Published as a conference paper at ICLR 2026

AuTOoQD:
AUTOMATIC DISCOVERY OF DIVERSE BEHAVIORS
WITH QUALITY-DIVERSITY OPTIMIZATION

Saeed Hedayatian! & Stefanos Nikolaidis!*
!'University of Southern California

2 Archimedes Al

{saeedhed, nikolaid}Qusc.edu

ABSTRACT

Quality-Diversity (QD) algorithms have shown remarkable success in discovering
diverse, high-performing solutions, but rely heavily on hand-crafted behavioral
descriptors that constrain exploration to predefined notions of diversity. Lever-
aging the equivalence between policies and occupancy measures, we present a
theoretically grounded approach to automatically generate behavioral descriptors
by embedding the occupancy measures of policies in Markov Decision Processes.
Our method, AutoQD, leverages random Fourier features to approximate the Max-
imum Mean Discrepancy (MMD) between policy occupancy measures, creating
embeddings whose distances reflect meaningful behavioral differences. A low-
dimensional projection of these embeddings that captures the most behaviorally
significant dimensions can then be used as behavioral descriptors for CMA-MAE,
a state of the art blackbox QD method, to discover diverse policies. We prove that
our embeddings converge to true MMD distances between occupancy measures as
the number of sampled trajectories and embedding dimensions increase. Through
experiments in multiple continuous control tasks we demonstrate AutoQD’s abil-
ity in discovering diverse policies without predefined behavioral descriptors, pre-
senting a well-motivated alternative to prior methods in unsupervised Reinforce-
ment Learning and QD optimization. Our approach opens new possibilities for
open-ended learning and automated behavior discovery in sequential decision
making settings without requiring domain-specific knowledge. Source code is
available at https://github.com/conflictednerd/autogd-code.

1 INTRODUCTION

Traditional optimization methods, focused solely on finding optimal solutions, often fail to capture
the rich diversity of possible solutions that could be valuable in different contexts. Quality-Diversity
(QD) optimization addresses this limitation by generating collections of solutions that are both high-
performing and behaviorally diverse (Cully et al.| 2015b; [Pugh et al.| 2016). This approach has
demonstrated success across different domains including robot locomotion (Duarte et al., 2017;
Cully et al.} 2015a), game level and scenario generation (Gravina et al., 2019; Bhatt et al., [2022),
protein design (Boige et al.,|2023), and even image generation (Fontaine et al.,[2021).

Building on these successful applications, we focus on sequential decision-making tasks where we
seek diverse and high-quality policies, a setting commonly referred to as Quality-Diversity Rein-
forcement Learning (QD-RL) (Tjanaka et al.,|2022b; |[Nilsson and Cully, [2021}; [Pierrot et al., [2022).
Here, the importance of behavioral diversity stems from two key considerations. First, diverse poli-
cies provide robustness against changing conditions—when one policy fails, alternatives with differ-
ent behavioral characteristics might succeed. Second, diversity is crucial for open-ended learning,
where the goal extends beyond solving predefined problems to continually discovering novel capa-
bilities and behaviors (Lehman and Stanleyl, 2011)).

A fundamental limitation of QD algorithms, particularly challenging in such tasks, is their reliance
on hand-crafted behavior descriptors (BDs). Behavior descriptors are functions that map policies to

https://github.com/conflictednerd/autoqd-code

Published as a conference paper at ICLR 2026

A,b l
, -~ - - -~ S A N , T T T T T T T T N
\ \
[|
| é(s,a) desc() |
| (spar) | — > — B I | |
| '©
|
| |
_ I l
| T J(m) = Zrt J() | 5 —J
| ; R L o
| | by € |
| |
| |
7N I |
| Sample 7 Update CMA-ES | | |
! @ % “ ! |
1
\ ~__ ; \ /
S - N -

~_~ o e o — — — — — — _ — o —_— — — — -

Figure 1: Overview of AutoQD. Left: Policy parameters are sampled from a CMA-ES instance and
evaluated in the environment. The collected trajectories are embedded via a random Fourier features
map ¢ to produce the policy embedding ¥™, which is then projected to a low-dimensional descriptor
using the affine map Ay™ + b. The policy is added to the archive based on its return J(7) and
descriptors desc(7), and CMA-ES updates its distribution based on the improvement made to the
archive. Right: Periodically, embeddings from the archive are used to update A and b via cwPCA.

low-dimensional vectors characterizing their behavior. For example, when designing controllers for
a bipedal robot, researchers typically define BDs based on foot contact patterns, which allows them
to characterize behaviors such as walking, jumping, and hopping. Hand-crafting BDs require sub-
stantial domain knowledge, which becomes increasingly difficult as task complexity grows. Further-
more, they constrain the diversity of discovered policies to variations along predefined dimensions,
potentially missing interesting behavioral variations (Grillotti and Cully, [2022a)).

In this paper, we present a theoretically principled approach to automatically generating behavior de-
scriptors. Our method is based on the concept of occupancy measures, which captures the expected
discounted visitation frequency of state-action pairs when following a policy. Crucially, under stan-
dard assumptions in fully-observable environments, there exists a one-to-one correspondence be-
tween policies and their occupancy measures (Puterman 2014}, making them ideal representations
of behaviors as they fully characterize a policy. This differentiates our method from prior work
that use human data (Ding et al., 2024)) or proxy objectives such as state reconstruction (Grillotti
and Cullyl 2022a), to define BDs, and a wide range of other methods from the RL literature that
typically use information theoretic objectives to train a fixed number of policies to be maximally
different or distinguishable (Eysenbach et al., 2019; Kumar et al.| [2020).

Our key insight is that by embedding occupancy measures into finite-dimensional vector spaces
where distances approximate the Maximum Mean Discrepancy (MMD) between the occupancy
measures, we can create behaviorally meaningful representations. These representations can then
be further reduced to lower-dimensional behavior descriptors for QD optimization. Our approach,
AutoQD, addresses several limitations of existing QD methods. It does not require manual specifica-
tion of behavior descriptors and can potentially discover unexpected behavioral variations. Further-
more, when paired with a state-of-the-art blackbox QD algorithm, it enables us to discover thousands
of policies covering a continuous behavior space.

Our main contributions are: (1) Developing a method to efficiently embed occupancy measures
of policies from sampled trajectories (Sec. [3.1). (2) Formally showing how the distances between
these embeddings approximate the MMD distances between occupancy measures (Theorem [I). (3)
Proposing an iterative algorithm that alternates between QD optimization and behavior descriptor
refinement (Sec. 3.2). (4) Demonstrating empirically that our approach discovers diverse, high-
performing policies without requiring hand-crafted descriptors (Sec.).

Published as a conference paper at ICLR 2026

2 BACKGROUND

2.1 MARKOV DECISION PROCESSES AND POLICY OPTIMIZATION

Following the established terminology in RL, we consider Markov Decision Processes (MDPs),
defined by the tuple (S, A, P, R,~), where S is the state space, A is the action space, P(s'|s, a) is
the transition probability, R(s,a) is the reward function, and v € (0, 1) is the discount factor. A
policy 7 is a function of the state, either deterministic (7 : S — .A) or stochastic (7 : S — A(A))
representing an agent. The goal in RL is to find a policy that maximizes the expected discounted
return J () = E[> 12 o V' R(st, at)].

A key concept in RL is the occupancy measure, which arises naturally when studying solutions to
MDPs. For a policy T, its occupancy measure p™ is a distribution over state-action pairs defined as:

p(s,8) = (1—7) S 7'P(S, = s, 4 = alr) ()

t=0

where P(S; = s, A; = a|m) is the probability of visiting state-action pair (s, a) at time ¢ when fol-
lowing policy 7. Intuitively, p™ (s, a) represents the discounted visitation probability of (s, a) under
policy 7. The occupancy measure is fundamental to reinforcement learning as many quantities of
interest, including the expected return J(7), can be expressed as expectations under this measure.
Importantly, under standard assumptions in fully-observable MDPs, there exists a one-to-one corre-
spondence between Markovian policies and their occupancy measures (see Sec. 6.9.1 of [Puterman
(2014)), making occupancy measures a complete characterization of policy behavior.

2.2 QUALITY-DIVERSITY OPTIMIZATION

Quality-Diversity (QD) optimization aims to discover a collection of solutions that are both high-
performing and behaviorally diverse. Unlike traditional optimization, which focuses on a single
optimal solution, QD maintains an archive A of solutions, each associated with both a performance
measure and a behavior descriptor. In QD reinforcement learning (QD-RL), a solution is the pa-
rameters of a policy, typically represented as a neural network. The performance of a policy is its
expected return, J(m) = E[>°,°,v" R(s¢, a¢)], which we refer to as the fimess. A behavior de-
scriptor is a function desc : I — BB that maps policies to a behavior space B C R¥. The goal of QD
optimization is to find, for each behavior vector b € B, a policy 7}, that satisfies desc(mp,) = b and
maximizes the objective among all such policies. In practice, the behavior space B is divided into
a finite number of cells, called an archive A with the QD goal being to fill each cell with the best
solution. This objective is formalized by the QD score, defined as QDScore(A) = >, J(7),
which is the total fitness of all policies in the archive. QD algorithms employ various optimization
techniques including random mutations (Cully et al.,|2015b), evolutionary strategies (Fontaine et al.}
2020), and gradient-based methods (Nilsson and Cully, 2021) to maximize this score.

In this work, we use CMA-MAE (Fontaine and Nikolaidis} [2023)), which applies the Covariance
Matrix Adaptation Evolution Strategy (CMA-ES) (Hansen, [2016) to QD optimization. CMA-MAE
runs multiple CMA-ES optimizers in parallel, each maintaining a Gaussian distribution over policy
parameters. In each iteration, we sample a batch of policies from the Gaussian, evaluate their fitness,
and map them into the archive via their behavior descriptors. The algorithm then ranks the policies
based on their improvement to the archive and uses this ranking to update the parameters of CMA-
ES. This iterative update implicitly performs natural gradient ascent on (a reformulation of) the QD
score (Fontaine and Nikolaidis, [2021]), enabling efficient optimization of both quality and diversity.

2.3 MAXIMUM MEAN DISCREPANCY

To quantify the differences between policy behaviors, we turn to the Maximum Mean Discrepancy
(MMD), a metric for comparing probability distributions. Intuitively, MMD measures the difference
of two distributions by comparing statistics of their samples. Given two distributions P and () over
a space X, and a feature map ¢ : X — RP, the MMD is defined as:

MMD(P, @) = [[Ex~p[¢(X)] = Ey~qls(Y)]l 2

Published as a conference paper at ICLR 2026

When the feature map corresponds to a characteristic kernel, such as the Gaussian kernel
k(z,y) = exp(—|lz — y||*/(20%)), MMD defines a metric over the space of probability distribu-
tions: it is non-negative, symmetric, satisfies the triangle inequality, and is zero if and only if the
distributions are identical. The MMD can be computed using the “kernel trick” (Scholkopf and
Smolal 2002) with a positive definite kernel k(x,y), allowing for implicit feature maps even in
infinite-dimensional spaces.

While there are different ways of measuring distances between distributions, we chose MMD due to
its desirable properties that allow us to obtain embeddings of the distributions in a computationally
efficient manner. Notably, the MMD with a Gaussian kernel can be efficiently approximated using
random Fourier features (Rahimi and Recht| [2007), providing a finite-dimensional embedding that
preserves the geometry of the original kernel space.

3 METHOD

Our method, AutoQD, automatically discovers behavior descriptors for quality-diversity optimiza-
tion in sequential decision-making domains. The key insight is to use occupancy measures to char-
acterize policy behaviors, and then extract low-dimensional BDs that capture the main variations
in policy behavior. The method operates in three steps: (1) embedding policies into a space where
distances approximate behavioral differences, (2) extracting low-dimensional BDs from these em-
beddings, and (3) using these descriptors with a standard QD algorithm (CMA-MAE) to discover
diverse policies.

3.1 POLICY EMBEDDING VIA RANDOM FEATURES

K Y Aa- ﬁ
(s,2) ~ "
: T
) *ﬂ/\ -
_ @ (s)~p J -

4™ ~ MMD(p",)

v -

\ (

Figure 2: Overview of the proposed policy embedding. Each policy 7; induces an occupancy
measure p™* over state-action pairs. From sampled trajectories, a feature map ¢ embeds the policies
into a vector space. Theorem [I] guarantees that the Euclidean distance between embeddings approx-
imates the Maximum Mean Discrepancy (MMD) between the corresponding occupancy measures.

To explore diverse behavioral variations, we embed each policy into a finite-dimensional space
where Euclidean distances approximate the MMD between the occupancy measures. Since oc-
cupancy measures fully characterize policy behavior, and MMD with a Gaussian kernel defines a
valid metric over them, this distance provides a meaningful measure of behavioral similarity. The
challenge is that the Gaussian kernel corresponds to an infinite dimensional feature map (Scholkopf]
and Smolal, 2002). While the kernel trick allows pairwise MMD computation without explicitly con-
structing the features (Gretton et al.,[2012), it can only produce O(n?) distances and does not yield
explicit embeddings. To overcome this, we approximate the Gaussian kernel using random Fourier
features (Rahimi and Recht, 2007), which provide a D-dimensional mapping that approximates the
infinite dimensional feature space.

