
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

EDIT-BASED FLOW MATCHING FOR TEMPORAL
POINT PROCESSES

Anonymous authors
Paper under double-blind review

ABSTRACT

Temporal point processes (TPPs) are a fundamental tool for modeling event se-
quences in continuous time, but most existing approaches rely on autoregres-
sive parameterizations that are limited by their sequential sampling. Recent non-
autoregressive, diffusion-style models mitigate these issues by jointly interpolating
between noise and data through event insertions and deletions in a discrete Markov
chain. In this work, we generalize this perspective and introduce an Edit Flow
process for TPPs that transports noise to data via insert, delete, and substitute
edit operations. By learning the instantaneous edit rates within a continuous-time
Markov chain framework, we attain a flexible and efficient model that effectively
reduces the total number of necessary edit operations during generation. Empirical
results demonstrate the generative flexibility of our unconditionally trained model in
a wide range of unconditional and conditional generation tasks on benchmark TPPs.

1 INTRODUCTION

0.11 0.50 0.95

0.51

𝒕1

𝒕0

0.50

𝒕0.05

0.210.11𝒕0.19

0.210.11

0.51

𝒕0.55

0.210.11

0.21 0.51

0.95

𝒕0.73

0.11 0.50
ins

sub

del

del

Figure 1: Edit process transporting t0 ∼
pnoise(t) to t1 ∼ qtarget(t) by inserting, delet-
ing and substituting events.

Temporal point processes (TPPs) capture the distri-
bution over sequences of events in time, where both
the continuous arrival-times and number of events
are random. They are widely used in domains such
as finance, healthcare, social networks, and trans-
portation, where understanding and forecasting event
dynamics and their complex interactions is crucial.
Most (neural) TPPs capture the complex interactions
between events autoregressively, parameterizing a
conditional intensity/density of each event given its
history (Daley & Vere-Jones, 2006; Shchur et al.,
2021). While natural and flexible, this factorization
comes with inherent limitations: sampling scales lin-
early with sequence length, errors can compound in
multi-step generation, and conditional generation is
restricted to forecasting tasks.

Beyond autoregression. Recent advances demon-
strate that modeling event sequences jointly proposes
a sound alternative to overcome these limitations. Inspired by diffusion, ADDTHIN (Lüdke et al.,
2023) and PSDIFF (Lüdke et al., 2025) leverage the thinning and superposition properties of TPPs
to construct a discrete Markov chain that learns to transform noise sequences t0 ∼ pnoise(t) into
data sequences t1 ∼ qtarget(t) through insertions and deletions of events. These methods highlight
the promise of joint sequence modeling for TPPs by learning stochastic set interpolations and have
shown state-of-the-art results, especially in forecasting.

In parallel, Havasi et al. (2025) introduced Edit Flow, a discrete flow-matching framework (Gat
et al., 2024; Campbell et al., 2024; Shi et al., 2025) for variable-length sequences of tokens (e.g.,
language). Their approach models discrete flows in sequence space through insertions, deletions, and
substitutions, formalized as a continuous-time Markov Chain (CTMC). To make the learning process
tractable, they introduce an expanded auxilliary state space that aligns sequences, simultaneously

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

reducing the complexity of marginalizing over possible transitions and enabling efficient element-wise
parameterization in sequence space.

In this paper, we unify these perspectives and propose EDITPP, an Edit Flow for TPPs that learns to
transport noise sequences t0 ∼ pnoise(t) to data sequences t1 ∼ qtarget(t) via atomic edit operations
insertions, deletions, and substitutions (see figure 1). We define these operations specifically for TPPs,
efficiently parameterize their instantaneous rates within a CTMC, propose an auxiliary alignment
space for TPPs, and show that our unconditionally trained model can be flexibly applied to both
unconditional and conditional tasks with adaptive complexity. Our main contributions are:

• We introduce EDITPP, the first generative framework that models TPPs via continuous-
time edit operations, unifying stochastic set interpolation methods for TPPs with Edit
Flows for discrete sequences.

• We propose a tractable parameterization of insertion, deletion, and substitution rates for
TPPs within the CTMC framework, effectively reducing the number of edit operations
for generation.

• We demonstrate empirically that EDITPP achieves state-of-the-art results in both
unconditional and conditional tasks across diverse real-world and synthetic datasets.

2 BACKGROUND

2.1 TEMPORAL POINT PROCESSES

TPPs (Daley & Vere-Jones, 2006; 2007) are stochastic processes whose realizations are finite,
ordered sets of random events in time. Let t = {t(i)}ni=1, with t(i) ∈ [0, T], denote a realization
of n events on a bounded time interval, which can equivalently be represented by the counting
process N(t) =

∑n
i=1 1{t(i) ≤ t} counting the number of events up to time t. A TPP is uniquely

characterized by its conditional intensity function (Rasmussen, 2018):

λ∗(t) = lim
∆t↓0

E[N(t+∆t)−N(t) | Ht]

∆t
, (1)

where Ht = {t(i) : t(i) < t} denotes the history up to time t. Intuitively, λ∗(t) represents the
instantaneous rate of events given the past. Two important properties of TPPs are superposition and
thinning. Superposition, i.e., inserting one sequence into another, t = t1 ∪ t2, where t1 and t2 are
realizations from TPPs with intensities λ1 and λ2, results in a sample from a TPP with intensity
λ = λ1 + λ2. Independent thinning, i.e., randomly deleting any event of a sequence from a TPP
with intensity λ with probability p, results in an event sequence from a TPP with intensity (1− p)λ.

The likelihood of observing an event sequence t given the conditional intensity/density is:

p(t) =

(
n∏

i=1

p(t(i) | Ht(i))

)
(1− F (T | Ht)) =

(
n∏

i=1

λ∗(t(i))

)
exp

(
−
∫ T

0

λ∗(s)ds

)
, (2)

where F (T | Ht) is the CDF of the conditional event density p(t | Ht). While this autoregressive
formulation of TPPs provides a natural framework for modeling event dependencies, it also poses
challenges. Parameterizing the conditional intensity or density is generally nontrivial, and the
inherently sequential factorization can lead to inefficient sampling, error accumulation, and limits
conditional tasks to forecasting (Lüdke et al., 2023; 2025).

2.2 MODELING TPPS BY SET INTERPOLATION

Instead of explicitly modeling the intensity function, Lüdke et al. (2023; 2025) leverage the thinning
and superposition properties of TPPs to derive diffusion-like generative models that interpolate
between data event sequences t1 ∼ qtarget(t) and noise t0 ∼ pnoise(t) by inserting and deleting
elements. ADDTHIN (Lüdke et al., 2023) defines the noising Markov chain recursively over a fixed
number of steps with size ∆ indexed by s ∈ [0, 1] as follows:

λs(t) = αsλs−∆(t)︸ ︷︷ ︸
(i) Thin

+(1− αs)λ0(t)︸ ︷︷ ︸
(ii) Add

, (3)

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

where λ1(t) is the unknown target intensity of the TPP and αs ∈ (0, 1). Intuitively, this noising
process increasingly deletes events from the data sequence, while inserting events from a noise TPP
λ0(t). PSDIFF (Lüdke et al., 2025) further separates the adding and thinning to yield a Markov chain
for the forward process, that stochastically interpolates between t0 and t1 as follows:

ps(t | t1, t0) =
∏
t∈t

{
ᾱs if t ∈ t1
1− ᾱs if t ∈ t0

(4)

or equivalently λs(t) = ᾱsλ1(t) + (1− ᾱs)λ0(t), with ᾱs being the product of αi’s. Eq. (4) defines
an element-wise conditional path by independent insert and delete operations on TPPs, assuming
t0 ∩ t1 = ∅.

