aims to generate per-pixel depth maps for scenes based on a sin-
gle RGB image. Previous learnable methods achieve satisfactory
performance through supervised [1, 9, 12, 14, 15, 19, 21, 27], self-
supervised [10, 20, 24, 39, 42, 51] and unsupervised learning [36, 49,
50, 52] on single domain. However, due to the lack of robustness
and generalization, models usually exhibit poor performance in
new domains when they are applied in the real world. Some works
tend to collect a large scale of data samples across various domains
and learn a domain-invariant model [29, 37, 43, 46, 47]. However, it
is impossible to cover all domains in practical applications. There-
fore, when a new domain emerges, the model has to combine the
data of the new domain with all old domains and be retrained from
scratch, which is time-consuming. Meanwhile, the large number of
parameters in these pre-trained models makes training them from
scratch expensive in computing resources. To address the above
problem, researchers devote numerous efforts to exploring incre-
mental monocular depth estimation methods, so that the model
can continuously adapt to the new domain without forgetting the
knowledge of the old domain. Recently, some researchers try to
store a part of samples of old domains and maintain a replay buffer
that allows the model to access when fine-tuning on the new do-
main. Although the model alleviates the catastrophic forgetting
problem by reviewing these replay samples, it is not practical to
store data for a long time due to data privacy and security concerns
in many real-world scenarios.

2.2 Incremental Learning
Incremental Learning is a typical setting to continuously train a sin-
gle model on non-stationary data distributions. Themajor challenge
is the catastrophic forgetting problem [26], where adaptation to a
new distribution usually results in a much-reduced ability to cap-
ture the old distribution. Inspired by the complementary learning
systems (CLS) theory [18, 25], researchers devote numerous efforts
to facilitating the model to learn from continuous data streams,
such as storing some training samples for each of the previous
tasks and reusing them while learning a new task (replay meth-
ods) [2, 3, 5, 23, 30, 41, 48]; imposing extra regularization instead
of storing training samples (regularization-based methods), such as
LwF [22] using a knowledge distillation loss on previous tasks and
EWC [17] enforcing an additional loss term to alleviate changing
on the weights important for previous tasks; fixing trained parame-
ters on old tasks and employ extra network branches for training
a new task (parameter isolation methods) [16, 31, 33, 44]. These
methods are empirically demonstrated useful for image recogni-
tion [16, 17, 41], while they mainly focus on the class-incremental
problem. Directly transferring thesemethods to incremental monoc-
ular depth estimation may face two challenges, domain distribution
shifts and depth space variations.
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Figure 2: Overview of the proposed network architecture.We propose domain shared and specific prompt learning for alleviating
domain distribution shifts and 𝑆2-Adapter for adapting the depth space variations.

3 MYTHOLOGY
In this section, we first introduce the paradigm of incremental
monocular depth estimation tasks. Then, we overview our pipeline
during both the training and inference phases. Next, we describe the
complementary domain prompt learning strategy. Furthermore, we
detail the 𝑆2-Adapter. Finally, we elaborate on inferring the domain
identity of the test images for the generation of complementary
domain prompt and the selection of 𝑆2-Adapter.

3.1 Incremental Monocular Depth Estimation
In this task, the data of different domains are incrementally obtained.
We define a sequence D with 𝑆 domains, D = {D1, · · · ,D𝑆 }. In
the 𝑠-th domain D𝑠 = {(𝑥𝑠

𝑖
, 𝑦𝑠

𝑖
)}𝑁𝑠

𝑖=1, there are 𝑁𝑠 images 𝑥𝑠
𝑖
∈ X𝑠

and its corresponding depth map 𝑦𝑠
𝑖
∈ Y𝑠 . Given an image 𝑥 from

arbitrary domains, our goal is to train a single model 𝑓𝜃𝑠 : X𝑠 → Y𝑠

parameterized by 𝜃𝑠 to predict the depthmap𝑦 denotes as𝑦 = 𝑓𝜃 (𝑥).
Generally, the model 𝑓𝜃𝑠 is optimized by,

L = L𝑑 (𝑦,𝑦) + R (1)
where L𝑑 is the depth estimation loss to learn the knowledge
on the new domain, and R is a regularization loss for preserving
the knowledge from old domains. Our method tackles the more
challenging incremental monocular depth estimation which data
from previous domains are not be seen anymore.

