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ABSTRACT

Temporal point processes (TPPs) are a fundamental tool for modeling event se-
quences in continuous time, but most existing approaches rely on autoregres-
sive parameterizations that are limited by their sequential sampling. Recent non-
autoregressive, diffusion-style models mitigate these issues by jointly interpolating
between noise and data through event insertions and deletions in a discrete Markov
chain. In this work, we generalize this perspective and introduce an Edit Flow
process for TPPs that transports noise to data via insert, delete, and substitute
edit operations. By learning the instantaneous edit rates within a continuous-time
Markov chain framework, we attain a flexible and efficient model that effectively
reduces the total number of necessary edit operations during generation. Empirical
results demonstrate the generative flexibility of our unconditionally trained model in
a wide range of unconditional and conditional generation tasks on benchmark TPPs.

1 INTRODUCTION
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Figure 1: Edit process transporting t0 ∼
pnoise(t) to t1 ∼ qtarget(t) by inserting, delet-
ing and substituting events.

Temporal point processes (TPPs) capture the distri-
bution over sequences of events in time, where both
the continuous arrival-times and number of events
are random. They are widely used in domains such
as finance, healthcare, social networks, and trans-
portation, where understanding and forecasting event
dynamics and their complex interactions is crucial.
Most (neural) TPPs capture the complex interactions
between events autoregressively, parameterizing a
conditional intensity/density of each event given its
history (Daley & Vere-Jones, 2006; Shchur et al.,
2021). While natural and flexible, this factorization
comes with inherent limitations: sampling scales lin-
early with sequence length, errors can compound in
multi-step generation, and conditional generation is
restricted to forecasting tasks.

Beyond autoregression. Recent advances demon-
strate that modeling event sequences jointly proposes
a sound alternative to overcome these limitations. Inspired by diffusion, ADDTHIN (Lüdke et al.,
2023) and PSDIFF (Lüdke et al., 2025) leverage the thinning and superposition properties of TPPs
to construct a discrete Markov chain that learns to transform noise sequences t0 ∼ pnoise(t) into
data sequences t1 ∼ qtarget(t) through insertions and deletions of events. These methods highlight
the promise of joint sequence modeling for TPPs by learning stochastic set interpolations and have
shown state-of-the-art results, especially in forecasting.

In parallel, Havasi et al. (2025) introduced Edit Flow, a discrete flow-matching framework (Gat
et al., 2024; Campbell et al., 2024; Shi et al., 2025) for variable-length sequences of tokens (e.g.,
language). Their approach models discrete flows in sequence space through insertions, deletions, and
substitutions, formalized as a continuous-time Markov Chain (CTMC). To make the learning process
tractable, they introduce an expanded auxilliary state space that aligns sequences, simultaneously
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reducing the complexity of marginalizing over possible transitions and enabling efficient element-wise
parameterization in sequence space.

In this paper, we unify these perspectives and propose EDITPP, an Edit Flow for TPPs that learns to
transport noise sequences t0 ∼ pnoise(t) to data sequences t1 ∼ qtarget(t) via atomic edit operations
insertions, deletions, and substitutions (see figure 1). We define these operations specifically for TPPs,
efficiently parameterize their instantaneous rates within a CTMC, propose an auxiliary alignment
space for TPPs, and show that our unconditionally trained model can be flexibly applied to both
unconditional and conditional tasks with adaptive complexity. Our main contributions are:

• We introduce EDITPP, the first generative framework that models TPPs via continuous-
time edit operations, unifying stochastic set interpolation methods for TPPs with Edit
Flows for discrete sequences.

• We propose a tractable parameterization of insertion, deletion, and substitution rates for
TPPs within the CTMC framework, effectively reducing the number of edit operations
for generation.

• We demonstrate empirically that EDITPP achieves state-of-the-art results in both
unconditional and conditional tasks across diverse real-world and synthetic datasets.

2 BACKGROUND

2.1 TEMPORAL POINT PROCESSES

TPPs (Daley & Vere-Jones, 2006; 2007) are stochastic processes whose realizations are finite,
ordered sets of random events in time. Let t = {t(i)}ni=1, with t(i) ∈ [0, T ], denote a realization
of n events on a bounded time interval, which can equivalently be represented by the counting
process N(t) =

∑n
i=1 1{t(i) ≤ t} counting the number of events up to time t. A TPP is uniquely

characterized by its conditional intensity function (Rasmussen, 2018):

λ∗(t) = lim
∆t↓0

E[N(t+∆t)−N(t) | Ht]

∆t
, (1)

where Ht = {t(i) : t(i) < t} denotes the history up to time t. Intuitively, λ∗(t) represents the
instantaneous rate of events given the past. Two important properties of TPPs are superposition and
thinning. Superposition, i.e., inserting one sequence into another, t = t1 ∪ t2, where t1 and t2 are
realizations from TPPs with intensities λ1 and λ2, results in a sample from a TPP with intensity
λ = λ1 + λ2. Independent thinning, i.e., randomly deleting any event of a sequence from a TPP
with intensity λ with probability p, results in an event sequence from a TPP with intensity (1− p)λ.

The likelihood of observing an event sequence t given the conditional intensity/density is:

p(t) =

(
n∏

i=1

p(t(i) | Ht(i))

)
(1− F (T | Ht)) =

(
n∏

i=1

λ∗(t(i))

)
exp

(
−
∫ T

0

λ∗(s)ds

)
, (2)

where F (T | Ht) is the CDF of the conditional event density p(t | Ht). While this autoregressive
formulation of TPPs provides a natural framework for modeling event dependencies, it also poses
challenges. Parameterizing the conditional intensity or density is generally nontrivial, and the
inherently sequential factorization can lead to inefficient sampling, error accumulation, and limits
conditional tasks to forecasting (Lüdke et al., 2023; 2025).