2.3 FLOW MATCHING WITH EDIT OPERATIONS

Havasi et al. (2025) introduce Edit Flows, a non-autoregressive generative framework for variable-
length token sequences with a fixed, discrete vocabulary (e.g., language). They propose a discrete
flow that transports a noisy sequence x0 ∼ pnoise(x) to a data sequence x1 ∼ qdata(x) via elementary
edit operations: insertions, deletions, and substitutions. This is formalized via the discrete flow
matching framework (Gat et al., 2024; Campbell et al., 2024; Shi et al., 2025) in an augmented space,
yielding a CTMC Pr(Xs+h = x | Xs = xs) = δxs(x) + huθ

s(x | xs) + o(h) with transition rates
uθ
s governed by the edit operations.

Directly defining a conditional rate us(x|x1,x0) to match uθ
s to, as in discrete flow matching,

is very hard or even intractable, since all possible edits producing x must be considered. Thus,
to train this CTMC, they rely on two major insights. First, a CTMC in a data space X can be
learned by introducing an augmented space X × Z where the true dynamics are known. Second,
designing the auxiliary space Z to follow the element wise mixture probability path ps(z | z0, z1) =∏

n

[
(1− κs)δz(i)

0
(z(i)) + κsδz(i)

1
(z(i))

]
with kappa schedule κs ∈ [0, 1] (Gat et al., 2024) enables

training the CTMC directly in the data space X of variable-length sequences.

Edit operations are encoded by mapping (x0,x1) into aligned sequences (z0, z1) in Z , where
pairs (z(i)0 , z

(i)
1) correspond to insertions (ϵ, x), deletions (x, ϵ), or substitutions (x, y). Crucially,

since the discrete flow matching dynamics in Z are known, they can be transferred back to X via
ps(x, z | z0, z1) = ps(z | z0, z1)δfrm-blanks(z)(x). Then, the marginal rates uθ

s are learned in X by
marginalizing over z with the Bregman divergence

L = E
(z0,z1)∼π(z0,z1)
s,ps(zs,xs|z0,z1)

[∑
x̸=xs

uθ
s (x | xs)−

∑
z
(i)
s ̸=z

(i)
1

κ̇s

1− κs
log uθ

s

(
x(zs, i, z

(i)
1) | xs

)]
, (5)

where x(zs, i, z
(i)
1) = frm-blanks((z

(1)
s , . . . , z

(i−1)
s , z

(i)
1 , z

(i+1)
s , . . . , z

(n)
s)).

3 METHOD

We introduce EDITPP, an Edit Flow process for TPPs that directly learns the joint distribution of
event times. Our process leverages the three elementary edit operations insert, substitute, and delete
to define a CTMC that continuously interpolates between two event sequences t0 ∼ pnoise(t) and
t1 ∼ qdata(t).

Let T = [0, T] denote the support of the TPP. We define the state space as
XT =

⋃∞
n=0

{
(0, t(1), . . . , t(n), T) ∈ T n : 0 < t(1) < · · · < t(n) < T

}
, denoting the set of all pos-

sible padded TPP sequences with finitely many events.

3.1 EDIT OPERATIONS

Our model navigates the state space XT through a set of atomic edit operations. While Edit Flow
was originally defined for discrete state spaces, we can generalize the method to continuous state
spaces provided that the set of edit operations remains discrete. We achieve this by defining a finite
set of edit operations on our continuous state space XT that nonetheless allow us to transition from
any sequence t to any other t′ through repeated application.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

𝑡𝑡𝑡𝑠
(1)𝒕𝑠 𝑡𝑠

(4)

2𝛿

ins(𝒕𝑠, 1, j)

sub(𝒕𝑠, 3, j)

del(𝒕𝑠, 4)

𝑡𝑠
(3)𝑡𝑠

(2)

Figure 2: Our discrete edit operations transform continuous event sequences through insertions,
substitutions and deletion.

Similar to Havasi et al. (2025), we design our operations to be mutually exclusive: if two sequences
differ by exactly one edit, the responsible operation is uniquely determined. This simplifies the
parameterization of the model and computation of the Bregman divergence in Eq. (5).

Insertion: To discretize the event insertion, we quantize the space between any two adjacent events
t(i) and t(i+1) into bins evenly-spaced bins. Then, we define the insertion operation relative to the ith
event as

ins(t, i, j) =
(
t(0), . . . , t(i), t(i) +

j − 1 + α

bins
(t(i+1) − t(i)), t(i+1), . . . , t(n+1)

)
(6)

for i ∈ {0, . . . , n}, j ∈ [bins], where α ∼ U(0, 1) is a dequantization factor inspired by uniform
dequantization in likelihood-based generative models (Theis et al., 2016). The boundary elements
t(0) = 0 and t(n+1) = T ensure that insertions are possible across the entire support T . Since the
bins between different i are non-overlapping, insertions are mutually exclusive.

Substitution: We implement event substitutions by discretizing the continuous space around each
event into bsub bins. In this case, the bins are free to overlap, since a substitution is always uniquely
determined by the substituted event. We choose a maximum movement distance δ and define

sub(t, i, j) = sort
(
{t(0), . . . , t(i−1), t(i+1), . . . , t(n+1)} ∪

{
t̃(i)
})

(7)

for i ∈ {1, . . . , n}, j ∈ [bsub], where t̃(i) =
[
t(i) − δ + j−1+α

bsub
2δ
]T
0

is the updated event restricted to
the support T and, again, α ∼ U(0, 1) is a uniform dequantization factor within the j-th bin.

Deletion: Finally, we define removing event i ∈ {1, . . . , n} straightforwardly as

del(t, i) = (t(0), . . . , t(i−1), t(i+1), . . . , t(n+1)). (8)

In combination, these operations facilitate any possible edit of an event sequence through insertions
and deletions with substitutions as a shortcut for local delete-insert pairs. Note that we neither allow
inserting after the last boundary event nor substituting or deleting the first or last boundary events,
thus guaranteeing operations to stay in the state space XT . We illustrate the edit operations in Fig. 2.

Parameterization Generating a new event sequence in the Edit Flow framework then means to
emit a continuous stream of edit operations by integrating a rate model uθ

s (· | t) from s = 0 to s = 1.
The emitted operations transform a noise sequence t0 into a data sample t1 by transitioning through
a series of intermediate states t. Given a current state ts, we parameterize the transition rates as

uθ
s (ins(ts, i, j) | ts) = λins

s,i(ts)Q
ins
s,i(j | ts), (9)

uθ
s (sub(ts, i, j) | ts) = λsub

s,i (ts)Q
sub
s,i (j | ts), (10)

uθ
s (del(ts, i) | ts) = λdel

s,i(ts), (11)

where λdel
s,i, λ

ins
s,i, λ

sub
s,i denote the total rate of each of the three basic operations at each event t(i). The

distributions Qins
s,i and Qsub

s,i are categorical distributions over the discretization bins j ∈ [bins] and
j ∈ [bsub], respectively. They distribute the total insertion and substitution rates between the specific
options.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

3.2 AUXILIARY ALIGNMENT SPACE

Training our rate model uθ
s by directly matching a marginalized conditional rate us(t | t1, t0)

generating a ps(t | t1, t0), as is common in discrete flow matching (Campbell et al., 2024; Gat et al.,
2024), is challenging or even intractable for Edit Flows, since it would require accounting for all
possible edits that could produce t (Havasi et al., 2025).