Concretely, given state s € S and action a € A, we define a D-dimensional random feature map

¢(s,a) = \/g [cos(w1 [s;a] + b1),...,cos(wh[s;a] + bp)], 3)

where w; ~ N(0,072I), b; ~ U(0,27), and [s; a] denotes the concatenation of state and action
vectors. The kernel width o determines the scale at which state-action pairs are considered similar.

Published as a conference paper at ICLR 2026

Consider a policy 7 with occupancy measure p™. With a slight abuse of notation, let ™ denote the
embedding of 7, defined as the empirical mean of the random Fourier features of n i.i.d. samples
from p™. Thatis, o™ = L >_; #(s],a]) where (sT,af),..., (s}, ay) are i.i.d. samples from p".
This embedding (which we refer to as policy embedding) approximates the expected feature map
under the policy’s occupancy measure. The /5 distance between embeddings of two policies ap-
proximates their behavioral difference as measured by MMD of their occupancy measures:

[¢™ — ¢™2| = MMD(p™, p2) 4)

The quality of this approximation is characterized by the following theorem:

Theorem 1 (MMD Approximation). For any two policies w1, o with occupancy measure p1, p2
and embeddings ¢1, ¢o estimated by taking the mean of the D dimensional random Fourier features
of n i.i.d. samples from each occupancy measure,

Pr||||¢1 — ¢2|l2 — MMD()y>§g <2 L0 (L ex bt 4 6e
1 2112 P1y P2 = 4 X 52 p 64(d+2))
S

where d is the dimension of state-action vectors and ¢ > 0 is a constant. A proof is provided in
Appendix[A]

This theorem establishes that the distance between our embeddings, ||¢1 — ¢2||, reliably approxi-
mates the true MMD between occupancy measures with high probability. Hence, the geometry of
occupancy measures is captured by their embeddings. The approximation error is controlled by the
number of samples n and the embedding dimension D. Importantly, the state-action dimension d ap-
pears only once in the denominator of an exponential term, suggesting that scaling to more complex
domains requires D to grow only linearly with d.

We should also mention a subtlety regarding the practical computation of the policy embedding ¢™.
To compute ¢™, we need i.i.d samples from the occupancy measure p”. We can obtain these by
collecting n independent rollouts of 7 and selecting one state-action pair from each trajectory ac-
cording to a Geometric distribution with parameter 1 — . However, this leads to very inefficient
use of the collected data as it discards all but one transition from each trajectory. Therefore, in
practice, we use " as defined in Eq. [6] instead of ¢™ as the policy embedding. Intuitively, this is
justified by noting that ¢)™ has the same expectation as as ¢™ but leverages all collected transitions,
which potentially reduces the variance. More concretely, we show in Appendix [B|that the distance
between these 1 embeddings also approximates the true MMD, with an approximation error that
decays exponentially in n and D, albeit at a different rate. Consequently, we use)™ to denote the
policy embedding from this point on.

T
V=3 1) Y A6 al) ©
t=0

3.2 THE AUTOQD ALGORITHM

Given policy embeddings that encode behavioral differences, we project them into a low-
dimensional space (with £ < D dimensions) to serve as behavior descriptors for QD optimization.
As explained in Sec. this is needed because QD algorithms discretize each dimension of the
behavior space, yielding an archive that grows exponentially with dimension. We perform this pro-
jection using an affine transformation desc(m) = Aw™ + b. The parameters of this transformation,
A € R**P b ¢ R¥, are derived by performing Calibrated Weighted PCA (cwPCA), on the embed-
dings of policies in the archive. cwPCA makes some small modifications to PCA (F.R.S.|[1901)) to
make it more suitable for the specification of behavior descriptors. In particular, it applies PCA to
policy embeddings after weighting them by their fitness, so that better policies have greater influence
on the principal directions. This biases the components toward capturing behavior variation among
better policies, encouraging exploration among high-quality behaviors. Following this, we apply
a simple calibration step: we scale each output axis so that most projected embeddings lie in the
range [—1, 1]. This ensures stable and fixed archive bounds throughout the algorithm. Appendix
provides full details, including the precise form of the affine map, additional motivation, and an
ablation study on the effect of the weighting mechanism.

Published as a conference paper at ICLR 2026

Putting these pieces together, Algorithm [T] presents our method in its entirety. AutoQD combines
the BDs described above with CMA-MAE to discover diverse and high-performing policies. It
alternates between: (1) using the current descriptors to discover diverse policies with QD optimiza-
tion, and (2) refining the descriptors based on the expanded archive of policies. For clarity and
conciseness, Algorithm abstracts the internal mechanics of CMA-MAE, omitting details of its ini-
tialization and update step. Detailed pseudocodes for these components are provided in Appendix[D}

Algorithm 1 AutoQD

1: Input: MDP (S, A, P, R,~), embedding dimension D, behavioral descriptor dimension k, number of
iterations n, Update schedule {¢1, ¢2,...}
2: Output: Archive of diverse and high-performing policies A
3: Initialize:
CMA-MAE archive and parameters: A, QDState < CMA_ MAE_Init (k)
Affine map parameters: A, b

4: Sample random features {w; }22; ~ N (0,0 ~2I) and offsets {b; }22; ~ 1(0, 27)

5: fort € {1,2,...,n} do

6: ift € {t1,t2,...} then > Time to update descriptors
7: U=[yp™, ..., "] form; € A > Policy embeddings as defined in Eq. [f]
8: A,b < cwPCA(T, k)

9: Update behavioral descriptors: desc(w) = AyY™ + b

10: end if

11: A, QDState « CMA_MAE_Step (A, QDState, desc) > Perform one step of QD optimization
12: end for

13: return final archive A

4 EXPERIMENTS

To empirically validate the effectiveness of AutoQD in discovering diverse and high-performing
behaviors, we evaluated it on six standard continuous control tasks from the Gymnasium library
(Towers et al.l[2024)), including five from the widely-used MuJoCo benchmark suite (Todorov et al.,
2012). These environments are standard benchmarks for RL and remain challenging for many evo-
lutionary approaches, despite recent progress in the field.

4.1 BASELINES

We compare our method to five baselines that have demonstrated strong performance in prior work
and represent distinct strategies for obtaining diverse and high-quality populations.

RegularQD applies a standard QD algorithm using hand-crafted BDs specific to each environment.
Aurora (Grillotti and Cully} [2022a) learns a behavior space by training an autoencoder on the vis-
ited states and uses the latent encoding of the last state in a rollout of the policy as the BD.
LSTM-Aurora (Chalumeau et al.,|2023) extends AURORA by using LSTMs to encode full trajec-
tories and using the hidden state of the encoder LSTM as the behavioral descriptor.

DvD-ES (Parker-Holder et al.,|2020) employs evolutionary strategies to jointly optimize a popula-
tion of policies for both task performance and diversity.

SMERL (Kumar et al.| 2020) is an RL-based algorithm that trains a skill-conditioned policy using
Soft Actor-Critic (Haarnoja et al.,|2018)) and uses an additional reward derived from a discriminator
to encourage diversity among skills.

We use CMA-MAE (Fontaine and Nikolaidis| [2023) for all QD methods due to its simplicity and
robustness across tasks. Additionally, following/Choromanski et al.| (2018]), we use Toeplitz matrices
to parameterize the policies for these methods to reduce parameters and improve the performance of
CMA-MAE. The full set of hyperparameters and more discussion about the implementation details
are provided in Appendix [E]

4.2 EVALUATION METRICS

To ensure a fair comparison, we employ three main metrics: the Ground-Truth QD Score (GT QD
Score), the Vendi Score (VS), and the Quality-Weighted Vendi Score (qVS).

Published as a conference paper at ICLR 2026

Table 1: Comparison of AutoQD and baseline methods across six environments. Each environment
is evaluated using GT QD Score (QD) reported in units of 10* for readability, qVS, and VS metrics.
Reported values are the mean + standard error over evaluations with three different random seeds.
Higher values indicate better performance for all metrics.

Metric AutoQD RegularQD Aurora LSTM-Aurora DvD-ES SMERL
Ant

QD (x10% 36143+ 2.17 182.58 +£2.53 5.57 +1.48 19.24+1.1 0.294+0.1 1.02 £0.23
qVSs 60.23+ 94 39.35+3.99 0.56 +£0.01 1.11+041 0.49+0.00 0.97+0.15
VS 72.374+10.63 39.49+3.93 1.11+0.01 1.9 £0.54 1.00+0.00 1.29+0.18
HalfCheetah

QD (x10%) 30.78 £ 2.72 24.91 +3.43 11.35 +4.69 11.38 +2.02 0.85+0.23 1.61+0.37
qVSs 1.35+0.6 2.07 +£0.13 2.39 +0.42 1.71+0.21 1.15+0.09 1.78 £0.51
VS 5.29 + 1.59 3.44+0.34 5.8 +0.81 4.83 +£0.16 1.19+0.11 3.55 £ 0.56
Hopper

QD (x10%) 1.84 +0.29 1.2 +£0.03 1.06 + 0.09 1.36 £0.01 0.56 £0.18 0.97+£0.15
qVSs 1.94 +0.04 1.35+0.05 0.66 4+ 0.09 0.36 +0.08 0.9 +£0.32 1.81+0.22
VS 45 +0.2 2.85+0.04 2.67 £0.09 2.13£0.29 1.27+0.13 3.34+0.24
Swimmer

QD (x10%) 21.31 +4.57 11.09 £ 0.08 8.05 + 0.58 10.26 £0.72 0.22+0.02 0.02 £ 0.00
qVs 6.04 + 0.66 3.17+0.19 3.09 +0.15 3.82+0.77 1.16 £0.1 0.24 + 0.06
VS 16.92 + 3.68 4.67+0.35 6.75 +0.25 7.21 £1.95 1.2 +£0.13 216 £0.57
Walker2d

QD (x10%) 18.36 + 2.58 11.39 + 0.55 7.71+1.26 12.99 + 0.77 0.61+0.11 1.17+0.14
qVSs 7.22 £ 2.08 9.08 +£0.53 1.11 +0.08 2.12 +£0.07 1.47+£0.26 2.74+0.42
VS 8.4 +3.2 10.17+0.89 2.5 £0.13 4.17+0.47 1.58£0.29 3.2 +0.17
BipedalWalker

QD (x10%) 6.09 + 0.22 1.81 +0.02 3.0 £0.2 3.36 + 0.08 0.09+0.03 0.14+0.01
qVs 5.16 £0.17 0.81 +0.02 1.12+0.08 1.67+0.34 1.03+£0.02 2.11+0.27
VS 12.17 +£0.52 1.57 +0.03 2.88 +£0.21 3.36 +0.46 1.06 £0.00 5.54 +£0.42

GT QD Score is the QD score of a population when its solutions are inserted into an archive that
uses hand-designed BDs. It evaluates the quality and diversity of a population using expert-defined
behavior spaces. These are the same BDs that the RegularQD baseline uses and are commonly em-
ployed in prior work. Vendi Score (VS) (Friedman and Dieng|2023) quantifies a population’s diver-
sity based on pairwise similarities between their occupancy embeddings. Given a population of size
n and a positive-definite kernel matrix iK' € R™*" where K;; € [0, 1] is the similarity of the -th and
j-th members of the population, the Vendi Score is defined as VS(K) = exp (— Yoy Ailog)\i) ,
where A1, A, ..., \, are the normalized eigenvalues of K (i.e., they sum to one). Importantly, VS
measures the effective population size and enables comparison between populations of varying sizes,

as is the case with our baselines. Lastly, Quality-Weighted Vendi Score (qVS) (Nguyen and Di-
engl 2024) extends the VS by incorporating solution quality: qVS(K) = (1 3" | J(m;)) VS(K),

where J(7;) is the fitness of the ¢-th individual, 7;. Since, qV'S requires all objectives to be positive,
we scale all objectives to the [0, 1] range by adding a constant offset and dividing each return by the
highest mean return achieved by any of the algorithms in that environment, prior to computing qVS.

To construct the kernel matrix K used by VS and qVS, we use a Gaussian kernel applied to the inner
product of the Random Fourier Feature (RFF) embeddings of policies. Although these embeddings
are structurally similar to those used by AutoQD, we employ a separate, larger set of RFFs solely
for evaluation to ensure a fair comparison. Our choice of embeddings is motivated by our theoretical
results showing that distances between these embeddings asymptotically reflect distances between
policy occupancy measures. For a more detailed analysis of qVS and its theoretical properties, we
refer the reader to Nguyen and Dieng| (2024).

4.3 MAIN RESULTS: POLICY DISCOVERY

Table [T]compares AutoQD with the baseline algorithms across six tasks. For each combination, we
report the mean and standard error across three random seeds. AutoQD consistently outperforms

Published as a conference paper at ICLR 2026

Performance with Friction Changes Performance with Mass Changes

o 300
h)
E /\ Algorithm
= 200 ~— A\ — AutoQD
£ Aurora
) / —— LSTM-Aurora
g 100 / —— RegularQD
3 SMERL
é o| — DvD
=]
IS
=

-100

0 1 2 3 4 5 6 02 04 06 08 10 12 14 16 1.8
Friction Coefficient Mass Scale

Figure 3: Performance of the best policy found by each algorithm under changing friction (left) or
mass scale (right). The shaded regions represent the standard error across 32 evaluation seeds.

the baselines in most environments; The only exceptions being the Walker2d and HalfCheetah
environments, where the best qVS and VS are achieved by RegularQD and Aurora, respectively.