2.2 MODELING TPPS BY SET INTERPOLATION

Instead of explicitly modeling the intensity function, Lüdke et al. (2023; 2025) leverage the thinning
and superposition properties of TPPs to derive diffusion-like generative models that interpolate
between data event sequences t1 ∼ qtarget(t) and noise t0 ∼ pnoise(t) by inserting and deleting
elements. ADDTHIN (Lüdke et al., 2023) defines the noising Markov chain recursively over a fixed
number of steps with size ∆ indexed by s ∈ [0, 1] as follows:

λs(t) = αsλs−∆(t)︸ ︷︷ ︸
(i) Thin

+(1− αs)λ0(t)︸ ︷︷ ︸
(ii) Add

, (3)

2
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where λ1(t) is the unknown target intensity of the TPP and αs ∈ (0, 1). Intuitively, this noising
process increasingly deletes events from the data sequence, while inserting events from a noise TPP
λ0(t). PSDIFF (Lüdke et al., 2025) further separates the adding and thinning to yield a Markov chain
for the forward process, that stochastically interpolates between t0 and t1 as follows:

ps(t | t1, t0) =
∏
t∈t

{
ᾱs if t ∈ t1
1− ᾱs if t ∈ t0

(4)

or equivalently λs(t) = ᾱsλ1(t) + (1− ᾱs)λ0(t), with ᾱs being the product of αi’s. Eq. (4) defines
an element-wise conditional path by independent insert and delete operations on TPPs, assuming
t0 ∩ t1 = ∅.

2.3 FLOW MATCHING WITH EDIT OPERATIONS

Havasi et al. (2025) introduce Edit Flows, a non-autoregressive generative framework for variable-
length token sequences with a fixed, discrete vocabulary (e.g., language). They propose a discrete
flow that transports a noisy sequence x0 ∼ pnoise(x) to a data sequence x1 ∼ qdata(x) via elementary
edit operations: insertions, deletions, and substitutions. This is formalized via the discrete flow
matching framework (Gat et al., 2024; Campbell et al., 2024; Shi et al., 2025) in an augmented space,
yielding a CTMC Pr(Xs+h = x | Xs = xs) = δxs(x) + huθ

s(x | xs) + o(h) with transition rates
uθ
s governed by the edit operations.

Directly defining a conditional rate us(x|x1,x0) to match uθ
s to, as in discrete flow matching,

is very hard or even intractable, since all possible edits producing x must be considered. Thus,
to train this CTMC, they rely on two major insights. First, a CTMC in a data space X can be
learned by introducing an augmented space X × Z where the true dynamics are known. Second,
designing the auxiliary space Z to follow the element wise mixture probability path ps(z | z0, z1) =∏

n

[
(1− κs)δz(i)

0
(z(i)) + κsδz(i)

1
(z(i))

]
with kappa schedule κs ∈ [0, 1] (Gat et al., 2024) enables

training the CTMC directly in the data space X of variable-length sequences.

Edit operations are encoded by mapping (x0,x1) into aligned sequences (z0, z1) in Z , where
pairs (z(i)0 , z

(i)
1 ) correspond to insertions (ϵ, x), deletions (x, ϵ), or substitutions (x, y). Crucially,

since the discrete flow matching dynamics in Z are known, they can be transferred back to X via
ps(x, z | z0, z1) = ps(z | z0, z1)δfrm-blanks(z)(x). Then, the marginal rates uθ

s are learned in X by
marginalizing over z with the Bregman divergence

L = E
(z0,z1)∼π(z0,z1)
s,ps(zs,xs|z0,z1)

[ ∑
x̸=xs

uθ
s (x | xs)−

∑
z
(i)
s ̸=z

(i)
1

κ̇s

1− κs
log uθ

s

(
x(zs, i, z

(i)
1 ) | xs

)]
, (5)

where x(zs, i, z
(i)
1 ) = frm-blanks((z

(1)
s , . . . , z

(i−1)
s , z

(i)
1 , z

(i+1)
s , . . . , z

(n)
s )).

3 METHOD

We introduce EDITPP, an Edit Flow process for TPPs that directly learns the joint distribution of
event times. Our process leverages the three elementary edit operations insert, substitute, and delete
to define a CTMC that continuously interpolates between two event sequences t0 ∼ pnoise(t) and
t1 ∼ qdata(t).

Let T = [0, T ] denote the support of the TPP. We define the state space as
XT =

⋃∞
n=0

{
(0, t(1), . . . , t(n), T ) ∈ T n : 0 < t(1) < · · · < t(n) < T

}
, denoting the set of all pos-

sible padded TPP sequences with finitely many events.

3.1 EDIT OPERATIONS

Our model navigates the state space XT through a set of atomic edit operations. While Edit Flow
was originally defined for discrete state spaces, we can generalize the method to continuous state
spaces provided that the set of edit operations remains discrete. We achieve this by defining a finite
set of edit operations on our continuous state space XT that nonetheless allow us to transition from
any sequence t to any other t′ through repeated application.

3
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𝑡𝑡𝑡𝑠
(1)𝒕𝑠 𝑡𝑠

(4)

2𝛿

ins(𝒕𝑠, 1, j )

sub(𝒕𝑠, 3, j )

del(𝒕𝑠, 4)

𝑡𝑠
(3)𝑡𝑠

(2)

Figure 2: Our discrete edit operations transform continuous event sequences through insertions,
substitutions and deletion.

Similar to Havasi et al. (2025), we design our operations to be mutually exclusive: if two sequences
differ by exactly one edit, the responsible operation is uniquely determined. This simplifies the
parameterization of the model and computation of the Bregman divergence in Eq. (5).

Insertion: To discretize the event insertion, we quantize the space between any two adjacent events
t(i) and t(i+1) into bins evenly-spaced bins. Then, we define the insertion operation relative to the ith
event as

ins(t, i, j) =
(
t(0), . . . , t(i), t(i) +

j − 1 + α

bins
(t(i+1) − t(i)), t(i+1), . . . , t(n+1)

)
(6)

for i ∈ {0, . . . , n}, j ∈ [bins], where α ∼ U(0, 1) is a dequantization factor inspired by uniform
dequantization in likelihood-based generative models (Theis et al., 2016). The boundary elements
t(0) = 0 and t(n+1) = T ensure that insertions are possible across the entire support T . Since the
bins between different i are non-overlapping, insertions are mutually exclusive.