0.50

𝒕1 0.21 0.55

ins sub
del

del

0.0 T

𝒕0 0.11 0.950.0 T

0.55𝜖 𝜖0.0 T𝒛1 0.21

0.500.11 0.950.0 T𝒛0 𝜖

del

Figure 3: Illustration of the
alignment space for t0 and t1.

To address this, following Havasi et al. (2025), we introduce an
auxiliary alignment space for TPPs, where every possible edit
operation is uniquely defined in the element wise mixture path
zs ∼ ps(zs | z0, z1), making the learning problem tractable.

In language modeling, any token can appear in any position, so
Havasi et al. (2025) achieve strong results even when training with
a simple alignment that juxtaposes two sequences after shifting
one of them by a constant number of places. In our case, for the
alignments to correspond to possible edit operations, two events can
only be matched, i.e., z(i)0 ̸= ϵ and z

(i)
1 ̸= ϵ, if |z(i)0 − z

(i)
1 | < δ since

otherwise the resulting sub operation would be invalid. Furthermore,
zs have to correspond to sequences in XT , so frm-blanks(z) has to be increasing, and in particular any
mixing zs between z0 and z1 needs to be valid, i.e., zs ∼ ps(zs | z0, z1)⇒ frm-blanks(zs) ∈ XT .

We find the minimum-cost alignment between the non-boundary events of t0 and t1 with the
Needleman-Wunsch algorithm (Needleman & Wunsch, 1970), i.e.,

align(t0, t1) = wrap-boundaries

(
Needleman-Wunsch

(
t
(1:n)
0 , t

(1:m)
1 , cins, csub, cdel

))
(12)

and the cost functions

csub(i, j) =

{
|t(i)0 − t

(j)
1 | if |t(i)0 − t

(j)
1 | < δ and t

(i−1)
0 < t

(j)
1 < t

(i+1)
0

∞ otherwise

cins(i, j) =

{
δ
2 if t(i)0 < t

(j)
1

∞ otherwise
cdel(i, j) =

{
δ
2 if t(i)0 > t

(j)
1

∞ otherwise

(13)

where wrap-boundaries wraps the sequences with aligned boundary events 0 and T . The algorithm
builds up the aligned sequences pair by pair. The operations corresponds to adding different pairs to
the end of (z0, z1), i.e., insertion

(
ϵ, t

(j)
1

)
, deletion

(
t
(i)
0 , ϵ

)
and substitution

(
t
(i)
0 , t

(j)
1

)
(see Fig. 3).

It is trivial to see from csub that the aligned sequences will never encode a sub operation for two
events that are further than δ apart. The costs for insertions and deletions and the additional con-
dition on csub ensure that the aligned sequences are jointly sorted, i.e., for any i < j we have
max

(
z
(i)
0 , z

(i)
1

)
< min

(
z
(j)
0 , z

(j)
1

)
where min and max ignore ϵ tokens. This means that any inter-

polated zs will be sorted. The validity of encoded ins and del operations follows immediately.

3.3 TRAINING

We train our model uθ
s (· | ts) by optimizing the Bregman divergence in Eq. (5). This amounts to

sampling from a coupling π(z0, z1) in the aligned auxiliary space and then matching the ground-
truth conditional event rates. Note that the coupling π(z0, z1) is implicitly defined by its sampling
procedure: sample t0, t1 ∼ π(t0, t1) from a coupling of the noise and data distribution, e.g., the
independent coupling π(t0, t1) = p(t0) q(t1), and then align the sequences z0, z1 = align(t0, t1).
For our choice of operations, the divergence is

L = E
(z0,z1)∼π(z0,z1)
s,ps(zs,ts|z0,z1)

[∑
ω∈Ω(ts)

uθ
s (ω | ts)−

∑
z
(i)
s ̸=z

(i)
1

κ̇s

1− κs
log uθ

s

(
ω
(
z(i)s , z

(i)
1

)
| ts
)]

, (14)

where Ω(ts) is the set of all edit operations applicable to ts and ω
(
z
(i)
s , z

(i)
1

)
is the edit operation

encoded in the i-th position of the aligned sequences zs and z1. To make it precise, we have

Ω(ts) =
⋃

{ins(ts, i, j) | i ∈ {0} ∪ [n], j ∈ [bins]}
{sub(ts, i, j) | i ∈ [n], j ∈ [bsub]}
{del(ts, i) | i ∈ [n]}

(15)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

and

ω
(
z(i)s , z

(i)
1

)
=


ins(ts, i

′, j′) if z(i)s = ϵ and z
(i)
1 ̸= ϵ,

sub(ts, i
′, j′) if z(i)s ̸= ϵ and z

(i)
1 ̸= ϵ,

del(ts, i
′) if z(i)s ̸= ϵ and z

(i)
1 = ϵ.

(16)

i′ is the index such that frm-blanks(zs) maps z(i)s to x
(i′)
s with the convention that ϵ is mapped to the

same i′ as the last element of zs before i that is not ϵ. j′ is the index of the insertion or substitution
bin relative to x

(i′)
s that z(i)1 falls into.

3.4 SAMPLING Algorithm 1: Conditional Sampling
Input:
condition tc1 = C(t1), noise t0 ∼ pnoise, h = 1/nsteps

(zc
0, z

c
1)← align(C(t0), t

c
1)

while s < 1 do
Euler update
Sample edits ωs ∼ huθ

s(· | ts)
ts+h ← apply ωs to ts

Recondition
z̃c
s+h ∼ ps+h(· | zc

0, z
c
1)

tcs+h ← frm-blanks(z̃
c
s+h)

Merge
ts+h ← C ′(ts+h) ∪ tcs+h

s← s+ h
end
Return: forecast trajectory C ′(ts=1)

Sampling from our model is done by for-
ward simulation of the CTMC from noise
t0 ∼ pnoise(t) up to s = 1. We fol-
low (Havasi et al., 2025; Gat et al., 2024)
and leverage their Euler approximation,
since exact simulation is intractable. Even
though the rates are parameterized per el-
ement, sampling multiple edits within a
time horizon can be done in parallel. At
each step of length h, insertions at posi-
tion i occur with probability hλins

s,i(t) and
deletions or substitutions occur with proba-
bility h(λdel

s,i(t) + λsub
s,i (t)). Since they are

mutually exclusive the probability of sub-
stitution vs deletion is λsub

s,i (t)/(λ
sub
s,i (t) +

λdel
s,i(t)). Lastly, the inserted or substituted

events are drawn from the respective dis-
tributions Q to update ts. For a short sum-
mary of the unconditional sampling step refer to the Euler update step depicted in algorithm Algo-
rithm 1.

