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Abstract

Time series foundation models have shown impressive performance on a variety of
tasks, across a wide range of domains, even in zero-shot settings. However, most of
these models are designed to handle short univariate time series as an input. This
limits their practical use, especially in domains such as healthcare with copious
amounts of long and multivariate data with strong temporal and intra-variate depen-
dencies. Our study bridges this gap by cataloging and systematically comparing
various context expansion techniques from both language and time series domains,
and introducing a novel compressive memory mechanism to allow encoder-only
TSFMs to effectively model intra-variate dependencies. We demonstrate the bene-
fits of our approach by imbuing MOMENT, a recent family of multi-task time series
foundation models, with the multivariate context.

1 Introduction

Large Language and Vision Models (LLMs and LVMs) have revolutionized text and image modeling,
enabling a wide range of applications with both limited data and expert supervision. Time series
foundation models (TSFMs) [8, 7, 1, 19, 21, 6, 4, 12] promise to bring similar transformative
advancements to modeling time series. However, most of these models, barring MOIRAI [21] and
TTMs [6], can only model short univariate time series, limiting their widespread use in applications
such as healthcare where long and multivariate time series are common. Most of these approaches
downsample long time series to handle extended context lengths and model different varieties (or
channels) independently to manage multivariate inputs, which limits their ability to capture potentially
informative high-frequency and intra-variate dependencies.

A straightforward solution to modeling both long and multivariate inputs is to re-design and pre-train
TSFMs with longer context lengths and to concatenate multiple variates sequentially [21]. However,
this naive solution drastically increases computational complexity as Transformer-based foundation
models [8, 7, 1, 19, 21, 4, 12] are constrained by context-dependent memory, due to their quadratic
complexity in the length of the input. Recent studies have explored the use of compressive memory
to enable Transformer-based LLMs to process very long sequences with bounded memory and
computation [14]. We adapt these techniques to design a novel compressive memory mechanism
which we call Infini-Channel Mixer (ICM), that can allow encoder-only Transformers [8, 21, 15] to
efficiently model intra-variate dependencies. We use Infini-Channel Mixer to imbue MOMENT, a recent
family of multi-task TSFMs, with multivariate context.

Our contributions include: (1) We outline the design space of context expansion techniques from
both language and time series modeling; (2) We propose Infini-Channel Mixer, a novel compressive
memory mechanism to enable encoder-only Transformers to model multivariate time series; and (3)
We systematically compare various context expansion techniques with increasing levels of complexity
on multivariate long-horizon forecasting to demonstrate that our proposed approach can improve
forecasting performance and efficacy for the MOMENT [8] TSFM family.
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2 Design Space of Multivariate Time Series Models
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Figure 1: A design space of multivariate time series
models. The proposed Infini-Channel Mixer is a homo-
geneous end-to-end channel mixing method.

Channel Independence. Many multi-
variate time series models [15], including
foundation models [8, 19, 4, 1], treat dif-
ferent channels (variates) independently.
These approaches are simple, scalable,
and typically perform well on real-world
data and academic benchmarks [24] with-
out substantial inter-variate dependencies.

To capture informative inter-variate depen-
dencies in real-world time series, various
channel-mixing approaches have been pro-
posed in the literature:

Adapters. Approaches in this family usu-
ally first learn representations for each
variate using a univariate backbone and
then combine them using a multi-channel
adapter. Examples include multivariate decoders [6] and Graph Transformer layers [23].

End-to-End Channel Mixers. These approaches tightly integrate channel mixing throughout the
architecture. For instance, MOIRAI [21] flattens variates and uses relative variate encodings to
distinguish information from different variates. iTransformer [13] attends to the inverted “variate“
tokens which capture multi-variate correlations. In each of these approaches, every layer of the model
is homogeneous and performs the same computation. Other methods such as Crossformer [22] are
non-homogeneous as they use different attention matrices to model inter-sequence and intra-channel
information. Our proposed Infini-Channel Mixer method attaches compressive memory to each
Transformer layer and is therefore a homogeneous end-to-end channel mixer by design.