Substitution: We implement event substitutions by discretizing the continuous space around each
event into bsub bins. In this case, the bins are free to overlap, since a substitution is always uniquely
determined by the substituted event. We choose a maximum movement distance δ and define

sub(t, i, j) = sort
(
{t(0), . . . , t(i−1), t(i+1), . . . , t(n+1)} ∪

{
t̃(i)
})

(7)

for i ∈ {1, . . . , n}, j ∈ [bsub], where t̃(i) =
[
t(i) − δ + j−1+α

bsub
2δ
]T
0

is the updated event restricted to
the support T and, again, α ∼ U(0, 1) is a uniform dequantization factor within the j-th bin.

Deletion: Finally, we define removing event i ∈ {1, . . . , n} straightforwardly as

del(t, i) = (t(0), . . . , t(i−1), t(i+1), . . . , t(n+1)). (8)

In combination, these operations facilitate any possible edit of an event sequence through insertions
and deletions with substitutions as a shortcut for local delete-insert pairs. Note that we neither allow
inserting after the last boundary event nor substituting or deleting the first or last boundary events,
thus guaranteeing operations to stay in the state space XT . We illustrate the edit operations in Fig. 2.

Parameterization Generating a new event sequence in the Edit Flow framework then means to
emit a continuous stream of edit operations by integrating a rate model uθ

s (· | t) from s = 0 to s = 1.
The emitted operations transform a noise sequence t0 into a data sample t1 by transitioning through
a series of intermediate states t. Given a current state ts, we parameterize the transition rates as

uθ
s (ins(ts, i, j) | ts) = λins

s,i(ts)Q
ins
s,i(j | ts), (9)

uθ
s (sub(ts, i, j) | ts) = λsub

s,i (ts)Q
sub
s,i (j | ts), (10)

uθ
s (del(ts, i) | ts) = λdel

s,i(ts), (11)

where λdel
s,i, λ

ins
s,i, λ

sub
s,i denote the total rate of each of the three basic operations at each event t(i). The

distributions Qins
s,i and Qsub

s,i are categorical distributions over the discretization bins j ∈ [bins] and
j ∈ [bsub], respectively. They distribute the total insertion and substitution rates between the specific
options.

4
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3.2 AUXILIARY ALIGNMENT SPACE

Training our rate model uθ
s by directly matching a marginalized conditional rate us(t | t1, t0)

generating a ps(t | t1, t0), as is common in discrete flow matching (Campbell et al., 2024; Gat et al.,
2024), is challenging or even intractable for Edit Flows, since it would require accounting for all
possible edits that could produce t (Havasi et al., 2025).

0.50

𝒕1 0.21 0.55

ins sub
del

del

0.0 T

𝒕0 0.11 0.950.0 T

0.55𝜖 𝜖0.0 T𝒛1 0.21

0.500.11 0.950.0 T𝒛0 𝜖

del

Figure 3: Illustration of the
alignment space for t0 and t1.

To address this, following Havasi et al. (2025), we introduce an
auxiliary alignment space for TPPs, where every possible edit
operation is uniquely defined in the element wise mixture path
zs ∼ ps(zs | z0, z1), making the learning problem tractable.

In language modeling, any token can appear in any position, so
Havasi et al. (2025) achieve strong results even when training with
a simple alignment that juxtaposes two sequences after shifting
one of them by a constant number of places. In our case, for the
alignments to correspond to possible edit operations, two events can
only be matched, i.e., z(i)0 ̸= ϵ and z

(i)
1 ̸= ϵ, if |z(i)0 − z

(i)
1 | < δ since

otherwise the resulting sub operation would be invalid. Furthermore,
zs have to correspond to sequences in XT , so frm-blanks(z) has to be increasing, and in particular any
mixing zs between z0 and z1 needs to be valid, i.e., zs ∼ ps(zs | z0, z1)⇒ frm-blanks(zs) ∈ XT .

We find the minimum-cost alignment between the non-boundary events of t0 and t1 with the
Needleman-Wunsch algorithm (Needleman & Wunsch, 1970), i.e.,

align(t0, t1) = wrap-boundaries

(
Needleman-Wunsch

(
t
(1:n)
0 , t

(1:m)
1 , cins, csub, cdel

))
(12)

and the cost functions

csub(i, j) =

{
|t(i)0 − t

(j)
1 | if |t(i)0 − t

(j)
1 | < δ and t

(i−1)
0 < t

(j)
1 < t

(i+1)
0

∞ otherwise

cins(i, j) =

{
δ
2 if t(i)0 < t

(j)
1

∞ otherwise
cdel(i, j) =

{
δ
2 if t(i)0 > t

(j)
1

∞ otherwise

(13)

where wrap-boundaries wraps the sequences with aligned boundary events 0 and T . The algorithm
builds up the aligned sequences pair by pair. The operations corresponds to adding different pairs to
the end of (z0, z1), i.e., insertion

(
ϵ, t

(j)
1

)
, deletion

(
t
(i)
0 , ϵ

)
and substitution

(
t
(i)
0 , t

(j)
1

)
(see Fig. 3).

It is trivial to see from csub that the aligned sequences will never encode a sub operation for two
events that are further than δ apart. The costs for insertions and deletions and the additional con-
dition on csub ensure that the aligned sequences are jointly sorted, i.e., for any i < j we have
max

(
z
(i)
0 , z

(i)
1

)
< min

(
z
(j)
0 , z

(j)
1

)
where min and max ignore ϵ tokens. This means that any inter-

polated zs will be sorted. The validity of encoded ins and del operations follows immediately.

