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Figure 1. An example of human motion generation in context. We propose a method able to generate realistic-looking motions that
interact with virtual scenes. In this example we take a scene from ScanNet [ I]. The motion can be controlled with semantic action/object
queries: here the human is first commanded ‘sit on table’, then ‘sit on couch’, and finally ‘lie on couch’. Purposer is a learning-based
probabilistic model that can work efficiently with diverse types of conditioning.

Abstract

We present a novel method to generate human motion to
populate 3D indoor scenes. It can be controlled with vari-
ous combinations of conditioning signals such as a path in a
scene, target poses, past motions, and scenes represented as
3D point clouds. State-of-the-art methods are either mod-
els specialized to one single setting, require vast amounts of
high-quality and diverse training data, or are unconditional
models that do not integrate scene or other contextual infor-
mation. As a consequence, they have limited applicability
and rely on costly training data. To address these limita-
tions, we propose a new method ,dubbed Purposer, based
on neural discrete representation learning. Our model is
capable of exploiting, in a flexible manner, different types
of information already present in open access large-scale
datasets such as AMASS. First, we encode unconditional
human motion into a discrete latent space. Second, an auto-

regressive generative model, conditioned with key contex-
tual information, either with prompting or additive tokens,
and trained for next-step prediction in this space, synthe-
sizes sequences of latent indices. We further design a novel
conditioning block to handle future conditioning informa-
tion in such a causal model by using a network with two
branches to compute separate stacks of features. In this
manner, Purposer can generate realistic motion sequences
in diverse test scenes. Through exhaustive evaluation, we
demonstrate that our multi-contextual solution outperforms
existing specialized approaches for specific contextual in-
formation, both in terms of quality and diversity. Our model
is trained with short sequences, but a byproduct of being
able to use various conditioning signals is that at test time
different combinations can be used to chain short sequences
together and generate long motions within a context scene.



1. Introduction

Generating realistic and diverse human motion is a decades-
old research problem [4, 5] but has gained traction in re-
cent years [3, 27, 34, 35, 61]. In this work, we propose
a learning-based model for motion generation that can be
controlled using various forms of contextual information
in order to navigate and interact with virtual scenes. In
practice and as illustrated in Figure 1, human motion is
strongly determined by several forms of context. Among
them are: scene geometry, semantics of the surrounding ob-
jects, past motion and target actions and poses. So far, al-
ready established approaches have focused on narrow sub-
sets of these. For instance, [27, 30] both condition on ac-
tions and past poses but do not consider scene or target
goals. To extend their applicability to VR/AR and other po-
tential areas, the generated motion needs to make sense for
a given scene. This requires taking into account past motion
[2,7, 15,56, 63] together with scene geometry [17, 52, 53].
However, human motion data in context is scarce; this hin-
ders the development of powerful conditional models.

In the PROX [16] dataset, the amount of human motion
data available together with detailed scene information is
two orders of magnitude smaller than AMASS [29]. The
lack of conditional data limits the expressivity of the mod-
els used and is not the regime in which recent deep learn-
ing methods excel. In that scarce data regime, existing
scene-conditioned methods rely on test time optimization
loops, which allow them to effectively take into account
scene boundaries, but affects the realism of the generated
motion [52, 53]. In contrast, we leverage the recent HU-
MANISE dataset [54] to learn scene interactions from the
data. We also use unconditional data from where we learn a
powerful motion prior.

We build our model on top of PoseGPT [27], itself based
on neural discrete representation learning [51]. Thus, in our
model, human motion is first mapped into an abstract dis-
crete feature space, without any conditioning. Any human
motion given as input can be represented as a trajectory in
that discrete latent space, i.e., a sequence of centroids. After
this, motion is modeled in a probabilistic manner, directly
in that latent space, by predicting latent trajectories in an
auto-regressive manner. At this stage, various forms of con-
textual information can be used to condition the model and
reduce prediction uncertainty. The latent trajectory is then
mapped back into a continuous motion representation and
latent trajectories are finally decoded into motion.

We propose a method that can take advantage of various
combinations of contextual information. We account for
three broad categories of contextual information, that can
be combined together arbitrarily. First, we use the scene
geometry. The scene is represented as a point cloud, en-
coded, and used to condition our generative model in la-
tent space to exploit this information. Second, we use past

observations and future targets. A limitation in existing
auto-regressive approaches is that they cannot easily be con-
ditioned on time-dependent future information, because of
their causal design. To remedy this, we propose a simple
and flexible architecture that allows us to effectively condi-
tion our model on future trajectories or randomly selected
future poses. Finally, we use semantic information. To
achieve semantic control, we condition the second stage
model on target poses which are generated using pairs of
actions and object labels as targets as proposed in [64].
This offers semantic control over the generated sequences.