3.2 Overview
In incremental monocular estimation, the catastrophic forgetting
problem is caused by continuous domain distribution shifts and

depth space variations. To this end, we propose DSSP, which is com-
posed of complementary domain prompt and 𝑆2-Adapter. As illus-
trated in Figure 2, we maintain a prompt bank containing learnable
prompts throughout all incremental stages. The complementary
domain prompt, along with image embedding, is fed into the frozen
pre-trained depth estimation model and then yields a relative depth
map. We froze the pre-trained model to prevent it from the influ-
enced by domain distribution variations. Subsequently, following
adjustments in scale and shift by our 𝑆2-Adapter, the relative depth
map is transformed into the final metric depth map. In the inference
phase, we first infer the domain identity of the input image, thereby
generating the complementary domain prompt and selecting the
𝑆2-Adapter based on the domain identity. Finally, based on the
domain distribution knowledge within the prompt and the depth
space rule within the 𝑆2-Adapter, we can continuously estimate the
depth map accurately with less forgetting. During all incremental
learning stages, only the complementary domain prompt and the
𝑆2-Adapter are trainable, which only cost less than 1M parameter
per domain.

3.3 Complementary Domain Prompt Learning
To address the issue of forgetting in incremental monocular depth
estimation, previous methods store raw samples from the old do-
main and input them alongside samples from the new domain into
the model. These approaches allow the model to review knowl-
edge from the old domain while learning from the new domain.
However, in many real-world scenarios, data from the old domain
may not be retained and accessed in the long term due to privacy

3
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and security concerns. Therefore, instead of directly storing raw
samples of each domain, we introduce learnable prompts to capture
and store domain knowledge. These learnable prompts can explore
the individual features of each domain, enhancing the adaptability
of pre-trained models. Meanwhile, these prompts can also mine
inter-domain common knowledge through long-term learning to
improve the cross-domain generalization of the model. Overall, the
prompts can not only learn the characteristics of each domain but
also model generic information across domains, thereby mitigat-
ing the catastrophic forgetting problem without data privacy and
security concerns.

Based on the aforementioned analysis, we devise complementary
domain prompt learning, which consists of domain-shared prompt
and domain-specific prompt to learn both domain-general knowl-
edge and domain-specific knowledge for each domain respectively.
Given a pre-trained model with𝑀 transformer layers in which the
embedding dimension of the hidden layer is 𝑑 , we learn𝑀 domain-
shared prompt P𝑠ℎ𝑎𝑟𝑒𝑑 and domain-specific prompt P𝑠𝑝𝑒𝑐𝑖 𝑓 𝑖𝑐 :

P𝑠ℎ𝑎𝑟𝑒𝑑 = {𝑝𝑖
𝑠ℎ𝑎𝑟𝑒𝑑

∈ R𝑙𝑝×𝑑 |0 ≤ 𝑖 ≤ 𝑀 − 1}; (2)

P𝑠𝑝𝑒𝑐𝑖 𝑓 𝑖𝑐 = {𝑝𝑖
𝑠𝑝𝑒𝑐𝑖 𝑓 𝑖𝑐

∈ R𝑙𝑝×𝑑 |0 ≤ 𝑖 ≤ 𝑀 − 1} (3)

where 𝑙𝑝 is the length of prompts. Then, we generate the comple-
mentary domain prompt P𝑐𝑜𝑚𝑝 = {𝑝𝑖 ∈ R2∗𝑙𝑝×𝑑 |0 ≤ 𝑖 ≤ 𝑀 − 1}
by:

P𝑐𝑜𝑚𝑝 = [P𝑠ℎ𝑎𝑟𝑒𝑑 , P𝑠𝑝𝑒𝑐𝑖 𝑓 𝑖𝑐 ], (4)
where [·, ·] denotes the concatenation along the length dimension.
Next, we inject the complementary domain prompt P𝑐𝑜𝑚𝑝 into the
first transformer layer 𝐿1 of the pre-trained model alongside the
image embedding 𝑒 which is extracted by the input image 𝐼 :