3.3 TRAINING

We train our model uθ
s (· | ts) by optimizing the Bregman divergence in Eq. (5). This amounts to

sampling from a coupling π(z0, z1) in the aligned auxiliary space and then matching the ground-
truth conditional event rates. Note that the coupling π(z0, z1) is implicitly defined by its sampling
procedure: sample t0, t1 ∼ π(t0, t1) from a coupling of the noise and data distribution, e.g., the
independent coupling π(t0, t1) = p(t0) q(t1), and then align the sequences z0, z1 = align(t0, t1).
For our choice of operations, the divergence is

L = E
(z0,z1)∼π(z0,z1)
s,ps(zs,ts|z0,z1)

[ ∑
ω∈Ω(ts)

uθ
s (ω | ts)−

∑
z
(i)
s ̸=z

(i)
1

κ̇s

1− κs
log uθ

s

(
ω
(
z(i)s , z

(i)
1

)
| ts
)]

, (14)

where Ω(ts) is the set of all edit operations applicable to ts and ω
(
z
(i)
s , z

(i)
1

)
is the edit operation

encoded in the i-th position of the aligned sequences zs and z1. To make it precise, we have

Ω(ts) =
⋃

{ins(ts, i, j) | i ∈ {0} ∪ [n], j ∈ [bins]}
{sub(ts, i, j) | i ∈ [n], j ∈ [bsub]}
{del(ts, i) | i ∈ [n]}

(15)

5
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and

ω
(
z(i)s , z

(i)
1

)
=


ins(ts, i

′, j′) if z(i)s = ϵ and z
(i)
1 ̸= ϵ,

sub(ts, i
′, j′) if z(i)s ̸= ϵ and z

(i)
1 ̸= ϵ,

del(ts, i
′) if z(i)s ̸= ϵ and z

(i)
1 = ϵ.

(16)

i′ is the index such that frm-blanks(zs) maps z(i)s to x
(i′)
s with the convention that ϵ is mapped to the

same i′ as the last element of zs before i that is not ϵ. j′ is the index of the insertion or substitution
bin relative to x

(i′)
s that z(i)1 falls into.

3.4 SAMPLING Algorithm 1: Conditional Sampling
Input:
condition tc1 = C(t1), noise t0 ∼ pnoise, h = 1/nsteps

(zc
0, z

c
1)← align(C(t0), t

c
1)

while s < 1 do
Euler update
Sample edits ωs ∼ huθ

s(· | ts)
ts+h ← apply ωs to ts

Recondition
z̃c
s+h ∼ ps+h(· | zc

0, z
c
1)

tcs+h ← frm-blanks(z̃
c
s+h)

Merge
ts+h ← C ′(ts+h) ∪ tcs+h

s← s+ h
end
Return: forecast trajectory C ′(ts=1)

Sampling from our model is done by for-
ward simulation of the CTMC from noise
t0 ∼ pnoise(t) up to s = 1. We fol-
low (Havasi et al., 2025; Gat et al., 2024)
and leverage their Euler approximation,
since exact simulation is intractable. Even
though the rates are parameterized per el-
ement, sampling multiple edits within a
time horizon can be done in parallel. At
each step of length h, insertions at posi-
tion i occur with probability hλins

s,i(t) and
deletions or substitutions occur with proba-
bility h(λdel

s,i(t) + λsub
s,i (t)). Since they are

mutually exclusive the probability of sub-
stitution vs deletion is λsub

s,i (t)/(λ
sub
s,i (t) +

λdel
s,i(t)). Lastly, the inserted or substituted

events are drawn from the respective dis-
tributions Q to update ts. For a short sum-
mary of the unconditional sampling step refer to the Euler update step depicted in algorithm Algo-
rithm 1.

Conditional sampling. We can extend the unconditional model to conditional generation given a
binary mask on time c : T → {0, 1} (e.g., for forecasting, c(t) = t ≤ thistory). For a sequence t, we
define the conditioned part C(t) = {t ∈ t : c(t) = 1} and its complement C ′(t). Then as depicted in
algorithm Algorithm 1, for conditional sampling, we can simply enforce the conditional subsequence
to follow a noisy interpolation between tc0 = C(t0) and tc1 = C(t1), while the complement evolves
freely in the sampling process.

3.5 MODEL ARCHITECTURE

For our rate model uθ
s (· | xs), we adapt the Llama architecture, a transformer widely ap-

plied for variable-length sequences in language modeling (Touvron et al., 2023). We employ
FlexAttention in the Llama attention blocks, which supports variable-length sequences na-
tively without padding (Dong et al., 2024). As a first step, we convert the scalar event sequence xs

into a sequence of token embeddings by applying MLP(SinEmb(x
(i)
s /T )) to each to each event,

where MLP refers to a small multi-layer perceptron (MLP) and SinEmb is a sinusoidal embedding
(Vaswani et al., 2017). We convert s and |xs| into two additional tokens in an equivalent way with
separate MLPs and prepend them to the embedding sequence, which we then feed to the Llama.
Lastly, we apply one more MLP to map the output embedding h(i) of each event to transition rates.
In particular, we parameterize

λins
s,i = exp(λM tanh(h

(i)
ins )), λsub

s,i = exp(λM tanh(h
(i)
sub)), λdel

s,i = exp(λM tanh(h
(i)
del)) (17)

and
Qins

s,i = softmax(h
(i)
ins ), Qsub

s,i = softmax(h
(i)
sub). (18)

We list the values of all relevant hyperparameters in Appendix A.
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Table 1: Unconditional sampling performance. Bold is best, underlined second best. Ranking based
on full results.