Conditional sampling. We can extend the unconditional model to conditional generation given a
binary mask on time c : T → {0, 1} (e.g., for forecasting, c(t) = t ≤ thistory). For a sequence t, we
define the conditioned part C(t) = {t ∈ t : c(t) = 1} and its complement C ′(t). Then as depicted in
algorithm Algorithm 1, for conditional sampling, we can simply enforce the conditional subsequence
to follow a noisy interpolation between tc0 = C(t0) and tc1 = C(t1), while the complement evolves
freely in the sampling process.

3.5 MODEL ARCHITECTURE

For our rate model uθ
s (· | xs), we adapt the Llama architecture, a transformer widely ap-

plied for variable-length sequences in language modeling (Touvron et al., 2023). We employ
FlexAttention in the Llama attention blocks, which supports variable-length sequences na-
tively without padding (Dong et al., 2024). As a first step, we convert the scalar event sequence xs

into a sequence of token embeddings by applying MLP(SinEmb(x
(i)
s /T)) to each to each event,

where MLP refers to a small multi-layer perceptron (MLP) and SinEmb is a sinusoidal embedding
(Vaswani et al., 2017). We convert s and |xs| into two additional tokens in an equivalent way with
separate MLPs and prepend them to the embedding sequence, which we then feed to the Llama.
Lastly, we apply one more MLP to map the output embedding h(i) of each event to transition rates.
In particular, we parameterize

λins
s,i = exp(λM tanh(h

(i)
ins)), λsub

s,i = exp(λM tanh(h
(i)
sub)), λdel

s,i = exp(λM tanh(h
(i)
del)) (17)

and
Qins

s,i = softmax(h
(i)
ins), Qsub

s,i = softmax(h
(i)
sub). (18)

We list the values of all relevant hyperparameters in Appendix A.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Unconditional sampling performance. Bold is best, underlined second best. Ranking based
on full results.

H1 H2 NSP NSR SC SR PG R/C R/P Tx Tw Y/A Y/M
M
M
D

IFTPP 1.6 1.2 3.2 3.9 6.7 1.2 16.2 7.5 2.0 5.0 2.6 5.8 2.9
ADDTHIN 2.4 1.8 3.5 15.7 24.6 2.5 4.6 63.0 10.2 4.1 4.4 11.8 3.7
PSDIFF 3.3 1.8 2.0 5.9 19.8 2.4 3.2 6.5 1.0 3.8 3.4 4.1 3.4
EDITPP 1.1 1.2 1.7 3.5 7.7 1.0 1.4 8.2 2.4 3.1 1.3 3.7 4.0

×10−2 ×10−2 ×10−2 ×10−2 ×10−2 ×10−2 ×10−2 ×10−3 ×10−2 ×10−2 ×10−2 ×10−2 ×10−2

W
1
,d

l

IFTPP 20.5 13.3 11.5 14.1 1.5 23.0 294.6 3.9 3.2 2.9 6.5 3.3 2.5
ADDTHIN 33.3 21.8 12.8 49.0 22.7 41.8 24.5 37.0 33.6 2.3 15.5 6.0 1.6
PSDIFF 26.9 29.6 5.5 13.3 10.6 30.3 16.1 1.3 2.5 2.8 6.3 1.5 1.5
EDITPP 7.6 7.0 3.1 1.5 1.3 6.4 6.2 1.9 5.7 2.5 3.4 1.4 1.7

×10−3 ×10−3 ×10−3 ×10−3 ×10−3 ×10−3 ×10−3 ×10−2 ×10−2 ×10−2 ×10−3 ×10−2 ×10−2

W
1
,d

IE
T

IFTPP 6.3 5.8 3.2 2.3 6.5 7.1 30.3 1.8 7.1 17.4 4.9 3.2 2.8
ADDTHIN 6.6 7.0 3.2 3.9 15.1 9.4 8.0 5.3 20.0 8.8 5.5 3.2 2.4
PSDIFF 8.6 9.9 3.0 5.1 32.6 12.8 9.0 1.6 4.3 11.1 6.7 2.4 2.3
EDITPP 5.3 5.5 3.1 2.2 6.4 7.0 7.5 1.4 6.0 11.1 4.6 2.5 2.3

×10−1 ×10−1 ×10−1 ×10−1 ×10−2 ×10−1 ×10−2 ×10−1 ×10−3 ×10−2 ×10−1 ×10−1 ×10−1

4 EXPERIMENTS

We evaluate our model on seven real-world and six synthetic benchmark datasets (Omi et al.,
2019; Shchur et al., 2020b; Lüdke et al., 2023; 2025). In our experiments, we compare against
IFTPP (Shchur et al., 2020a), an autoregressive baseline which consistently shows state-of-the-art
performance (Bosser & Taieb, 2023; Lüdke et al., 2023; Kerrigan et al., 2025). We further compare
to PSDIFF (Lüdke et al., 2025) and ADDTHIN (Lüdke et al., 2023), given their strong results in
both conditional and unconditional settings and their methodological similarity to our approach. All
models are trained with five seeds and we select the best checkpoint based on W1-over-dIET against
a validation set. EDITPP, ADDTHIN, and PSDIFF are trained unconditionally but can be conditioned
at inference time.1 We list the full results in Appendix C.

For forecasts, we compare predicted and target sequences by three metrics: dXiao introduced by Xiao
et al. (2017), the mean relative error (MRE) of the event counts and dIET, which compares inter-event
times to quantify the relation between events such as burstiness. In unconditional generation, we
compare our generated sequences to the test set in terms of maximum mean discrepancy (MMD)
(Shchur et al., 2020b) and their Wasserstein-1 distance with respect to their counts (dl) and inter-event
times (dIET). See Appendix B for details.

4.1 UNCONDITIONAL GENERATION

To evaluate how well samples from each TPP model follow the data distribution, we compute distance
metrics between 4000 sampled sequences and a hold-out test set. We report the unconditional
sampling results in Table 1. EDITPP achieves the best rank in unconditional sampling by strongly
matching the test set distribution across all evaluation metrics, outperforming all baselines. The
autoregressive baseline IFTPP shows very strong unconditional sampling capability, closely matching
and on some dataset and metric combination outperforming the other non-autoregressive baselines
ADDTHIN and PSDIFF.

4.2 CONDITIONAL GENERATION (FORECASTING)

Predicting the future given some history window is a fundamental TPP task. For each test sequence,
we uniformly sample 50 forecasting windows [T0, T], T0 ∈ [∆T, T −∆T], with minimal history
and forecast time ∆T . While, this set-up is very similar to the one proposed by Lüdke et al. (2023),
there are key differences: we do not fix the forecast window and do not enforce a minimal number

1To stay comparable, we employ the conditioning algorithm from Lüdke et al. (2025) for ADDTHIN.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

4 16 64 256
Steps k

0.0

0.2

0.4
dl

4 16 64 256
Steps k

0.0

0.5

dIET

Reddit Posts Reddit Comments

Figure 4: Changing the number of steps k allows trading off compute and sample quality in terms of
dl, dW2

and dIET at inference time.

of forecast or history events. In fact, even an empty history encodes the information of not having
observed an event and a TPP should capture the probability of not observing any event in the future.