[𝑐𝑙𝑠1, _, ℎ1] = 𝐿1 ( [𝑐𝑙𝑠0, 𝑝0, 𝑒]) , (5)

Subsequently, the rest complementary domain prompt is injected
into the pre-trained model with each hidden embedding feature:

[𝑐𝑙𝑠𝑖 , _, ℎ𝑖 ] = 𝐿𝑖 ( [𝑐𝑙𝑠𝑖−1, 𝑝𝑖−1, ℎ𝑖−1]) 𝑖 = 2, 3, . . . , 𝑀. (6)

where 𝑐𝑙𝑠𝑖 is the class token, and ℎ𝑖 ∈ R𝑑 (1 ≤ 𝑖 ≤ 𝑀 − 1) is the
hidden embedding feature output from the layer 𝐿𝑖 .

During training, the domain-shared prompt continuously learns
domain generalized knowledge across all domains. In order to pre-
vent the domain-shared prompt from forgetting information about
old domains, we introduce an inter-domain alignment constraint be-
tween the domain-shared prompt at current stages and the previous
incremental stage 𝑃pre:

LIDA = 1 − 1
𝐿 × 𝑑

𝑁∑︁
𝑖=1

𝑝𝑖shared · 𝑝
𝑖
pre

∥𝑝𝑖shared∥ · ∥𝑝
𝑖
pre∥

, (7)

LIDA enhances the ability to learn unified cross-domain feature
representations of domain-shared prompt by matching the distri-
bution of them across domains, reducing knowledge loss caused
by domain distribution shiftS, and enabling the model to better
leverage knowledge from old domains for learning in new domains.

Meanwhile, we introduce an intra-domain orthogonal constraint
between the domain-shared prompt and domain-specific prompt to
guide them to focus respectively on the learning of general feature

representation and individual domain distribution:

LIDO =
1

𝐿 × 𝑑

𝑁∑︁
𝑖=1

𝑝𝑖shared · 𝑝
𝑖
specific

∥𝑝𝑖shared∥ · ∥𝑝
𝑖
specific∥

. (8)

Supervision under LIDO constraint, domain-specific prompt can
focus on learning the unique domain distribution information of
each domain to facilitate the model in adapting to new domains
and preserve this domain characteristic information incorporated
into the prompt bank for subsequent inference.

Finally, we can predict the relative depth map d𝑟𝑒𝑙 by the frozen
pre-trained model 𝑓 with the learnable complementary domain
prompt P𝑐𝑜𝑚𝑝 :

d𝑟𝑒𝑙 = 𝑓 (𝐼 , P𝑐𝑜𝑚𝑝 ) (9)

3.4 𝑆2-Adapter
Furthermore, to convert the relative depth map into metric depth
map, it is necessary to capture the depth space variations across
domains. Here, we decouple the depth space variations into two
factors: depth scale and depth shift. The depth scale factor controls
the scaling relationship from the relative depth map to the metric
depth map, while the depth shift factor indicates the shift between
each pixel to the accurate depth value. These two factors are widely
used in multi-domain learning to obtain a unified depth represen-
tation by metric depth d̂ and stabilize the multi-domain learning
process:

d𝑟𝑒𝑙 =
d̂ − 𝑡 (d̂)
𝑠 (d̂)

, (10)

where 𝑡 (d̂) = median(d̂), and 𝑠 (d̂) = ∑ |d̂− 𝑡 (d̂) |. So we can obtain
the metric depth map by reversing this process:

d̂ = 𝑠 (d̂)d𝑟𝑒𝑙 + 𝑡 (d̂) . (11)

However, as 𝑠 (d̂) and 𝑡 (d̂) are unavailable, a direct thought is to
estimate them by learning a global scale factor𝑤 and shift factor 𝑏:

d̂ = 𝑤d𝑟𝑒𝑙 + 𝑏. (12)

Furthermore, due to the potential inaccuracies in the relative depth
maps predicted by pre-trained models, a global scale factor and shift
factor may not be enough to capture the depth space variations.
Therefore, we design a lightweight 𝑆2-Adapter which consists of a
scale adapter and a shift adapter to learn pixel-wise scale matrix and
shift matrix respectively. In practice, we implement each adapter
by two convolutional layers with 1 × 1 kernel size, followed by the
formulation to obtain the final metric depth map:

𝑾𝑠𝑐𝑎𝑙𝑒 = 𝑅𝑒𝐿𝑈 (𝑾1,2 (𝑅𝑒𝐿𝑈 (𝑾1,1 (d𝑟𝑒𝑙 ))), (13)
𝑾𝑠ℎ𝑖 𝑓 𝑡 =𝑾2,2 (𝑅𝑒𝐿𝑈 (𝑾2,1 (d𝑟𝑒𝑙 )), (14)

d̂ =𝑾𝑠𝑐𝑎𝑙𝑒d𝑟𝑒𝑙 +𝑾𝑠ℎ𝑖 𝑓 𝑡 , (15)

where𝑊𝑖, 𝑗 means the 𝑗-th weight of the 𝑖-th adapter. We employ
𝑅𝑒𝐿𝑈 activation function to ensure that𝑾𝑠𝑐𝑎𝑙𝑒 is positive, while
𝑾𝑠ℎ𝑖 𝑓 𝑡 is not subject to this constraint. Finally, we can predict the
metric depth map through the 𝑆2-Adapter:

d̂ = 𝑆2-Adapter(d𝑟𝑒𝑙 ) (16)
4
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And due to the various depth scales in different domains, we use
the Scale-Invariant Loss [1] to learn depth knowledge:

LDepth = 𝛼

√√√
1
𝑇

∑︁
𝑖

𝑔2
𝑖
− 𝜆

𝑇 2

(∑︁
𝑖

𝑔𝑖

)2
, (17)

where 𝑔𝑖 = log d𝑖 − log d̂𝑖 and d𝑖 denotes the ground truth depth
map, and 𝑇 denotes the number of pixels with valid depth values.
We empirically set the 𝛼 and 𝜆 to 10 and 0.15 respectively.

Finally, the overall loss L on each domain is:

L = LDepth + 𝛽LIDO + 𝛾LIDA, (18)

where the hyper-parameter 𝛽 and 𝛾 is empirically set to 1 and 10
respectively.

3.5 Domain Prompt Generation
In the inference phase, we devise complementary domain prompt
generation to analyze the content of input images to select the
corresponding domain-specific prompt and 𝑆2-adapter.

In detail, we first extract image features 𝑓𝑖𝑚𝑎𝑔𝑒 ∈ Rℎ×𝑤×𝑑 via a
query function that is implemented by the frozen pre-trained model.
Then we flatten 𝑓𝑖𝑚𝑎𝑔𝑒 and all domain-specific prompt respectively
to get 𝑓 ′

𝑖𝑚𝑎𝑔𝑒
∈ Rℎ∗𝑤∗𝑑 and 𝑓 ′𝑖𝑝𝑟𝑜𝑚𝑝𝑡 ∈ R𝑁 ∗𝑙∗𝑑 to compute the inner

product between these features and get the domain identity 𝑘 by:

𝑘 ← argmax
𝑖

(𝑓 ′𝑖𝑚𝑎𝑔𝑒 ·
(
𝑓 ′𝑖𝑝𝑟𝑜𝑚𝑝𝑡

)𝑇
). (19)

Consequently, based on this domain identity 𝑘 , we can generate
the complementary domain prompt and inject it into the model.
Additionally, we can select the 𝑆2-Adapter based on the domain
identity 𝑘 . Thus, the corresponding complementary domain prompt
and the 𝑆2-Adapter are accurately selected to guide the model for
depth predictions.

4 EXPERIMENTS
4.1 Experimental Setup
Datasets.We evaluate our method on 12 benchmark datasets, in-
cluding 2 indoor and 10 outdoor datasets with different charac-
teristics. The details of them are given in Table 1, and the data
augmentation strategies are described in the supplementary mate-
rial.
Implementation details. We implement experiments on PyTorch
and train with RTX 3090 GPU with the AdamW optimizer for
10 epochs in each domain. We use a batch size of 8 and a one-
cycle policy schedule for adjusting the learning rate with a max
learning rate of 0.0000161. We use the dpt-hybrid-based model from
work [29] as our backbone. We evaluate our method with 5 metrics:
relative mean absolute error (AbsRel); Root Mean Squared Error
(RMSE); threshold accuracy 𝛿1.25; Average metrics and Forgetting
metrics. TheAverageMetric represents the generalization capability
of the model and is calculated by the mean value of the RMSEmetric
across all domains in the final incremental session. The Forgetting
Metric assesses the ability of the model against forgetting and
represents the difference between the RMSE metric of the first
domain after all training stages and its value after the completion
of the first stage of training.

