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ABSTRACT

Temporal point processes (TPPs) are a fundamental tool for modeling event se-
quences in continuous time, but most existing approaches rely on autoregres-
sive parameterizations that are limited by their sequential sampling. Recent non-
autoregressive, diffusion-style models mitigate these issues by jointly interpolating
between noise and data through event insertions and deletions in a discrete Markov
chain. In this work, we generalize this perspective and introduce an Edit Flow
process for TPPs that transports noise to data via insert, delete, and substitute
edit operations. By learning the instantaneous edit rates within a continuous-time
Markov chain framework, we attain a flexible and efficient model that effectively
reduces the total number of necessary edit operations during generation. Empirical
results demonstrate the generative flexibility of our unconditionally trained model in
a wide range of unconditional and conditional generation tasks on benchmark TPPs.

1 INTRODUCTION

Temporal point processes (TPPs) capture the distri-
bution over sequences of events in time, where both
the continuous arrival-times and number of events
are random. They are widely used in domains such
as finance, healthcare, social networks, and trans-
portation, where understanding and forecasting event
dynamics and their complex interactions is crucial.
Most (neural) TPPs capture the complex interactions
between events autoregressively, parameterizing a
conditional intensity/density of each event given its
history (Daley & Vere-Jones, 2006; Shchur et al.,
2021). While natural and flexible, this factorization
comes with inherent limitations: sampling scales lin-
early with sequence length, errors can compound in
multi-step generation, and conditional generation is
restricted to forecasting tasks.

Beyond autoregression. Recent advances demon-
strate that modeling event sequences jointly proposes

{011}
to.73 [ L
o )

Figure 1: Edit process transporting to ~
Proise(t) 10 t1 ~ Grarget(t) by inserting, delet-
ing and substituting events.

a sound alternative to overcome these limitations. Inspired by diffusion, ADDTHIN (Liidke et al.,
2023) and PSDIFF (Liidke et al., 2025) leverage the thinning and superposition properties of TPPs
to construct a discrete Markov chain that learns to transform noise sequences tg ~ pyoise(t) into
data sequences t1 ~ Gurget (t) through insertions and deletions of events. These methods highlight
the promise of joint sequence modeling for TPPs by learning stochastic set interpolations and have
shown state-of-the-art results, especially in forecasting.

In parallel, Havasi et al. (2025) introduced Edit Flow, a discrete flow-matching framework (Gat
et al., 2024; Campbell et al., 2024; Shi et al., 2025) for variable-length sequences of tokens (e.g.,
language). Their approach models discrete flows in sequence space through insertions, deletions, and
substitutions, formalized as a continuous-time Markov Chain (CTMC). To make the learning process
tractable, they introduce an expanded auxilliary state space that aligns sequences, simultaneously
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reducing the complexity of marginalizing over possible transitions and enabling efficient element-wise
parameterization in sequence space.

In this paper, we unify these perspectives and propose EDITPP, an Edit Flow for TPPs that learns to
transport noise sequences to ~ Pnoise(t) to data sequences t1 ~ Gurger(t) Via atomic edit operations
insertions, deletions, and substitutions (see figure 1). We define these operations specifically for TPPs,
efficiently parameterize their instantaneous rates within a CTMC, propose an auxiliary alignment
space for TPPs, and show that our unconditionally trained model can be flexibly applied to both
unconditional and conditional tasks with adaptive complexity. Our main contributions are:

* We introduce EDITPP, the first generative framework that models TPPs via continuous-
time edit operations, unifying stochastic set interpolation methods for TPPs with Edit
Flows for discrete sequences.

* We propose a tractable parameterization of insertion, deletion, and substitution rates for

TPPs within the CTMC framework, effectively reducing the number of edit operations
for generation.

* We demonstrate empirically that EDITPP achieves state-of-the-art results in both
unconditional and conditional tasks across diverse real-world and synthetic datasets.

2 BACKGROUND

2.1 TEMPORAL POINT PROCESSES

TPPs (Daley & Vere-Jones, 2006; 2007) are stochastic processes whose realizations are almost
surely finite, ordered sets of random events in time. Let t = {t(V}7_, with t() € [0, T, denote
arealization of n events on a bounded time interval, which can equivalently be represented by the
counting process N(t) = S 1{t) <t} counting the number of events up to time ¢. A TPP is
uniquely characterized by its conditional intensity function (Rasmussen, 2018):

N (t) = Jim E[N(t + At) — N(t) | Hy]

AL0 At ’ @

where H; = {t® : t() < t} denotes the history up to time ¢. Intuitively, \*(¢) represents the
instantaneous rate of events given the past. Two important properties of TPPs are superposition and
thinning. Superposition, i.e., inserting one sequence into another, t = t1 U ¢, where ¢, and ¢, are
realizations from TPPs with intensities A\; and A2, results in a sample from a TPP with intensity
A = A1 + A2. Independent thinning, i.e., randomly deleting any event of a sequence from a TPP
with intensity A with probability p, results in an event sequence from a TPP with intensity (1 — p)A.

The likelihood of observing an event sequence ¢ given the conditional intensity/density is:

p(t) = (pr” |Htm>> (1= F(T | Hy)) = (HA*@“))) exp (— / A*(s)ds>, @)
i=1 i=1

where F(T' | H;) is the CDF of the conditional event density p(t | ;). While this autoregressive
formulation of TPPs provides a natural framework for modeling event dependencies, it also poses
challenges. Parameterizing the conditional intensity or density is generally nontrivial, and the
inherently sequential factorization can lead to inefficient sampling, error accumulation, and limits
conditional tasks to forecasting (Liidke et al., 2023; 2025).

2.2 MODELING TPPS BY SET INTERPOLATION

Instead of explicitly modeling the intensity function, Liidke et al. (2023; 2025) leverage the thinning
and superposition properties of TPPs to derive diffusion-like generative models that interpolate
between data event sequences t1 ~ Gargec(t) and noise £y ~ pnoise(t) by inserting and deleting
elements. ADDTHIN (Liidke et al., 2023) defines the noising Markov chain recursively over a fixed
number of steps with size A indexed by s € [0, 1] as follows:

/\s(t) - as/\s—A(t)+(1 - OLS))\O(t)a (3)
(i) Thin (ii) Add
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where A; () is the unknown target intensity of the TPP and «; € (0, 1). Intuitively, this noising
process increasingly deletes events from the data sequence, while inserting events from a noise TPP
Ao(t). PSDIFF (Liidke et al., 2025) further separates the adding and thinning to yield a Markov chain
for the forward process, that stochastically interpolates between ¢y and £; as follows:

Qg iftet
ps(t|t1,t0)=H{ !