Table 2: Forecasting accuracy up to T . Bold is best, under-
lined second best. Ranking based on full results.

PG R/C R/P Tx Tw Y/A Y/M
d
X
ia
o

IFTPP 6.0 3.9 6.3 4.7 2.6 1.8 3.4
ADDTHIN 2.5 8.8 7.3 4.0 2.8 1.5 2.9
PSDIFF 2.4 3.2 4.8 4.4 2.6 1.5 3.0
EDITPP 2.5 3.4 4.9 4.5 2.7 1.5 3.0

×101 ×101

M
R

E

IFTPP 38.9 7.5 3.5 3.2 2.1 3.7 3.9
ADDTHIN 3.7 14.8 4.6 3.0 3.0 3.5 3.7
PSDIFF 3.4 3.3 3.0 11.4 2.4 3.5 9.2
EDITPP 3.5 3.6 2.8 12.3 2.3 3.5 9.0

×10−1 ×10−1 ×10−1 ×10−1 ×10−1

d
IE

T

IFTPP 4.7 6.8 14.7 1.4 2.2 5.9 3.9
ADDTHIN 4.0 6.9 10.3 1.2 1.5 4.9 2.6
PSDIFF 4.1 6.2 9.5 1.1 1.5 4.9 2.6
EDITPP 4.0 6.8 10.1 1.1 1.4 5.0 2.7

×10−1 ×10−1 ×10−3 ×10−1 ×10−1 ×10−1

We report the forecasting results in
Table 2. EDITPP shows very strong
forecasting capabilities closely match-
ing or surpassing the baselines across
most dataset and metric combina-
tions. Even though IFTPP is explic-
itly trained to auto-regressively pre-
dict the next event given its history, it
shows overall worse forecasting capa-
bilities compared to the uncondition-
ally trained EDITPP, ADDTHIN and
PSDIFF. This again, underlines pre-
vious findings (Lüdke et al., 2023),
that autoregressive TPPs can suffer
from error accumulation in forecast-
ing. Similar to the unconditional set-
ting, PSDIFF (transformer) outper-
forms ADDTHIN (convolution with
circular padding), which showcases
the improved posterior and modeling
of long-range interactions.

4.3 EDIT EFFICIENCY

Table 3: Average number of edit operations in
unconditional sampling across datasets.

Ins Del Sub Total

PSDIFF 171.47 61.22 – 232.68
EDITPP 132.88 31.43 28.97 193.29

The sub operation allows our model to modify se-
quences in a more targeted way when compared to
PSDIFF or ADDTHIN, which have to rely on just
inserts and deletes. Note that one sub operation
can replace an insert-delete pair. Table 3 shows
this results in EDITPP using fewer edit operations
than PSDIFF on average even if one would count
substitutions twice, as an insert and a delete.2 This is further amplified by the fact, that unlike
EDITPP, PSDIFF and ADDTHIN only indirectly parameterizes the transition edit rates by predicting
t1 by insertion and deletion at every sampling step.

Table 4: Sample run-time (ms) on a H100 GPU.

R/P R/C

ADDTHIN 18,075.62 17,689.36
PSDIFF 7,776.35 3,913.78
EDITPP 4,120.38 1,505.68

In Table 4, we compare their actual sampling run-
time for a batch size of 1024 on the two dataset
with the longest sequences. Our implementation
beats the reference implementations of ADDTHIN
and PSDIFF by a large margin. Note, that for
a fair comparison, we fixed the number of sam-
pling steps to 100 in all previous evaluations. As

2Due to its recursive definition, ADDTHIN inserts and subsequently deletes some noise events during
sampling, which results in additional edit operations compared to PSDIFF.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

a continuous-time model, EDITPP can further trade off compute against sample quality at inference
time without retraining, in contrast to discrete-time models like ADDTHIN and PSDIFF. Fig. 4 shows
that sample quality improves as we increase the number of sampling steps and therefore reduce the
discretization step size of the CTMC dynamics. At the same time, the figure also shows rapidly
diminishing quality improvements, highlighting potential for substantial speedups with only minor
quality loss.

5 RELATED WORK

The statistical modeling of TPPs has a long history (Daley & Vere-Jones, 2007; Hawkes, 1971).
Classical approaches such as the Hawkes process define parametric conditional intensities, but their
limited flexibility has motivated the development of neurally parameterized TPPs:

Autoregressive Neural TPP: Most neural TPPs adopt an autoregressive formulation, modeling the
distribution of each event conditional on its history. These models consist of two components: a
history encoder and an event decoder. Encoders are typically implemented using recurrent neural
networks (Du et al., 2016; Shchur et al., 2020a) or attention mechanisms (Zhang et al., 2020a; Zuo
et al., 2020; Mei et al., 2022), with attention-based models providing longer-range context at the
cost of higher complexity (Shchur et al., 2021). Further, some propose to encode the history of a
TPP in a continuous latent stochastic processes (Chen et al., 2020; Enguehard et al., 2020; Jia &
Benson, 2019; Hasan et al., 2023). For the decoder, a wide variety of parametrizations have been
explored. Conditional intensities or related measures (e.g., hazard function or conditional density),
can be modeled, parametrically (Mei & Eisner, 2017; Zuo et al., 2020; Zhang et al., 2020a), via
neural networks (Omi et al., 2019), mixtures of kernels (Okawa et al., 2019; Soen et al., 2021; Zhang
et al., 2020b) and mixture distributions (Shchur et al., 2020a). Generative approaches further enhance
flexibility: normalizing flow-based (Shchur et al., 2020b), GAN-based (Xiao et al., 2017), VAE-based
(Li et al., 2018), and diffusion-based decoders (Lin et al., 2022; Yuan et al., 2023) have all been
proposed. While expressive, autoregressive TPPs are inherently sequential, which makes sampling
scale at least linearly with sequence length, can lead to error accumulation in multi-step forecasting
and limit conditional generation to forecasting.

Non-autoregressive Neural TPPs: Similar to our method, these approaches model event sequences
through a latent variable process that refines the entire sequence jointly. Diffusion-inspired (Lüdke
et al., 2023; 2025) and flow-based generative models (Kerrigan et al., 2025) have recently emerged as
promising alternatives to auto-regressive TPP models by directly modelling the joint distribution over
event sequences.

6 CONCLUSION

We have presented EDITPP, an Edit Flow for TPPs that generalises diffusion-based set interpolation
methods (Lüdke et al., 2023; 2025) with a continuous-time flow model introducing substitution
as an additional edit operation. By parameterizing insertions, deletions, and substitutions within
a CTMC, our approach enables efficient and flexible sequence modeling for TPPs. Empirical
results demonstrate that EDITPP matches state-of-the-art performance in both unconditional and
conditional generation tasks across synthetic and real-world datasets, while reducing the number of
edit operations.

REFERENCES

Tanguy Bosser and Souhaib Ben Taieb. On the predictive accuracy of neural temporal point process
models for continuous-time event data. Transactions on Machine Learning Research, 2023.
ISSN 2835-8856. URL https://openreview.net/forum?id=3OSISBQPrM. Survey
Certification.

Andrew Campbell, Jason Yim, Regina Barzilay, Tom Rainforth, and Tommi Jaakkola. Generative
flows on discrete state-spaces: Enabling multimodal flows with applications to protein co-design,
2024. URL https://arxiv.org/abs/2402.04997.