In HalfCheetah, AutoQD was able to discover diverse policies, but the policies tended to be rela-
tively low performing, reflected by its high VS and low qVS. Visual inspection showed that AutoQD
discovered many policies that moved forward by “sliding” via subtle joint movements. While these
behaviors were novel and diverse, they resulted in slow movement, and as a result, lower overall
rewards. In Walker2d, AutoQD seemingly overemphasized the role of the bottom-most (feet) joints,
missing out on interesting behavioral variations that could be achieved, for instance, by fully lifting
the legs. Nevertheless, AutoQD ranked second in this domain, outperforming all other baselines.
Appendix [F provides more fine-grained statistics and further analysis of AutoQD’s lower perfor-
mance in these two domains. Moreover, Appendix [J] presents qualitative analysis and visualizations
of the behaviors discovered by AutoQD.

4.4 APPLICATION: ADAPTATION TO DIFFERENT DYNAMICS

A key motivation for discovering diverse populations is adaptability, since a collection of behav-
iorally diverse policies is more likely to include one that performs well under altered environment
conditions. To test this, we evaluated populations from AutoQD and the baselines in the Bipedal-
Walker environment with two types of variations: scaling the friction coefficient and altering the
robot mass. Figure [3| shows the performance of each method’s best policy under these changes,
and their area under the curve (AUC) provides a scalar measure of robustness, with higher AUC
indicating greater adaptability. As Table [2] shows, AutoQD’s population maintains relatively high
performance across both variations, and achieves the highest AUC.

Beyond measuring the performance of the single best policy, it is also helpful to analyze the perfor-
mance of the top-performing subset and even the full distribution of returns across all policies within
a population. To quantify this, we counted the number of policies in each population that maintained
a significant fraction 0 < p < 1 of the performance achieved by the best overall policy found in
the original, unaltered environment. Specifically, if R represents the highest return achieved by any
policy across all populations in the original environment, we counted policies whose mean return
was at least Rp. Intuitively, this would reflect the number of policies that successfully adapt to the
environmental changes by maintaining a high reward.

Figure []illustrates the count of these “successful” policies across different friction coefficients for
two success thresholds: p = 0.9 and p = 0.7. At the strict threshold of p = 0.9, AutoQD’s
population consistently includes a larger number of successfully adapted policies compared to the
baselines. As we loosen the success criteria to p = 0.7, the number of successful policies increases
across the board. Notably, the population of LSTM-Aurora is shown to contain many successful
policies when the friction coefficient is in the range [1,3]. However, as the friction coefficient
increases further, both AutoQD and DvD-ES prove to be more capable of finding successful policies.
We observe similar general trends when varying the robot mass scale, with additional plots and the
full distribution of returns provided in Appendix [G] Overall, these findings show that AutoQD’s
generated population not only contains a single policy that can adapt to changing environmental

Published as a conference paper at ICLR 2026

p=09 p=0.7

— AutoQD — RegularQD
12 Aurora —— SMERL
— LSTM-Aurora —— DvD

—— AutoQD —— RegularQD
Aurora —— SMERL
—— LSTM-Aurora —— DvD

-
o
=3

80

60

40

20

Number of Successful Policies
Number of Successful Policies

o

0 1 2 3 4 5 6 0 1 2 3 4 5 6
Friction Coefficient Friction Coefficient

Figure 4: Number of successfully adapting policies in each population under changing friction. A
policy is considered successful if its mean return is at least Rp, where R is the highest overall return
achieved in the unaltered environment. Results are shown for two success thresholds: p = 0.9 (left)
and p = 0.7 (right).

Metric AutoQD RegularQD Aurora LSTM-Aurora DvD-ES SMERL
Friction AUC 1429.66 30.27 1309.41 1226.29 1204.03 496.23
Mass AUC 295.65 12.8 260.60 271.83 113.68 71.38

Table 2: Comparison of Area Under the Curve (AUC) for each algorithm across friction and mass
variations. Higher values indicate better adaptability to changing parameters.

conditions, but also includes many (either the most or the second most among the baselines) policies
that demonstrate substantial adaptability.

5 RELATED WORK

Quality-Diversity methods. Quality-Diversity algorithms discover collections of solutions that
balance performance and diversity across specified behavioral dimensions (Pugh et al.,|2016). MAP-
Elites (Cully et al., 2015b) pioneered this approach by maintaining an archive of solutions organized
by their behavioral characteristics. CMA-ME (Fontaine et al.l [2020) reformulated the QD problem
as single objective optimization, enabling the use of powerful blackbox optimization methods like
CMA-ES (Hansen, 2016) instead of relying solely on random mutations. The more recent CMA-
MAE (Fontaine and Nikolaidis, 2023)), which is used as the backbone QD algorithm in this paper,
further improved this method by introducing the idea of soft archives. More recently, gradient-based
variants like DQD (Fontaine and Nikolaidis, [2021)), PGA-MAP-Elites (Nilsson and Cully,2021) and
PPGA (Batra et al.| 2024)) have made further progress by leveraging policy gradients.

Unsupervised QD approaches. Most prior work such as Aurora (Grillotti and Cully, 2022a),
LSTM-Aurora (Chalumeau et al.l [2023), and TAXONS (Paolo et al.l [2020) learn behavioral de-
scriptors by training autoencoders on states, relying on the hypothesis that representations capturing
state information also reflect policy behavior. |Grillotti and Cully| (2022b) argues in favor of this ap-
proach by showing that the entropy of the encoded trajectories lower-bounds the entropy of the full
trajectories. However, their analysis assumes a discrete state space and does not formally link tra-
jectory entropy to policy diversity. In contrast, AutoQD’s embeddings are based on policy-induced
occupancy measures, offering a theoretically grounded representation of behavior.

Unsupervised RL for skill discovery. RL community has explored related approaches for learn-
ing diverse behaviors. DIAYN (Eysenbach et al., |2019) maximizes mutual information between
skills and states, encouraging skills to visit distinct regions of the state space without using reward
signals. DADS (Sharma et al.,2020) extends this by maximizing mutual information between skills
and transitions, favoring predictable outcomes. However, both methods ignore the task reward.

SMERL (Kumar et al., [2020) and DoMiNo (Zahavy et al., |2023) incorporate task rewards into di-
versity objectives. SMERL directly augments DIAYN’s objective with task rewards, while DoMiNo
frames the problem as a constrained MDP, maximizing diversity by encouraging distance between

Published as a conference paper at ICLR 2026

state occupancies of near-optimal policies. Both highlight the benefits of diverse, high-performing
policies but require a fixed number of skills and tend to scale poorly with skill count. In this work,
we compared our method with SMERL, as its open-source implementation is readily available.

Policy embedding and representation. In a middle ground between QD methods and unsuper-
vised RL approaches, DvD (Parker-Holder et al., 2020) characterizes policies through their actions
in (random) set of states, resembling the off-policy embeddings from [Pacchiano et al.| (2020). How-
ever, these embeddings lack the theoretical backing that our method provides. Furthermore, like
SMERL, their proposed algorithm requires specifying the number of policies in advance and faces
stability issues as this number increases. |Chen et al.[|(2023)) also share conceptual similarities with
our approach, though in the context of transfer learning. They learn a Q-function basis by training
policies on features from randomly initialized networks. In contrast, we use random Fourier features
to embed occupancy measures directly, enabling QD optimization without prior RL training.

Our use of Random Fourier Features (Rahimi and Recht, [2007) to embed occupancy measures con-
nects to theoretical work on kernel approximations (Rudi and Rosascol [2017; [Rahimi and Recht,
2008). A key insight of our approach is recognizing that these techniques can be applied to rep-
resent policy behaviors in a theoretically principled way. By embedding occupancy measures and
applying dimensionality reduction, we automatically generate behavioral descriptors that capture
essential policy characteristics without manual specification.

6 CONCLUSION

We introduced AutoQD, a novel approach for applying Quality-Diversity (QD) optimization to se-
quential decision-making tasks without handcrafted behavior descriptors. By embedding policies
based on their occupancy measures and projecting to a compact behavior space, AutoQD can be
integrated with CMA-MAE and achieves strong empirical performance.

Limitations. AutoQD has several limitations. First, in highly stochastic environments, accurately
estimating policy embeddings may require many trajectories, which reduces sample efficiency. Sec-
ond, as discussed in Appendix[F] when the behavior descriptor is low-dimensional, exploration may
concentrate on stable yet simple behaviors, hindering the discovery of more complex ones. In ad-
dition, the choice of kernel bandwidth influences the sensitivity of the embeddings; while we use a
fixed bandwidth in this work, dynamically adapting it during training could allow the embeddings to
better capture behavioral distinctions at different stages of learning. In this study, we used AutoQD
with CMA-MAE because of its simplicity and stability. However, AutoQD is in principle compati-
ble with any standard QD algorithm. As a result, it inherits the scalability challenges of existing QD
optimizers, particularly with large policy networks and high-dimensional behavior spaces (Tjanaka
et al.,|2023a)), but can also benefit directly from future advances in QD algorithm design. Finally, al-
though QD methods promote behavioral diversity, they may fall short of RL methods in pure reward
optimization. Nevertheless, we expect this gap to narrow as QD algorithms continue to improve.

Future Work. A promising direction involves integrating AutoQD with gradient-based QD meth-
ods such as PGA-ME (Nilsson and Cully, 2021)) and PPGA (Batra et al.,[2024). While these methods
typically offer better performance, their training objectives can become unstable as a result of the
iterative refinement of the behavior space by AutoQD. By identifying the sources of these insta-
bilities and mitigating them, future work can improve performance and increase sample efficiency.
Furthermore, extending AutoQD to environments with image-based observations is also a direction
worth pursuing and could unlock exciting capabilities for autonomous agents. Lastly, the policy em-
beddings produced by AutoQD could find applications beyond QD, including open-ended learning,
imitation learning, and inverse RL. They may also prove useful for analyzing learned policies, for
example through clustering and other forms of characterization.

7 ACKNOWLEDGMENTS AND DISCLOSURE OF FUNDING

We would like to thank Varun Bhatt, Sophie Hsu, Aaquib Tabrez, Bryon Tjanaka, and Shihan Zhao
for their feedback on a preliminary version of this work, as well as Saba Hashemi for assistance

10

Published as a conference paper at ICLR 2026

with the design of the visualizations. This work has been partially supported by the NSF CAREER
#2145077, NSF NRI #2024949 and the DARPA EMHAT project.

REFERENCES

Sumeet Batra, Bryon Tjanaka, Matthew Christopher Fontaine, Aleksei Petrenko, Stefanos Niko-
laidis, and Gaurav S. Sukhatme. Proximal policy gradient arborescence for quality diver-
sity reinforcement learning. In The Twelfth International Conference on Learning Represen-
tations, ICLR 2024, Vienna, Austria, May 7-11, 2024. OpenReview.net, 2024. URL https:
//openreview.net/forum?id=TFKIfhvdmZ.

Varun Bhatt, Bryon Tjanaka, Matthew Fontaine, and Stefanos Nikolaidis. Deep surrogate assisted
generation of environments. Advances in Neural Information Processing Systems, 35:37762—
37777, 2022. URL http://papers.nips.cc/paper_files/paper/2022/hash/
£649556471416b35e60aelde’/cle3b6l9-Abstract-Conference.htmll

Raphaél Boige, Guillaume Richard, Jérémie Dona, Thomas Pierrot, and Antoine Cully. Gradient-
informed quality diversity for the illumination of discrete spaces. In Proceedings of the Genetic
and Evolutionary Computation Conference, pages 119—128, 2023.

Félix Chalumeau, Raphaél Boige, Bryan Lim, Valentin Macé, Maxime Allard, Arthur Flajolet, An-
toine Cully, and Thomas Pierrot. Neuroevolution is a competitive alternative to reinforcement
learning for skill discovery. In The Eleventh International Conference on Learning Representa-
tions, ICLR, 2023. URL https://openreview.net/forum?id=6BH1ZgyPOZY.

Boyuan Chen, Chuning Zhu, Pulkit Agrawal, Kaiqing Zhang, and Abhishek Gupta. Self-supervised
reinforcement learning that transfers using random features. Advances in Neural Information
Processing Systems, 36:56411-56436, 2023.

Krzysztof Choromanski, Mark Rowland, Vikas Sindhwani, Richard Turner, and Adrian Weller.
Structured evolution with compact architectures for scalable policy optimization. In International
Conference on Machine Learning, pages 970-978. PMLR, 2018.

Antoine Cully, Jeff Clune, Danesh Tarapore, and Jean-Baptiste Mouret. Robots that can adapt like
animals. Nature, 521(7553):503-507, 2015a.

Antoine Cully, Jeff Clune, Danesh Tarapore, and Jean-Baptiste Mouret. Robots that can adapt like
animals. Nature, 521(7553):503-507, 2015b.