. “)
ot 1—a, iftety

or equivalently As(t) = @sA1(t) + (1 — @s)Ao(t), with &, being the product of «;’s. Eq. (4) defines

an element-wise conditional path by independent insert and delete operations on TPPs, assuming

toNty = 0.

2.3 FLOW MATCHING WITH EDIT OPERATIONS

Havasi et al. (2025) introduce Edit Flows, a non-autoregressive generative framework for variable-
length token sequences with a fixed, discrete vocabulary (e.g., language). They propose a discrete
flow that transports a noisy sequence &g ~ Pnoise (€) to a data sequence €1 ~ guua () via elementary
edit operations: insertions, deletions, and substitutions. This is formalized via the discrete flow
matching framework (Gat et al., 2024; Campbell et al., 2024; Shi et al., 2025) in an augmented space,
yielding a CTMC Pr(X 1, = @ | Xs = ©,) = 6z, (x) + hul(z | x4) + o(h) with transition rates
u? governed by the edit operations.

Directly defining a conditional rate u4(z|x1,2o) to match u? to, as in discrete flow matching,

is very hard or even intractable, since all possible edits producing  must be considered. Thus,

to train this CTMC, they rely on two major insights. First, a CTMC in a data space X can be

learned by introducing an augmented space X x Z where the true dynamics are known. Second,

designing the auxiliary space Z to follow the element wise mixture probability path ps(z | 2o, 21) =

[T, [(1- Ks)d_i () 4 K50 (z(i))] with kappa schedule x, € [0, 1] (Gat et al., 2024) enables
0 1

training the CTMC directly in the data space X of variable-length sequences.

Edit operations are encoded by introducing a blank token e and mapping (x, 1) into aligned
sequences (2o, z1) in Z, where pairs (2", 2;,") correspond to insertions (e, x), deletions (z, €), or
substitutions (z, y). Crucially, since the discrete flow matching dynamics in Z are known, they can be
transferred back to X' via p,(x, z | z0,21) = ps(2 | 20,21)0¢ (z), by removing €’s with

rm-blanks (z)
frm-blanks- Then, the marginal rates ug are learned in X' by marginalizing over z with the Bregman
divergence

ﬁ:

Sowl@lw)— Y o logud(a(zia)) =) )

S

E |
(z0,21)~7(20,21)

5,05 (20,25 |20,21) T T 202V

where x(zsv i, Zgl)) = rm—blankS((Z§1)7 ) Zg_l)a ZY), Z§i+1), ceey Zgn)))

3 METHOD

We introduce EDITPP, an Edit Flow process for TPPs that directly learns the joint distribution of
event times. Our process leverages the three elementary edit operations insert, substitute, and delete
to define a CTMC that continuously interpolates between two event sequences £y ~ Dpoise(t) and

t; ~ Gdata (t)

Let 7 = [0,7] denote the support of the TPP. We define the state space as
Xr = Uyenens 100,01, A Ty 0 <t <<t < T}, denoting the set of all pos-
sible padded TPP sequences with finitely many events. Note that the padding values are introduced
for notational simplicity when defining the edit operations on 7.

3.1 EDIT OPERATIONS

Our model navigates the state space X7 through a set of atomic edit operations. While Edit Flow
was originally defined for discrete state spaces, we can generalize the method to continuous state
spaces provided that the set of edit operations remains discrete. We achieve this by defining a finite
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Figure 2: Our discrete edit operations transform continuous event sequences through insertions,
substitutions and deletion.

set of edit operations on our continuous state space X’ that nonetheless allow us to transition from
any sequence t to any other ¢’ through repeated application.

Similar to Havasi et al. (2025), we design our operations to be mutually exclusive: if two sequences
differ by exactly one edit, the responsible operation is uniquely determined. This simplifies the
parameterization of the model and computation of the Bregman divergence in Eq. (5).

Insertion: To discretize the event insertion, we quantize the space between any two adjacent events
() and t+1) into by, evenly-spaced bins. Then, we define the insertion operation relative to the ith
event as

ins(t, ’L,j) = (t(o)’ o ,t(i), no; + j_-lj(t(i-ﬁ'l) _ t(i)), t(H_l), o ,t(n'H)) (6)
fori € {0,...,n}, j € [bins), where a ~ U(0, 1) is a dequantization factor inspired by uniform
dequantization in likelihood-based generative models (Theis et al., 2016). The boundary elements
) = 0 and t(**1) = T ensure that insertions are possible across the entire support 7. Since the
bins between different ¢ are non-overlapping, insertions are mutually exclusive.

Substitution: We implement event substitutions by discretizing the continuous space around each
event into by, bins. In this case, the bins are free to overlap, since a substitution is always uniquely
determined by the substituted event. We choose a maximum movement distance § and define

sub(t, 4, j) = sort ({t(o), o 0D D ,t(”+1)} U {f(i)}) @)
fori € {1,...,n}, j € [bu), where () = [¢t() — 5 + %2{5]5 is the updated event restricted to
the support 7 and, again, o ~ U(0, 1) is a uniform dequantization factor within the j-th bin.
Deletion: Finally, we define removing eventi € {1, ..., n} straightforwardly as
del(t,i) = (¢, ... 0D G0 plerd)y, (8)

In combination, these operations facilitate any possible edit of an event sequence through insertions
and deletions with substitutions as a shortcut for local delete-insert pairs. Note that we neither allow
inserting after the last boundary event nor substituting or deleting the first or last boundary events,
thus guaranteeing operations to stay in the state space X'7-. We illustrate the edit operations in Fig. 2.

