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Abstract

We study the problem of falsifying the assumptions behind a set of broadly applied
causal identification strategies: namely back-door adjustment, front-door adjust-
ment, and instrumental variable estimation. While these assumptions are untestable
from observational data in general, we show that with access to data coming from
multiple heterogeneous environments, there exist novel independence constraints
that can be used to falsify the validity of each strategy. Most interestingly, we make
no parametric assumptions, instead relying on that changes between environments
happen under the principle of independent causal mechanisms.

1 Introduction

A common theme within the field of causal inference has been to study settings with data collected
from multiple environments. This type of data often tends to be heterogeneous due to e.g. changing
circumstances or time shifts. While data heterogeneity is sometimes seen as an obstacle in data
science, it is possible to turn it to one’s advantage. For instance, it can allow us to learn invariant
predictors that better generalize to unseen environments [Peters et al., 2016, Rothenhäusler et al.,
2021], improve causal discovery [Ghassami et al., 2018, Mooij et al., 2020, Huang et al., 2020], and
enable new causal effect identification strategies [Bareinboim and Pearl, 2016, Athey et al., 2020]. In
this paper, we focus on the last two ideas together.

We study the problem of falsifying a set of broadly applied graphical conditions under the possible
presence of latent variables: namely the 1. back-door criterion, 2. front-door criterion, and 3.
instrumental variable criterion. These conditions are crucial when we want to estimate the effects of
interventions from observational data. Unfortunately, in the most general case, these conditions can
not be verified from a single observational dataset alone [Pearl, 2009]. However, we will show that
when we have multiple datasets stemming from different environments or clusters – such as different
locations, time periods, or studies – some of these conditions can be tested.

Our contribution is to demonstrate that a novel type of independence constraints [Guo et al., 2022,
Karlsson and Krijthe, 2023] can be used to falsify the above-mentioned conditions when we have
access to multi-environment data under the assumption of independent causal mechanisms [Schölkopf
et al., 2012, Peters et al., 2017, Schölkopf et al., 2021]. In particular, we aim to do this without access
to interventional data. We believe our findings are of direct interest to those who want to test the
validity of their causal identification strategy and have access to multi-environment data. However,
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the technique we use to obtain our results may be of independent interest to the broader causality
community.

2 Related Works

This paper contributes to the growing body of literature on doing causal inference from heterogeneous,
multi-environment data [Peters et al., 2016, Bareinboim and Pearl, 2016, Mooij et al., 2020, Huang
et al., 2020, Shi et al., 2021, Squires et al., 2023]. Most closely related to our work are Guo et al.
[2022] and Karlsson and Krijthe [2023]. Assuming independent causal mechanisms, these works
showcase novel independence constraints that can be used for causal discovery in multi-environment
settings. Guo et al. [2022] focused on the setting with all variables observed (i.e. having causal
sufficiency): they show in this case that we can go beyond the Markov Equivalence Class and uniquely
determine the causal DAG from observational data. Meanwhile, in a similar setting, Karlsson and
Krijthe [2023] relaxed the causal sufficiency assumption and showed how to detect the presence of
latent confounders. The technique used in both works shares similarities to the twin network method
for counterfactual reasoning by Balke and Pearl [1994] by looking at independence constraints in a
"twinned" graph. In contrast to Balke and Pearl [1994], this "twinning" technique is applied to a setting
with different environments having the same causal structure. We build further on these developments,
showing new non-parametric identification results for widely applied identification strategies.

In this paper, we explore the possibilities for falsification implied by the independent causal mech-
anism assumption. There do however also exist other techniques for falsification. For instance,
under mild conditions involving an auxiliary variable, Bhattacharya and Nabi [2022] demonstrate
testable conditions for the front-door criterion. In addition, there are the well-known instrumental
inequalities that sometimes can falsify the validity of instrumental variables [Pearl, 1995, Kédagni
and Mourifie, 2017]. We believe our work can be used together with previously proposed tests like
the ones mentioned, strengthening our toolbox to (in certain cases) falsify our causal assumptions.

3 Problem setting

We start with some preliminaries of the causal terminology used in this paper.