Li Ding, Jenny Zhang, Jeff Clune, Lee Spector, and Joel Lehman. Quality diversity through human
feedback: Towards open-ended diversity-driven optimization. In Forty-first International Con-
ference on Machine Learning, ICML 2024, Vienna, Austria, July 21-27, 2024. OpenReview.net,
2024. URL https://openreview.net/forum?id=9z1ZuAAb08.

Miguel Duarte, Jorge Gomes, Sancho Moura Oliveira, and Anders Lyhne Christensen. Evolution
of repertoire-based control for robots with complex locomotor systems. IEEE Transactions on
Evolutionary Computation, 22(2):314-328, 2017.

Benjamin Eysenbach, Abhishek Gupta, Julian Ibarz, and Sergey Levine. Diversity is all you need:
Learning skills without a reward function. In 7th International Conference on Learning Repre-
sentations, ICLR, 2019. URL https://openreview.net/forum?id=SJx63 jRgFm.

Matthew Fontaine and Stefanos Nikolaidis. Differentiable quality diversity. Advances in Neural
Information Processing Systems, 34:10040-10052, 2021.

Matthew Fontaine and Stefanos Nikolaidis. Covariance matrix adaptation map-annealing. In Pro-
ceedings of the genetic and evolutionary computation conference, pages 456—465, 2023.

Matthew C Fontaine, Julian Togelius, Stefanos Nikolaidis, and Amy K Hoover. Covariance matrix
adaptation for the rapid illumination of behavior space. In Proceedings of the 2020 genetic and
evolutionary computation conference, pages 94-102, 2020.

11

https://openreview.net/forum?id=TFKIfhvdmZ
https://openreview.net/forum?id=TFKIfhvdmZ
http://papers.nips.cc/paper_files/paper/2022/hash/f649556471416b35e60ae0de7c1e3619-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/f649556471416b35e60ae0de7c1e3619-Abstract-Conference.html
https://openreview.net/forum?id=6BHlZgyPOZY
https://openreview.net/forum?id=9zlZuAAb08
https://openreview.net/forum?id=SJx63jRqFm

Published as a conference paper at ICLR 2026

Matthew C Fontaine, Ruilin Liu, Ahmed Khalifa, Jignesh Modi, Julian Togelius, Amy K Hoover,
and Stefanos Nikolaidis. Illuminating mario scenes in the latent space of a generative adversarial

network. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 35, pages
5922-5930, 2021.

Dan Friedman and Adji Bousso Dieng. The vendi score: A diversity evaluation metric for machine
learning. Trans. Mach. Learn. Res., 2023. URL |https://openreview.net/forum?id=
g9 70HbQvk1.

Karl Pearson FR.S. Liii. on lines and planes of closest fit to systems of points in space. The
London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 2(11):559-572,
1901. doi: 10.1080/14786440109462720.

Damien Garreau, Wittawat Jitkrittum, and Motonobu Kanagawa. Large sample analysis of the
median heuristic. arXiv preprint arXiv:1707.07269, 2017.

Daniele Gravina, Ahmed Khalifa, Antonios Liapis, Julian Togelius, and Georgios N Yannakakis.
Procedural content generation through quality diversity. In 2019 IEEE Conference on Games
(CoG), pages 1-8. IEEE, 2019.

Arthur Gretton, Karsten M Borgwardt, Malte J Rasch, Bernhard Scholkopf, and Alexander Smola.
A kernel two-sample test. The Journal of Machine Learning Research, 13(1):723-773, 2012.

Luca Grillotti and Antoine Cully. Unsupervised behavior discovery with quality-diversity optimiza-
tion. IEEE Transactions on Evolutionary Computation, 26(6):1539-1552, 2022a.

Luca Grillotti and Antoine Cully. Discovering unsupervised behaviours from full state trajectories.
In ICLR Workshop on Agent Learning in Open-Endedness, 2022b.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International confer-
ence on machine learning, pages 1861-1870. Pmlr, 2018.

Nikolaus Hansen. The cma evolution strategy: A tutorial. arXiv preprint arXiv:1604.00772, 2016.

Saurabh Kumar, Aviral Kumar, Sergey Levine, and Chelsea Finn. One solution is not all you need:
Few-shot extrapolation via structured maxent rl. Advances in Neural Information Processing
Systems, 33:8198-8210, 2020.

Joel Lehman and Risto Miikkulainen. Enhancing divergent search through extinction events. In
Proceedings of the Genetic and Evolutionary Computation Conference, GECCO 2015, Madrid,
Spain, July 11-15, 2015, pages 951-958. ACM, 2015. URL https://doi.org/10.1145/
2739480.2754668.

Joel Lehman and Kenneth O Stanley. Abandoning objectives: Evolution through the search for
novelty alone. Evolutionary computation, 19(2):189-223, 2011.

Colin McDiarmid et al. On the method of bounded differences. Surveys in combinatorics, 141(1):
148-188, 1989.

Quan Nguyen and Adji Bousso Dieng. Quality-weighted vendi scores and their application to di-
verse experimental design. In Forty-first International Conference on Machine Learning, ICML
2024, Vienna, Austria, July 21-27, 2024, 2024. URL https://openreview.net/forum?
1d=gbD9MAc9p0.

Olle Nilsson and Antoine Cully. Policy gradient assisted map-elites. In Proceedings of the Genetic
and Evolutionary Computation Conference, pages 866—875, 2021.

Aldo Pacchiano, Jack Parker-Holder, Yunhao Tang, Krzysztof Choromanski, Anna Choromanska,
and Michael Jordan. Learning to score behaviors for guided policy optimization. In International
Conference on Machine Learning, pages 7445-7454. PMLR, 2020.

Paolo Pagliuca, Nicola Milano, and Stefano Nolfi. Efficacy of modern neuro-evolutionary strategies
for continuous control optimization. Frontiers Robotics Al, 7:98, 2020. URL https://doi.
org/10.3389/frobt.2020.00098.

12

https://openreview.net/forum?id=g97OHbQyk1
https://openreview.net/forum?id=g97OHbQyk1
https://doi.org/10.1145/2739480.2754668
https://doi.org/10.1145/2739480.2754668
https://openreview.net/forum?id=gbD9MAc9p0
https://openreview.net/forum?id=gbD9MAc9p0
https://doi.org/10.3389/frobt.2020.00098
https://doi.org/10.3389/frobt.2020.00098

Published as a conference paper at ICLR 2026

Giuseppe Paolo, Alban Laflaquiere, Alexandre Coninx, and Stephane Doncieux. Unsupervised
learning and exploration of reachable outcome space. In 2020 IEEE International Conference on
Robotics and Automation (ICRA), pages 2379-2385. IEEE, 2020.

Jack Parker-Holder, Aldo Pacchiano, Krzysztof M Choromanski, and Stephen J Roberts. Effective
diversity in population based reinforcement learning. Advances in Neural Information Processing
Systems, 33:18050-18062, 2020.

Thomas Pierrot, Valentin Macé, Felix Chalumeau, Arthur Flajolet, Geoffrey Cideron, Karim Be-
guir, Antoine Cully, Olivier Sigaud, and Nicolas Perrin-Gilbert. Diversity policy gradient for
sample efficient quality-diversity optimization. In Proceedings of the Genetic and Evolutionary
Computation Conference, pages 1075-1083, 2022.

Iosif Pinelis. Optimum bounds for the distributions of martingales in banach spaces. arXiv preprint
arXiv:1208.2200, 2012.

Justin K Pugh, Lisa B Soros, and Kenneth O Stanley. Quality diversity: A new frontier for evolu-
tionary computation. Frontiers in Robotics and Al, 3:40, 2016.

Martin L Puterman. Markov decision processes: discrete stochastic dynamic programming. John
Wiley & Sons, 2014.

Ali Rahimi and Benjamin Recht. Random features for large-scale kernel machines. Advances in
neural information processing systems, 20, 2007.

Ali Rahimi and Benjamin Recht. Weighted sums of random kitchen sinks: Replacing minimization
with randomization in learning. Advances in neural information processing systems, 21, 2008.

Alessandro Rudi and Lorenzo Rosasco. Generalization properties of learning with random features.
Advances in neural information processing systems, 30, 2017.

Bernhard Scholkopf and Alexander J Smola. Learning with kernels: support vector machines,
regularization, optimization, and beyond. MIT press, 2002.

Archit Sharma, Shixiang Gu, Sergey Levine, Vikash Kumar, and Karol Hausman. Dynamics-aware
unsupervised discovery of skills. In 8th International Conference on Learning Representations,
ICLR, 2020. URL https://openreview.net/forum?id=HJgLZR4KvH.

Bryon Tjanaka, Matthew C. Fontaine, Julian Togelius, and Stefanos Nikolaidis. Approximating
gradients for differentiable quality diversity in reinforcement learning. In GECCO ’22: Genetic
and Evolutionary Computation Conference, Boston, Massachusetts, USA, July 9 - 13, 2022, pages
1102-1111. ACM, 2022a. URL https://doi.org/10.1145/3512290.3528705

Bryon Tjanaka, Matthew C Fontaine, Julian Togelius, and Stefanos Nikolaidis. Approximating
gradients for differentiable quality diversity in reinforcement learning. In Proceedings of the
Genetic and Evolutionary Computation Conference, pages 1102—-1111, 2022b.

Bryon Tjanaka, Matthew C Fontaine, David H Lee, Aniruddha Kalkar, and Stefanos Nikolaidis.
Training diverse high-dimensional controllers by scaling covariance matrix adaptation map-
annealing. IEEE Robotics and Automation Letters, 8(10):6771-6778, 2023a.

Bryon Tjanaka, Matthew C Fontaine, David H Lee, Yulun Zhang, Nivedit Reddy Balam, Nathaniel
Dennler, Sujay S Garlanka, Nikitas Dimitri Klapsis, and Stefanos Nikolaidis. Pyribs: A bare-
bones python library for quality diversity optimization. In Proceedings of the Genetic and Evo-
lutionary Computation Conference, GECCO °23, page 220-229, New York, NY, USA, 2023b.
Association for Computing Machinery. ISBN 9798400701191. doi: 10.1145/3583131.3590374.
URL https://doi.org/10.1145/3583131.3590374.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.

In 2012 IEEE/RS/J international conference on intelligent robots and systems, pages 5026—5033.
IEEE, 2012.

13

https://openreview.net/forum?id=HJgLZR4KvH
https://doi.org/10.1145/3512290.3528705
https://doi.org/10.1145/3583131.3590374

Published as a conference paper at ICLR 2026

Mark Towers, Ariel Kwiatkowski, Jordan Terry, John U Balis, Gianluca De Cola, Tristan Deleu,
Manuel Goulao, Andreas Kallinteris, Markus Krimmel, Arjun KG, et al. Gymnasium: A standard
interface for reinforcement learning environments. arXiv preprint arXiv:2407.17032, 2024.

Tom Zahavy, Yannick Schroecker, Feryal M. P. Behbahani, Kate Baumli, Sebastian Flennerhag,
Shaobo Hou, and Satinder Singh. Discovering policies with domino: Diversity optimization
maintaining near optimality. In The Eleventh International Conference on Learning Representa-
tions, ICLR, 2023. URL https://openreview.net/forum?id=k jkdzBW3b3p.

14

https://openreview.net/forum?id=kjkdzBW3b8p

Published as a conference paper at ICLR 2026

A PROOF OF THEOREM 1]

As our main result, we show that the /5 distance between our embeddings of occupancy measures
(estimated from samples) is a good approximation of the true MMD between occupancy measures.
Formally, let P and () be two occupancy measures defined over d dimensional state-action vectors.
Let k be the Gaussian kernel and ¢ : RY — RP be the random Fourier features that map state-action
vectors to a D dimensional embedding space. Given n samples {x1,- - x,} from P we define
¢p =1+ —>; ¢(x;) as the embedding of P. Similarly, we define ¢¢ as the embedding of @ obtained
from n samples Y1, ,Yn. The claimis that ||¢pp — ¢ |2 is a good approximation of MMD(P, Q).
The following are the steps we take to complete the proof.

1. We start by showing that with high probability MMD?(P, Q) and ||¢p — pg||3 are close to
one another. This is done in four steps where we
(a) show that ||¢pp — ¢¢l|3 is close to hm_f),

(b) show that MMT) is close to I\TI\HD

(c) show that m is close to MMD?,
(d) conjoin the previous three bounds to show that ||¢p — dg||3 is close to MMD?.

2. Then, we show that MMD(P, Q) is close to ||¢p — ¢ |2
Recall that from the definition of MMD and using the kernel trick we have
MMD?(P, Q) = Ex x~plk(X,X")] +Eyy~qlk(Y,Y")] = 2Ex~py~q[k(X,Y)]. (7)

Let us start from ||¢p — ¢¢]|3 and step-by-step get closer to the quantity above. We have
lor = doll3 = (6p — d@)" (0r — ¢q) ®
= $pdp + dH0Q — 20pdq- ©)
Examining each of these three terms more carefully, we see that

Shor = o 36w 0lei) = 55 Y66 + 5 Y 6 o), (10)

i#]

Shoa = 2 3 0w) o) = QZM%M b Y6 6, (D)
] i#j

Fhoa = 25 3 6 6(y). (12
4,J

Now, let 1\71\\41/) be defined as

MAND = =3 ()T Z Bu)To(yl) — = o) o), (13)
i=1

i=1 i=1

3
3\>—‘

where z;, z;’s are i.i.d. samples from P and y;, y, are i.i.d. samples from Q. From this, we can see

that the expectations of ||[¢p — ¢¢q||3 and MMD are quite similar and in fact, they are the same at
the limit of n — oo.