Our choice of ins, sub and del ensures three key properties: (i) the resulting event sequences remain
valid TPPs, (ii) the number of valid operations, e.g. ins(¢, 4, j), is independent of the position 1,
which is necessary for efficient parameterization, and (iii) at most one unique operation can transition
between any two states, which significantly reduces the complexity of the training loss in Section 3.3.
While these properties are comparably simple to achieve for token sequences in language modeling
(Havasi et al., 2025), where any token can replace any other, they require special care in the case of
TPPs. del and sub are defined to ensure that the resulting event sequence remains in increasing order
and that the padding events (%) and ¢("*1) remain in place. del transitions are unique because the
removed event determines exactly which deletion occurred. Similarly, sub transitions are unique
because the original position of the substituted event disambiguates the operation, even though two
distinct sub operations may yield the same substituted event value. To achieve uniqueness for ins, the
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insertion bins corresponding to ins(¢, 7, j) have to be mutually disjoint for any 4, j since insertions
lack a removed event to disambiguate them. We achieve this by sizing the bins relative to the distance
between t() and t(+1),

Parameterization Generating a new event sequence in the Edit Flow framework then means to
emit a continuous stream of edit operations by integrating a rate model u? (- | ¢) from s = 0 to s = 1.
The emitted operations transform a noise sequence ¢, into a data sample ¢; by transitioning through
a series of intermediate states . Given a current state £, we parameterize the transition rates as

ud (ins(ts,i,5) | £s) = A5 (Es) QP53 | £s), 9
ud (sub(ts, i, 5) | ts) = A0(ts) “‘b(J | ts), (10)
ud (del(ts, i) | ts) = A% (ts), (11)

where \del \ins

5,17 5,17
distributions Q“‘S and Qs“b are categorical distributions over the discretization bins j € [b,] and
J € [bsub)s respectlvely They distribute the total insertion and substitution rates between the specific
options.

)\S“b denote the total rate of each of the three basic operations at each event ¢(). The

3.2 AUXILIARY ALIGNMENT SPACE

Training our rate model ug by directly matching a marginalized conditional rate us(¢t | t1,%o)
generating a ps(t | t1,t0), as is common in discrete flow matching (Campbell et al., 2024; Gat et al.,
2024), is challenging or even intractable for Edit Flows, since it would require accounting for all
possible edits that could produce t (Havasi et al., 2025).

To address this, following Havasi et al. (2025), we introduce an to[ ". ]
auxiliary alignment space for TPPs, where every possible edit

operation is uniquely defined in the element wise mixture path zo[ ‘@.. ]

zs ~ ps(zs | 20, z1), making the learning problem tractable. s b del

In language modeling, any token can appear in any position, so [ @.‘@ ]
Havasi et al. (2025) achieve strong results even when training with “

a simple alignment that juxtaposes two sequences after shifting " [ ‘. ]
one of them by a constant number of places. In our case, for the !

alignments to correspond to possible edit operations, two events can
only be matched, i.e., 28" # eand 2\ # €, if |2{" — 2" < § since
otherwise the resulting sub operation would be invalid. Furthermore,
zs have to correspond to sequences in X7, SO fy_blanks(Z) has to be increasing, and in particular any
mixing z, between z( and z; needs to be valid, i.e., zs ~ ps(2s | 20, 21) = frm-blanks(Zs) € X7

Figure 3: Illustration of the
alignment space for £y and ¢ .

We find the minimum-cost alignment between the non-boundary events of £, and t; with the
Needleman-Wunsch algorithm (Needleman & Wunsch, 1970), i.e.,

align(to, t1) = wrap-boundaries <Needleman—WunSCh <t(()1:"), tﬁ”’”, Cins Csub Cdel)) (12)

and the cost functions

cunlif) = 1t — D) it — 19 < sand Y < 49 < 1Y
A 00 otherwise
(13)

s e 40) PP OINC)
.. 5 lft < t R = lft > t
Cins(lvj) = 2 0 . 1 Cdel(%]) = 2 0 . 1
oo otherwise 0o otherwise

where wrap-boundaries wraps the sequences with aligned boundary events 0 and 7". The algorithm
builds up the aligned sequences pair b%/ })air The operations corresponds to adding different pairs to
the end of (2o, 21), i.e., insertion (e, ¢;”’), deletion (t(() ), €) and substitution (t((f), tg])) (see Fig. 3).
We carefully craft the cost functions in Eq. (13), to guarantee that the minimum-cost alignment
corresponds to ins, sub and del operations as we define them in Section 3.1. With the |t§f) — t<1'7)| <4
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condition in ¢y, we ensure that the aligned sequences will never encode a sub operation for two
events that are further than ¢ apart. The costs for insertions and deletions and the additional
condition on ¢y, ensure that the aligned sequences are jointly sorted, i.e., for any ¢ < j we have

) i . 7 7 . . . .
max (25,2 ) < min (25", z”’) where min and max ignore € tokens. This means that any in-
terpolated z, is sorted by construction. The validity of encoded ins and del operations follows
immediately.

3.3 TRAINING

We train our model u? (- | t,) by optimizing the Bregman divergence in Eq. (5). This amounts to
sampling from a coupling (2o, z1) in the aligned auxiliary space and then matching the ground-
truth conditional event rates. Note that the coupling 7(zo, z1) is implicitly defined by its sampling
procedure: sample tg,t; ~ 7(to,t1) from a coupling of the noise and data distribution, e.g., the
independent coupling (%o, t1) = p(to) ¢(t1), and then align the sequences zg, z1 = align(to, t1).
For our choice of operations, the divergence is

Z ul(w | ty) — Z : _RSH log u? (w(zgi)7z¥)) |t5)], (14)

wEQ(ts) 22 s

L-  E [
(z0,21)~7(20,21)

5,0s(2s,ts]|20,21)

where Q(t;) is the set of all edit operations applicable to ¢ and w (zgi), zy)) is the edit operation

encoded in the ¢-th position of the aligned sequences z, and z;. To make it precise, we have

{ins(ts,4,7) [ 2 € {0} U [n],j € [bins]}
Q(ts) = {sub(ts,i,j) | i € [n],5 € [baun]} (15)
{del(t, i) | i € [n]}

and
ins(ts,i',5') if zgi) = e and zy) # €,
w(2$Y, z%l)) = {sub(t,, i, j") if 2 # cand 2{? #£ e, (16)
del(ts, ") if 2V # e and z%i) =e
i’ is the index such that f,., planks(2s) maps PIQRT a:gi,) with the convention that € is mapped to the
same 7’ as the last element of z, before 7 that is not €. j' is the index of the insertion or substitution

bin relative to xgi/) that z%i) falls into.