H1 H2 NSP NSR SC SR PG R/C R/P Tx Tw Y/A Y/M
M
M
D

IFTPP 1.6 1.2 3.2 3.9 6.7 1.2 16.2 7.5 2.0 5.0 2.6 5.8 2.9
ADDTHIN 2.4 1.8 3.5 15.7 24.6 2.5 4.6 63.0 10.2 4.1 4.4 11.8 3.7
PSDIFF 3.3 1.8 2.0 5.9 19.8 2.4 3.2 6.5 1.0 3.8 3.4 4.1 3.4
EDITPP 1.1 1.2 1.7 3.5 7.7 1.0 1.4 8.2 2.4 3.1 1.3 3.7 4.0

×10−2 ×10−2 ×10−2 ×10−2 ×10−2 ×10−2 ×10−2 ×10−3 ×10−2 ×10−2 ×10−2 ×10−2 ×10−2

W
1
,d

l

IFTPP 20.5 13.3 11.5 14.1 1.5 23.0 294.6 3.9 3.2 2.9 6.5 3.3 2.5
ADDTHIN 33.3 21.8 12.8 49.0 22.7 41.8 24.5 37.0 33.6 2.3 15.5 6.0 1.6
PSDIFF 26.9 29.6 5.5 13.3 10.6 30.3 16.1 1.3 2.5 2.8 6.3 1.5 1.5
EDITPP 7.6 7.0 3.1 1.5 1.3 6.4 6.2 1.9 5.7 2.5 3.4 1.4 1.7

×10−3 ×10−3 ×10−3 ×10−3 ×10−3 ×10−3 ×10−3 ×10−2 ×10−2 ×10−2 ×10−3 ×10−2 ×10−2

W
1
,d

IE
T

IFTPP 6.3 5.8 3.2 2.3 6.5 7.1 30.3 1.8 7.1 17.4 4.9 3.2 2.8
ADDTHIN 6.6 7.0 3.2 3.9 15.1 9.4 8.0 5.3 20.0 8.8 5.5 3.2 2.4
PSDIFF 8.6 9.9 3.0 5.1 32.6 12.8 9.0 1.6 4.3 11.1 6.7 2.4 2.3
EDITPP 5.3 5.5 3.1 2.2 6.4 7.0 7.5 1.4 6.0 11.1 4.6 2.5 2.3

×10−1 ×10−1 ×10−1 ×10−1 ×10−2 ×10−1 ×10−2 ×10−1 ×10−3 ×10−2 ×10−1 ×10−1 ×10−1

4 EXPERIMENTS

We evaluate our model on seven real-world and six synthetic benchmark datasets (Omi et al.,
2019; Shchur et al., 2020b; Lüdke et al., 2023; 2025). In our experiments, we compare against
IFTPP (Shchur et al., 2020a), an autoregressive baseline which consistently shows state-of-the-art
performance (Bosser & Taieb, 2023; Lüdke et al., 2023; Kerrigan et al., 2025). We further compare
to PSDIFF (Lüdke et al., 2025) and ADDTHIN (Lüdke et al., 2023), given their strong results in
both conditional and unconditional settings and their methodological similarity to our approach. All
models are trained with five seeds and we select the best checkpoint based on W1-over-dIET against
a validation set. EDITPP, ADDTHIN, and PSDIFF are trained unconditionally but can be conditioned
at inference time.1 We list the full results in Appendix C.

For forecasts, we compare predicted and target sequences by three metrics: dXiao introduced by Xiao
et al. (2017), the mean relative error (MRE) of the event counts and dIET, which compares inter-event
times to quantify the relation between events such as burstiness. In unconditional generation, we
compare our generated sequences to the test set in terms of maximum mean discrepancy (MMD)
(Shchur et al., 2020b) and their Wasserstein-1 distance with respect to their counts (dl) and inter-event
times (dIET). See Appendix B for details.

4.1 UNCONDITIONAL GENERATION

To evaluate how well samples from each TPP model follow the data distribution, we compute distance
metrics between 4000 sampled sequences and a hold-out test set. We report the unconditional
sampling results in Table 1. EDITPP achieves the best rank in unconditional sampling by strongly
matching the test set distribution across all evaluation metrics, outperforming all baselines. The
autoregressive baseline IFTPP shows very strong unconditional sampling capability, closely matching
and on some dataset and metric combination outperforming the other non-autoregressive baselines
ADDTHIN and PSDIFF.

4.2 CONDITIONAL GENERATION (FORECASTING)

Predicting the future given some history window is a fundamental TPP task. For each test sequence,
we uniformly sample 50 forecasting windows [T0, T ], T0 ∈ [∆T, T −∆T ], with minimal history
and forecast time ∆T . While, this set-up is very similar to the one proposed by Lüdke et al. (2023),
there are key differences: we do not fix the forecast window and do not enforce a minimal number

1To stay comparable, we employ the conditioning algorithm from Lüdke et al. (2025) for ADDTHIN.
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4 16 64 256
Steps k

0.0

0.2

0.4
dl

4 16 64 256
Steps k

0.0

0.5

dIET

Reddit Posts Reddit Comments

Figure 4: Changing the number of steps k allows trading off compute and sample quality in terms of
dl, dW2

and dIET at inference time.

of forecast or history events. In fact, even an empty history encodes the information of not having
observed an event and a TPP should capture the probability of not observing any event in the future.

Table 2: Forecasting accuracy up to T . Bold is best, under-
lined second best. Ranking based on full results.

PG R/C R/P Tx Tw Y/A Y/M
d
X
ia
o

IFTPP 6.0 3.9 6.3 4.7 2.6 1.8 3.4
ADDTHIN 2.5 8.8 7.3 4.0 2.8 1.5 2.9
PSDIFF 2.4 3.2 4.8 4.4 2.6 1.5 3.0
EDITPP 2.5 3.4 4.9 4.5 2.7 1.5 3.0

×101 ×101

M
R

E

IFTPP 38.9 7.5 3.5 3.2 2.1 3.7 3.9
ADDTHIN 3.7 14.8 4.6 3.0 3.0 3.5 3.7
PSDIFF 3.4 3.3 3.0 11.4 2.4 3.5 9.2
EDITPP 3.5 3.6 2.8 12.3 2.3 3.5 9.0

×10−1 ×10−1 ×10−1 ×10−1 ×10−1

d
IE

T

IFTPP 4.7 6.8 14.7 1.4 2.2 5.9 3.9
ADDTHIN 4.0 6.9 10.3 1.2 1.5 4.9 2.6
PSDIFF 4.1 6.2 9.5 1.1 1.5 4.9 2.6
EDITPP 4.0 6.8 10.1 1.1 1.4 5.0 2.7

×10−1 ×10−1 ×10−3 ×10−1 ×10−1 ×10−1

We report the forecasting results in
Table 2. EDITPP shows very strong
forecasting capabilities closely match-
ing or surpassing the baselines across
most dataset and metric combina-
tions. Even though IFTPP is explic-
itly trained to auto-regressively pre-
dict the next event given its history, it
shows overall worse forecasting capa-
bilities compared to the uncondition-
ally trained EDITPP, ADDTHIN and
PSDIFF. This again, underlines pre-
vious findings (Lüdke et al., 2023),
that autoregressive TPPs can suffer
from error accumulation in forecast-
ing. Similar to the unconditional set-
ting, PSDIFF (transformer) outper-
forms ADDTHIN (convolution with
circular padding), which showcases
the improved posterior and modeling
of long-range interactions.