We defer detailed discussion of related work to the Appendix A.

3 Infini-Channel Mixer: Unlocking Multivariate Context using Compressive
Memory

Figure 2: Infini-Channel Mixer (ICM)
uses a learned scalar β, to balance lo-
cal information from dot product atten-
tion with global information from the
compressive memory matrix which ag-
gregates cross-variate information.

Requirements. Our goal is to modify the standard trans-
former architecture minimally to accommodate multivari-
ate time series. To simplify development and keep mul-
tivariate context expansion our primary focus, we fix the
maximum length of time series that can be processed by
our model. Given the prevalence of encoders in time series
foundation models [8, 21, 1], the proposed architecture
should be amenable to bidirectional self-attention.

Infini-Channel Mixer (ICM). To aggregate information
from an arbitrary number of channels, we propose incor-
porating compressive memory into Transformers. Com-
pressive memory systems use a fixed number of param-
eters to store and retrieve information efficiently. Our
approach is inspired by Infini-attention [14], a recent com-
pressive memory-based attention mechanism that has en-
abled decoder-only LLMs to, in theory, scale to infinitely
long input sequences. Unlike Infini-attention, our ap-
proach uses memory to process multiple variates in trans-
formers with encoders.

Infini-Channel Mixer extends a standard self-attention layer with a compressive memory matrix
allowing it to attend to both local (intra-channel) and global (inter-channel) information. The memory
matrix is computed by reusing the key (K), query (Q), and value (V) matrices from the dot product
attention as shown in Fig. 2, which accelerates training and inference and acts as a regularizer. A
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learned gating scalar β regulates the trade-off between global information queried from the memory
matrix and local information from the dot-product attention of a specific variate. This memory
mechanism is replicated for each attention head and layer.

Step 1: Aggregate Cross-channel Information into Compressive Memory. The compressive
memory matrix, M ∈ Rh×dk×dk , and the normalization term, z ∈ Rh×dk×1, are initially set to zero.
Here, h is the number of attention heads, and dk is the key dimension. We store information from
each variate, i ∈ [m], by reusing its local KV entries. To ensure training stability, we follow prior
work, and set the normalization term to the sum of key entries from all variates [14, 10], and use
element-wise (Exponential Linear Unit) ELU + 1 as a non-linear projection function σ. We define n
as sequence length and Ki

j denotes the key entries of the ith variate and the jth input token.

M←M+ σ(Ki)⊤Vi z ← z+

n∑
j

σ(Ki
j) (1)

Step 2: Conditioning on Inter-channel and Intra-Channel Information. We use the query matrix
to retrieve the cross-channel information Amemi from the memory. This retrieved information is then
combined with the local attention state Adoti using the learned gating scalar β. This design adds only
a single trainable parameter per head to regulate the trade-off between local and global information.

Amemi =
σ(Qi)M

σ(Qi)z+ ϵ
Ai = sigmoid(β)⊙Amemi + (1− sigmoid(β))⊙Adoti (2)

4 Experiments and Results

The goals of our experiments are twofold: (1) to systematically compare ICM against alternative
context expansion techniques, and (2) to assess its impact on pre-training. To evaluate context
expansion techniques outlined in Section 2, we conduct several small-scale supervised experiments
focusing on the long-horizon forecasting task. Then to study the impact of ICM on pre-training, we
pre-train the same model both with and without ICM and then evaluate the resulting models on two
downstream tasks: long-horizon forecasting and multivariate classification.