3.4 SAMPLING Algorithm 1: Conditional Sampling

Input:

Sampling from our model is done by for- condition £ = C(£1), noise to ~ Pooises b = 1/Tteps

ward simulation of the CTMC from noise
to ~ Pnoise(t) up to s = 1. We fol- (z§, 2§) < align(C(%o), t§)
low (Havasi et al., 2025; Gat et al., 2024)

and leverage their Euler approximation, while s < 1do

since exact simulation is intractable. Even Euler upd.ate )
though the rates are parameterized per el- Sample edits ws ~ hug(- | t;)
ement, sampling multiple edits within a tsin < apply ws to

tlmﬁ horleIfl lcan tl)le }ilope in .parallel. At Recondition

each step of length h, insertions at posi- 2~ pesn(- | Zﬁ:.zf)

tion i occur with probability h A\ (¢) and
deletions or substitutions occur with proba-
bility A(A%(2) + A%(¢)). Since they are Merge

mutually exclusive the probability of sub- topn < C'(tsn) Utsyy,
stitution vs deletion is AP (£) /(AP (¢) + s« s+h

A%(t)). Lastly, the inserted or substituted  end

events are drawn from the respective dis- Return: forecast trajectory C’(t,—1)
tributions @ to update t. For a short sum-
mary of the unconditional sampling step refer to the Euler update step depicted in algorithm Algo-
rithm 1.

t§+h — frm—blanks(zg+h)
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Conditional sampling. We can extend the unconditional model to conditional generation given a
binary mask on time ¢ : 7 — {0, 1} (e.g., for forecasting, ¢(t) = t < thistory). For a sequence t, we
define the conditioned part C'(t) = {t € t : ¢(t) = 1} and its complement C’(t). Then as depicted in
algorithm Algorithm 1, for conditional sampling, we can simply enforce the conditional subsequence
to follow a noisy interpolation between t§ = C(#() and t§ = C(t; ), while the complement evolves
freely in the sampling process.

3.5 MODEL ARCHITECTURE

For our rate model u%(- | x,), we adapt the Llama architecture, a transformer widely ap-
plied for variable-length sequences in language modeling (Touvron et al., 2023). We employ
FlexAttention in the Llama attention blocks, which supports variable-length sequences na-
tively without padding (Dong et al., 2024). As a first step, we convert the scalar event sequence
into a sequence of token embeddmgs by applying MLP(SmEmb(acS /T)) to each to each event,
where MLP refers to a small multi-layer perceptron (MLP) and SinEmb is a sinusoidal embedding
(Vaswani et al., 2017). We convert s and || into two additional tokens in an equivalent way with
separate MLPs and prepend them to the embedding sequence, which we then feed to the Llama.
Lastly, we apply one more MLP to map the output embedding h(?) of each event to transition rates.
In particular, we parameterize

A = exp(Am tanh(h())), A = exp(Amtanh(h())), A% = exp(Ay tanh(h$))), (17)

s

ins
ER)

= softrnax(h,g)’ins)7 sub _ SOftmaX(h(Q)sub) (18)

SZ

We list the values of all relevant hyperparameters in Appendix A.

4 EXPERIMENTS

We evaluate our model on seven real-world and six synthetic benchmark datasets (Omi et al.,
2019; Shchur et al., 2020b; Liidke et al., 2023; 2025). In our experiments, we compare against
IFTPP (Shchur et al., 2020a), an autoregressive baseline which consistently shows state-of-the-art
performance (Bosser & Taieb, 2023; Liidke et al., 2023; Kerrigan et al., 2025). We further compare
to PSDIFF (Liidke et al., 2025) and ADDTHIN (Liidke et al., 2023), given their strong results in
both conditional and unconditional settings and their methodological similarity to our approach. All
models are trained with five seeds and we select the best checkpoint based on Wi -over-digr against
a validation set. EDITPP, ADDTHIN, and PSDIFF are trained unconditionally but can be conditioned
at inference time.! We list the full results in Appendix E.3.

For forecasts, we compare predicted and target sequences by three metrics: dx;ao introduced by Xiao
et al. (2017), the mean relative error (MRE) of the event counts and digr, which compares inter-event
times to quantify the relation between events such as burstiness. In unconditional generation, we
compare our generated sequences to the test set in terms of maximum mean discrepancy (MMD)
(Shchur et al., 2020b) and their Wasserstein-1 distance with respect to their counts (d;) and inter-event
times (digT). See Appendix C for details.

4.1 UNCONDITIONAL GENERATION

To evaluate how well samples from each TPP model follow the data distribution, we compute distance
metrics between 4000 sampled sequences and a hold-out test set. We report the unconditional
sampling results in Table 1. EDITPP achieves the best rank in unconditional sampling by strongly
matching the test set distribution across all evaluation metrics, outperforming all baselines. The
autoregressive baseline IFTPP shows very strong unconditional sampling capability, closely matching
and on some dataset and metric combination outperforming the other non-autoregressive baselines
ADDTHIN and PSDIFF.

'To stay comparable, we employ the conditioning algorithm from Liidke et al. (2025) for ADDTHIN.
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Table 1: Unconditional sampling performance. Bold is best, underlined second best. Ranking follows
full results in Appendix E.3 and results are grouped if they fall within the std of the best member.

HI H2 NSP NSR SC SR PG R/C R/P Tx Tw Y/A YM

IFTPP 16 1.2 32 39 67 12 162 75 20 50 26 58 29

A ADDTHIN 24 1.8 3.5 157 246 25 46 63.0102 4.1 44118 3.7
= PSDIFF 33 1.8 20 59198 24 32 65 1.0 38 34 41 34
~ EDITPP 1.1 1.2 1.7 35 7.7 1.0 14 82 24 31 13 3.7 40
x1072 x1072 x1072 x1072 x1072 %1072 %1072 x1073 x1072 x1072 x1072 %1072 x1072

IFTPP 20.5 133 11.5 141 1.5 23.0 2946 39 32 29 65 33 25

- ADDTHIN 333 21.8 12.8 49.0 22.7 41.8 24.5 37.0 33.6 23 155 6.0 1.6
S PSDIFF 269 296 5.5 133 10.6 303 161 13 25 28 63 15 15
= EDITPP 76 70 31 15 13 64 62 19 57 25 34 14 1.7
x107%  x107%  x107? x107%  x107%  x1073 x107%  x1072  x1072  x10"2  x107%  x1072 x1072

IFTPP 63 58 32 23 65 71 303 1.8 7.1 174 49 32 28

§ ADDTHIN 6.6 70 32 39151 94 80 53200 88 55 32 24
"E PSDIFF 86 99 3.0 5.1 326128 90 16 43 11.1 67 24 23
= EDITPP 53 55 31 22 64 70 75 14 6.0 11.1 46 25 23

x1071 %107t x107!

x1071 %1072 x107t x1072 x1071  x107%  x1072  x107!  x107! x101

4.2 CONDITIONAL GENERATION (FORECASTING)

Predicting the future given some history window is a fundamental TPP task. For each test sequence,
we uniformly sample 50 forecasting windows [Ty, T, Tp € [AT, T — AT, with minimal history
and forecast time AT". While, this set-up is very similar to the one proposed by Liidke et al. (2023),
there are key differences: we do not fix the forecast window and do not enforce a minimal number
of forecast or history events. In fact, even an empty history encodes the information of not having
observed an event and a TPP should capture the probability of not observing any event in the future.