Definition 1 (Causal Graphical Model (CGM)). A causal graphical model M = (G, P ) over d
random variables V = (V1, V2, . . . , Vd) comprises (i) a directed acyclic graph (DAG) G with
vertices V and edges Vj → V ′

j iff Vj is a direct cause of V ′
j , and (ii) a joint distribution P such that

it has the following Markov or causal factorization over G:

P (V1, V2, . . . , Vd) =

d∏
j=1

P (Vj | Pa(Vj)) (1)

where Pa(Vj) denotes the parents (direct causes) of Vj in G and P (Vj | Pa(Vj)) is the causal
mechanism of Vj .

The DAG G encodes various conditional independences (or d-separations) between the variables
which we write as A ⊥⊥ d B | C over some disjoint sets of variables A,B and C. We shall assume
that conditional independencies in G imply the same conditional independencies in P , and vice versa.

Assumption 1 (Faithfulness & Causal Markov Property). For P and G we have (i) the faithfulness
property that A ⊥⊥ P B | C ⇒ A ⊥⊥ d B | C, and (ii) the causal Markov property that A ⊥⊥ P B |
C ⇐ A ⊥⊥ d B | C.

We will consider a setting with the following variables: We have treatment X ∈ X and outcome
Y ∈ Y , as well as an auxiliary variable Z ∈ Z . In addition, we allow the presence of an unobserved
confounder U ∈ U between X and Y . We shall further assume that we know that Y ̸∈ Ancestors(X).
This setting comes up when we are interested in estimating the interventional effect of X on Y ,
denoted as P (Y | do(X)) using do-calculus [Pearl, 2009]; here we are often sure X "happens"
before Y and we wish to learn if X has an effect on Y .

Depending on how (X,Y ) relates with respect to Z, we can use different strategies to estimate
the interventional effect from observational data: back-door adjustment if Z fulfills the back-door
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(c) Instrumental variable

Figure 1: Three common settings where observing Z allows for identification of P (Y | do(X)); the
shaded variables are unobserved. The addition of the dashed red arrow illustrates one way in which
Z becomes insufficient for identification.

criterion; front-door adjustment if Z is a mediator fulfilling the front-door criterion; or instrumental
variable estimation if Z is a valid instrument. These different settings are illustrated in Figure 1.
While domain knowledge often informs us which strategy to use, no independence constraint exists
between (X,Y, Z) that allows us to verify any of these conditions [Pearl, 1995]. We demonstrate
that such conditions exist, however, when we have data from multiple environments and assume
independent causal mechanisms. We will now formalize this assumption.

3.1 Assumptions for multi-environment data

We have observational datasets from multiple environments ek, indexed by k = 1, . . . ,K. The
datasets are sampled as (X(k)

i , Y
(k)
i , Z

(k)
i , U

(k)
i ) ∼ P (ek)(X,Y, Z, U) for i = 1, . . . , Nk, where Nk

is the number of observations in environment ek. Note that in what follows, U (k)
i is not observed.

We allow each environment to have a different joint distribution P (ek) but assume they are related to
each other through the following assumption:

Assumption 2 (Shared Causal Graph). All environments share the same causal DAG G.

Next, we specify how changes in P (ek)(X,Y, Z, U) arise between the different environments. We
shall assume that the conditional probabilities in (1) – which we refer to as causal mechanisms – vary
independently per environment. This is known as the independent causal mechanism principle [Peters
et al., 2017]. We shall now describe the assumption that operationalizes this.

To model changes between environments with independent causal mechanisms, we parameterize each
causal mechanism with a parameter Θ = {ΘV ∈ OV : V ∈ {X,Y, Z, U}}.1 In each environment,
these are fixed and determine the distribution P (ek)(X,Y, Z, U | Θ) =

∏
V ∈{X,Y,Z,U} P

(ek)(V |
Pa(V ),ΘV ). One could see changes in Θ as different soft interventions on the causal mechanisms,
similar to the settings considered by Huang et al. [2020] and Perry et al. [2022].

Further, we shall assume that environments are randomly sampled from a distribution over mecha-
nisms by defining non-degenerate probability measures for each causal mechanism.

Assumption 3 (Stochastic Independent Causal Mechanisms). The parameters ΘV of the causal
mechanisms are pair-wise independent random variables with non-degenerate probability measures
P (ΘV ) for all V ∈ {X,Y, Z, U}.

With the above assumption, when we say independent causal mechanisms, we refer to statistical
independence between them. This independence is a strong assumption to make, which we will see
gives us new testable implications in the data.