Model / Example Class Design Exchange ETTh1 ETTh2 ETTm1 ETTm2 Weather

N-BEATS [16] No Channel
Mixing

Channel
Independence

0.524 0.461 0.410 0.346 0.278 0.211
MOMENT-Tiny [8] 0.249 0.418 0.359 0.339 0.234 0.206

UP2ME [23] Adapter Graph Transformer 0.240 0.435 0.367 0.340 0.237 0.204

Crossformer [22] Non-homogeneous
End-to-End Mixer

Dedicated Intra-
Channel Attention 0.559 0.571 0.654 0.390 0.515 0.227

iTransformer [13] Homogeneous
End-to-End

Channel Mixer

Multivariate Patching 0.245 0.429 0.380 0.353 0.251 0.212

MOIRAI [21] Concatentation
+ Relative Encoding 0.243 0.426 0.357 0.340 0.249 0.216

ICM (Ours) Compressive Memory 0.232 0.416 0.349 0.333 0.234 0.205

Table 1: Forecasting MSE of all models averaged over 3 different horizons [96, 192, 384]. The best
models are shown in bold and the second best ones are underlined. In most cases, Infini-Channel
Mixer (ICM) outperforms considered alternatives. Complete results in Table 4 (Appendix D).

Supervised Long-horizon Forecasting Experiments. Due to variations in architectures and
experimental setups, findings from prior work are inconclusive on how to best endow multivariate
context to time series models. We address this by carefully implementing all context expansion
techniques from Figure 1 on the same model architecture and experimental settings of long-horizon
forecasting [24]. We use MOMENT, a recent open-source multi-task foundation model as the base
architecture for all our experiments. To accelerate the process, we introduce a Tiny variant of it based
on T5-Efficient-Tiny architecture [20]. All model variants take time series of length 256 as input
(lookback window) and forecast the next 96, 192, and 384 time steps. As is common practice, models
are trained and evaluated using Mean Squared Error (MSE). The exact details of model architecture,
experimental settings, and hyper-parameters are outlined in Appendix C.

Results summarized in Table 1 show that our proposed approach outperforms alternative context
expansion techniques on average in most cases.
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Model name Fine-tune β Exchange ETTh1 ETTh2 ETTm1 ETTm2 Weather

MOMENT-Tiny − 0.250 0.437 0.343 0.333 0.230 0.222

+Infini-Channel
Mixer

× 0.249 0.439 0.336 0.332 0.230 0.219
✓ 0.247 0.436 0.337 0.330 0.228 0.214

Table 2: Forecasting MSE averaged over 3 horizons [96, 192, 384]. MOMENT-Tinywith Infini-Channel
Mixer outperforms its vanilla variant on all datasets. Additionally, fine-tuning the β parameters along
with the forecasting head most often results in improved performance.

MOMENT-Tiny + ICM

Mean 0.625 0.632
Std. 0.254 0.268

Median 0.616 0.704
Wins/Ties/Losses 12/2/12 12/2/12

Table 3: Accuracy of MOMENT-Tiny with and with-
out ICM across 24 UEA multivariate classification
datasets. Complete results in Table 6. The addi-
tion of compressive memory does not substantially
change multivariate classification accuracy.

Pre-training Experiments. We pre-train 2
variants on MOMENT-Tiny: one with Infini-
Channel Mixer and one without it. Pre-training
multivariate foundation models is challenging
due to the scarcity of public benchmark multi-
variate datasets and the complexity of managing
time series with varying numbers of variates. To
address these issues, we pre-train our models for
one epoch on the Time Series Pile [8], using a
mix of univariate and multivariate datasets. To
manage memory consumption during training,
we fix the maximum number of variates (= 8)
per batch and sub-sample time series with more
variates. Both models are trained with a maximum sequence length of 256 time steps.

We evaluate the pre-trained models on two downstream tasks: long-horizon forecasting and unsu-
pervised representation learning for classification. For the forecasting task, we fine-tune a simple
linear forecasting head on the representations learned by our models, while keeping all other model
parameters frozen, except for those in the forecasting head and the β coefficients. We use the same
6 datasets as in the previous experiment. For classification, following standard practice [8], we
obtain representations of time series in a zero-shot setting (without access to labels) and use these
representations to train a Support Vector Machine. For these experiments, we use the UCR/UEA
classification repository [3] which comprises both univariate and multivariate datasets, frequently
used to benchmark classification algorithms.