We report the forecasting results in
Table 2. EDITPP shows very strong
forecasting capabilities closely match-
ing or surpassing the baselines across
most dataset and metric combina-
tions. Even though IFTPP is explic-
itly trained to auto-regressively pre-
dict the next event given its history, it
shows overall worse forecasting capa-
bilities compared to the uncondition-
ally trained EDITPP, ADDTHIN and
PSDIFF. This again, underlines pre-
vious findings (Liidke et al., 2023),
that autoregressive TPPs can suffer
from error accumulation in forecast-
ing. Similar to the unconditional set-
ting, PSDIFF (transformer) outper-
forms ADDTHIN (convolution with
circular padding), which showcases
the improved posterior and modeling
of long-range interactions.

4.3 EDIT EFFICIENCY

Table 2: Forecasting accuracy up to 7. Bold is best, un-
derlined second best. Ranking follows full results in Ap-
pendix E.3 and results are grouped if they fall within the std
of the best member.

PG R/C R/P Tx Tw Y/A YM

IFTPP 6.0 39 63 4726 18 34
ADDTHIN 25 88 7.3 4.0 28 15 29

Q
5 PSDIFF 24 32 48 4426 15 3.0
= EDITPP 25 34 49 4527 15 3.0

x10! x10*

IFTPP 389 75 35 3221 37 39
oy ADDTHIN 3.7 148 46 3.0 30 35 37
& PSDIFF 34 33 3.0 11424 35 92
= EDITPP 35 3.6 2.8 12323 35 90
x1071 x1071 x1071 x1071 x1071
IFTPP 47 6.8 147 1422 59 39
. ADDTHIN 4.0 6.9 103 12 1.5 49 2.6
& PSDIFF 41 62 95 1115 49 2.6
=  EDITPP 40 68 101 11 14 50 27

x1071  x107t  x107*  x107! x1071 x1071

The sub operation allows our model to modify sequences in a more targeted way when
compared to PSDIFF or ADDTHIN, which have to rely on just inserts and deletes.
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Reddit Posts Reddit Comments
0.4 1.0
d; digr MMD
0.5
0.21 0.51
00\' 00; 0.0ty 4 4 P —p—y
4 8 16 32 64 128 256 4 8 16 32 64 128 256 4 8 16 32 64 128 256
Steps k Steps k Steps k

Figure 4: Changing the number of steps k allows trading off compute and sample quality in terms of
d;, digr and MMD at inference time.

Note that one sub operation can replace an insert- Table 3: Average number of edit operations in
delete pair. Table 3 shows this results in EDITPP  unconditional sampling across datasets. Full re-
using fewer edit operations than PSDIFF on aver- sylt in Table 13.

age even if one would count substitutions twice,

as an insert and a delete.” This is further ampli- | Ins Del  Sub | Total

fied by the fact, that unlike EDITPP, PSDIFF and
ADDTHIN only indirectly parameterizes the tran-
sition edit rates by predicting £; by insertion and
deletion at every sampling step.

PSDIFF | 173.48 61.04 0.00 | 234.52
EDITPP | 137.42 33.08 29.16 | 199.65

In Table 4, we compare their actual sampling run- Table 4: Sample run-time (ms) on a H100 GPU.
time for a batch size of 1024 on the two dataset

with the longest sequences. qu implementation R/P R/C
beats the reference implementations of ADDTHIN

and PSDIFF by a large margin. Note, that for ADDTHIN  18,075.62 17,689.36
a fair comparison, we fixed the number of sam- PSDIFF 7,776.35  3,913.78
pling steps to 100 in all previous evaluations. As a EDITPP 4,120.38 1,505.68

continuous-time model, EDITPP can further trade

off compute against sample quality at inference time without retraining, in contrast to discrete-time
models like ADDTHIN and PSDIFF. Fig. 4 shows that sample quality improves as we increase the
number of sampling steps and therefore reduce the discretization step size of the CTMC dynamics. At
the same time, the figure also shows rapidly diminishing quality improvements, highlighting potential
for substantial speedups with only minor quality loss.

5 RELATED WORK

The statistical modeling of TPPs has a long history (Daley & Vere-Jones, 2007; Hawkes, 1971).
Classical approaches such as the Hawkes process define parametric conditional intensities, but their
limited flexibility has motivated the development of neurally parameterized TPPs:

Autoregressive Neural TPP: Most neural TPPs adopt an autoregressive formulation, modeling the
distribution of each event conditional on its history. These models consist of two components: a
history encoder and an event decoder. Encoders are typically implemented using recurrent neural
networks (Du et al., 2016; Shchur et al., 2020a) or attention mechanisms (Zhang et al., 2020a; Zuo
et al., 2020; Mei et al., 2022), with attention-based models providing longer-range context at the
cost of higher complexity (Shchur et al., 2021). Further, some propose to encode the history of a
TPP in a continuous latent stochastic processes (Chen et al., 2020; Enguehard et al., 2020; Jia &
Benson, 2019; Hasan et al., 2023). For the decoder, a wide variety of parametrizations have been
explored. Conditional intensities or related measures (e.g., hazard function or conditional density),
can be modeled, parametrically (Mei & Eisner, 2017; Zuo et al., 2020; Zhang et al., 2020a), via
neural networks (Omi et al., 2019), mixtures of kernels (Okawa et al., 2019; Soen et al., 2021; Zhang
et al., 2020b) and mixture distributions (Shchur et al., 2020a). Generative approaches further enhance
flexibility: normalizing flow-based (Shchur et al., 2020b), GAN-based (Xiao et al., 2017), VAE-based
(Li et al., 2018), and diffusion-based decoders (Lin et al., 2022; Yuan et al., 2023) have all been

Due to its recursive definition, ADDTHIN inserts and subsequently deletes some noise events during
sampling, which results in additional edit operations compared to PSDIFF.
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proposed. While expressive, autoregressive TPPs are inherently sequential, which makes sampling
scale at least linearly with sequence length, can lead to error accumulation in multi-step forecasting
and limit conditional generation to forecasting.

Non-autoregressive Neural TPPs: Similar to our method, these approaches model event sequences
through a latent variable process that refines the entire sequence jointly. Diffusion-inspired (Liidke
et al., 2023; 2025) and flow-based generative models (Kerrigan et al., 2025) have recently emerged as
promising alternatives to auto-regressive TPP models by directly modelling the joint distribution over
event sequences.