E[|l¢p — doll3] = (

Using the fact that, by the definition of random Fourier features, the entries of ¢(x) are bounded in

[—\/—‘% i} we see that the difference between E [||¢p — ¢||3] and E [I\M} is at most O(+).

Similarly, for any z, 2/, we see that ¢(z)T¢(z') € [—2,2]. Therefore, each of the n summands of
MMD take values in [—8, §].

n —

1) E [VINID)] + %EXNP,YNQ N6 2+ l6M?]. a4

15

Published as a conference paper at ICLR 2026

Now, an application of Hoeffding’s inequality yields that with probability at least 1 — 4:

log %

SIVD — & [V | < 16 252
2n

5)
Similarly, |||¢p — d¢q||? is a function of 2n independent samples and satisfies a bounded difference
property: changing a single sample changes its value by at most ¢ = 18 + & which is at most 2%
for n > 1. Therefore, an application of McDiarmid’s inequality (Mcharmld et al.| [1989) shows
that with probability at least 1 — 6,

I
6 — dl? —E [lér — doll?] | < 241 —28, (16)

n

SOl

Combining these with the triangle inequality and using the union bound we get that with probability

atleast 1 — 26
5 = log% 1
[l6p — élI* ~ MMD| < 48/ =% 4+ O(). (17)

For large values of n the first term on the right hand side dominates, therefore we can say that with
probability at least 1 — 26

—~— —logd
‘||¢P—¢Q||2—MMD‘ _0< ng) (18)
Therefore, for some non-negative constant ¢ we have
r [lpp — dol® — MMT)‘ > 5] < 2e7mee’ (19)

We now move on to the next part of the proof. Define MMD as follows.
— 1 I
MMngi;k(xh A E; (i,) Zk (i, i) - (20)

In words, MMD is just like MMD but with all of the inner products of random Fourier features
replaced by kernel operations. We can see that

S

VD — ST8D] = | 3~ [k o1 20) — o0:) (21 @)
=1

+ % > [k (i wi) = o(v)" o wi)] (22)

=25 o) - o) 000 | 3)

Next, we make use of the following lemma that guarantees the uniform convergence of Fourier
features stated in section 3 of Rahimi and Recht| (2007):

P [sup6(e)"0(0) — ko) > <] < 0 (G (~1 22 @

where d is the dimensionality of the state-action vectors. This implies that each of the terms (sum-
mands) in [23|is at most § with probability at least 1 — O (i—? exp (—%)) Substituting § in
and using the triangle inequality, we see that

n

—_— 1 e lne
MMD —-MMD| < =) —+—)» -
| | n;4+nz:4

3

S\I\D

(25)

Jk\m

i=1

16

Published as a conference paper at ICLR 2026

with probability at least 1 — O (i—g exp (7#84?2))) Therefore,

— —~— _ 2
Pr [|MMD ~ MMD| > g} <O (if exp (64(545—2)>) . (26)

This brings us to the third step of the proof where we connect MMD with MMD?(P, Q). This is
more straight forward to show, since each term in the former is the Monte Carlo estimate of the
corresponding expectation in the latter. More formally,

MMD — MMD?(P, Q) = (Z k (z;,25) — Ep[k(X, X’)]) (27)
+ (i Dk i vl) — Eqlk(Y, Y’)]) (28)
-2 <i Z k(zi,y:) — Epolk(X, Y)]> . (29)

Now note that in each of the three parentheses the first term is the empirical mean and the second
term is the true mean. Combining this with the fact that k(z, y) is always between 0 and 1, we can
apply Hoeffding’s inequality to each term to get a tail bound for each of them. For example, for the
first parenthesis we get

1
Pr(
n:

Zk(‘xlﬂx;) -]Ep[k(Xv X/)]
i=1

2
> i) < 2exp gg . (30)

Applying the triangle inequality and the union bound we get

—ne?

Pr [|1\71\H3 — MMD?(P,Q)| > 5} < Gexp 31)

Now, we can combine and to bound the difference between |[¢pp — ¢g|3 and
MMD? (P, Q). Note that by triangle inequality

lép — o3 — MMD?(P,Q)| < |l6 — do |3 — MMD| + [MMD — MMD| 4 [MMD — MMD?|.
(32)

Combining the bounds that we have for each of the terms on the right hand side, we get

Cee? 1 —De? ne?
Pr [[|l¢p — doll3 — MMD?*(P, Q)| > 3¢] < 2e +(9(exp (64(dj2)>> + 6e” 5.
(33)

This ensures that as we increase the number of samples n and the number of features D, the proba-
bility of error decays exponentially.

Lastly, we shall derive a bound on |||¢p — ¢ |2 — MMD(P, Q)|. Note that
6 = doll3 — MMD?(P, Q)| = [[ér — dqll2 = MMD(P, Q)| (lér — éqll2 + MMD(P, Q)

(34)
< |llop — doll2 — MMD(P,Q)|(2 + 2) 35)
< 4l|l¢p — doll — MMD(P, Q)|. (36)

Replacing this back into the bound in[33]we get

Pr ||l¢p — ¢gll2 — MMD(P. Q)\>§g < 2¢O 1 _—De* LG
P %l IR 22 “P\64(d + 2) '
(37

Which is the result that we sought. This ensures that as we increase n and D, the distances between
the embeddings of occupancy measures reflect the true MMD distance between them with a high
probability.

17

Published as a conference paper at ICLR 2026

B JUSTIFICATION FOR THE EMPIRICAL TRAJECTORY EMBEDDINGS

As mentioned in Sec.[3.1] we use ¢)™ defined in Eq. [f]to compute the policy embeddings in practice.
Here, we connect this choice to the MMD approximation Theorem|[T|to show that using the practical,
trajectory-based embeddings ¢ p and 1) in place of the theoretically analyzed occupancy-measure
embeddings ¢p and ¢¢ (used in Appendix is theoretically justified. To do so, we show that, with
high probability, the distance between 1)p and 1) is arbitrary close to that between ¢p and ¢¢ for
any two occupancy measures P, (). Hence, all of the results in the main proof remain valid when we
replace ¢™ with ¢™.

First, let us define the true mean feature vector as

Hp = E(s,a)~P[¢(s7 a)]7 (38)
where P is the occupancy measure of some policy 7. The analysis in Appendix[A]uses i.i.d. samples
x; ~ P and their empirical mean ¢p = % >, é(x;). However, in practice, we obtain feature
vectors z; from trajectories 7; by setting

zi= (1= Y _7'é(s;.ap), (39)
t=0
and using their empirical mean ¥p = % Sz
We will show that |||p — ¥gll2 — ||ép — ¢¢||2] is small with high probability. This guarantees that

replacing ¢ by % in the main proof does not affect any bounds, other than incurring an additional
approximation error that will be derived below.

First, let us prove two simple lemmas regarding ¢(z;) and z; vectors.

Lemma 1. Let z = (1 — 7)Y, v'¢(s¢, ar) be a feature vector obtained by sampling a trajectory
Sfrom occupancy measure P and let x = ¢(s, a) where the state action pair (s,a) is also sampled
from P. Then, Ep[z] = Ep|x].

Proof. Note that Ep[x] = pp by definition. Also,

Elz] = (1-7)) 7'El6(S:, Ar)] (40)
t=0
=> ¢(s,a)p"(s,a) (41)
= Hp- (42)
Therefore, z and x have the same expectation. O

Note (finite-horizon bias). The derivation above assumed an infinite-horizon setting (7" = co) so
that a trajectory feature 2°° = (1 —) >°,2 7 ¢ (ss, ar) satisfies E[z>°] = pp. In practice we use

truncated trajectories of length T' < co. Defining 27 = (1 —) ZtT:_Ol ~vtp(st, at), the error (bias)
between the infinite and finite-horizon features is

br =B[z®] —E[z"] = (1—7) Y+ El¢(S:, Ar))- (43)

Using ||#(s, a)||2 < V2 (following lemma) we obtain

Ibrlla < (1= +'V2=v2y". (44)

t=T

Thus, truncating trajectories at length 7" introduces a deterministic bias of at most v/2y7 in the
trajectory features. Consequently, when comparing two occupancy measures P, () the truncation
contributes at most ||br p|l2 + [|br.oll2 < 2v/277 to the total error and should be added to the
sampling and RFF approximation terms in the final probabilistic bound (i.e., should be added to the
%5 term in the final bound . For simplicity, we consider the infinite horizon setting throughout
the rest of the proof.

18

Published as a conference paper at ICLR 2026

Lemma 2. For any trajectory T and its corresponding feature vector z defined according to Equa-

tion all coordinates of z lie in [—%, \/—‘%]

Proof. This follows immediately by noting that each coordinate of ¢(s, a) is in the same range and
each coordinate of z is a geometric sum of these values. O

Hence, from the coordinate bound |¢;(s,a)| < /2/D we have ||¢(s,a)|2 < /2 and likewise
Izl < V2.

Now, we can define centered feature vectors U; := ¢(z;) — pup (for ¢-estimators) and U := z; —up
(for y-estimators). For either case, using the triangle inequality yields that

1Uill2 < llé(@a)llz + lpllz < 2v2, (45)
1U;ll2 < [l + llepl2 < 2v2 (46)
We can now apply the following inequality which follows from Theorem 3.5 of |Pinelis| (2012):
Lemma 3. Let Uy, ..., U, be independent, zero-mean random vectors in R satisfying ||U;|| <
2v/2 almost surely. Then, for any r > 0,
1 & —nr?
Pr |- Uilla =z 7| <2 . 47
r“ng;,m r] exo (7o) @)

Proof. Follows from applying Theorem 3.5 of |Pinelis| (2012) with increments d; = U;. Since
[Ujll2 < 2v/2, we have b2 < Y27, (2v/2)* = 8n. Taking D = 1, the theorem yields the bound
above. O

Setting r = 5 and using the centered feature vectors U; and Uy, this lemma shows that

S —'I'LEQ
— > —| <
P [lor — el > 5] < 2o (). @)
S —nEQ
— > —| < .
Pr [pr pplle > 2} < 26Xp(o) (49)

By union bound, the probability that both deviations exceed £/2 is at most 4 exp(—ne?/64). There-
fore, with probability at least 1 — 4 exp(—ne?/64),

lop — vplle < ll¢p — ppllz + lvp — ppll2 < e. (50

Similarly, we can apply the same bound independently for another occupancy measure Q. Applying
the union bound across both policies that with probability at least 1 — 8 exp(—ne?/64), both ||¢p —
Yp| and ||¢g — 1| are at most . But note that this would imply that

1Yp — ol = llop — 9qll| < (VP —) — (0p — dQ)l (51)
< e = dpll + vg — bl (52)
< 2e. (53)

Putting everything together, we have shown

Pr(||lép — ol — |6p — doll| = 2¢] < 8e™ ™ (54)
1

with ¢ = ;. Combining this with the bound of Eq. [37|using the triangle inequality, we can see that
||vp — 1/JQT|2 is close to MMD(P,), with high probability. More concretely, if we use a subscript
of 1 for the constant ¢ in Eq.[37)and a subscript of 2 for the one in Eq.[54]to avoid confusion, we see
that

11 ey e? 1 —De?
Pr {Wp —gll2 = MMD(P, Q)| > 45} < 2e +0 (52 exp (64(d+?))> (55)

7152
1 6e"F 4 8e e (56)

19

Published as a conference paper at ICLR 2026

This completes the proof and shows that embeddings 1™ used in practice enjoy the same asymptotic
guarantees as ¢". The only difference is that the approximation error is increased by an additional
term, which, crucially, also decreases exponentially as the number of samples n increases.

To conclude, let us briefly compare the embeddings resulting from ¢™ and /™. Both are obtained by
computing the empirical mean of RFF embeddings from n independently sampled trajectories. The
key difference lies in how they embed each trajectory: ¢™ embeds a single state-action pair, sam-
pled according to a geometric distribution, from each trajectory, whereas)™ computes a weighted
average of the embedding of all state action pairs within a trajectory. Both embeddings share the
same expectation, but 1) potentially exhibits lower variance because it averages the state-action
embeddings over the entire trajectory. This benefit comes at the cost of an added approximation
error term in the probabilistic bound obtained for /™. However, this term is very similar to the other
terms already present in the bound and, like them, decreases exponentially with n.

C CALIBRATED WEIGHTED PCA

Our calibrated and weighted PCA variant addresses three critical requirements for effective spec-
ification of behavioral descriptors in QD optimization: finding meaningful behavioral variations,
ensuring compatibility with QD archives, and adapting to the evolving population of solutions. Be-
low, we detail each component and its motivation.