1For our intended purpose, note that we do not have to specify the explicit form of parameterization. This
also means that, in principle, we do not specify the dimensionality of these parameters. While it is perhaps
easier to imagine what independence between parameters looks like in the finite-dimensional case, one could
also consider independence between infinite-dimensional parameters. This concept has been rigorously studied
in nonparametric Bayesian inference, where one often constructs a prior over independent parameters [Ghosal
and Van der Vaart, 2017].
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Figure 2: (a): The hierarchical causal graphical model for the DAG from Figure 1a. (b): We unfold
the hierarchical causal graphical model to obtain a "twin" structure. This allows us to study the
dependency structure between two different observations (i, j) from the same environment k.

4 Testing causal identification strategies with multi-environment data

We are now ready to present the main theoretical tool that we will use: a hierarchical causal
graphical model that incorporates the multi-environment structure of the data under our assumptions.
Crucially, in contrast to the single-environment causal graphical model, the hierarchical graph encodes
additional independence constraints among the observed variables. These can be used to falsify
causal identification strategies. We start with the definition of the hierarchical causal graphical model
before we go into examples and results using this model.

Definition 2 (Hierarchical Causal Graphical Model). For a given environment ek, we have the causal
graphical model M (ek) = (P (ek),G(ek)) with variables V(k) = (V

(k)
1 , V

(k)
2 , . . . , V

(k)
d ). We define

the hierarchical causal graphical model M∗ = (P ∗,G∗) as follows: Let G∗ be a DAG containing
vertices {V(k)

i : k = 1, . . . ,K} for all observations i = 1, . . . , Nk. It has the edge V
(k)
i,j → V

(k)
i,j′

for all i iff the same edge exists in G(ek) where j, j′ = 1, . . . , d. Furthermore, we posit the causal
mechanism parameters Θ(k) = (Θ

(k)
V1

,Θ
(k)
V2

, . . . ,Θ
(k)
Vd

) to G∗ so that Θ(k)
Vj

→ V
(k)
i,j for every i, j and

k. The joint distribution P ∗ over all variables in G∗ factorizes as

K∏
k=1

Nk∏
i=1

d∏
j=1

P ∗(V
(k)
i,j | Pa(V (k)

i,j ),Θ
(k)
Vj

)P ∗(Θ
(k)
Vj

) (2)

where P ∗(V
(k)
i,j | Pa(V (k)

i,j ),ΘVj
) = P (ek)(V

(k)
i,j | Pa(V (k)

i,j ),ΘVj
).

To illustrate why the hierarchical causal graphical model is helpful, we first revisit a result from Karls-
son and Krijthe [2023], showing how it can be used to falsify the back-door criterion.

4.1 Testing the back-door criterion

Let all environments share the graph G from Figure 1a and construct its corresponding hierarchical
DAG G∗, seen in Figure 2a. For the original DAG G, it is well-known that there exist no independence
constraints between the observed variables for testing the presence of the unobserved confounder
U [Pearl, 1995]. For the hierarchical G∗, however, we will see that such constraints exist.

In graph G∗, we can study dependencies between two different samples (i, j) within an environment k:
that is, (X(k)

i , Y
(k)
i , Z

(k)
i ) and (X

(k)
j , Y

(k)
j , Z

(k)
j ) where i ̸= j. Interestingly, if we do not condition

on the environment – or conversely, the causal mechanism parameters Θ in G∗ – these two samples
are dependent as they share parents in G∗. This is illustrated in Figure 2b, where we unfold the
hierarchical structure; or, one could say that we have created a "twin" of the original graph.
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Now, one can verify graphically that if the dashed arrow is absent in the graph in Figure 2b then

X
(k)
i ⊥⊥ P∗ Y

(k)
j | X(k)

j , Z
(k)
i , Z

(k)
j . (3)

But if the dashed arrow is present, such that Z becomes an invalid back-door adjustment set as we
have an open backdoor path between X and Y , then the independence in (3) is violated. As (3)
only contains observed variables, the back-door criterion has testable implications according to the
hierarchical model. In fact, this statement is true even if we consider a larger set of possible graphs.

Theorem 1 (Karlsson and Krijthe [2023]). Consider assumptions 1, 2 and 3 where Y ̸∈ Ancestors(X)
and that there is no selection bias. Let G be the shared causal DAG across environments and G∗ its
corresponding hierarchical DAG. Then, we have that (3) holds for any k and i ̸= j in G∗ iff Z blocks
every back-door path between X and Y in G.