6 CONCLUSION

We have presented EDITPP, an Edit Flow for TPPs that generalises diffusion-based set interpolation
methods (Liidke et al., 2023; 2025) with a continuous-time flow model introducing substitution
as an additional edit operation. By parameterizing insertions, deletions, and substitutions within
a CTMC, our approach enables efficient and flexible sequence modeling for TPPs. Empirical
results demonstrate that EDITPP matches state-of-the-art performance in both unconditional and
conditional generation tasks across synthetic and real-world datasets, while reducing the number of
edit operations.

10
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A  MODEL PARAMETERS

Table 5: Hyperparameters of our u? (- | ) model shared across all datasets.

Parameter Value

Number of ins bins bj,e 64
Number of sub bins by, 64
Maximum sub distance §  T/100

Maximum log-rate Ay 32
K(s) 1 — cos (gs)2
Llama architecture:
Hidden size 64
Layers 2
Attention heads 4
Optimizer Adam
Sample steps 100

All MLPs have input and output sizes of H, except for the final MLP whose output size is determined
by the number of A and () parameters of the rate. The MLPs have a single hidden layer of size 4H.
The sinusoidal embeddings map a scalar s € [0, 1] to a vector of length H. In contrast to Havasi et al.

(2025), we choose a cosine « schedule x(s) = 1 — cos (gs)2 as proposed by Nichol & Dhariwal

(2021) for diffusion models as it improved results slightly compared x(s) = s°.

For evaluation, we use an exponential moving average (EMA) of the model weights. We also use
low-discrepancy sampling of s in Eq. (14) during training to smooth the loss and thus training signal
(Kingma et al., 2023; Lienen et al., 2025).

We train all models for 20 000 steps and select the best checkpoint by its Wi -over-digr, which we
evaluate on a validation set every 1000 steps.

B DaAta

B.1 SYNTHETIC DATASETS
The six synthetic datasets were generated by Shchur et al. (2020b) following the simulation procedures

detailed in Section 4.1 of Omi et al. (2019). Each dataset contains 1,000 sequences supported on the
interval T' = [0, 100]. They cover a diverse set of temporal dynamics, defined as follows:

Hawkes Processes (H1, H2). Hawkes processes capture self-exciting features of temporal point
processes. The two Hawkes processes are parameterized as follows:

At H) =+ DD a;Bjexp{—B;(t —t:)},

t; <t j=1

withHI(M =1, 0 =02, =08, 5 =1.00and H2 (M =2, p = 0.2, a3 = 0.4, 51 = 1.0,
Qg = 0.4, 62 = 20.0).

Non-stationary Poisson Process (NSP). A periodic time-varying intensity:

. 27t
At | He) = O.99sm<20000> +1

Stationary Renewal Process (SR). Inter-event times 7; = ;41 — t; are i.i.d. from a log-normal
distribution (mean 1.0, std. 6.0): this produces bursty patterns with short activity bursts followed by
long silent periods.

14
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Table 6: Summary statistics for all synthetic and real-world datasets. 7 is the average inter-event
time.

Full Name Abbrev. #Seq. Mean Len. Support [0, T] T

Hawkes 1 H1 1000 95.4 100 1.01 £2.38
Hawkes 2 H2 1000 97.2 100 0.98 &+ 2.56
Nonstationary Poisson NSP 1000 100.3 100 0.99 £2.22
Nonstationary Renewal NSR 1000 98.0 100 0.98 + 1.83
Self-Correcting SC 1000 100.2 100 0.99£0.71
Stationary Renewal SR 1000 109.2 100 0.83 £2.76
PUBG PG 3001 76.5 38 minutes 0.41 +0.56
Reddit Comments R/C 1356 295.7 24 hours 0.07 £ 0.28
Reddit Submissions R/P 1094 1129.0 24 hours 0.02 £0.03
Taxi Pick-ups (Manhattan) Tx 182 98.4 24 hours 0.24 +0.40
Twitter Activity Tw 2019 14.9 24 hours 1.26 + 2.80
Yelp Check-ins (Airport) Y/A 319 30.5 24 hours 0.77 £1.10
Yelp Check-ins (Mississauga) Y/M 319 55.2 24 hours 0.43 £0.96

Non-stationary Renewal Process (NSR). A stationary renewal process is first generated using a
gamma distribution (mean 1.0, std. 0.5), then timestamps are time-warped by

bi 2wt
= d t) =0.99sin| —— 1
i /0 r(s) ds, r(t) sm(20000> +

This induces temporally varying expected inter-event intervals while preserving local correlations.

Self-correcting Process (SC). The intensity grows with the time elapsed since the last event:

At | He) :exp<t—21>.

t; <t

This discourages extended silent periods and promotes regular spacing.

B.2 REAL-WORLD DATASETS

We use the seven real-world datasets proposed by (Shchur et al., 2020b):

PG (PUBG) represents death-event timestamps from matches of PUBG. R/C (Reddit-Comments)
consists of comment timestamps within the first 24 hours of threads posted on r/askscience,
covering 01.01.2018-31.12.2019. R/P (Reddit-Submissions) captures daily submission timestamps
from r/politics, covering 01.01.2017-31.12.2019. Tx (Taxi) are taxi pick-up events in the
southern part of Manhattan, New York. Tw (Twitter) covers tweet timestamps of user ID 25073877,
collected over multiple years. Y/A (Yelp-Airport) consists of check-in events at McCarran Inter-
national Airport (27 users, year 2018). Lastly, Y/M (Yelp-Mississauga) presents check-ins for
businesses in the city of Mississauga (27 users, year 2018).

C METRICS

A standard way in generative modeling to compare generated and real data is the Wasserstein distance
(Heusel et al., 2017). It is the minimum average distance between elements of the two datasets under
the optimal (partial) assignment between them,

l/p
Wy (¥, &) = (minerie ) B oy [dz,2')"]) (19)
where d is a distance that compares elements from the two sets. In the case of sequences of unequal

length, one can choose d itself as a nested Wasserstein distance (Lienen et al., 2024). Xiao et al.
(2017) were the first to design such a distance between TPPs. They exploit a special case of Wy
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for sorted sequences of equal length and assign the remaining events of the longer sequence to
pseudo-events at 7" to define

ol 2/ ;
dino(@, @) = 10—t O +37 Tt (20)

where ' is assumed to be the longer sequence. dx;., captures a difference in both location and
number of events between two sequences through its two terms.