Table 1: Details of datasets involved in the experiments.

Datasets Characteristic Range (m) #Samples (Train/Test)
NYU_v2 [35] Indoor 0~10 50K/0.6k
ScanNet [8] Indoor 0~6 50k/17k
KITTI [38] Outdoor 0~80 85k/1k
vKITTI_v2 [4] Synthetic 0~80 12k/0.6k
Cityscapes [7] Outdoor 0~200 2.9k/0.5k
CS_Foggy [32] Foggy 0~200 8.9k/1.5k
CS_Rainy [13] Rainy 0~200 9.5k/1.1k
DAOD [45] Outdoor 0~120 174k/7.7k
D_Sunny [45] Sunny 0~120 0.4k/0.1k
D_Cloudy [45] Cloudy 0~120 0.4k/0.1k
D_Foggy [45] Foggy 0~120 0.4k/0.1k
D_Rainy [45] Rainy 0~120 0.4k/0.1k

Incremental domain sequences. We design 4 incremental do-
main sequences to comprehensively validate the performance of
the model:

(1) NYU_v2→ScanNet→KITTI. In this sequence, the depth
range varies cross-domain (10m→6m→80m). Therefore, this
sequence is primarily employed to assess the adapting ca-
pacity of models to depth space variations.

(2) vKITTI_v2→KITTI→CityScapes. The primary focus of
this sequence is to assess the model’s capacity to adapt to
image style variations, such as from virtual to real scenes.

(3) CityScapes→CS_Foggy→CS_Rainy. In this sequence, the
weather conditions in each domain are different. Therefore,
training under this sequence can verify the capability of
models to mitigate domain distribution shifts.

(4) DAOD→D_Sunny→D_Cloudy→D_Foggy→D_Rainy.
Due to the extreme imbalance of the sample numbers across
domains in this sequence, this sequence can test the model’s
adaptability and resistance to forgetting in long-term few-
shot scenarios.

Comparisons methods. We compare DSSP against our base-
line, the classical incremental learning method (EWC [17]), and
the SOTA incremental monocular depth estimation method (LL-
MonoDepth [11]) under the above four incremental domain se-
quences. To evaluate the performance of our baseline, we train
it through continuous fine-tuning (FT) and joint-domain training
(JDT). We implement the classical incremental learning method
EWC [17] based on our backbone. To reproduce the results of the
LL-MonoDepth, we retain 500 replay samples for it in each domain,
consistent with the original paper. Notably, due to the insufficient
number of training samples under other weather conditions in
DAOD dataset, we randomly retain 10% of the training samples for
replaying in these domains.

4.2 Quantitative Results
Comparisons under different depth ranges and image styles.
As illustrated in Table 2, DSSP achieves superior performance under
all incremental domain sequences. Specifically, in the first sequence,
compared to the SOTA methods, DSSP exhibits a significant im-
provement in the Average metric, demonstrating that our model
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Table 2: The quantitative comparison with SOTA methods on three incremental settings which include
"NYU_v2→ScanNet→KITTI", "vKITTI_v2→KITTI→CityScapes" and "CityScapes→CityScapes_Foggy→CityScapes_Rainy".