By combining this with conditioning on the past, we are
able to chain multiple action/object targets together, which
offers even more flexible semantic control and allows us to
generate longer motion sequences, despite training on short-
term sequences (HUMANISE). For instance, one can gen-
erate long sequences with multiple actions at different lo-
cations in the scene (e.g. conditioned on an interaction with
nearby objects) while using a conditioning corresponding to
locomotion to navigate (i.e., move along a path in the scene
from this first object to this second object).

In summary, we present a model capable of leveraging
unconditional data together with combinations of contex-
tual information and generate motion to populate virtual
scenes. Our model (a) can leverage large amounts of un-
conditional data, (b) can adapt to various contexts and (c)
offers fine control on model outputs.

We train our auto-encoder on large-scale unconditional
data from the BABEL dataset [36] and our auto-regressive
component with various combinations of conditioning sig-
nals on the HUMANISE dataset [54] and further fine-tune
it on PROX [16]. To evaluate our approach, we mea-
sure sample quality and sample diversity, as well as our
model’s generalization capabilities following practices es-
tablished by existing work on uncontextualized motion gen-
eration [27, 34], inspired from the image generative model-
ing literature [0, 26, 31, 42]. We also evaluate the synthe-
sized motion’s coherence with the scene, namely physical
plausibility, using contact and non-collision scores [52, 62].
In this manner, we show that our proposed approach gener-
ates high-quality motions to populate virtual scenes. We
provide video results and code at the project page.

2. Related work

Human motion generation. The task of class-conditional
human motion synthesis was first tackled assuming cyclic
human actions such as walking [46, 50]. More recent
work have focused on adapting generative models to ac-
tion conditional 3D human motion generation [13, 34],
and some approaches have explored conditioning on past
poses [27, 30]. However, these methods do not condition on
contextual information about the scene, which limits their
applicability in practice. Another promising research av-
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enue to control generated motion is to condition the model
on high-level but detailed textual descriptions, as explored
in [1, 3, 12, 24, 25, 35, 40, 47, 48, 57] or audio represen-
tations [22, 23]. While these approaches offer fine-grained
control over the generated motions, they do not allow to
generate motions in a given environment.

Scene interaction synthesis. It was not until recent years
that the community focused its attention on estimating [ 10,

, 49] and generating [ 18, 58, 62] human poses taking into
account a 3D scene context. This was shown to improve
both 3D pose and motion estimations [16, 28, 38, 41, 59].
Most recently, COINS [64] propose a framework that adds
semantic control to this generation process. By augmenting
the PROX dataset [16] with action-object paired labels and
developing a specialized model, they generate semantically
coherent poses. Building on their work, we go beyond static
poses and propose a motion model that can be conditioned
on action object pairs.

Object-conditioned human motion generation. One ex-
isting line of work focuses on conditioning motion genera-
tion on contextual or interaction information, be it nearby
small [45, 55], medium [60] or dynamic [9] objects. In
these cases, emphasis is given to one single object at a
time. GOAL [45] and SAGA [55] focus on generating
whole-body motions to match a final hand-grasping pose.
COUCH [60] on the other hand focuses only on chairs, thus
capturing human-chair interactions. By contrast, we focus
on modeling more general interactions between human mo-
tion and an unconstrained number of objects within a scene.

Scene-conditioned human motion generation. Up un-
til now, few works have fully studied scene-conditioned
human motion generation [17, 44, 52, 53, 61]. Neural
State Machine [44] generates different modes of motion that
can be blended between different actions while interacting
with the environment. This model allows excellent motion
control while providing smooth transitions between modes.
However, this method was designed for simple hand-crafted
environments and relies on a deterministic model, limiting
its ability to produce diverse motion and to model the full
extent of human motion. Recently, [52] tackles the task of
generating long-term motion given a 3D scene and start/end
goal positions using a hierarchical framework that decom-
poses the task by synthesizing shorter motion sequences.
This method relies on a post-optimization step to ensure
smoothness, robust foot contact, and avoiding collisions
with the scene. While effective, this optimization step re-
duces the naturality of the motion. SAMP [17] creates hu-
man motion conditioned on the action and a final target ob-
ject, position and orientation in a stochastic manner. Given
a starting position, and a target object (e.g. chair, sofa), they
first estimate a goal position and orientation and then esti-
mate a plausible path between the start and goal positions.
Finally, they generate a sequence of poses with an auto-