9

https://openreview.net/forum?id=3OSISBQPrM
https://arxiv.org/abs/2402.04997

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Ricky TQ Chen, Brandon Amos, and Maximilian Nickel. Neural spatio-temporal point processes.
arXiv preprint arXiv:2011.04583, 2020.

Daryl J Daley and David Vere-Jones. An introduction to the theory of point processes: volume II:
general theory and structure. Springer Science & Business Media, 2007.

D.J. Daley and D. Vere-Jones. An Introduction to the Theory of Point Processes: Volume I: Elementary
Theory and Methods. Probability and Its Applications. Springer New York, 2006.

Juechu Dong, Boyuan Feng, Driss Guessous, Yanbo Liang, and Horace He. Flex Attention: A
Programming Model for Generating Optimized Attention Kernels, December 2024.

Nan Du, Hanjun Dai, Rakshit Trivedi, Utkarsh Upadhyay, Manuel Gomez-Rodriguez, and Le Song.
Recurrent marked temporal point processes: Embedding event history to vector. In Proceedings of
the 22nd ACM SIGKDD international conference on knowledge discovery and data mining, pp.
1555–1564, 2016.

Joseph Enguehard, Dan Busbridge, Adam Bozson, Claire Woodcock, and Nils Hammerla. Neural
temporal point processes for modelling electronic health records. In Machine Learning for Health,
pp. 85–113. PMLR, 2020.

Itai Gat, Tal Remez, Neta Shaul, Felix Kreuk, Ricky T. Q. Chen, Gabriel Synnaeve, Yossi Adi,
and Yaron Lipman. Discrete flow matching, 2024. URL https://arxiv.org/abs/2407.
15595.

Ali Hasan, Yu Chen, Yuting Ng, Mohamed Abdelghani, Anderson Schneider, and Vahid Tarokh.
Inference and sampling of point processes from diffusion excursions. In The 39th Conference on
Uncertainty in Artificial Intelligence, 2023.

Marton Havasi, Brian Karrer, Itai Gat, and Ricky T. Q. Chen. Edit flows: Flow matching with edit
operations, 2025. URL https://arxiv.org/abs/2506.09018.

Alan G Hawkes. Spectra of some self-exciting and mutually exciting point processes. Biometrika, 58
(1):83–90, 1971.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter.
GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In
Neural Information Processing Systems, 2017.

Junteng Jia and Austin R Benson. Neural jump stochastic differential equations. Advances in Neural
Information Processing Systems, 32, 2019.

Gavin Kerrigan, Kai Nelson, and Padhraic Smyth. Eventflow: Forecasting temporal point processes
with flow matching, 2025. URL https://arxiv.org/abs/2410.07430.

Diederik P. Kingma, Tim Salimans, Ben Poole, and Jonathan Ho. Variational Diffusion Models, April
2023.

Shuang Li, Shuai Xiao, Shixiang Zhu, Nan Du, Yao Xie, and Le Song. Learning temporal point
processes via reinforcement learning. Advances in neural information processing systems, 31,
2018.

Marten Lienen, David Lüdke, Jan Hansen-Palmus, and Stephan Günnemann. From Zero to Turbu-
lence: Generative Modeling for 3D Flow Simulation. In International Conference on Learning
Representations, 2024.

Marten Lienen, Marcel Kollovieh, and Stephan Günnemann. Generative Modeling with Bayesian
Sample Inference, 2025.

Haitao Lin, Lirong Wu, Guojiang Zhao, Liu Pai, and Stan Z Li. Exploring generative neural temporal
point process. Transactions on Machine Learning Research, 2022.

David Lüdke, Marin Biloš, Oleksandr Shchur, Marten Lienen, and Stephan Günnemann. Add and
thin: Diffusion for temporal point processes. In Thirty-seventh Conference on Neural Information
Processing Systems, 2023. URL https://openreview.net/forum?id=tn9Dldam9L.

10

https://arxiv.org/abs/2407.15595
https://arxiv.org/abs/2407.15595
https://arxiv.org/abs/2506.09018
https://arxiv.org/abs/2410.07430
https://openreview.net/forum?id=tn9Dldam9L

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

David Lüdke, Enric Rabasseda Raventós, Marcel Kollovieh, and Stephan Günnemann. Unlocking
point processes through point set diffusion. In The Thirteenth International Conference on Learning
Representations, 2025. URL https://openreview.net/forum?id=4anfpHj0wf.

Hongyuan Mei and Jason M Eisner. The neural hawkes process: A neurally self-modulating
multivariate point process. In Neural Information Processing Systems (NeurIPS), 2017.

Hongyuan Mei, Chenghao Yang, and Jason Eisner. Transformer embeddings of irregularly spaced
events and their participants. In International Conference on Learning Representations, 2022.
URL https://openreview.net/forum?id=Rty5g9imm7H.

Saul B. Needleman and Christian D. Wunsch. A general method applicable to the search for
similarities in the amino acid sequence of two proteins. Journal of Molecular Biology, 48(3):
443–453, March 1970. ISSN 0022-2836. doi: 10.1016/0022-2836(70)90057-4.

Alex Nichol and Prafulla Dhariwal. Improved Denoising Diffusion Probabilistic Models. In Interna-
tional Conference on Machine Learning, 2021. doi: 10.48550/arXiv.2102.09672.

Maya Okawa, Tomoharu Iwata, Takeshi Kurashima, Yusuke Tanaka, Hiroyuki Toda, and Naonori
Ueda. Deep mixture point processes: Spatio-temporal event prediction with rich contextual
information. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, pp. 373–383, 2019.

Takahiro Omi, Kazuyuki Aihara, et al. Fully neural network based model for general temporal point
processes. Advances in neural information processing systems, 32, 2019.

Jakob Gulddahl Rasmussen. Lecture notes: Temporal point processes and the conditional intensity
function, 2018. URL https://arxiv.org/abs/1806.00221.

Oleksandr Shchur, Marin Biloš, and Stephan Günnemann. Intensity-free learning of temporal point
processes. In International Conference on Learning Representations (ICLR), 2020a.

Oleksandr Shchur, Nicholas Gao, Marin Biloš, and Stephan Günnemann. Fast and flexible temporal
point processes with triangular maps. In Advances in Neural Information Processing Systems
(NeurIPS), 2020b.

Oleksandr Shchur, Ali Caner Türkmen, Tim Januschowski, and Stephan Günnemann. Neural temporal
point processes: A review. arXiv preprint arXiv:2104.03528, 2021.

Jiaxin Shi, Kehang Han, Zhe Wang, Arnaud Doucet, and Michalis K. Titsias. Simplified and
generalized masked diffusion for discrete data, 2025. URL https://arxiv.org/abs/
2406.04329.

Alexander Soen, Alexander Mathews, Daniel Grixti-Cheng, and Lexing Xie. Unipoint: Universally
approximating point processes intensities. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 35, pp. 9685–9694, 2021.

Lucas Theis, Aäron van den Oord, and Matthias Bethge. A note on the evaluation of generative
models. In International Conference on Learning Representations. arXiv, 2016. doi: 10.48550/
arXiv.1511.01844.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand
Joulin, Edouard Grave, and Guillaume Lample. LLaMA: Open and Efficient Foundation Language
Models, February 2023.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. Attention Is All You Need. In Neural Information Processing Systems,
2017.