How do we test this independence? We have shown here that opening a back-door path leads to
the violation of a new independence constraint in the observed data distribution. For the rest of the
paper, our goal is to provide more of these identification results, while constructing efficient tests for
these dependencies is outside the scope of our paper. This problem has been studied by both Guo
et al. [2022] and Karlsson and Krijthe [2023]. For the interested reader, however, we provide an
explanation of how to test independencies such as (3) in the Appendix.

4.2 Testing the front-door criterion

The next graphical condition we will explore is the front-door criterion where Z is a mediator between
X and Y , as demonstrated in Figure 1b and which is defined as follows:

Definition 3 (Front-door criterion [Pearl, 2009]). A set of variables Z is said to satisfy the front-door
criterion relative to an ordered pair of variables (X,Y ) in a DAG G if: (i) Z intercepts all directed
paths from X to Y ; (ii) there is no unblocked back-door path from X to Z; and (iii) all back-door
paths from Z to Y are blocked by X.

If we know the causal ordering of (X,Z, Y ), then we see that Theorem 1 can be directly applied to
construct testable implications for both (ii) and (iii) in Definition 3.

Corollary 1. Consider assumption 1, 2 and 3 with Y /∈ Ancestors(Z), Z ̸∈ Ancestors(X), and
no selection bias, let G be the shared causal DAG across environments and G∗ its corresponding
hierarchical DAG. Then, for any k and i ̸= j,

X
(k)
i ⊥⊥ P∗ Z

(k)
j | X(k)

j and Z
(k)
i ⊥⊥ P∗ Y

(k)
j | Z(k)

j , X
(k)
i , X

(k)
j (4)

iff condition (ii) and (iii) in Definition 3 hold true for G.

Proof. We apply Theorem 1 twice, noting that conditions (ii) and (iii) concern that there exist no
unblocked back-door paths. For (ii), we need to check that there is no open back-door path between
the ordered pair (X,Z) with an empty adjustment set; this results in the first independence. Similarly,
for (iii), we get the second independence by having to check whether X is sufficient to block any
back-door path between the ordered pair (Z, Y ).

Starting on a positive note, we have shown that it is in fact possible to verify two out of three
conditions in the front-door criterion. While the "twinning" technique is very suitable to detect open
back-door paths, we will see now that testing the remaining condition – whether Z intercepts all
directed paths between (X,Y ) – is more difficult to test; in fact, it is impossible to do it with this
technique.

Theorem 2. Consider the same assumptions as in Corollary 1 with G being the shared causal DAG
across environments and G∗ its corresponding hierarchical DAG. then there exist no independence
constraints in G∗ that imply whether condition (i) in Definition 3 holds.

A proof of the theorem is provided in the Appendix.
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4.3 Testing the instrumental variable criterion

Now, we turn our attention to the third identification strategy to see whether it is possible to reject
the validity of an instrumental variable. As before, we start with the graphical definition of an
instrumental variable.
Definition 4 (Graphical criterion for instrumental variable Pearl [2009]). A variable Z is an instru-
ment relative to the total effect of X on Y if (i) (Z ⊥⊥ d Y )GX̄

and (ii) (Z ̸⊥⊥ d X)G . Here GX̄ refers
to the causal graph G where all incoming edges into X have been removed.

We note that condition (ii) in the above definition is already a testable independence constraint. Thus,
we put our attention on whether we can test condition (i) – which does not have any observable
independence constraints in G – using the "twinning" technique. We start with observing a problematic
special case.
Theorem 3. Consider assumption 1, 2 and 3 with Y /∈ Ancestors(X), X ̸∈ Ancestors(Z), and no
selection bias, let G be the shared causal DAG across environments where the (testable) condition
(Z ̸⊥⊥ d Y ) holds and G∗ its corresponding hierarchical DAG. Then, there exist no independence
constraints in G∗ for whether the edge Z → Y is present or not.

We provide proof in the Appendix. The consequence of this theorem is that without further assump-
tions, we can not find an independence constraint in G∗ that implies (Z ⊥⊥ d Y )GX̄

. The reason is
that the presence of the edge Z → Y implies that (Z ̸⊥⊥ d Y )GX̄

. That Z may not have a direct effect
on Y is also referred to as the exclusion restriction for instrumental variables [Angrist et al., 1996].
The result itself might not come as a surprise, as the impossibility result we proved for the front-door
criterion in Theorem 2 also relates to the presence of such direct edges. Despite this, we can still in
some scenarios falsify if (Z ⊥⊥ d Y )GX̄

is true.
Theorem 4. Consider the same assumptions as in Theorem 3, let G be the shared causal graph
across environments and G∗ its corresponding hierarchical DAG. Then, for any k and i ̸= j, we have
Z

(k)
i ̸⊥⊥ P∗ Y

(k)
j | Z(k)

j ⇒ (Z ̸⊥⊥ d Y )GX̄
.