(Shchur et al., 2020b) propose to compute the MMD between sets based on a Gaussian kernel and
dxiao- In addition, we evaluate the event count distributions via a Wasserstein-1 distance with respect
to a difference in event counts Wy 4, where d;(x, ') = ||| — |«'||. Finally, we the distributions of
inter-event times between our generated sequences and real sequences in Wi 4, 1.e., a Wasserstein-
1 distance of digr. digT is itself the W5 distance between inter-event times of two sequences and
quantifies how adjacent events relate to each other to capture more complex patterns.

D ABLATIONS

We ablate the hyperparameters 6, bi,s and by, in Figs. 5 to 8.

dl dIET MMD
0.0074 0.07554 0.018¢
O
% 0.0164
A 0.00671 0.07501
0.014¢
g 0.464 0.0175¢
8
§ 0.004¢ 0.0150F
& 0.451
0.0125+
0.002 + + t + + t t +
1073 1072 10t 1073 1072 107t 1073 1072 107t
1 1 é

Figure 5: Mean and standard error of d;, dygr and MMD on two datasets as we vary the § parameter
for substitutions.

d; digT MMD
0.0087 0.07550F
o 0.0161+
& 0006l 0.075251
=) ’ 0.0141
Ay
0.07500+
0.004t¢ 0.012¢
0.00671 0.46
0.0201
St
£
'S 0.004% 0.45
& 0.0151
1 1 1 1 1 1 1 1 1 0'44 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
21 92 98 94 95 96 o7 98 99 21 92 98 94 95 96 o7 98 99 21 92 98 94 95 96 o7 98 99
bins bins bins

Figure 6: Mean and standard error of d;, digr and MMD on two datasets as we vary the number of
insertion bins bjs.
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Figure 7: Mean and standard error of d;, digr and MMD on two datasets as we vary the number of
substitution bins bgyp,.
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Figure 8: Mean and standard error of d;, digr and MMD on two datasets as we vary the number of
insertion and substitution bins together.

E DETAILED RESULTS

E.1 INPAINTING VS. FORECASTING

To demonstrate the flexibility of EDITPP for conditional generation, we evaluate its performance
when generating events on the interval [T'/3, 2T/3]. In the forecasting setting, the model is con-
ditioned only on events occurring before 7'/3, whereas in the inpainting setting, it is conditioned
on both the past (¢ < 7'/3) and the future (¢t > 27'/3). As the results show, providing both past
and future context substantially improves the quality of the generated middle segment compared to
conditioning on the past alone.

PG R/C R/P Tx Tw Y/A Y/M
dxiao
Inpainting  2.22+0.04 22.66+0.77 13.13+£035 3.02+0.20 1.58+0.03 0.59+0.02 1.11+0.04
Forecasting 2.27+0.05 2553+1.16 18.09+0.81 3.27+033 1.65+0.04 0.63+0.03 1.13+0.05

MRE
Inpainting  0.29+0.01 579096 020+0.01 060+022 196+0.09 048+0.01 0.74+0.11
Forecasting 0.30+0.01 5.07+1.13 033+001 0.81+0.13 2.05+0.11 0.52+0.05 0.78+0.08

digr
Inpainting  0.39+0.01 040+0.01 0.01+0.00 0.10+0.01 1.13+0.02 0.80+0.05 0.70+0.06

Forecasting 0.41+0.01 044+0.03 0.02+0.00 0.10+0.00 1.18+0.01 0.78+0.07 0.72+0.08
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Hawkes-1 Hawkes-2 Self-Correcting

GT

EDITPP

PSDIFF

ADDTHIN

IFTPP

Figure 9: Event times for 200 samples from ground truth data (GT) and each model. Each event
sequence is represented as a separate row.

E.2 PARAMETRIC TPP SAMPLES

To illustrate how well each model captures parametric TPPs, we draw 200 samples for the Hawkes
and Self-Correcting processes. In Fig. 10, we plot the cumulative count N (¢) for each sample,
while Fig. 9 shows each event sequence as a separate row, directly visualizing the events over time.
These visualizations further highlight the strong unconditional sampling performance of EDITPP
demonstrated in Table 1.
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Hawkes-1

Hawkes-2

Self-Correcting

EDITPP

PSDIFF

ADDTHIN

Figure 10: N(¢) for 200 samples from ground truth data (GT) and each model.

E.3 FULL RESULTS

Table 7: Forecasting accuracy up to 7" measured by digr.

EDITPP PSDIFF ADDTHIN IFTPP
PUBG 0.400 £0.002 0.413+0.009 0.403+0.010 0.473+0.019
Reddit Comments 0.684 +0.005 0.625+0.012 0.693+0.012 0.684 +0.012
Reddit Posts 0.010+0.000 0.009 =£0.000 0.010+0.001 0.015+0.003
Taxi 0.113£0.003 0.113+0.001 0.116+0.001 0.145 +0.009
Twitter 1.441 £0.020 1.487+0.012 1.493+0.033 2.187+0.029
Yelp Airport 0.497 +£0.009 0.492+0.005 0.493+0.013 0.587+0.019
Yelp Mississauga  0.272 +0.003  0.262 +0.003  0.260 + 0.003 0.388 £ 0.024
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Table 8: Forecasting accuracy up to 7" measured by mean relative error of event counts.