Given policies {1, ..., 7} with embeddings ¥ = [¢)™, ... 1™]T and fitness scores (estimated
returns) { f1, ..., fm } our algorithm proceeds as follows:

Step 1: Score normalization. We normalize fitness scores to form a weight distribution:

fi = max (fi — min, J; 1) (57

max; f; — min; f;’ m

_
ijj

(58)

L%

where the weights sum to 1. The % term in Eq. ensures a minimum contribution from each
policy.

Motivation: While all policies provide information about the behavioral space, high-performing
policies represent more successful strategies that we want to emphasize when discovering diverse
behaviors. Low-performing policies often exhibit undesirable behaviors that should have less influ-
ence on our descriptors. The normalization ensures all policies contribute at least minimally while
prioritizing those with higher fitness.

Step 2: Weighted PCA. We compute:

m

= Z w;yp™ (weighted mean) (59)
i=1

1[)”" =™ — i (centered embeddings) (60)

YT = \/wﬂ/;’” (weighted centered embeddings) (61)

We perform SVD on the weighted centered embeddings to obtain the top % principal components
P ¢ RD*k,

Motivation: PCA offers several advantages for our context:

* It provides an affine transformation that preserves the geometry of the original embedding
space, maintaining relative distances between policies up to scaling and translation.

* Unlike non-linear dimensionality reduction techniques, it doesn’t introduce distortions that
could misrepresent behavioral similarities.

* It requires no additional hyperparameters or iterative training procedures.

» The orthogonality of principal components ensures that each behavioral measure captures
a distinct aspect of policy behavior.

20

Published as a conference paper at ICLR 2026

* By weighting the PCA computation, we focus on capturing variations among high-
performing policies.

Step 3: Calibration. We compute the 5th and 95th percentile quantiles of uncalibrated projections
desc(r) = PT(¢™ — i) along each dimension:

Qlow = quantile({désc(m>}, 005) (62)
Qhigh = quantile({desc(m;)},0.95) (63)

The final transformation maps [Qiow; Qnign) to [—1, 1]*:

2
$=—"— (64)
Qhigh — dlow
c=-1-5 qow (65)
A = diag(s)PT (66)
b=c—Au (67)

(Operations in the first two lines are element-wise)

Motivation: Calibration addresses a practical challenge in QD optimization:

* PCA naturally produces dimensions with different scales based on variance, which would
require dimension-specific archive bounds.

* Calibration standardizes all dimensions to a fixed range [—1, 1], allowing the QD algorithm
to use consistent archive bounds.

* This standardization enables more uniform coverage of the archive along each dimension,
preventing the QD algorithm from disproportionately exploring directions with naturally
higher variance.

» The 5th/95th percentile choice ensures that most solutions fall within the archive bounds.

Importantly, the calibration step preserves the affine nature of the transformation, combining the
projection and scaling into a single linear operation A with offset b. This results in a computation-
ally efficient mapping that maintains the essential geometric properties of the embedding space. The
final behavioral descriptor desc(m) = Ay™ + b adaptively identifies and scales the most signifi-
cant behavioral dimensions, focusing on variations among high-performing policies while ensuring
compatibility with fixed-bound QD archives.

We conclude this section by noting an important caveat regarding the weighting strategy in cwPCA.
In principle, weighting is designed to emphasize the contribution of high-performing solutions, guid-
ing exploration toward more promising regions of the behavior space. However, this mechanism can
sometimes be counterproductive by placing excessive emphasis on behaviors that are useful but ulti-
mately suboptimal. For example, in a robotics task, a simple stabilization strategy such as preventing
the robot from falling represents an accessible local optimum. While stabilization is beneficial in
the early stages, if more advanced locomotion patterns have not yet been discovered, the weighting
mechanism in cwPCA may disproportionately highlight variations of this basic strategy. This can
lead to the discovery of a diverse set of stabilization behaviors that remain confined to a narrow
and suboptimal region of the behavior space. Although this issue is less likely to happen in high-
dimensional behavior spaces, it can hinder the performance in constrained behavior spaces where
early suboptimal variations may be amplified and prematurely lead the search into a local optimum.

To assess the extent of this effect, we conducted an ablation study in the Walker2d environment,
comparing the performance of AutoQD with and without fitness weighting in PCA. Table [3] sum-
marizes the results of this ablation. While weighting slightly improved the performance across all
metrics, the difference were not statistically significant according to a double-sided Mann-Whitney
U test (p-value > 0.7), suggesting that the impact of weighting may vary case by case, depending
on the structure of the behavior space and difficulty of exploration.

21

Published as a conference paper at ICLR 2026

Table 3: Comparison of AutoQD with and without weighting. Reported values are mean =+ standard
error over evaluations with eight different random seeds.

Method GT QD Score (x10*) Mean Objective Vendi Score
AutoQD (with weighting) 17.74 + 3.85 1162.8 £116.8 8.35+4.14
AutoQD (w/o weighting) 17.74 + 3.51 1143.6 £83.8 7.67+3.32

D DETAILS OF CMA-MAE

Here we provide the pseudocode for both the initialization of CMA-MAE (Algorithm [2)) as well as
its update step (Algorithm [3). These were abstracted as function calls in Algorithm [I]in the main
paper for the sake of clarity.

In these pseudocodes, note that the internal parameters of CMA-ES include a Gaussian “search”
distribution that are used to sample candidate policy parameters (Line] of Algorithm [3) and are
updated through CMA-ES (Line[I7|of Algorithm[3). For a more detailed exposition of CMA-MAE,
we refer the reader to |[Fontaine and Nikolaidis|(2023)).

Algorithm 2 CMA MAE _Init

1: function CMA_MAE_In1T(k)
2: Input: Behavior space dimension &
Output: Empty archive A, Optimization state QDState
Initialize CMA-ES internal parameters: CMA_ES_State
Initialize an empty archive A & Uniform grid over [—1.2,1.2]"
for all cells e in A do
te < min_objective > Acceptance threshold
end for
9: QDState < (CMA_ES_State, {te }een)
10 return (A, QDState)
11: end function

AN AR

Algorithm 3 CMA MAE_Step

1: function CMA MAE_STEP(A, QDState, desc)
2: Required Hyperparameters: learning rate «, batch size A

3 fori=1,...,\do

4 Sample candidate: 6; ~ N (0qpstate, ZQDState)

5 trajectories <— collect_rollouts (6;)

6: f < mean_return (trajectories) > Fitness

7 Compute ¢ according to Eq. [6]from trajectories

8: BD « desc(%))

9: e < calculate_cell (A,BD) > Locate corresponding cell from the archive
10: A+ f—t. > Improvement over the cell’s threshold
11: if f > t. then
12: Replace the current occupant of cell e in the archive A with 6,

13: te — (1 —a)te + af
14: end if

15: end for

16: Rank 91 by Az

17: Adapt CMA-ES parameters based on improvement rankings A;
18: return updated S

19: end function

22

Published as a conference paper at ICLR 2026

E IMPLEMENTATION DETAILS AND HYPERPARAMETERS

E.1 ENVIRONMENTS

We use the latest versions of the environments available in Gymnasium (Towers et al., [2024) in our
experiments:

* BipedalWalker-v3,
e Ant-v5,

* HalfCheetah-v5,

* Hopper-v5,

e Swimmer-v5,

e Walker2d-v5.

E.2 NETWORK ARCHITECTURE

All QD-based methods (AutoQD, Aurora, LSTM-Aurora, and RegularQD) use identical policy ar-
chitectures: a neural network with two hidden layers of 128 units each and tanh activation functions.
These networks employ a Toeplitz structure, which constrains the weight matrices such that all en-
tries along each diagonal share the same value (Choromanski et al., 2018)). This constraint enforces
parameter sharing and reduces the search space.

SMERL uses a similar network architecture but with ReLU activations and without the Toeplitz
constraint. Since SMERL employs gradient-based RL optimization, the Toeplitz structure is not
necessary. We use ReLLU activations to keep consistency with the author’s hyperparameters and the
open source implementations.

DvD-ES uses the authors’ provided implementation, which employs MLPs with two hidden layers
of size 32.

E.3 QD ALGORITHM CONFIGURATION

All methods utilize the standard Pyribs (Tjanaka et al., |2023b) implementation of CMA-MAE
(Fontaine and Nikolaidis| 2023) as the underlying QD algorithm. They employ grid archives that
are discretized to 10 cells along each dimension and use 5 emitters with different initial step sizes of
{0.01 x 27}2_,. The rest of the configuration is presented below.

Table 4: Common QD algorithm parameters shared across all methods

Parameter Value
Number of CMA-ES Instances 5

Initial Step Size (o) {0.01 x 21}5_,
Batch Size 64
Restart Rule 100 iterations
Archive Learning Rate 0.01
Total Iterations 500
Evaluations per Policy 5

E.4 AutoQD

Our proposed method uses Random Fourier Features (RFF) to map trajectories/policies into em-
beddings and progressively refines a measure map during optimization using calibrated weighted
PCA to convert policy embeddings into low-dimensional behavior descriptors. The embedding map
normalizes the observations based on the trajectories that it observes throughout its lifetime.

The update schedule indicates the iterations at which the measure map is refined using the current
archive.

23

Published as a conference paper at ICLR 2026

Table 5: AutoQD-specific parameters

Parameter Value

RFF Embedding

Embedding Dimension 100

State Normalization True

Kernel Width V/state dim + action dim
Discount Factor () 0.999

Measure Map

Measures Dimension 4

Update Schedule [20, 50, 100, 200, 300]

E.5 AURORA

Aurora learns a behavioral characterization using an autoencoder that reconstructs states.

Table 6: AURORA parameters

Parameter Value
Encoder Architecture

Mapping S —R*
Hidden Layers [64, 32]
Latent Dimension 4
Decoder Architecture

Mapping R*— S
Hidden Layers [32, 64]
AutoEncoder Training

Max Epochs 50
Learning Rate 0.001
Batch Size 64
Validation Split 0.2
Early Stopping Patience 10
Update Schedule [20, 50, 100, 200, 300]

At each iteration, the autoencoder is trained for a maximum of 50 epochs on 80% of all data. A
validation loss is computed using the remaining 20% and if it does not decrease for 10 consecutive
epochs, the training can stop earlier.

E.6 LSTM-AURORA

This variant of AURORA uses an LSTM-based architecture to encode full trajectories. The encoder
maps sequences of states to hidden states. The last hidden state of a trajectory is mapped to a latent
vector (the behavioral descriptor). The decoder maps this latent back to a hidden state vector and
reconstructs the trajectory starting with this hidden state and using teacher forcing.

The trajectory sampling frequency of 10 means that every 10th state in a trajectory is used for
encoding, following the authors’ implementation.

E.7 REGULARQD

The baseline RegularQD method uses handcrafted behavioral descriptors specific to each environ-
ment. For all of the environments except Swimmer, these are the foot-contact frequencies which are
commonly used in literature. For Swimmer, we use three descriptors that measure angular span (i.e.,
how much the joints bend), phase coordination (i.e., how well the joints coordinate), and straightness
(i.e., how straight the trajectory is).

24

Published as a conference paper at ICLR 2026

Table 7: LSTM-Aurora parameters

Parameter Value
Encoder-Decoder Architecture

Type LSTM
Hidden Dimension 32
Latent Dimension 4
Hidden-to-Latent Map Type Linear
Latent-to-Hidden Map Type Linear
Teacher Forcing True
Trajectory Sampling Frequency 10
AutoEncoder Training

Epochs 50
Learning Rate 0.001
Batch Size 64
Validation Split 0.2
Early Stopping Patience 10
Update Schedule [20, 50, 100, 200, 300]

E.8 SMERL

Our implementation of SMERL is based on jan open source implementation, modified slightly to
make it compatible with the latest version of the environments and to add parallelization. Other than
increasing the size of network’s hidden layers (two hidden layers of size 128), doubling the number
of skills to 10, and increasing the total training steps to 1.6 x 107 total timesteps, we keep the default
hyperparameters.

E.9 DvD-ES

We use the DvD-ES implementation provided by the authros (link) with slight modifications to make
it compatible with the latest versions of the environments. Other than the number of policies (we
use 10) we keep the default hyperparameters.

E.10 EVALUATION

In Sec. .2 we stated that the Vendi Score (VS) relies on a positive-definite similarity kernel. For
this purpose, we use the Gaussian (RBF) kernel, defined for a pair of embeddings x and y as:

K =exp (—’ny—sz) (68)
To select an appropriate value of v, we adopt a variant of the median heuristic (Garreau et al.,|2017)),
which sets
In2

- 69
7= Tnedian (x; — x,]2)° (69)

where the median is computed over the pairwise squared distances between all policy embeddings.
This choice ensures that two embeddings separated by the median distance will have a similarity of
K = 0.5, offering an intuitive scaling of the kernel. To reduce computational overhead for methods
that generate a large number of policies, we randomly subsample up to 1000 embeddings when
computing the median distance.

Finally, we emphasize that this similarity kernel is distinct from the one used to construct the random
Fourier feature (RFF) embeddings described in Sec.