The theorem presents an approach to falsify the validity of an instrument. As shown in the proof of the
theorem, which is found in the Appendix, falsification is possible when the unobserved confounder
U is a cause of Z. In literature, this relates to the necessary condition that Z must be independent of
any exogenous variable between X and Y [Angrist et al., 1996]. We note however that falsification is
not possible if it is the other way around, i.e. Z → U . This means that if one would conclude that
Z

(k)
i ⊥⊥ P∗ Y

(k)
j | Z(k)

j , one still needs to think carefully about the assumptions that have been made.

5 Discussion

In this paper, we have studied a new type of hierarchical causal model for data from multiple
environments and its use in deriving testable implications of violations of common identification
strategies. We learned that there exist independence constraints in this new class of DAGs that can be
used to falsify (parts of) three common identification strategies in causal inference: the back-door,
front-door, and instrumental variable criterion. If one of the testable conditions we have presented is
violated, this could be informative to us that not all of our assumptions are valid for identification.

It is important to note that, although these hierarchical models expand the possibilities of testing
assumptions, they are not a silver bullet. Firstly, our theory relies on a new untestable assumption: the
independent causal mechanisms varying across environments. This assumption should not be taken
for granted, yet a more conservative interpretation of the tests presented in this paper would be that
they are a joint test to detect either a violation in the identification assumptions or that the mechanisms
are dependent. Secondly, we demonstrated some limits of using the "twinning" technique with the
hierarchical models. In particular, we learned that we can not test for the presence of a direct edge in
the front-door and the instrumental variable setting. Still, we believe that showing we can test parts
of these conditions constitutes important progress in the falsification of causal assumptions.

The hierarchical causal graphical model was a useful model in this setting that may be insightful
in other causal inference settings as well. Interesting directions in this regard are investigating
other identification strategies or combining this model with traditional independence-based causal
discovery.
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A Practical testing of independence constraints

In this section, we outline the procedure for testing a conditional independence relationship like
X

(k)
i ⊥⊥ P∗ Y

(k)
j | X(k)

j , Z
(k)
i , Z

(k)
j or those in (4), utilizing multi-environment data. We denote this

data with {x(k)
i , y

(k)
i , z

(k)
i }Nk

i=1 with k = 1, . . . ,K.

To test such independencies, we want to simulate sampling from the joint distribution
P ∗(X

(k)
i , Y

(k)
i , Z

(k)
i , X

(k)
j , Y

(k)
j , Z

(k)
j ) for some i ̸= j. It is worth noting here that we do not

condition on the environment, because otherwise the sample pair (i, j) would always be independent.
Here’s the approach we follow:

1. We select two distinct observations, denoted as i and j, from all environments. This
selection yields vectors of observed treatments xi = (x

(1)
i , x

(2)
i , . . . , x

(K)
i ), outcomes

yi = (y
(1)
i , y

(2)
i , . . . , y

(K)
i ), and so on for the vectors for zi, xj , yj and zj .

2. Subsequently, we apply a suitable conditional independence testing method, using the data
points in (xi, yi, zi, xj , yj , zj) as samples of each respective random variable.

It’s important to note that the choice of observations within each environment is arbitrary, as long as
we avoid selecting the same observation for both i and j. This flexibility arises from the assumption
that observations are independent and identically distributed within each environment.

We see that, in principle, we only need two observations per environment to perform this independence
test. The "sample size" of the test is the number of environments. However, it is possible to construct
a procedure that uses all available data by combining multiple independence tests using Fisher’s
method, as long as we select different observations for each test [Karlsson and Krijthe, 2023].

B Proofs
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(a) Front-door setting
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(b) Instrumental variable setting

Figure 3: Graphs to illustrate the claims by Theorem 2 and Theorem 3. We compare the independence
constraints in the hierarchical DAG with either the red dashed edge present or absent; this corresponds
to a violation of either the front-door or instrumental variable criterion respectively.