EDITPP PSDIFF ADDTHIN IFTPP
PUBG 0.349+0.001 0.339£0.008 0.367+0.005  3.892+0.035
Reddit Comments 3.594+£0.118 3.260 +0.268 14.777 +£3.226 7.515+2.112
Reddit Posts 0.281 +£0.001 0.296£0.006 0.457£0.065  0.352 +0.022
Taxi 1.234+£0.036 1.140+£0.043 0.301 £0.014  0.321 +£0.018
Twitter 2327+0.042 2.435+0.106 2.984+0.246  2.060 + 0.027
Yelp Airport 0.350 £ 0.007 0.346 £0.004 0.347 £0.014  0.366 + 0.009
Yelp Mississauga  0.902+£0.027 0.920+0.033 0.374+0.012  0.392 £0.012
Table 9: Forecasting accuracy up to 7" measured by dxiao-
EDITPP PSDIFF ADDTHIN IFTPP
PUBG 2478 +£0.007  2.400+0.007 2.466 +0.024 5.954+£0.195
Reddit Comments 34.135+0.382 32.467 £0.534 87.666+20.184 39.010+7.508
Reddit Posts 48.776 £0.355 47.829+1.050 72.754+12.134 63.256 £9.695
Taxi 4464 £0.088 4.444+0.076  4.032+0.129 4.744 £0.125
Twitter 2.669+0.022  2.635+0.078  2.802+0.132 2.557 £0.055
Yelp Airport 1.524 +0.013  1.512+0.016  1.548 £0.026 1.795£0.015
Yelp Mississauga  3.027 £0.046  3.005+0.046  2.895+0.039 3.430 £ 0.047
Table 10: Sample quality as measured by MMD.
EDITPP PSDIFF ADDTHIN IFTPP
Hawkes-1 0.011£0.002 0.033+0.009 0.024+0.009 0.016 +0.002
Hawkes-2 0.012+0.001 0.018+0.006 0.018+0.006 0.012+0.001
Nonstationary Poisson ~ 0.017 £0.003  0.020 £ 0.005 0.035+0.011 0.032 +0.008
Nonstationary Renewal  0.035+0.001 0.059 +£0.006 0.157+0.084 0.039 + 0.007
PUBG 0.014 +£0.001 0.032+0.012 0.046+£0.025 0.162+0.010
Reddit Comments 0.008 £0.001 0.006 +0.002 0.063+0.012 0.007 £ 0.003
Reddit Posts 0.024£0.001  0.010+0.002 0.102+0.004 0.020 +0.007
Self-Correcting 0.077 £0.004 0.198+0.002 0.246+£0.018 0.067 +£0.011
Stationary Renewal 0.010 £0.002 0.024+0.005 0.025+0.013 0.012 +0.002
Taxi 0.031£0.002 0.038+0.005 0.041+0.004 0.050+0.003
Twitter 0.013 £0.002 0.034+£0.007 0.044£0.012 0.026 + 0.005
Yelp Airport 0.037£0.002 0.041+£0.004 0.118+0.036 0.058 +0.002
Yelp Mississauga 0.040£0.003 0.034+0.007 0.037 +£0.006 0.029 + 0.002
Table 11: Sample quality as measured by Wi-over-digr.
EDITPP PSDIFF ADDTHIN IFTPP
Hawkes-1 0.526 £0.020 0.865+0.035 0.655+0.081 0.628 £0.030
Hawkes-2 0.546 £0.005 0.991+0.038 0.703+0.049 0.582 +0.009
Nonstationary Poisson ~ 0.306 +0.005 0.303 +0.007 0.318+0.015 0.317 +0.006
Nonstationary Renewal  0.224 £0.006 0.511 £0.016 0.393+0.064 0.229 + 0.027
PUBG 0.075+£0.000 0.090+0.001 0.080+0.003 0.303 +£0.039
Reddit Comments 0.144 £ 0.003 0.157+0.006 0.532+£0.014 0.176 £0.008
Reddit Posts 0.006 £0.000 0.004 £0.000 0.020+0.001 0.007 £0.001
Self-Correcting 0.064 £ 0.000 0.326+0.003 0.151 £0.005 0.065 +0.001
Stationary Renewal 0.697 £0.018 1.281+0.049 0.941+0.145 0.714 £ 0.028
Taxi 0.111+£0.001 0.111+0.001 0.088 +0.003 0.174 £0.015
Twitter 0.460 £ 0.004 0.672+0.007 0.545+0.024 0.492 +0.023
Yelp Airport 0.246 +0.002 0.244+0.004 0.316+£0.046 0.318+0.017
Yelp Mississauga 0.226 £0.003 0.225+0.003 0.236+0.004 0.276+0.017
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Table 12: Sample quality as measured by W7 -over-d;.

EDITPP PSDIFF ADDTHIN IFTPP

Hawkes-1 0.008 +0.001 0.027 +£0.008 0.033+0.015 0.020 £ 0.004
Hawkes-2 0.007 £0.001 0.030+0.009 0.022+£0.014 0.013 +0.003
Nonstationary Poisson ~ 0.003 £0.001 0.006 +0.001 0.013+0.005 0.012+0.003
Nonstationary Renewal  0.001 £0.000 0.013+0.001 0.049+0.022 0.014+0.011
PUBG 0.006 = 0.000 0.016+0.008 0.024£0.014 0.295 £ 0.007
Reddit Comments 0.019+0.002 0.013+0.003 0.370+£0.081 0.039 +£0.023
Reddit Posts 0.057+0.003 0.025+0.003 0.336x0.045 0.032+0.011
Self-Correcting 0.001 £0.000 0.011+0.001 0.023+£0.002 0.001 +0.001
Stationary Renewal 0.006 = 0.002 0.030+0.019 0.042+0.022 0.023 +0.005
Taxi 0.025 £ 0.002 0.028 +£0.004 0.023+0.006 0.029 +0.003
Twitter 0.003 +0.001 0.006 +0.003 0.015+0.008 0.007 +£0.002
Yelp Airport 0.014 = 0.002 0.015+0.004 0.060+0.021 0.033 +0.003
Yelp Mississauga 0.017+0.003 0.015+0.002 0.016+0.003 0.025 £ 0.006

Table 13: Average number of edit operations during unconditional sampling.

\ EDITPP \ PSDIFF

\ Ins Del Sub \ Ins Del
H1 55.05+£28.6 6593+10.5 37.74+10.6 92.58 £34.3 102.50 £ 10.6
H2 63.69 +32.4 71.72£9.6 3098 £8.7 97.57 +38.9 101.30 £ 10.2
NSP 4959+73 49.66£7.1 50.56+8.2 100.14 £ 9.7 100.16 £ 9.8
NSR 4239 +£5.8 4423 +£72  55.88+7.8 97.58+£7.5 100.51 £ 10.5
PG 56.69 £7.2 19.71£44 1996 +4.8 76.32 £ 8.7 4090 £ 6.4
R/C 24783 +£251.3  8.69+6.6 153874 | 27449 +254.3 24.45£5.7
R/P 972.89+£300.2 0.11+x03 23.74+5.0 | 1109.78 £307.1 2456 +74
SC 3493 +£5.7 3437+69  66.18+£8.6 98.95+7.8 99.61 +10.2
SR 70.67£21.6 6409113 38.00+11.5 108.85+31.4  101.92+10.9
Tw 11.83+94 2234 +4.6 3.04+£23 14.37+£10.3 2446 +5.2
Tx 96.62 + 14.4 9.35+33 17.23 £4.8 97.69£17.4 24.37+£5.2
Y/A 2943 +64 22.64 5.0 9.00+34 3042 +6.3 2430+ 4.8
Y/M 54.81 +13.8 17.14+42  11.37+38 56.54 £ 15.5 2445 +4.9
Mean | 137.42 33.08 29.16 \ 173.48 61.04
Total | 199.65 \ 234.52
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