Shuai Xiao, Mehrdad Farajtabar, Xiaojing Ye, Junchi Yan, Le Song, and Hongyuan Zha. Wasserstein
learning of deep generative point process models. Advances in neural information processing
systems, 30, 2017.

11

https://openreview.net/forum?id=4anfpHj0wf
https://openreview.net/forum?id=Rty5g9imm7H
https://arxiv.org/abs/1806.00221
https://arxiv.org/abs/2406.04329
https://arxiv.org/abs/2406.04329

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Yuan Yuan, Jingtao Ding, Chenyang Shao, Depeng Jin, and Yong Li. Spatio-temporal Diffusion Point
Processes. In Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and
Data Mining, pp. 3173–3184, New York, NY, USA, 2023. Association for Computing Machinery.

Qiang Zhang, Aldo Lipani, Omer Kirnap, and Emine Yilmaz. Self-attentive hawkes process. In
International conference on machine learning, pp. 11183–11193. PMLR, 2020a.

Wei Zhang, Thomas Panum, Somesh Jha, Prasad Chalasani, and David Page. Cause: Learning
granger causality from event sequences using attribution methods. In International Conference on
Machine Learning, pp. 11235–11245. PMLR, 2020b.

Simiao Zuo, Haoming Jiang, Zichong Li, Tuo Zhao, and Hongyuan Zha. Transformer hawkes process.
arXiv preprint arXiv:2002.09291, 2020.

A MODEL PARAMETERS

Table 5: Hyperparameters of our uθ
s (· | xs) model shared across all datasets.

Parameter Value

Number of ins bins bins 64
Number of sub bins bsub 64
Maximum sub distance δ T/100
Maximum log-rate λM 32
κ(s) 1− cos

(
π
2 s
)2

Llama architecture:
Hidden size H 64
Layers 2
Attention heads 4

Optimizer Adam
Sample steps 100

All MLPs have input and output sizes of H , except for the final MLP whose output size is determined
by the number of λ and Q parameters of the rate. The MLPs have a single hidden layer of size 4H .
The sinusoidal embeddings map a scalar s ∈ [0, 1] to a vector of length H . In contrast to Havasi et al.
(2025), we choose a cosine κ schedule κ(s) = 1 − cos

(
π
2 s
)2

as proposed by Nichol & Dhariwal
(2021) for diffusion models as it improved results slightly compared κ(s) = s3.

For evaluation, we use an exponential moving average (EMA) of the model weights. We also use
low-discrepancy sampling of s in Eq. (14) during training to smooth the loss and thus training signal
(Kingma et al., 2023; Lienen et al., 2025).

We train all models for 20 000 steps and select the best checkpoint by its W1-over-dIET, which we
evaluate on a validation set every 1000 steps.

B METRICS

A standard way in generative modeling to compare generated and real data is the Wasserstein distance
(Heusel et al., 2017). It is the minimum average distance between elements of the two datasets under
the optimal (partial) assignment between them,

Wp(X ,X ′) =
(
minγ∈Γ(X ,X ′) E(x,x′)∼γ

[
d(x,x′)

p])1/p

(19)

where d is a distance that compares elements from the two sets. In the case of sequences of unequal
length, one can choose d itself as a nested Wasserstein distance (Lienen et al., 2024). Xiao et al.
(2017) were the first to design such a distance between TPPs. They exploit a special case of W1

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

for sorted sequences of equal length and assign the remaining events of the longer sequence to
pseudo-events at T to define

dXiao(x,x
′) =

∑|x|

i=1
|t(i) − t′(i)|+

∑|x′|

i=|x|+1
|T − t′(i)| (20)

where x′ is assumed to be the longer sequence. dXiao captures a difference in both location and
number of events between two sequences through its two terms.

(Shchur et al., 2020b) propose to compute the MMD between sets based on a Gaussian kernel and
dXiao. In addition, we evaluate the event count distributions via a Wasserstein-1 distance with respect
to a difference in event counts W1,dl

where dl(x,x
′) =

∣∣|x| − |x′|
∣∣. Finally, we the distributions of

inter-event times between our generated sequences and real sequences in W1,dIET
, i.e., a Wasserstein-

1 distance of dIET. dIET is itself the W2 distance between inter-event times of two sequences and
quantifies how adjacent events relate to each other to capture more complex patterns.

C DETAILED RESULTS

Table 6: Forecasting accuracy up to T measured by dIET.

EDITPP PSDIFF ADDTHIN IFTPP

PUBG 0.400 ± 0.002 0.413 ± 0.009 0.403 ± 0.010 0.473 ± 0.019
Reddit Comments 0.684 ± 0.005 0.625 ± 0.012 0.693 ± 0.012 0.684 ± 0.012
Reddit Posts 0.010 ± 0.000 0.009 ± 0.000 0.010 ± 0.001 0.015 ± 0.003
Taxi 0.113 ± 0.003 0.113 ± 0.001 0.116 ± 0.001 0.145 ± 0.009
Twitter 1.441 ± 0.020 1.487 ± 0.012 1.493 ± 0.033 2.187 ± 0.029
Yelp Airport 0.497 ± 0.009 0.492 ± 0.005 0.493 ± 0.013 0.587 ± 0.019
Yelp Mississauga 0.272 ± 0.003 0.262 ± 0.003 0.260 ± 0.003 0.388 ± 0.024

Table 7: Forecasting accuracy up to T measured by mean relative error of event counts.

EDITPP PSDIFF ADDTHIN IFTPP

PUBG 0.349 ± 0.001 0.339 ± 0.008 0.367 ± 0.005 3.892 ± 0.035
Reddit Comments 3.594 ± 0.118 3.260 ± 0.268 14.777 ± 3.226 7.515 ± 2.112
Reddit Posts 0.281 ± 0.001 0.296 ± 0.006 0.457 ± 0.065 0.352 ± 0.022
Taxi 1.234 ± 0.036 1.140 ± 0.043 0.301 ± 0.014 0.321 ± 0.018
Twitter 2.327 ± 0.042 2.435 ± 0.106 2.984 ± 0.246 2.060 ± 0.027
Yelp Airport 0.350 ± 0.007 0.346 ± 0.004 0.347 ± 0.014 0.366 ± 0.009
Yelp Mississauga 0.902 ± 0.027 0.920 ± 0.033 0.374 ± 0.012 0.392 ± 0.012

Table 8: Forecasting accuracy up to T measured by dXiao.

EDITPP PSDIFF ADDTHIN IFTPP

PUBG 2.478 ± 0.007 2.400 ± 0.007 2.466 ± 0.024 5.954 ± 0.195
Reddit Comments 34.135 ± 0.382 32.467 ± 0.534 87.666 ± 20.184 39.010 ± 7.508
Reddit Posts 48.776 ± 0.355 47.829 ± 1.050 72.754 ± 12.134 63.256 ± 9.695
Taxi 4.464 ± 0.088 4.444 ± 0.076 4.032 ± 0.129 4.744 ± 0.125
Twitter 2.669 ± 0.022 2.635 ± 0.078 2.802 ± 0.132 2.557 ± 0.055
Yelp Airport 1.524 ± 0.013 1.512 ± 0.016 1.548 ± 0.026 1.795 ± 0.015
Yelp Mississauga 3.027 ± 0.046 3.005 ± 0.046 2.895 ± 0.039 3.430 ± 0.047

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Table 9: Sample quality as measured by MMD.