E.11 COMPUTATIONAL RESOURCES

All of our experiments were conducted on local machines with an AMD Ryzen Threadripper PRO
5995WX 64-Cores CPU, 64GB of memory and either an NVIDIA GeForce RTX 4090 or NVIDIA

25

https://github.com/Egiob/DiversityIsAllYouNeed-SB3
https://github.com/jparkerholder/DvD_ES/tree/master

Published as a conference paper at ICLR 2026

GeForce RTX 3090 GPU. Each training run for any of the algorithms took < 3 hours except the
experiments for the SMERL baseline which took around 1 day each. Furthermore, the evaluation of
each population took < 1 hours.

F ADDITIONAL RESULTS FROM EXPERIMENTS

The results in the main paper primarily focus on aggregate measures of quality and diversity, namely
GT QD Score and qVS. While these metrics capture the combined effect of quality and diversity,
they do not reveal how each algorithm manages the inherent trade-off between the two. Achieving
high diversity often comes at the expense of average quality, since generating novel behaviors re-
quires deviating from the “optimal” behavior. For example, in bipedal locomotion, behaviors such
as hopping on one leg or sliding forward are diverse but achieve lower quality compared to standard
two-legged walking, as they result in slower forward motion.

To better understand this trade-off, we compare the normalized mean quality and diversity across all
six evaluation tasks. Quality is measured as the mean fitness of all policies in a population, while
diversity is measured by the Vendi Score. Both values are normalized to [0, 1] per task to enable
cross-task comparison (raw values are reported in Table [8). Figure [5] visualizes the trade-off as a
scatter plot, with quality on the x-axis and diversity on the y-axis. Each point corresponds to the
outcome of an algorithm on one task, averaged over three evaluation seeds. Ideally, populations
would achieve both high quality and high diversity (top right corner). The diagonal line represents
a balanced 1-to-1 trade-off and points above it indicate more efficient quality-diversity trade-offs.

Several observations can be drawn from Figure [5] First, AutoQD achieves 5/6 points above the
diagonal, highlighting its effectiveness in balancing quality and diversity. The next-best method,
RegularQD, achieves 4/6, while no other baseline exceeds 2/6. Second, AutoQD tends to sacrifice
some quality to achieve higher diversity, often producing the most diverse populations. This sug-
gests that its learned behavior descriptors are particularly effective at capturing diverse behavioral
variations. By contrast, DvD-ES typically achieves the highest mean quality but shows very limited
diversity, with points concentrated in the bottom right.

101 ~ © e e [] [] []
S
N
S
o ~
N
S
0.8 @~ e
.
S
o
056 o ® @ Auoqp
e Y @ RegularQD
4 AN @® Aurora
4) N
g e O @ LSTM-Aurora
'504 PS @ . DVD-ES
44 Y S ® SMERL
[o
[AN
° o
02 (] ® \\Q
® N
o
N
® ® ~
N
w{ c@®@ ©) s
0.0 02 0.4 06 0.8 1.0
Quality

Figure 5: Quality-diversity trade-off of algorithms across domains. The x-axis shows normal-
ized mean fitness (quality) and the y-axis shows normalized Vendi score (diversity). Each point
corresponds to the outcome of an algorithm in one of the six domains. Points above the diagonal
line exhibit a more favorable trade-off of quality for diversity.

Fine-grained results. Table E]reports more detailed statistics for all methods: mean fitness, max-
imum fitness, Vendi Score, and coverage of the ground-truth archive (i.e., the number of occupied
cells in an archive with hand-crafted descriptors). While the first two metrics indicate quality and
the latter two indicate diversity, interpreting them in isolation can be misleading. For example, mean
objective tends to favor smaller populations (e.g., DvD-ES, SMERL) or those with correlated behav-
ior spaces (e.g., Aurora), as the fraction of high-performing policies in a large, independent archive

26

Published as a conference paper at ICLR 2026

decreases exponentially (see ablations in Appendix [H| for more empirical evidence). Similarly, GT
archive coverage is biased toward larger populations, since smaller populations may have too few
policies to fill the descriptor space uniformly.

Even with these caveats, several patterns can be observed. First, SMERL, as an RL-based method,
consistently achieves the highest maximum fitness in 5/6 tasks. This aligns with prior work (Tjanaka
et al.| 2022a)), since reward functions in continuous-control tasks are often shaped for RL optimiza-
tion, making them less suited to evolutionary strategies like CMA-MAE (Pagliuca et al., [2020).
That said, advances in QD algorithms are rapidly narrowing this gap (Batra et al., 2024). Second, in
HalfCheetah and Walker2d, the two domains where AutoQD underperforms compared to baselines,
the causes differ. In HalfCheetah, AutoQD produces populations with significantly lower mean fit-
ness. Rollout inspection revealed that many learned behaviors involved sliding close to the ground,
propelled by small, rapid leg movements. Although these policies were diverse (as reflected in both
Vendi Score and GT archive coverage), their quality remained too low to compete with the baselines.
In Walker2d, the opposite occurred: AutoQD achieved high mean fitness but underperformed Reg-
ularQD in terms of diversity. Here, AutoQD tended to focus on variations of gaits dominated by the
lower joints, while neglecting behaviors involving upper-body movement.

In both domains, the issue appears to be linked with early convergence to specific behavioral modes.
Sliding in HalfCheetah and lower-joint motions in Walker2d are highly stable and thus readily dis-
covered, making them likely attractors early on during training. Given that we restrict the learned
behavior space to a low-dimensional (4-d) subspace, it is plausible that only variants of these be-
haviors are captured, constraining further exploration. Future work may mitigate this by employing
higher-dimensional descriptors or pruning the learned descriptors, for example via extinction events
(Lehman and Miikkulainen, [2015]).

The last column of Table [§] shows the performance of a gradient-based QD algorithm, PGA-ME
(Nilsson and Cully} [2021)), when using ground truth behavior descriptors, similar to the RegularQD
baseline. The performance of this algorithm, in particular its ability to outperform RegularQD and
its high maximum objective value, serves to illustrate the potential of replacing CMA-MAE with
more powerful QD algorithms. As noted in the paper, combining AutoQD’s learned descriptors
with gradient-based QD methods such as PGA-ME is non-trivial. However, the results presented
here indicate strong potential for the development of such algorithms. One primary area where
AutoQD lagged behind some baselines is pure optimization capability, which manifested as lower
maximum policy performance in some domains. PGA-ME’s strong performance in this regard re-
inforces our hypothesis that this limitation can be addressed by replacing CMA-MAE with stronger
QD algorithms, highlighting a viable direction for future work.

G ADDITIONAL RESULTS FROM ADAPTATION EXPERIMENTS

Here, we provide further data and analysis derived from our adaptation experiments, discussed in
Section 441

Figure [0 is analogous to Figure [presented in the main paper and illustrates the number of poli-
cies that successfully adapt to changes in the robot mass scale. It reveals a similar pattern in that
AutoQD’s population consistently includes more successful policies under the strict threshold of
p = 0.9 and generally maintains the second-highest count (behind LSTM-Aurora) under the relaxed
threshold of p = 0.7.

We also include the full distribution of policy returns under five different friction coefficients and
mass scales in Figure [7]and Figure 8] respectively. To facilitate clearer comparison among the top-
performing methods, we exclude RegularQD and SMERL from these figures, as they consistently
exhibited poorer performance in this domain. These box plots show that AutoQD’s population
generally exhibits a lower mean return, suggesting that many of its policies fail to adapt to the altered
environmental conditions. Crucially, however, it also exhibits longer tails toward high returns,
indicating that it has discovered a number of policies that are exceptionally effective at adapting to
the environmental changes. This contrasts with, for instance, DvD-ES, which primarily displays
the inverse behavior. Policies found by DvD-ES maintain a relatively high mean performance but
exhibit much less variance and shorter tails. Consequently, while DvD-ES generally achieves the

27

Published as a conference paper at ICLR 2026

Table 8: Fine-grained results from the main experiments. Similar to the results presented in the
main paper, the reported values are the mean + standard error over evaluations with three different
random seeds.

Metric AutoQD RegularQD Aurora LSTM-Aurora DvD-ES SMERL PGA-ME
Ant

Mean Objective ~ 656.09 & 16.95 988.09 + 5.24 15.69 £ 11.69 112.27 + 88.69 —23.01 +3.59 509.20 + 121.00 1540.15 4 106.75
GT Coverage 2046.33 +4.84 918.00 £ 11.37 40.00 £ 12.06 124.67 £ 11.61 3.00 £ 1.00 6.00 £+ 1.53 185.00 £ 4.16
Vendi Score 72.37 £10.63 39.49 £ 3.93 1.11+£0.01 1.90 4 0.54 1.00 &+ 0.00 1.284+0.18 8.95 £ 1.50
Max Objective 1719.21 £ 73.15 1422.68 £ 46.59 1440.65 £226.10 1398.91 &+ 202.09 —9.00 £4.35 2481.71 638.22 3885.86 & 661.89
HalfCheetah

Mean Objective 903.35 £ 142.79 2526.13 & 294.52 1669.46 4 240.10 1422.47 4 204.38 4036.59 £ 70.11 2032.38 +401.47 3141.56 + 74.26
GT Coverage 237.67 £23.14 94.00 £ 2.65 66.33 £4.91 78.33 £5.36 2.00 £0.58 6.33 £ 1.45 368.00 £ 4.04
Vendi Score 5.29 £ 1.59 3.44+0.34 5.80 £0.81 4.83 £0.16 1.19+0.11 3.55 £ 0.56 5.07 £0.06

Max Objective

3392.38 + 564.68

4421.82 £ 370.81

4398.90 + 590.30

3843.73 £ 677.20

4314.53 £43.11

6280.03 4 623.47

7853.83 4 162.90

Hopper

Mean Objective 1002.51 £ 29.31 1105.31 £ 32.79 527.87 £ 65.83 321.75 £ 30.94 1615.54 +418.83 1302.92 4 229.27 2254.31 £ 23.40
GT Coverage 12.33 £ 0.67 9.67 £0.33 18.33+0.33 19.00 £ 0.58 3.33 £0.67 7.33£0.33 18.33+£0.33
Vendi Score 4.50 +0.20 2.8540.04 2.67 £0.09 2.13£0.29 1.27+0.13 3.344+0.24 3.23 £0.22
Max Objective 2018.32 £478.94 1992.65 £ 92.00 1234.09 +37.85 1344.32 £129.88 1816.53 £ 534.66 3087.78 + 92.50 3768.64 4 47.62
Swimmer

Mean Objective 131.60 4 12.82 240.70 £ 5.06 162.21 & 7.62 194.67 4= 14.52 345.95 £ 7.66 39.61 £1.41 242.26 £1.61
GT Coverage 1324.67 4 186.63 463.67 £5.78 446.67 £41.83 523.67 £51.54 6.33 £ 0.67 5.00 £ 0.58 571.00 £ 6.43
Vendi Score 16.92 & 3.68 4.67 £0.35 6.75 £0.25 7.21+1.95 1.20+0.13 2.16 £ 0.57 5.94 +0.43

Max Objective

359.76 + 0.85

349.12 +1.33

361.71+0.27

359.60 £ 0.96

356.65 £1.25

43.62 £ 0.65

355.89 £+ 1.36

Walker2d
Mean Objective 1173.78 +102.76 1150.78 + 64.45 519.84 £ 40.85 623.01 £ 80.49 1196.28 +18.53 1085.01 = 151.02 1747.65 £ 39.87
GT Coverage 156.67 & 25.78 91.33 £0.33 151.00 & 12.66 215.67 £+ 8.88 4.67+0.88 9.67 £0.33 319.67 £4.10
Vendi Score 8.40 £ 3.20 10.17+£0.89 2.50 £0.13 4.17+0.47 1.58 +0.29 3.20£0.17 9.46 £1.10
Max Objective 2278.29 & 315.46 2234.76 £ 203.43 1936.61 £ 398.75 2098.49 +223.70 1306.50 £ 40.28 3800.25 & 370.32 4645.52 £ 325.06
BipedalWalker
Mean Objective —33.18 £ 7.66 2.30£0.98 —47.79 £ 4.41 —8.74 £ 18.30 182.07 £+ 5.38 —51.42 £11.33 105.50 £+ 11.81
GT Coverage 332.33 +4.48 89.33 +0.88 202.67 +12.91 221.67 +8.09 2.33+0.88 9.33+0.67 240.67 + 8.84
Vendi Score 12.17+£0.52 1.57+0.03 2.88+0.21 3.36 + 0.46 1.06 £ 0.00 5.54 +0.42 4.17+0.06
Max Objective 239.43 +19.47 6.95+1.33 253.86 + 5.36 250.54 +11.63 196.44 + 4.66 190.52 + 46.35 331.99 £ 6.58
p=0.9 p=0.7

173 —— AutoQD —— RegularQD 173 —— AutoQD = RegularQD
£12 Aurora —— SMERL 2 100 Aurora —— SMERL
é ~—— LSTM-Aurora —— DvD é —— LSTM-Aurora —— DvD
€10 £ g0
g g
g8 2 60
3 3
5 6 5
S 4 s
P P
2. £ 20
£ 2 £
= =
0 Z 0

0.6 0.8 1.0 1.2 1.4 1.6 0.6 0.8 1.2 1.4 1.6

Mass Scale Mass Scale

Figure 6: Number of successfully adapting policies in each population under changing mass. A
policy is considered successful if its mean return is at least Rp, where R is the highest overall return
achieved in the unaltered environment. Results are shown for two success thresholds: p = 0.9 (left)
and p = 0.7 (right).

highest mean return in Figures[7]and[8] it contains fewer policies that are close-to-best, as evidenced
in Figures [[6] and 3]

We note that this distribution of returns is not unexpected: when a diverse collection of policies
is generated, it is natural that many of them will perform poorly when substantial changes are in-
troduced to the environment. However, the critical requirement is that a subset of these policies
must maintain relatively high performance despite the changes in dynamics. Indeed, our expecta-
tion from a diverse population is not overall robustness across all policies; rather, we seek to include
some policies that are significantly better than others at adapting to the given changes.