Methods
NYU_v2 ScanNet KITTI

Average ↓ Forgetting ↓
AbsRel ↓ RMSE ↓ 𝛿1.25 ↑ AbsRel ↓ RMSE ↓ 𝛿1.25 ↑ AbsRel ↓ RMSE ↓ 𝛿1.25 ↑

FT 2.210 5.161 0.656 2.494 3.748 0.426 0.194 4.361 74.707 4.423 4.759
JDT [29] 2.091 5.260 0.028 1.702 3.169 0.079 0.260 5.048 4.492 15.018 -
EWC [17] 2.304 5.367 0.674 2.497 3.776 0.424 0.191 4.323 77.758 4.489 4.960

LL-MonoDepth [11] 0.224 0.810 56.675 0.259 0.526 52.580 0.193 11.365 66.792 4.234 0.277
DSSP (Ours) 0.276 0.716 56.528 0.120 0.247 86.083 0.216 4.795 66.469 1.919 0.255

Methods
vKITTI_v2 KITTI CityScapes

Average ↓ Forgetting ↓
AbsRel ↓ RMSE ↓ 𝛿1.25 ↑ AbsRel ↓ RMSE ↓ 𝛿1.25 ↑ AbsRel ↓ RMSE ↓ 𝛿1.25 ↑

FT 6.474 42.982 0.161 1.968 33.161 5.818 17.008 16.927 54.934 31.023 39.900
JDT [29] 1.449 14.064 1.447 0.190 4.331 77.576 21.448 13.711 90.434 10.702 -
EWC [17] 4.791 37.422 0.604 1.613 28.243 9.512 17.020 15.751 59.803 27.139 34.251

LL-MonoDepth [11] 0.354 9.376 44.932 0.407 15.059 23.887 10.753 45.718 20.320 23.384 5.171
DSSP (Ours) 1.119 7.909 13.590 0.131 4.517 86.379 22.503 17.464 52.625 9.963 4.279

Methods
CityScapes CityScapes_Foggy CityScapes_Rainy

Average ↓ Forgetting ↓
AbsRel ↓ RMSE ↓ 𝛿1.25 ↑ AbsRel ↓ RMSE ↓ 𝛿1.25 ↑ AbsRel ↓ RMSE ↓ 𝛿1.25 ↑

FT 24.300 14.213 89.352 24.959 14.224 89.455 3.726 10.259 92.062 12.898 -1.506
JDT [29] 19.539 16.731 56.898 26.241 16.445 57.310 2.847 15.218 51.943 16.131 -
EWC [17] 14.964 16.226 58.889 14.626 15.924 59.147 3.032 14.798 53.804 15.649 -1.450

LL-MonoDepth [11] 10.440 16.819 68.531 10.781 15.957 69.962 5.379 24.115 56.459 18.964 -0.389
DSSP (Ours) 27.851 17.274 59.645 12.775 15.210 61.360 3.789 16.364 48.647 16.282 -0.295

effectively mitigates the influence of the depth space variations
through 𝑆2-Adapters. In the second sequence, benefiting from our
complementary domain prompt, DSSP is capable of learning uni-
fied feature representations across domains while also acquiring
individual domain distributions for each domain. Therefore DSSP
can maintain superior performance in both Average and Forgetting
metrics. In the third sequence, none of the methods exhibited any
occurrence of forgetting (i.e., forgetting metrics are less than 0).
This indicates that under this scenario, the domain shift induced
by weather variations is not as much as in the former two se-
quences, thereby enabling satisfactory performance through direct
fine-tuning (FT).

Figure 4 illustrates a comparison between our DSSP and other
methods across all domains and shows the final results. It can be
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Figure 3: Comparative analysis of DSSP and the SOTA incre-
mental monocular estimation methods (LL-MonoDepth) on
mitigating forgetting performance under the few-shot DAOD
incremental setting.

observed that nearly all methods produce satisfactory depth map
predictions in the last domain (KITTI). Notably, benefiting from
complementary domain prompt, which alleviates the effects of
domain distribution shifts, DSSP maintains extraordinary perfor-
mance in all domains. Meanwhile, owing to the inclination of this
incremental sequence to validate the model’s adaptability across
varying depth ranges, our model, facilitated by 𝑆2-Adapter, exhibits
the capacity to adapt depth space variations. For instance, within
the first two indoor datasets, our model exhibits a relatively accu-
rate measure of the depth of distant objects. The qualitative results
under the other three additional incremental settings are provided
in the supplementary material.
Comparisons under the long-term few-shot scenario.Here, we
conduct experiments on long-term few-shot scenarios, where the
model is required to adapt 5 domains with different weathers. And
the training samples of new domains are only 400. Figure 3 describes
the performance curve of different methods during training. As one
can observe, DSSP is more stable and achieves better performance
in each session. As illustrated in Table 3, DSSP achieves outstand-
ing performance compared with other methods. Compared with
EWC, DSSP obtains an improvement of 2.569 in terms of average
RMSE over all domains. We also notice that DSSP is slightly infe-
rior to EWC in terms of forgetting rate. Because EWC unfrozes the
large-scale pre-trained model with additional regularization. Such
a paradigm consumes plenty of time and computational resources
and may destroy the pre-trained knowledge. Compared with the
SOTA incremental depth estimation method LL-MonoDepth, DSSP
obtains significant improvements in terms of Average and Forget-
ting metrics. The superior performance can be attributed to two
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Table 3: The quantitative results on "DAOD→D_Sunny→D_Cloudy→D_Foggy→D_Rainy" incremental settings.