Tables 2 and 3 summarize forecasting and classification results, details in Appendix D.

Discussion. Our experiments demonstrate the potential of the Infini-Channel Mixer as an effective
context expansion mechanism. Despite adding only 16 new parameters (one for each of the 16
attention heads in MOMENT-Tiny), our approach consistently outperformed alternative methods on
datasets with cross-channel dependencies. Interestingly, on some datasets like ETTm2 and Weather,
treating variates independently yielded better performance than many multivariate methods. This
finding suggests that current academic benchmarks might not fully capture the benefits of multivariate
modeling. The promising performance of the UP2ME [23] approach, which models a subset of variates
with substantial cross-correlation, supports this observation. Additionally, the substantial performance
gains achieved by fine-tuning the β coefficients further indicate that they function as a soft-gating
mechanism, enabling the model to focus on the most informative cross-channel information.

5 Conclusion and Future Work

We introduced Infini-Channel Mixer (ICM) , a novel compressive memory mechanism that enables
encoder-based TSFMs to effectively handle multivariate time series data. We systematically compared
our proposed approach with multiple context expansion techniques proposed in the literature. We
demonstrated that ICM, with only a few additional parameters, can improve the performance of time
series models on two important tasks: long-horizon forecasting and classification. Future work should
focus on rigorously evaluating our approach on larger models, across a wider range of datasets and
tasks. Additionally, there is a pressing need for more multivariate datasets with strong cross-channel
dependencies to better pre-train and evaluate large-scale models. It will also be important to explore
whether Infini-Channel Mixer can be effectively adapted to handle extremely long time series.
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A Related Work

A.1 Foundation Models

Foundation models have significantly influenced several domains, particularly natural language
processing and computer vision. These models typically rely on large-scale pre-training on vast,
unlabeled datasets. For example, GPT models [17, 2] introduced autoregressive language modeling,
while BERT [5] and RoBERTa [11] popularized masked language modeling with Transformer-based
architectures. Most of these models are Transformer-based and designed for long-context tasks,
with typical context lengths between 512 and 5000 tokens. The encoder-only architectures like
BERT excel at representation learning, whereas autoregressive models such as GPT perform well in
generative tasks.
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A.2 Time Series Foundation Models

The domain of time series analysis has also seen the rise of foundation models, which share many
similarities with NLP models, particularly in their use of Transformer architecture. TimeGPT [7]
was the first time series foundation model, setting a foundation for using pre-training in time series
forecasting. Time-LLM [9] demonstrated the potential for adapting LLMs to time series tasks.
PatchTST [15] introduced the concept of patching time series data, enabling the models to handle
longer sequences efficiently. MOMENT Goswami et al. [8], stands out for its ability to solve multiple
time series tasks, within a unified framework. MOMENT is open-source, with access to training data
and code, making it accessible for a wide range of applications.

Our work builds on the advances of these foundation models, particularly leveraging the flexible,
multitask capabilities of MOMENT. Most existing time series foundation models are Transformer-
based, with either encoder-only or autoregressive architectures. Our proposed Infini-Channel Mixer
extends the encoder-only architecture to better handle multichannel data, improving performance on
time series forecasting tasks while maintaining model simplicity.

B Channel Mixing

B.1 Concatenation Approach

In order to perform information exchange between the multiple variates, they have to be processed
either at the same time, producing a higher memory cost, or sequentially, producing a higher
computational cost. The default way of processing multiple variates is related to flattening the data
from all variates, concatenating it, and producing an attention matrix with two dimensions equal to
(channel number × sequence length). Woo et al. [21] implements a similar approach with inter- and
intra-channel bias scalars, akin to the concept of relative positional biases in Raffel et al. [18]. The
approach of concatenating [21] all of the variates is expressed in 3. To be able to ablate the approach,
we do not apply the proposed rotary positional encoding, we stick to the sinusoidal position encoding.