4.3 EDIT EFFICIENCY

Table 3: Average number of edit operations in
unconditional sampling across datasets.

Ins Del Sub Total

PSDIFF 171.47 61.22 – 232.68
EDITPP 132.88 31.43 28.97 193.29

The sub operation allows our model to modify se-
quences in a more targeted way when compared to
PSDIFF or ADDTHIN, which have to rely on just
inserts and deletes. Note that one sub operation
can replace an insert-delete pair. Table 3 shows
this results in EDITPP using fewer edit operations
than PSDIFF on average even if one would count
substitutions twice, as an insert and a delete.2 This is further amplified by the fact, that unlike
EDITPP, PSDIFF and ADDTHIN only indirectly parameterizes the transition edit rates by predicting
t1 by insertion and deletion at every sampling step.

Table 4: Sample run-time (ms) on a H100 GPU.

R/P R/C

ADDTHIN 18,075.62 17,689.36
PSDIFF 7,776.35 3,913.78
EDITPP 4,120.38 1,505.68

In Table 4, we compare their actual sampling run-
time for a batch size of 1024 on the two dataset
with the longest sequences. Our implementation
beats the reference implementations of ADDTHIN
and PSDIFF by a large margin. Note, that for
a fair comparison, we fixed the number of sam-
pling steps to 100 in all previous evaluations. As

2Due to its recursive definition, ADDTHIN inserts and subsequently deletes some noise events during
sampling, which results in additional edit operations compared to PSDIFF.
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a continuous-time model, EDITPP can further trade off compute against sample quality at inference
time without retraining, in contrast to discrete-time models like ADDTHIN and PSDIFF. Fig. 4 shows
that sample quality improves as we increase the number of sampling steps and therefore reduce the
discretization step size of the CTMC dynamics. At the same time, the figure also shows rapidly
diminishing quality improvements, highlighting potential for substantial speedups with only minor
quality loss.

5 RELATED WORK

The statistical modeling of TPPs has a long history (Daley & Vere-Jones, 2007; Hawkes, 1971).
Classical approaches such as the Hawkes process define parametric conditional intensities, but their
limited flexibility has motivated the development of neurally parameterized TPPs:

Autoregressive Neural TPP: Most neural TPPs adopt an autoregressive formulation, modeling the
distribution of each event conditional on its history. These models consist of two components: a
history encoder and an event decoder. Encoders are typically implemented using recurrent neural
networks (Du et al., 2016; Shchur et al., 2020a) or attention mechanisms (Zhang et al., 2020a; Zuo
et al., 2020; Mei et al., 2022), with attention-based models providing longer-range context at the
cost of higher complexity (Shchur et al., 2021). Further, some propose to encode the history of a
TPP in a continuous latent stochastic processes (Chen et al., 2020; Enguehard et al., 2020; Jia &
Benson, 2019; Hasan et al., 2023). For the decoder, a wide variety of parametrizations have been
explored. Conditional intensities or related measures (e.g., hazard function or conditional density),
can be modeled, parametrically (Mei & Eisner, 2017; Zuo et al., 2020; Zhang et al., 2020a), via
neural networks (Omi et al., 2019), mixtures of kernels (Okawa et al., 2019; Soen et al., 2021; Zhang
et al., 2020b) and mixture distributions (Shchur et al., 2020a). Generative approaches further enhance
flexibility: normalizing flow-based (Shchur et al., 2020b), GAN-based (Xiao et al., 2017), VAE-based
(Li et al., 2018), and diffusion-based decoders (Lin et al., 2022; Yuan et al., 2023) have all been
proposed. While expressive, autoregressive TPPs are inherently sequential, which makes sampling
scale at least linearly with sequence length, can lead to error accumulation in multi-step forecasting
and limit conditional generation to forecasting.

Non-autoregressive Neural TPPs: Similar to our method, these approaches model event sequences
through a latent variable process that refines the entire sequence jointly. Diffusion-inspired (Lüdke
et al., 2023; 2025) and flow-based generative models (Kerrigan et al., 2025) have recently emerged as
promising alternatives to auto-regressive TPP models by directly modelling the joint distribution over
event sequences.

6 CONCLUSION

We have presented EDITPP, an Edit Flow for TPPs that generalises diffusion-based set interpolation
methods (Lüdke et al., 2023; 2025) with a continuous-time flow model introducing substitution
as an additional edit operation. By parameterizing insertions, deletions, and substitutions within
a CTMC, our approach enables efficient and flexible sequence modeling for TPPs. Empirical
results demonstrate that EDITPP matches state-of-the-art performance in both unconditional and
conditional generation tasks across synthetic and real-world datasets, while reducing the number of
edit operations.
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thin: Diffusion for temporal point processes. In Thirty-seventh Conference on Neural Information
Processing Systems, 2023. URL https://openreview.net/forum?id=tn9Dldam9L.

10

https://arxiv.org/abs/2407.15595
https://arxiv.org/abs/2407.15595
https://arxiv.org/abs/2506.09018
https://arxiv.org/abs/2410.07430
https://openreview.net/forum?id=tn9Dldam9L


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026
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A MODEL PARAMETERS

Table 5: Hyperparameters of our uθ
s (· | xs) model shared across all datasets.