Methods
DAOD DAOD_Sunny DAOD_Cloudy DAOD_Foggy DAOD_Rainy

Average ↓ Forgetting ↓
AbsRel ↓ RMSE ↓ 𝛿1.25 ↑ AbsRel ↓ RMSE ↓ 𝛿1.25 ↑ AbsRel ↓ RMSE ↓ 𝛿1.25 ↑ AbsRel ↓ RMSE ↓ 𝛿1.25 ↑ AbsRel ↓ RMSE ↓ 𝛿1.25 ↑

FT 0.320 9.045 27.116 0.365 9.506 13.992 0.392 9.980 8.563 0.345 10.331 14.391 0.306 10.322 28.224 9.837 0.080
JDT [29] 0.330 8.944 23.696 0.367 9.273 13.310 0.395 9.609 8.820 0.355 10.653 13.296 0.307 10.097 29.566 9.715 -
EWC [17] 0.313 9.013 28.951 0.359 9.391 15.315 0.381 9.898 9.739 0.340 10.311 15.209 0.302 10.733 30.288 9.869 -0.212

LL-MonoDepth [11] 0.170 17.379 74.500 0.333 20.694 56.131 0.325 20.523 58.340 0.263 23.806 65.896 0.999 42.089 0.000 24.898 5.045
DSSP (ours) 0.177 8.494 80.171 0.130 6.681 86.041 0.165 6.534 82.974 0.148 6.186 88.570 0.226 8.754 61.708 7.330 0.524

folds. Firstly, our domain-shared prompt can learn the universality
across domains in feature spaces, reducing the domain gap during
incremental learning. Secondly, 𝑆2-Adapter and domain-specific
prompt can learn and store the domain distribution, improving the
adaptability of the model for each domain.

4.3 Ablation Studies
Shared and Specific Prompt. We first examine our DSSP by re-
placing domain-shared prompt and domain-specific prompt respec-
tively. As illustrated in Table 4 (w/o P𝑠ℎ𝑎𝑟𝑒𝑑 and w/o P𝑠𝑝𝑒𝑐𝑖 𝑓 𝑖𝑐 ). The
model suffers from serious forgetting problems when the model
can only learn unified feature representations between domains
and lacks domain-specific knowledge which demonstrates the en-
hancing effect of domain-specific prompt on the adaptability of the
model.

RGB

GT

FT

JDT

LL-mono

Ours

EWC

(a)

(b)

(c)

(d)

(e)

(f)

(g)

Figure 4: Qualitative comparison with SOTA methods in the
learning order of NYU-v2→ ScanNet→ KITTI. (a) RGB. (b)
Ground truths. (c) FT. (d) JDT. (e) EWC. (f) LL-MonoDepth.
(g) Ours.