Eij,mn =
(
xi,mWQ

) (
xj,nW

K
)⊤

+ δmn · u(1) + (1− δmn) · u(2) (3)

where:

• xi,m and xj,n are the input vectors for tokens i and j of variates m and n, respectively.

• WQ and WK are the weight matrices for queries and keys.

• u(1) and u(2) are scalar bias terms. u(1) is added when m = n, and u(2) is added when
m ̸= n.

• δmn is the Kronecker delta function, which is 1 if m = n and 0 otherwise.
• Eij,mn represents the attention score between tokens i and j of variates m and n, respec-

tively.

B.2 Infini-Channel Mixer + Static

We would like to point out, that the novel concept of a memory matrix opens up possibilities to query
a matrix differently, based on the inter-channel relations. A simple, but naive way of ensuring that is
to add channel embeddings to each patch embedding in the embedding layer.

Let Echannel ∈ Rchannel_num×dmodel be the matrix of static channel embeddings, where each row rep-
resents a unique embedding for a channel. The channel embeddings are broadcasted to match
the dimensions of the input tensor and added to the patch embeddings. This operation can be
mathematically represented as:

x′
b,c,t,d = xb,c,t,d +Echannel,c,d (4)

Where:

• xb,c,t,d is the patched and embedded input
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• Echannel,c,d is the learned static channel embedding for the c-th channel and d-th dimension,

• x′
b,c,t,d is the updated embedding after adding the channel embedding.

This method is denoted as "Infini-Channel Mixer + Static" in the supervised setting in the table 5

C Training Experimental Setup

C.1 Supervised Setting

In the supervised setting, we evaluate the following models using a consistent training setup:

• N-BEATS: For training N-BEATS, we use the following configuration: Stack Types (Trend
and Seasonality), Number of Blocks per Stack (3), Theta Dimensions (4 and 8), and Hidden
Layer Units (256). The training is conducted for 10 epochs with a batch size of 64, and is
directly copied from Goswami et al. [8].

• Concatenation and Infini-Channel Mixer: For the Concatenation, Infini-Channel Mixer,
and Infini-Channel Mixer + Static models, we employ the T5-Efficient-TINY backbone.
This backbone comprises 4 encoder blocks, a model dimension of 256, 4 attention heads,
and feed-forward dimensions of size 1024. Detailed specifications for the concatenation
method are included in the appendix B.1.

• MT + Graph Transformer Layer: For the MT model with an added Graph Transformer
layer, we use the MOMENT-Tiny backbone, incorporating a Graph Transformer layer as
detailed in Zhang et al. [23].

• Crossformer: We use the original parameters of the Crossformer including patch size 12,
3 encoder block layers, the feed-forward dimension of 128, model dimension of 256, and 4
attention heads.

D Forecasting and classification task

Pre-training We use the pre-trained models: MOMENT-Tiny, MOMENT-Tiny + Infini-Channel Mixer.
Both are pre-trained for one epoch and with the same amount of data. We want to ensure a constant
number of variates in a single batch (either 1 or 8), thus for multivariate datasets, we divide them into
subdatasets of 8 variates. In case we end up with less than 8 variates in a subdataset, we oversample
the remaining variates. This yields two types of batches - univariate and multivariate. We then use
them in the pre-training.

D.1 Forecasting

Since MOMENT can handle multiple tasks, we test our approach on forecasting (supervised 5 and pre-
trained 4) and classification tasks (multivariate and univariate pre-trained models). After pre-training
the MOMENT-Tiny + Infini-Channel Mixer models, we fine-tune the linear head, as well as the
β parameters.