Parameter Value

Number of ins bins bins 64
Number of sub bins bsub 64
Maximum sub distance δ T/100
Maximum log-rate λM 32
κ(s) 1− cos

(
π
2 s
)2

Llama architecture:
Hidden size H 64
Layers 2
Attention heads 4

Optimizer Adam
Sample steps 100

All MLPs have input and output sizes of H , except for the final MLP whose output size is determined
by the number of λ and Q parameters of the rate. The MLPs have a single hidden layer of size 4H .
The sinusoidal embeddings map a scalar s ∈ [0, 1] to a vector of length H . In contrast to Havasi et al.
(2025), we choose a cosine κ schedule κ(s) = 1 − cos

(
π
2 s
)2

as proposed by Nichol & Dhariwal
(2021) for diffusion models as it improved results slightly compared κ(s) = s3.

For evaluation, we use an exponential moving average (EMA) of the model weights. We also use
low-discrepancy sampling of s in Eq. (14) during training to smooth the loss and thus training signal
(Kingma et al., 2023; Lienen et al., 2025).

We train all models for 20 000 steps and select the best checkpoint by its W1-over-dIET, which we
evaluate on a validation set every 1000 steps.

B METRICS

A standard way in generative modeling to compare generated and real data is the Wasserstein distance
(Heusel et al., 2017). It is the minimum average distance between elements of the two datasets under
the optimal (partial) assignment between them,

Wp(X ,X ′) =
(
minγ∈Γ(X ,X ′) E(x,x′)∼γ

[
d(x,x′)

p])1/p

(19)

where d is a distance that compares elements from the two sets. In the case of sequences of unequal
length, one can choose d itself as a nested Wasserstein distance (Lienen et al., 2024). Xiao et al.
(2017) were the first to design such a distance between TPPs. They exploit a special case of W1
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for sorted sequences of equal length and assign the remaining events of the longer sequence to
pseudo-events at T to define

dXiao(x,x
′) =

∑|x|

i=1
|t(i) − t′(i)|+

∑|x′|

i=|x|+1
|T − t′(i)| (20)

where x′ is assumed to be the longer sequence. dXiao captures a difference in both location and
number of events between two sequences through its two terms.

(Shchur et al., 2020b) propose to compute the MMD between sets based on a Gaussian kernel and
dXiao. In addition, we evaluate the event count distributions via a Wasserstein-1 distance with respect
to a difference in event counts W1,dl

where dl(x,x
′) =

∣∣|x| − |x′|
∣∣. Finally, we the distributions of

inter-event times between our generated sequences and real sequences in W1,dIET
, i.e., a Wasserstein-

1 distance of dIET. dIET is itself the W2 distance between inter-event times of two sequences and
quantifies how adjacent events relate to each other to capture more complex patterns.

C DETAILED RESULTS

Table 6: Forecasting accuracy up to T measured by dIET.

EDITPP PSDIFF ADDTHIN IFTPP

PUBG 0.400 ± 0.002 0.413 ± 0.009 0.403 ± 0.010 0.473 ± 0.019
Reddit Comments 0.684 ± 0.005 0.625 ± 0.012 0.693 ± 0.012 0.684 ± 0.012
Reddit Posts 0.010 ± 0.000 0.009 ± 0.000 0.010 ± 0.001 0.015 ± 0.003
Taxi 0.113 ± 0.003 0.113 ± 0.001 0.116 ± 0.001 0.145 ± 0.009
Twitter 1.441 ± 0.020 1.487 ± 0.012 1.493 ± 0.033 2.187 ± 0.029
Yelp Airport 0.497 ± 0.009 0.492 ± 0.005 0.493 ± 0.013 0.587 ± 0.019
Yelp Mississauga 0.272 ± 0.003 0.262 ± 0.003 0.260 ± 0.003 0.388 ± 0.024

Table 7: Forecasting accuracy up to T measured by mean relative error of event counts.

EDITPP PSDIFF ADDTHIN IFTPP

PUBG 0.349 ± 0.001 0.339 ± 0.008 0.367 ± 0.005 3.892 ± 0.035
Reddit Comments 3.594 ± 0.118 3.260 ± 0.268 14.777 ± 3.226 7.515 ± 2.112
Reddit Posts 0.281 ± 0.001 0.296 ± 0.006 0.457 ± 0.065 0.352 ± 0.022
Taxi 1.234 ± 0.036 1.140 ± 0.043 0.301 ± 0.014 0.321 ± 0.018
Twitter 2.327 ± 0.042 2.435 ± 0.106 2.984 ± 0.246 2.060 ± 0.027
Yelp Airport 0.350 ± 0.007 0.346 ± 0.004 0.347 ± 0.014 0.366 ± 0.009
Yelp Mississauga 0.902 ± 0.027 0.920 ± 0.033 0.374 ± 0.012 0.392 ± 0.012

Table 8: Forecasting accuracy up to T measured by dXiao.

EDITPP PSDIFF ADDTHIN IFTPP

PUBG 2.478 ± 0.007 2.400 ± 0.007 2.466 ± 0.024 5.954 ± 0.195
Reddit Comments 34.135 ± 0.382 32.467 ± 0.534 87.666 ± 20.184 39.010 ± 7.508
Reddit Posts 48.776 ± 0.355 47.829 ± 1.050 72.754 ± 12.134 63.256 ± 9.695
Taxi 4.464 ± 0.088 4.444 ± 0.076 4.032 ± 0.129 4.744 ± 0.125
Twitter 2.669 ± 0.022 2.635 ± 0.078 2.802 ± 0.132 2.557 ± 0.055
Yelp Airport 1.524 ± 0.013 1.512 ± 0.016 1.548 ± 0.026 1.795 ± 0.015
Yelp Mississauga 3.027 ± 0.046 3.005 ± 0.046 2.895 ± 0.039 3.430 ± 0.047
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Table 9: Sample quality as measured by MMD.