H EFFECT OF EMBEDDING AND BEHAVIOR SPACE DIMENSIONS

We perform two ablation studies to investigate how the dimensionality of (i) the behavior descriptors
and (ii) the random Fourier feature embeddings affects performance. All experiments are conducted
on the BipedalWalker environment using three different random seeds. We report the mean and
standard error (shown as error bars) for three key metrics:

28

Published as a conference paper at ICLR 2026

Algorithm
B AutoQD
W Aurora
I 1LSTM-Aurora
I DvD

250

[N)
=3
S]

150

Mean Return of Policies
S
(=}

o
)

Distribution of Returns

o
; |
0 ;
0.20

0.80 1.00

Friction Coefficient

2.00 4.00

Figure 7: Distribution of policy returns for populations generated by each algorithm, evaluated under
five different friction coefficients. Policies with negative returns are excluded.

5

o

o

Distribution of Returns

Algorithm
B AutoQD
W Aurora
BN LSTM-Aurora
I DvD

250 | o
. |3
& 200 °
S
~
o
© 150
g
5
<
= 100
©
O
E i
0.70

i

.90 1.20
Mass Scale

Lii

1.40

Figure 8: Distribution of policy returns for populations generated by each algorithm, evaluated under
five different mass scales. Policies with negative returns are excluded.

Effect of Embedding Dimension on Metrics

Mean Objective Vendi Score QD Score
4 70000
12 i\E/i\} 60000 i/k/*/{
10 50000
8 40000
6 30000
4 20000
2 10000
0 0
o0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000

Embedding Dimension

Embedding Dimension

Embedding Dimension

Figure 9: Ablating RFF embedding dimension on BipedalWalker. The plot report mean values over
3 random seeds with bars indicating standard errors.

29

Published as a conference paper at ICLR 2026

Effect of Behavioral Descriptor Dimension on Metrics

Mean Objective Vendi Score QD Score

150 12 60000
10 50000
100
40000

30000

Score

10000

8
6
4 20000
2
0

1.0 15 2.0 2.5 3.0 3.5 4.0 1.0 15 2.0 25 3.0 3.5 4.0 1.0 1.5 2.0 25 3.0 3.5 4.0
Descriptor Dimension Descriptor Dimension Descriptor Dimension

Figure 10: Ablating BD’s dimension on BipedalWalker. The plot report mean values over 3 random
seeds with bars indicating standard errors.

Mean Objective. The average of the objective (fitness) values across all policies found by the
algorithm with a given configuration. It represents the overall quality of discovered solutions.

Vendi Score. A measure of behavioral diversity. Recall that it can be interpreted as the effective
population size.

QD Score. The Ground Truth QD score introduced as in the main paper. It captures both the
quality and the human-interpretable diversity of the discovered policies.

Note that quality-weighted Vendi Score (qVS) used in the main paper is just the product of the mean
objective, normalized and scaled to be in [0, 1], with the raw Vendi score. Here we report the raw
Vendi score and the unnormalized mean objectives separately to provide a clearer picture of quality
and diversity independently.

For the behavior descriptors, we vary the dimensionality of the measure space from 1 to 4. Fig.
presents the results which show a consistent improvement in both the QD score and the Vendi score
as the dimensionality increases. In contrast, the mean objective value decreases with higher descrip-
tor dimensionality. This suggests that as the behavior space becomes more complex, the fraction of
high-quality solutions among all discovered solutions declines. This trend is intuitive: if we assume
that a fixed proportion ¢ € (0, 1) of behaviors along each axis are high-performing, then the overall
fraction of high-quality solutions decreases exponentially with the number of descriptor dimensions.
Additionally, lower-dimensional behavior spaces may be easier for the underlying CMA-ES opti-
mizer to search effectively for high-quality solutions.

For the embeddings, we vary the number of random Fourier features from 10 to 1000, evaluating
configurations with 10, 100, 500, and 1000 dimensions. Fig [presents the results which suggest
that performance is relatively robust to this hyperparameter. While our main experiments use 100-
dimensional embeddings, even with as few as 10 features, AutoQD achieves competitive perfor-
mance in terms of both quality and diversity.

I STABILITY OF LEARNED BEHAVIOR DESCRIPTORS
In this section, we examine the stability of the behavior descriptors (BDs) generated by AutoQD and
the relevant baselines.

AutoQD, along with other baselines that rely on BDs (RegularQD, Aurora, and LSTM-Aurora),
estimates the behavior of a policy by averaging the descriptor over multiple independently sampled
trajectories. More formally, the estimated descriptor is calculated as:

17 n
desc(m) = - Z desc(7;),
i=1

where 71, ..., T, are n trajectories sampled from the policy 7.

In our main experiments, we used n = 5 rollouts for all methods to estimate a given policy’s BD.
A descriptor function is considered “stable” if the variance of the descriptor output is low, meaning

30

Published as a conference paper at ICLR 2026

Swimmer Ant Walker2d
el g E ﬁ*T'
B |
1

1078

Descriptor Variance (Log Scale)

Hopper Bipedal_walker Halfcheetah

RERNE ++%%,T%
-

RegularQD AutoQD Aurora LSTM-Aurora RegularQD AutoQD Aurora LSTM-Aurora RegularQD AutoQD Aurora LSTM-Aurora

Descriptor Variance (Log Scale)

=
o
I
L

._.
15)
&

Figure 11: Distribution of variances of BDs assigned to 400 policies by different methods’ descriptor
function.

that different trajectories generated by the same policy are mapped to roughly the same behavior
vector. This stability is desirable as it allows for an accurate policy behavior estimate using only a
few sampled trajectories.

To investigate and compare the stability of the descriptor function learned by each method, we
randomly sampled up to 100 policies from the final archives generated by AutoQD, RegularQD,
Aurora, and LSTM-Aurora. We then collected 32 rollouts for each of these 400 policies. The
trajectories were subsequently encoded as descriptors using the trained descriptor function of the
four aforementioned algorithms. (For RegularQD, the descriptor function is hand-crafted rather
than learned.) Since different BDs may inherently have different scales, we scaled the generated
descriptors for each method to ensure they all lie within the range [0, 1]. Finally, we computed the
variance (across the 32 rollouts) of each policy’s embedding and plotted the distribution of these 400
variances.

Figure [T1] illustrates these distributions across all six domains. The results demonstrate that Au-
toQD’s descriptors are typically highly stable, achieving variances that are often orders of magnitude
lower than those of the other methods in most environments. This finding suggests that AutoQD can
reliably and with low variance encode a given policy’s behavior based on just a few rollouts.

To further validate this point, we conducted an ablation study in the BipedalWalker environment. We
compared the baseline version of AutoQD (which estimates descriptors using 5 rollouts) against two
variants that use fewer (n = 2) or more (n = 10) rollouts for the estimate. As shown by the results
in Table 9] increasing the number of rollouts to 10 yields only a marginal increase in performance,
and the overall differences between these variants are relatively minor. Therefore, based on the
experiments in this section, we can conclude that AutoQD’s embeddings are robust, allowing for an
accurate BD estimate using a small number of trajectories. This inherent stability enables AutoQD
to maintain good performance even in constrained settings where as few as two trajectories are used
to estimate the BDs.

31

Published as a conference paper at ICLR 2026

Table 9: Comparison of AutoQD’s performance when it uses different number of rollouts to estimate
the behavior descriptors of policies. Reported values are mean + standard error over evaluations
with three different random seeds.

Method GT QD Score (x10%) Mean Objective ~ Vendi Score
AutoQD (n = 2) 5.99 £ 0.52 —27.36 £2.91 10.42 +0.61
AutoQD (n = 5) 6.09 + 0.22 —33.18£7.66 12.17 +£0.52
AutoQD (n = 10) 6.12 +0.39 —22.214+3.18 12.46+1.01

J QUALITATIVE ANALYSIS OF BEHAVIORS

In this section, we provide visual examples of the diverse behaviors discovered by AutoQD across
different environments.

Since the learned behavior descriptors (BDs) generated by AutoQD do not necessarily align with
simple, pre-defined behavioral variations (e.g., they may capture complex combinations of varia-
tions), we adopted the following procedure to select a representative sample of the variety present
in the archive. First, we filtered the top 20% of best-performing policies from the final archive. We
then started by selecting the single best-performing policy and iteratively selected the policy that
was farthest (in AutoQD’s learned behavior space) from the current set of selected policies, adding
it to our selection pool. Using this procedure, we selected 10 diverse and high-performing policies
from AutoQD’s archive in each environment. We then collected rollouts from these policies and
manually inspected them to choose those that exhibited the most noticeable differences.

Figures [12] and [I3] showcase five distinct behaviors found in the Swimmer and BipedalWalker en-
vironments, respectively. Similarly, Figures and each showcase two behaviors from the
HalfCheetah and Walker2d environments. A brief description of these behavioral variations is pro-
vided below.

In the Swimmer environment, we observed multiple distinct locomotion strategies, including: (1)
Smooth forward movement using all joints in an S-shaped pattern. (2) Bending upwards to create
a U-shaped pattern followed by a burst of upward motion. (3) Bending downwards to create a N-
shaped pattern followed by a burst of forward motion. (4) Maintaining the body relatively straight
while moving forward in a downward trajectory. (5) Moving forward by sharply bending the head
and tail of the swimmer robot. Each row of Figure [I2]depicts 8 sequential frames illustrating these
five types of behavior.

From the BipedalWalker environment, we also selected five distinct behaviors: (1) Regular forward
motion characterized by smooth hopping. (2) Extending the front leg to take large steps forward.
(3) Sitting primarily on the back leg and crawling forward via small movements of the front leg.
(4) Sitting on the back leg and moving forward through sharper, more aggressive movements of
the front leg. (5) Standing tall and moving forward with minimal bending of the legs. These five
behaviors are depicted sequentially in Figure

We also include behaviors from the two environments where AutoQD did not achieve the highest
performance. In HalfCheetah, we showcase two behaviors where: (1) the cheetah moves forward
by taking large steps using the tip of its front leg, and (2) the head of the cheetah tilts slightly down-
wards such that a sizable part of the front leg makes contact with the ground during stepping. These
two behaviors are presented in Figure Overall, in this environment, the primary behavioral vari-
ation observed revolves around the frequency and speed of joint movements, rather than significant
variations in posture.

Lastly, Figure[I3|showcases two types of behaviors from Walker2d: (1) the robot keeps its legs close
to one another and moves forward by “tip-toeing”, and (2) the robot opens its legs widely and moves
forward primarily through movements of the bottom joints. As noted in the paper, most policies in
this environment rely heavily on movements from the bottom joints. While we do observe noticeable
differences in posture (such as having the legs open or closed, as shown in the two examples), none
of the policies appear to have learned to walk forward by taking large steps that coordinate the upper
and bottom joints.

32

Published as a conference paper at ICLR 2026

Figure 12: Demonstrating five different behaviors found by AutoQD in the Swimmer environment.

Figure 13: Demonstrating five different behaviors found by AutoQD in the BipedalWalker environ-

ment.

33

Published as a conference paper at ICLR 2026

Figure 14: Demonstrating two types of behaviors found by AutoQD in the HalfCheetah environ-
ment.

Figure 15: Demonstrating two types of behaviors found by AutoQD in the Walker2d environment.

K STATEMENT ON GENERATIVE Al USAGE

Generative Al tools were used as an aid to improve clarity and style in the writing of this paper.

34

	Introduction
	Background
	Markov decision processes and policy optimization
	Quality-Diversity optimization
	Maximum mean discrepancy

	Method
	Policy embedding via random features
	The AutoQD algorithm

	Experiments
	Baselines
	Evaluation metrics
	Main results: policy discovery
	Application: adaptation to different dynamics

	Related work
	Conclusion
	Acknowledgments and Disclosure of Funding
	Proof of Theorem 1
	Justification for the empirical trajectory embeddings
	Calibrated Weighted PCA
	Details of CMA-MAE
	Implementation details and hyperparameters
	Environments
	Network architecture
	QD algorithm configuration
	AutoQD
	Aurora
	LSTM-Aurora
	RegularQD
	SMERL
	DvD-ES
	Evaluation
	Computational resources

	Additional results from experiments
	Additional Results from adaptation experiments
	Effect of embedding and behavior space dimensions
	Stability of learned behavior descriptors
	Qualitative analysis of behaviors
	Statement on Generative AI Usage