Model name Horizon Exchange ETTh1 ETTh2 ETTm1 ETTm2 Weather
MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE

Pre-trained MT + Infini-Channel Mixer (8 folds) 96 0.229 0.104 0.407 0.403 0.344 0.288 0.347 0.293 0.257 0.171 0.217 0.166
192 0.326 0.207 0.427 0.438 0.388 0.351 0.367 0.327 0.295 0.224 0.252 0.207
384 0.482 0.430 0.447 0.467 0.413 0.371 0.391 0.369 0.340 0.291 0.299 0.271

Pre-trained MT + Infini-Channel Mixer (4 folds) 96 0.227 0.102 0.407 0.399 0.348 0.292 0.348 0.291 0.259 0.171 0.216 0.164
192 0.328 0.209 0.427 0.436 0.391 0.358 0.371 0.327 0.297 0.227 0.252 0.205
384 0.482 0.432 0.445 0.464 0.415 0.374 0.395 0.367 0.345 0.297 0.298 0.268

Pre-trained Univariate MT 96 0.236 0.109 0.413 0.410 0.348 0.296 0.348 0.295 0.260 0.173 0.222 0.173
192 0.338 0.217 0.432 0.442 0.390 0.359 0.369 0.331 0.296 0.226 0.258 0.217
384 0.479 0.425 0.445 0.459 0.408 0.374 0.393 0.373 0.339 0.291 0.301 0.277

Table 4: MAE and MSE for various models across different datasets and horizons. The best metric for
each dataset and horizon is highlighted, results better than MOMENT-Tiny are underlined. MT means
MOMENT-Tiny as a backbone architecture, each model is pre-trained on ONE Epoch of the Time
Series Pile.
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Model name Horizon Exchange ETTh1 ETTh2 ETTm1 ETTm2 Weather
MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE

MT + Graph Transformer layer 96 0.210 0.089 0.409 0.382 0.365 0.316 0.349 0.304 0.256 0.170 0.197 0.151
192 0.335 0.222 0.436 0.435 0.413 0.385 0.372 0.339 0.299 0.231 0.241 0.196
384 0.470 0.409 0.477 0.489 0.429 0.399 0.397 0.376 0.354 0.310 0.292 0.264

NBeats 96 0.316 0.173 0.422 0.407 0.377 0.334 0.357 0.304 0.268 0.180 0.207 0.152
192 0.527 0.467 0.456 0.453 0.422 0.392 0.379 0.339 0.320 0.266 0.273 0.208
384 0.739 0.933 0.500 0.523 0.500 0.503 0.413 0.394 0.394 0.389 0.323 0.273

CrossFormer 96 0.385 0.260 0.448 0.427 0.540 0.575 0.365 0.317 0.383 0.312 0.218 0.148
192 0.606 0.644 0.508 0.515 0.573 0.640 0.380 0.353 0.589 0.632 0.281 0.204
384 0.704 0.774 0.668 0.770 0.644 0.746 0.507 0.501 0.573 0.601 0.378 0.329

iTransformer 96 0.231 0.104 0.408 0.391 0.373 0.325 0.361 0.311 0.268 0.186 0.207 0.160
192 0.332 0.208 0.434 0.434 0.417 0.400 0.383 0.350 0.315 0.258 0.250 0.206
384 0.480 0.423 0.452 0.462 0.434 0.414 0.409 0.397 0.353 0.310 0.299 0.272

Infini-Channel Mixer MT (Ours) 96 0.219 0.096 0.400 0.383 0.346 0.295 0.348 0.298 0.255 0.170 0.203 0.154
192 0.316 0.193 0.421 0.420 0.396 0.368 0.369 0.330 0.296 0.229 0.244 0.197
384 0.467 0.407 0.440 0.446 0.417 0.385 0.394 0.372 0.345 0.304 0.295 0.263