EDITPP PSDIFF ADDTHIN IFTPP

Hawkes-1 0.011 ± 0.002 0.033 ± 0.009 0.024 ± 0.009 0.016 ± 0.002
Hawkes-2 0.012 ± 0.001 0.018 ± 0.006 0.018 ± 0.006 0.012 ± 0.001
Nonstationary Poisson 0.017 ± 0.003 0.020 ± 0.005 0.035 ± 0.011 0.032 ± 0.008
Nonstationary Renewal 0.035 ± 0.001 0.059 ± 0.006 0.157 ± 0.084 0.039 ± 0.007
PUBG 0.014 ± 0.001 0.032 ± 0.012 0.046 ± 0.025 0.162 ± 0.010
Reddit Comments 0.008 ± 0.001 0.006 ± 0.002 0.063 ± 0.012 0.007 ± 0.003
Reddit Posts 0.024 ± 0.001 0.010 ± 0.002 0.102 ± 0.004 0.020 ± 0.007
Self-Correcting 0.077 ± 0.004 0.198 ± 0.002 0.246 ± 0.018 0.067 ± 0.011
Stationary Renewal 0.010 ± 0.002 0.024 ± 0.005 0.025 ± 0.013 0.012 ± 0.002
Taxi 0.031 ± 0.002 0.038 ± 0.005 0.041 ± 0.004 0.050 ± 0.003
Twitter 0.013 ± 0.002 0.034 ± 0.007 0.044 ± 0.012 0.026 ± 0.005
Yelp Airport 0.037 ± 0.002 0.041 ± 0.004 0.118 ± 0.036 0.058 ± 0.002
Yelp Mississauga 0.040 ± 0.003 0.034 ± 0.007 0.037 ± 0.006 0.029 ± 0.002

Table 10: Sample quality as measured by W1-over-dIET.

EDITPP PSDIFF ADDTHIN IFTPP

Hawkes-1 0.526 ± 0.020 0.865 ± 0.035 0.655 ± 0.081 0.628 ± 0.030
Hawkes-2 0.546 ± 0.005 0.991 ± 0.038 0.703 ± 0.049 0.582 ± 0.009
Nonstationary Poisson 0.306 ± 0.005 0.303 ± 0.007 0.318 ± 0.015 0.317 ± 0.006
Nonstationary Renewal 0.224 ± 0.006 0.511 ± 0.016 0.393 ± 0.064 0.229 ± 0.027
PUBG 0.075 ± 0.000 0.090 ± 0.001 0.080 ± 0.003 0.303 ± 0.039
Reddit Comments 0.144 ± 0.003 0.157 ± 0.006 0.532 ± 0.014 0.176 ± 0.008
Reddit Posts 0.006 ± 0.000 0.004 ± 0.000 0.020 ± 0.001 0.007 ± 0.001
Self-Correcting 0.064 ± 0.000 0.326 ± 0.003 0.151 ± 0.005 0.065 ± 0.001
Stationary Renewal 0.697 ± 0.018 1.281 ± 0.049 0.941 ± 0.145 0.714 ± 0.028
Taxi 0.111 ± 0.001 0.111 ± 0.001 0.088 ± 0.003 0.174 ± 0.015
Twitter 0.460 ± 0.004 0.672 ± 0.007 0.545 ± 0.024 0.492 ± 0.023
Yelp Airport 0.246 ± 0.002 0.244 ± 0.004 0.316 ± 0.046 0.318 ± 0.017
Yelp Mississauga 0.226 ± 0.003 0.225 ± 0.003 0.236 ± 0.004 0.276 ± 0.017

Table 11: Sample quality as measured by W1-over-dl.

EDITPP PSDIFF ADDTHIN IFTPP

Hawkes-1 0.008 ± 0.001 0.027 ± 0.008 0.033 ± 0.015 0.020 ± 0.004
Hawkes-2 0.007 ± 0.001 0.030 ± 0.009 0.022 ± 0.014 0.013 ± 0.003
Nonstationary Poisson 0.003 ± 0.001 0.006 ± 0.001 0.013 ± 0.005 0.012 ± 0.003
Nonstationary Renewal 0.001 ± 0.000 0.013 ± 0.001 0.049 ± 0.022 0.014 ± 0.011
PUBG 0.006 ± 0.000 0.016 ± 0.008 0.024 ± 0.014 0.295 ± 0.007
Reddit Comments 0.019 ± 0.002 0.013 ± 0.003 0.370 ± 0.081 0.039 ± 0.023
Reddit Posts 0.057 ± 0.003 0.025 ± 0.003 0.336 ± 0.045 0.032 ± 0.011
Self-Correcting 0.001 ± 0.000 0.011 ± 0.001 0.023 ± 0.002 0.001 ± 0.001
Stationary Renewal 0.006 ± 0.002 0.030 ± 0.019 0.042 ± 0.022 0.023 ± 0.005
Taxi 0.025 ± 0.002 0.028 ± 0.004 0.023 ± 0.006 0.029 ± 0.003
Twitter 0.003 ± 0.001 0.006 ± 0.003 0.015 ± 0.008 0.007 ± 0.002
Yelp Airport 0.014 ± 0.002 0.015 ± 0.004 0.060 ± 0.021 0.033 ± 0.003
Yelp Mississauga 0.017 ± 0.003 0.015 ± 0.002 0.016 ± 0.003 0.025 ± 0.006
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Table 12: Average number of edit operations during unconditional sampling.

EDITPP PSDIFF

Ins Del Sub Ins Del

Hawkes-1 56.78 61.81 38.09 90.98 104.06
Hawkes-2 64.04 69.62 30.74 91.26 104.60
Nonstationary Poisson 49.51 49.26 50.56 100.22 99.66
Nonstationary Renewal 42.36 44.41 55.82 96.37 98.48
Self-Correcting 34.61 34.46 66.15 99.40 99.27
Stationary Renewal 71.57 62.86 38.11 106.08 103.38
PUBG 56.40 19.88 19.93 76.43 41.06
Reddit Comments 237.27 8.75 15.15 275.13 24.51
Reddit Posts 956.10 0.10 23.73 1091.55 24.41
Taxi 81.71 7.13 16.37 98.53 23.19
Twitter 11.53 21.48 2.94 15.27 24.05
Yelp Airport 21.80 15.61 8.40 30.84 24.53
Yelp Mississauga 43.79 13.28 10.60 56.99 24.64

Mean 132.88 31.43 28.97 171.47 61.22

Total 193.29 232.68
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