9



B.1 Proof of Theorem 2

Proof. We will show that there exists no independence constraint in the hierarchical graph G∗,
illustrated in Figure 3a, that is affected by the presence or absence of the red dashed edge. This
edge corresponds to a violation of the fact that Z must intercept all directed paths between X and Y
according to the front-door criterion (see Defintion 3). We construct our proof by showing that for
the graph G∗ in Figure 3a, the presence or absence of a red dashed arrow changes no independence
constraint in G∗.

First, we note that because of Assumption 2, any independence constraint in G∗ holds for all
environments k. Secondly, because of Assumption 3, there exist open paths between the sample pair
(i, j). Thirdly, Assumption 1 allows us to connect d-separation in G∗ with the independence statement
in the data distribution P ∗. Finally, to show our claim, we only have to consider independence
constraints between (i, j) samples, in contrast to for instance (X

(k)
i ⊥⊥ d Z

(k)
i )G∗ , since G∗ in this

case otherwise does not provide anything extra compared to the corresponding non-hierarchical DAG
G.

We start by considering the independencies of the form X
(k)
i ⊥⊥ d Y

(k)
j | S, where S is a set of

the other observed variables. We note there always is a path between X
(k)
i and Y

(k)
j that traverses

through (U
(k)
i , U

(k)
j ), regardless of S. Thus, this type of independence does not change based on the

presence of the edge X → Y .

Next, we look at the independencies of the form X
(k)
i ⊥⊥ d Z

(k)
j | S. We note that there is a path

between X
(k)
i and Z

(k)
j through Xj that does not depend on the edge X → Y , thus we always

X
(k)
j ∈ S to block this path. The only way to unblock the path between X

(k)
i and Z

(k)
j is to

let Y (k)
j ∈ S. However, this path does not go through the direct edge X → Y either. Thus, no

independence of the form X
(k)
i ⊥⊥ d Z

(k)
j | S can detect the presence of this direct edge.

We look at the final form of independencies: that is Y (k)
i ⊥⊥ d Z

(k)
j | S. Using similar reasoning as

above, it is clear that regardless of S, no path between Y
(k)
i and Z

(k)
j depends on the presence of the

edge X → Y .

As we have considered all possible types of independence constraints between observed variables,
we see that no independence in G∗ will change because of the presence of the direct edge X → Y .
This means that we can not test whether Z intercepts all directed paths between X and Y using this
"twinning" technique.

B.2 Proof of Theorem 3

Proof. We will show that there exists an observable independence constraint in the hierarchical
graph G∗, illustrated in Figure 3b, that depends on the presence of the red dashed edge. This edge
corresponds to a violation of the fact that (Z ⊥⊥ d Y )GX̄

must hold for Z to be a valid instrument
(see Definition 4). Here GX̄ refers to the causal graph G where all incoming edges into X have been
removed. We construct our proof by showing that for the graph G∗ in Figure 3b, the presence or
absence of a red dashed arrow changes no independence constraint in G∗.

We use the same arguments as in the proof of Theorem 2 to conclude that we may look at independence
constraint for any k and that there exist open paths between different pairs of samples (i, j). Once
again, we will check all relevant independence constraints in the hierarchical DAG G∗ and see if they
would change if the red dashed edge is present or absent.

First, we look at the independencies of the form X
(k)
j ⊥⊥ d Y

(k)
i | S with S comprising the other

observed variables. We note that this independence will always be violated, i.e. X(k)
j ̸⊥⊥ d Y

(k)
i | S

for any S. This is because we can always reach (U
(k)
i , U

(k)
j ) without traversing Z → Y .

Secondly, we look at the independencies of the form X
(k)
i ⊥⊥ d Z

(k)
j | S. If Z(k)

i ̸∈ S, then we

always have X
(k)
i ̸⊥⊥ d Z

(k)
j | S. So we only have to consider Z(k)

i ∈ S. In that case we have
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that X(k)
i ̸⊥⊥ d Z

(k)
j | S holds whenever X(k)

j is also being conditioned on. In case X
(k)
j ̸∈ S,

X
(k)
i ̸⊥⊥ d Z

(k)
j | S will still be true if either Y (k)

i and/or Y (k)
j are being conditioned on. Therefore,

the outcome of this type of independence test does not change based on the presence of the edge
Z → Y .