Infini-Channel Mixer + Static MT (Ours) 96 0.224 0.100 0.405 0.390 0.354 0.300 0.346 0.298 0.252 0.167 0.201 0.148
192 0.322 0.204 0.428 0.427 0.398 0.362 0.369 0.330 0.294 0.224 0.244 0.192
384 0.483 0.437 0.441 0.448 0.438 0.409 0.395 0.373 0.346 0.303 0.293 0.258

Channel Concatenation 96 0.223 0.099 0.410 0.393 0.356 0.303 0.353 0.302 0.264 0.180 0.211 0.166
192 0.329 0.213 0.430 0.429 0.396 0.370 0.377 0.339 0.305 0.238 0.251 0.210
384 0.478 0.418 0.448 0.456 0.428 0.399 0.400 0.380 0.364 0.329 0.297 0.273

Univariate MT 96 0.204 0.084 0.407 0.388 0.354 0.300 0.351 0.300 0.254 0.167 0.201 0.155
192 0.323 0.202 0.425 0.422 0.399 0.376 0.374 0.338 0.303 0.235 0.242 0.198
384 0.499 0.460 0.442 0.445 0.420 0.399 0.399 0.379 0.344 0.301 0.292 0.264

Table 5: MAE and MSE for various models, forecasting, supervised setup, across different datasets
and horizons. The best metric for each dataset and horizon is highlighted, results better than
MOMENT-Tiny are underlined. MT means MOMENT-Tiny as a backbone architecture. Our method
shows promising results, with notably the moment backbone paired with the Graph Transformer layer
showing good results on the Weather dataset.

D.2 Classification

In the multivariate case, MOMENT-Tiny + Infini-Channel Mixer achieves comparable results
to MOMENT-Tiny 3, although mean and median accuracy is higher, the number of wins/losses for
MOMENT-Tiny with Infini-Channel Mixer is 9155 / 6512, which is worse than for MOMENT-Tiny 9497
/ 6170. We hypothesize that this happens because the β parameters allow the model backbone to
adjust during the fine-tuning stage. In the univariate case, our model with Channel-Mixing performs
worse than the vanilla one. This points towards the hypothesis that meaningful filtering of the
aggregated memory is an important direction of future work. 6 7.

Dataset MOMENT-Tiny MOMENT-Tiny + Infini-Channel Mixing Mixer

ArticularyWordRecognition 0.923 0.943
AtrialFibrillation 0.400 0.333
BasicMotions 0.550 0.875
Cricket 0.972 0.972
DuckDuckGeese 0.540 0.340
EigenWorms 0.557 0.542
Epilepsy 0.949 0.971
ERing 0.852 0.811
EthanolConcentration 0.346 0.281
FingerMovements 0.500 0.650
HandMovementDirection 0.230 0.284
Handwriting 0.212 0.179
Heartbeat 0.722 0.722
JapaneseVowels 0.676 0.692
Libras 0.850 0.822
LSST 0.329 0.266
MotorImagery 0.480 0.520
NATOPS 0.772 0.828
PEMS-SF 0.879 0.855

Continued on next page
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Dataset MOMENT-Tiny MOMENT-Tiny + Infini-Channel Mixing Mixer

PenDigits 0.959 0.971
PhonemeSpectra 0.212 0.175
RacketSports 0.697 0.717
SelfRegulationSCP1 0.785 0.724
SelfRegulationSCP2 0.489 0.550
SpokenArabicDigits 0.966 0.928
StandWalkJump 0.400 0.467

Table 6: Accuracy for multivariate datasets (UCR/UEA) classification for
MOMENT-Tiny and MOMENT-Tiny + Infini-Channel Mixing.