𝑆2-Adapter. Then, we access the performance of our DSSP without
the 𝑆2-Adapter. As shown in Table 4 (w/o 𝑆2-Adapter), the absence
of the 𝑆2-Adapter leads to the lack of capability of adapting the
depth space variations thereby producing the severe forgetting
problem.
Regularization Loss. We further validate the effects of the con-
straints imposed on domain-shared prompt and domain-specific
prompt. As demonstrated in Table 4 (w/o LIDO, w/o LIDA and w/o
all R ), the absence of either constraint leads to a decrease in the
model’s generalization ability and resilience to forgetting. Specif-
ically, the lack of inter-domain alignment constraint for domain-
shared prompt hinders the learning of unified feature represen-
tations across domains, thereby failing to ease domain gaps, ul-
timately resulting in severe forgetting phenomena. Similarly, the
absence of intra-domain orthogonality constraint for both types
of prompts induces knowledge interference during learning, pre-
venting domain-specific prompt from acquiring individual domain
distribution information, thereby impeding the model’s adaptation
to new domains and weakening its generalization capability.
The length of the Prompt. In Figure 5, we validate the effect of
prompt length on "NYU-v2→ ScanNet→ KITTI" task. As one can
observe, the best Average is achieved when the prompt length is
300. The best Forgetting is achieved when the prompt length is
250. For considerations of storage and efficiency, we adopt a default
prompt length of 100.

4.4 Domain Identity Prediction Results.
Then we study the prediction accuracy of domain identity by our
method. As shown in Figure 6, our method achieves good per-
formance under the "NYU_v2, ScanNet, KITTI" sequences which
demonstrates that our domain-specific prompt can learn the in-
dividual domain distribution information. Meanwhile, due to the
small number of samples in the DAOD incremental sequences, our
method can accurately predict the majority of domains to which
the samples belong.

Table 4: The ablation studies of each components in DSSP on
NYU_v2->ScanNet->KITTI incremental setting.

Methods
NYU_v2

Average ↓ Forgetting ↓
AbsRel ↓ RMSE ↓ 𝛿1.25 ↑

w/o P𝑠ℎ𝑎𝑟𝑒𝑑 0.175 0.577 73.221 1.670 -
w/o P𝑠𝑝𝑒𝑐𝑖 𝑓 𝑖𝑐 1.658 3.750 8.153 2.776 3.173
w/o 𝑆2-Adapter 3.360 6.978 0.628 3.884 5.178

w/o LIDO 0.481 1.028 31.066 5.042 0.586
w/o LIDA 1.558 3.316 2.768 5.663 2.869
w/o all R 1.187 2.477 5.504 5.823 2.036
Ours 0.276 0.716 56.528 1.919 0.255
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Figure 5: Effect of the length of our complementary domain
prompt measured by the Average and Forgetting metrics in
the learning order of NYU-v2→ ScanNet→ KITTI.

4.5 Ablation of the Incremental Domain Orders
Due to varying degrees of inter-domain gaps, different incremental
domain orders may result in diverse results. Consequently, we
evaluate the performance of our method across all sequences on
three datasets: NYU_v2, ScanNet, and KITTI. The performance of
ourmethod under different sequences on other datasets and detailed
results of metrics are presented in the supplementary material. As
shown in Figure 7, due to the substantial disparity in depth range
between the KITTI dataset and other indoor datasets, training a
model solely on KITTI and subsequently on other datasets leads
to significant performance degradation (a)(f). However, when the
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Figure 6: The accuracy of the domain identity predictions on
four incremental sequences. The horizontal axis represents
our prediction results, and the vertical axis represents the
true domain identity.
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Figure 7: The 𝛿1.25 accuracy ofDSSP under different incremen-
tal domain orders of NYU_v2, ScanNet and KITTI datasets.

model has been pre-trained on any indoor dataset, its performance
on the KITTI dataset remains stable or even improves (b)(d).

5 CONCLUSION
In this paper, we develop the DSSP for incremental monocular
estimation without data privacy and security concerns, which de-
signs complementary domain prompt and 𝑆2-Adapter to mitigate
domain distribution shifts and depth space variations. Specifically,
we first generate the complementary domain prompt by learning
domain shared and specific prompt which are supervised by the
inter-domain alignment and intra-domain orthogonal constraint
to facilitate the model to predict a unified depth representation.
Then, we design a lightweight 𝑆2-Adapter that quantizes the depth
variations into scaling and shifting, enhancing the ability of the
model to capture the mapping from unified depth representations
to metric depth space and eventually predict the metric depth map.
Extensive experiments on 12 public datasets under four different
incremental scenarios demonstrate the superiority of DSSP.

We design four incremental domain sequences to provide a com-
prehensive benchmark for incremental monocular depth estimation.
In the future, we will validate the forgetting issue and the transfer
ability of our DSSP on larger depth estimation pre-trained models.
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