Finally, we look at Y (k)
i ⊥⊥ d Z

(k)
j | S. Y (k)

i ̸⊥⊥ d Z
(k)
j | S will always hold if Z(k)

i ̸∈ S. In case

Z
(k)
i ∈ S, we have Y

(k)
i ̸⊥⊥ d Z

(k)
j | S if X(k)

j ∈ S and/or Y (k)
j ∈ S. This is because they both open

a collider path through X
(k)
j . If {X(k)

i , X
(k)
j } ∈ S, then the confounder association can be traversed.

However, if S = {Z(k)
i } or S = {X(k)

i , Z
(k)
i }, then Y

(k)
i and Z

(k)
j are independent. In none of these

cases the edge Z → Y was used.

As we have considered all possible types of independence constraints between observed variables,
we see that no independence in G∗ will change because of the presence of the direct edge Z → Y
in G. This means that we cannot test whether (Z ⊥⊥ d Y )GX̄

using this "twinning" technique in
general. In Theorem 4, however, we show that there are still cases where we can detect a violation of
(Z ⊥⊥ d Y )GX̄

.

B.3 Proof of Theorem 4

Proof. For this proof, we use a computational approach to iterate over different DAGs G while
simultaneously searching for independence constraints in the corresponding hierarchical DAG G∗

that can discriminate whether (Z ⊥⊥ d Y )GX̄
holds or not. Compared to the proofs of Theorem 2

and 3, where we only considered two graphs, we now must consider a much larger set of graphs to
check whether an independence constraint gives the same value as (Z ⊥⊥ d Y )GX̄

.

This approach consists of two parts: First, we iterate over a list of DAGs G that respect the following
properties:

• U is always a confounder between X and Y , i.e. U → X and U → Y must be present;

• edges X → Y , Z → Y and/or Z → X are present or absent (as we assume to know the
causal ordering);

• and U → Z can either be present, absent or reversed;

This gives us a total of 24 graphs. In these graphs, the independence constraint Z(k)
j ⊥⊥ d Y

(k)
i | Z(k)

i

often has the same values as (Z ⊥⊥ d Y )GX̄
. As we illustrate in Table 1, we see that (Z ⊥⊥ d Y )GX̄

always holds if also Z
(k)
j ⊥⊥ d Y

(k)
i | Z(k)

i is true, but not vice versa. We also see that (Z ⊥⊥ d Y )GX̄

is violated for graphs 0-11 as these have the direct edge between Z to Y , thus the most interesting
cases are for graphs 12-23.

As (Z ⊥⊥ d Y )GX̄
⇒ (Z

(k)
j ⊥⊥ d Y

(k)
i | Z(k)

i )G∗ , then must (Z ̸⊥⊥ d Y )GX̄
⇐ (Z

(k)
j ̸⊥⊥ d Y

(k)
i |

Z
(k)
i )G∗ . Due to faithfulness (Assumption 1) we have that

(Z ̸⊥⊥ P Y )GX̄
⇐ Z

(k)
j ̸⊥⊥ P∗ Y

(k)
i | Z(k)

i .
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Table 1: Each row corresponds to a different graph G considered in the proof for Theorem 4. The
second column depicts the necessary conditions for the validity of Z being an instrument, while the
third presents the independence constraint in G∗ – a checkmark (✓) indicates that an independence
hold. The remaining columns show the edges we change in the graphs.

Graph (Z ⊥⊥ d Y )GX̄
Zj ⊥⊥ d Yi | Zi Z,X Z,U X, Y Z, Y

0 ✓ Z → X Z → U X → Y Z → Y
1 ✓ Z → X X → Y Z → Y
2 Z → X U → Z X → Y Z → Y
3 ✓ Z → U X → Y Z → Y
4 ✓ X → Y Z → Y
5 U → Z X → Y Z → Y
6 ✓ Z → X Z → U Z → Y
7 ✓ Z → X Z → Y
8 Z → X U → Z Z → Y
9 ✓ Z → U Z → Y
10 ✓ Z → Y
11 U → Z Z → Y
12 ✓ Z → X Z → U X → Y
13 ✓ ✓ Z → X X → Y
14 Z → X U → Z X → Y
15 ✓ Z → U X → Y
16 ✓ ✓ X → Y
17 U → Z X → Y
18 ✓ Z → X Z → U
19 ✓ ✓ Z → X
20 Z → X U → Z
21 ✓ Z → U
22 ✓ ✓
23 U → Z
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