Dataset MOMENT-Tiny MOMENT-Tiny + Infini-Channel Mixing

GestureMidAirD2 0.538 0.515
UWaveGestureLibraryX 0.790 0.745
GesturePebbleZ2 0.791 0.722
ECG5000 0.921 0.934
OSULeaf 0.802 0.719
MedicalImages 0.759 0.658
Ham 0.543 0.581
DistalPhalanxTW 0.612 0.619
ProximalPhalanxOutlineCorrect 0.842 0.838
FreezerRegularTrain 0.961 0.946
TwoLeadECG 0.748 0.838
GunPointMaleVersusFemale 0.975 0.984
Trace 0.980 0.940
SmoothSubspace 0.793 0.867
MiddlePhalanxTW 0.558 0.552
SyntheticControl 0.950 0.880
ShapesAll 0.772 0.725
AllGestureWiimoteX 0.627 0.520
Wafer 0.996 0.994
FaceFour 0.557 0.443
CricketX 0.641 0.541
DistalPhalanxOutlineCorrect 0.714 0.707
ChlorineConcentration 0.671 0.702
Chinatown 0.980 0.971
GestureMidAirD1 0.623 0.523
MiddlePhalanxOutlineAgeGroup 0.526 0.468
UMD 0.965 0.917
Crop 0.701 0.701
GesturePebbleZ1 0.901 0.797
WordSynonyms 0.577 0.475
ArrowHead 0.571 0.520
Wine 0.556 0.500
Coffee 0.821 0.536
Earthquakes 0.748 0.748
Herring 0.594 0.594
Beef 0.667 0.700
MiddlePhalanxOutlineCorrect 0.526 0.591
ECGFiveDays 0.844 0.742
Yoga 0.742 0.751
Adiac 0.627 0.619

Continued on next page
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Dataset MOMENT-Tiny MOMENT-Tiny + Infini-Channel Mixing

MoteStrain 0.654 0.712
Strawberry 0.922 0.924
InsectWingbeatSound 0.563 0.508
DodgerLoopWeekend 0.848 0.703
Meat 0.833 0.833
MelbournePedestrian 0.870 0.872
FaceAll 0.666 0.615
FacesUCR 0.652 0.606
AllGestureWiimoteY 0.671 0.589
ShakeGestureWiimoteZ 0.760 0.720
BME 0.947 0.960
FordB 0.810 0.786
Fish 0.777 0.629
SonyAIBORobotSurface2 0.821 0.753
FiftyWords 0.677 0.589
ToeSegmentation1 0.925 0.851
FreezerSmallTrain 0.744 0.747
TwoPatterns 0.964 0.821
ShapeletSim 0.650 0.594
Plane 0.952 0.933
GestureMidAirD3 0.315 0.292
DiatomSizeReduction 0.784 0.765
CricketZ 0.669 0.564
Lightning7 0.589 0.548
UWaveGestureLibraryY 0.723 0.633
GunPointAgeSpan 0.949 0.965
DistalPhalanxOutlineAgeGroup 0.683 0.676
SwedishLeaf 0.875 0.840
CBF 0.864 0.671
BeetleFly 0.750 0.650
AllGestureWiimoteZ 0.569 0.466
DodgerLoopDay 0.400 0.263
GunPointOldVersusYoung 0.933 0.889
FordA 0.934 0.913
ItalyPowerDemand 0.935 0.900
ProximalPhalanxOutlineAgeGroup 0.839 0.829
GunPoint 0.960 0.940
ProximalPhalanxTW 0.737 0.732
PickupGestureWiimoteZ 0.640 0.480
SonyAIBORobotSurface1 0.626 0.687
PowerCons 0.894 0.833
PhalangesOutlinesCorrect 0.699 0.650
BirdChicken 0.900 0.750
ToeSegmentation2 0.938 0.869
CricketY 0.585 0.482
ElectricDevices 0.634 0.638
DodgerLoopGame 0.623 0.551
Fungi 0.887 0.806
Symbols 0.857 0.842
UWaveGestureLibraryZ 0.750 0.678
ECG200 0.840 0.840

Table 7: Accuracy for univariate datasets (UCR/UEA) classification for
MOMENT-Tiny and MOMENTiTiny + Infini-Channel Mixing
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