EDITPP PSDIFF ADDTHIN IFTPP

Hawkes-1 0.011 ± 0.002 0.033 ± 0.009 0.024 ± 0.009 0.016 ± 0.002
Hawkes-2 0.012 ± 0.001 0.018 ± 0.006 0.018 ± 0.006 0.012 ± 0.001
Nonstationary Poisson 0.017 ± 0.003 0.020 ± 0.005 0.035 ± 0.011 0.032 ± 0.008
Nonstationary Renewal 0.035 ± 0.001 0.059 ± 0.006 0.157 ± 0.084 0.039 ± 0.007
PUBG 0.014 ± 0.001 0.032 ± 0.012 0.046 ± 0.025 0.162 ± 0.010
Reddit Comments 0.008 ± 0.001 0.006 ± 0.002 0.063 ± 0.012 0.007 ± 0.003
Reddit Posts 0.024 ± 0.001 0.010 ± 0.002 0.102 ± 0.004 0.020 ± 0.007
Self-Correcting 0.077 ± 0.004 0.198 ± 0.002 0.246 ± 0.018 0.067 ± 0.011
Stationary Renewal 0.010 ± 0.002 0.024 ± 0.005 0.025 ± 0.013 0.012 ± 0.002
Taxi 0.031 ± 0.002 0.038 ± 0.005 0.041 ± 0.004 0.050 ± 0.003
Twitter 0.013 ± 0.002 0.034 ± 0.007 0.044 ± 0.012 0.026 ± 0.005
Yelp Airport 0.037 ± 0.002 0.041 ± 0.004 0.118 ± 0.036 0.058 ± 0.002
Yelp Mississauga 0.040 ± 0.003 0.034 ± 0.007 0.037 ± 0.006 0.029 ± 0.002

Table 10: Sample quality as measured by W1-over-dIET.

EDITPP PSDIFF ADDTHIN IFTPP

Hawkes-1 0.526 ± 0.020 0.865 ± 0.035 0.655 ± 0.081 0.628 ± 0.030
Hawkes-2 0.546 ± 0.005 0.991 ± 0.038 0.703 ± 0.049 0.582 ± 0.009
Nonstationary Poisson 0.306 ± 0.005 0.303 ± 0.007 0.318 ± 0.015 0.317 ± 0.006
Nonstationary Renewal 0.224 ± 0.006 0.511 ± 0.016 0.393 ± 0.064 0.229 ± 0.027
PUBG 0.075 ± 0.000 0.090 ± 0.001 0.080 ± 0.003 0.303 ± 0.039
Reddit Comments 0.144 ± 0.003 0.157 ± 0.006 0.532 ± 0.014 0.176 ± 0.008
Reddit Posts 0.006 ± 0.000 0.004 ± 0.000 0.020 ± 0.001 0.007 ± 0.001
Self-Correcting 0.064 ± 0.000 0.326 ± 0.003 0.151 ± 0.005 0.065 ± 0.001
Stationary Renewal 0.697 ± 0.018 1.281 ± 0.049 0.941 ± 0.145 0.714 ± 0.028
Taxi 0.111 ± 0.001 0.111 ± 0.001 0.088 ± 0.003 0.174 ± 0.015
Twitter 0.460 ± 0.004 0.672 ± 0.007 0.545 ± 0.024 0.492 ± 0.023
Yelp Airport 0.246 ± 0.002 0.244 ± 0.004 0.316 ± 0.046 0.318 ± 0.017
Yelp Mississauga 0.226 ± 0.003 0.225 ± 0.003 0.236 ± 0.004 0.276 ± 0.017

Table 11: Sample quality as measured by W1-over-dl.

EDITPP PSDIFF ADDTHIN IFTPP

Hawkes-1 0.008 ± 0.001 0.027 ± 0.008 0.033 ± 0.015 0.020 ± 0.004
Hawkes-2 0.007 ± 0.001 0.030 ± 0.009 0.022 ± 0.014 0.013 ± 0.003
Nonstationary Poisson 0.003 ± 0.001 0.006 ± 0.001 0.013 ± 0.005 0.012 ± 0.003
Nonstationary Renewal 0.001 ± 0.000 0.013 ± 0.001 0.049 ± 0.022 0.014 ± 0.011
PUBG 0.006 ± 0.000 0.016 ± 0.008 0.024 ± 0.014 0.295 ± 0.007
Reddit Comments 0.019 ± 0.002 0.013 ± 0.003 0.370 ± 0.081 0.039 ± 0.023
Reddit Posts 0.057 ± 0.003 0.025 ± 0.003 0.336 ± 0.045 0.032 ± 0.011
Self-Correcting 0.001 ± 0.000 0.011 ± 0.001 0.023 ± 0.002 0.001 ± 0.001
Stationary Renewal 0.006 ± 0.002 0.030 ± 0.019 0.042 ± 0.022 0.023 ± 0.005
Taxi 0.025 ± 0.002 0.028 ± 0.004 0.023 ± 0.006 0.029 ± 0.003
Twitter 0.003 ± 0.001 0.006 ± 0.003 0.015 ± 0.008 0.007 ± 0.002
Yelp Airport 0.014 ± 0.002 0.015 ± 0.004 0.060 ± 0.021 0.033 ± 0.003
Yelp Mississauga 0.017 ± 0.003 0.015 ± 0.002 0.016 ± 0.003 0.025 ± 0.006

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Table 12: Average number of edit operations during unconditional sampling.

EDITPP PSDIFF

Ins Del Sub Ins Del

Hawkes-1 56.78 61.81 38.09 90.98 104.06
Hawkes-2 64.04 69.62 30.74 91.26 104.60
Nonstationary Poisson 49.51 49.26 50.56 100.22 99.66
Nonstationary Renewal 42.36 44.41 55.82 96.37 98.48
Self-Correcting 34.61 34.46 66.15 99.40 99.27
Stationary Renewal 71.57 62.86 38.11 106.08 103.38
PUBG 56.40 19.88 19.93 76.43 41.06
Reddit Comments 237.27 8.75 15.15 275.13 24.51
Reddit Posts 956.10 0.10 23.73 1091.55 24.41
Taxi 81.71 7.13 16.37 98.53 23.19
Twitter 11.53 21.48 2.94 15.27 24.05
Yelp Airport 21.80 15.61 8.40 30.84 24.53
Yelp Mississauga 43.79 13.28 10.60 56.99 24.64

Mean 132.88 31.43 28.97 171.47 61.22

Total 193.29 232.68

15

	Introduction
	Background
	Temporal Point Processes
	Modeling TPPs by set interpolation
	Flow matching with edit operations

	Method
	Edit operations
	Auxiliary alignment space
	Training
	Sampling
	Model Architecture

	Experiments
	Unconditional generation
	Conditional generation (Forecasting)
	Edit efficiency

	Related work
	Conclusion
	Appendix
	Model Parameters
	Metrics
	Detailed Results