regressive conditional Variational Auto-Encoder (cVAE).
Wang et al. [53] propose a model composed of various net-
works each specialized on one sub-task: generating target
start/end poses, path planning, and sequential human poses
generation. They rely on cVAE networks conditioned on ac-
tions and on a generated path. However, they use the same
optimization step as in [52] to reduce foot skating and scene
penetration and thus suffer from a similar lack of naturality.
Reinforcement learning methods have also been used to
tackle this problem [19, 39, 61, 65]. Zhang et al. [61] and
Rempe et al. [39] mostly focus on generating realistic loco-
motion taking the scene topology into account. Hassan et
al. [19] use a physical simulated character and imitation
learning to generate diverse actions within an environment.
Concurrent to our work, DIMOS [65] extends [6]1] to in-
clude more actions that interact with the environment.
Finally, [54] contributed a synthetic dataset, HUMAN-
ISE, that places a subset of motion capture (MoCap) se-
quences from AMASS [29] dataset in scenes from [I1].
In this work, we leverage HUMANISE dataset to include
scene context. This way, we are able to generate realistic
motions of humans navigating and interacting in a scene.
Our approach is most similar to [52, 53], but yield richer
interactions and more realistic motions. We present a direct
comparison to these two approaches in Section 4.

3. Purposer

We build our Purposer model on auto-regressive discrete-
based generative models such as PoseGPT [27], T2M2 [14],
T2M-GPT [57] or Bailando [43]. we detail how we propose
to condition such causal methods, in particular in the case
of future conditioning, in Section 3.2. We then discuss the
different forms of contextual information that we consider
for motion generation (Section 3.3). Finally, we detail our
training setup in Section 3.4 and how various conditioning
signals can be combined to generate long-term sequences
while being trained on short ones (Section 3.5).

3.1. Background on discrete auto-regressive models

Discretization-based auto-regressive models proceed in two
stages, see Figure 2: (a) an auto-encoder is learned to move
from the continuous input space to a discrete latent space
and vice-versa, (b) an auto-regressive model is learned in
this discrete space, and can be fed to the decoder for ob-
taining the output in the desired space. We now give more
background on these two stages.

Discrete motion auto-encoder. An auto-encoder is learned
to compress motion sequences into discrete latent represen-
tations with neural discrete representation learning [51], see
top row of Figure 2. Concretely, an encoder E(-), a quan-
tizer Q(-) with a codebook and a decoder D(-) are trained
such that the reconstruction error is minimized. A given
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Figure 2. Method Overview. An auto-encoder is learned to com-
press human motion, without any context, into a discrete latent
sequence space (top). A probabilistic model (bottom) is trained di-
rectly in that space, with three types of optional context: (a) scene
geometry, (b) semantic goals, (c) observation of past motion.

motion sequence p of length 7" can be represented by a dis-
crete sequence of indices z = {z1, ...,z } of length T , by
computing Q(E(p)). Conversely, any sequence of discrete
latent indices can be decoded into a motion sequence by for-
warding it to the decoder D. Note that here, we use T in-
stead of 7" as the sequence in pose space p can be downsam-
pled when converting to the latent discrete space z and then
upsampled again by using the decoder D. To allow condi-
tioning on past observations, a causal encoder is used, such
that for any ¢ < T', 2, is a function of {p1,--- ’p[t»T/T'J}
only. In this work, we rely on the discrete motion auto-
encoder from PoseGPT [27] that further uses product quan-
tization for better leveraging the discrete space.
Auto-regressive prediction. The auto-regressive model
can then be learned directly in the frozen discretized latent
space. Any motion sequence p of length 7" can be repre-
sented as z = {z1, ..., 27 }. To generate trajectories in the
latent space, an auto-regressive model G(-) can be trained
to predict the next index as the successful GPT [8] family
in natural language processing, i.e., by maximizing:
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To obtain motion samples, latent sequences are sampled
from pe and decoded using the decoder D(-). Such auto-
regressive models can elegantly be conditioned on past mo-
tion when using a causal encoder.

3.2. Future conditioning in auto-regressive models

While conditioning an auto-regressive model such as a
GPT with a sequence-wide information, i.e., a fixed con-
text across the full sequence (e.g., static scene information),

can be easily implemented, it is not straightforward to con-
dition on future information (e.g., a target pose or a path).
Sequence-wide conditioning. Some types of conditioning
are valid for the full sequence — for instance static scene in-
formation, a sequence duration 7, or a constant action label.
In that case, given an input sequence (z1, ...,z ) embed-
ded into features h = (hq, ..., hy) and some conditioning
signal c¢ represented by a feature vector h., conditioning
the auto-regressive model can be done simply by prompt-
ing, i.e., adding h. as an extra token at the start of the input
sequence, as commonly done e.g. in language models [32]:

hy). @)
Another solution is to inject it into all input tokens:
hew = (R1 ® he,, ... hys @ he), 3)

where the @ operation denotes any operator that combines
the two features, such as concatenation or sum.
Conditioning with causal masking. Let us now consider a
time-dependent conditioning ¢y, ..., ¢y , i.e., an informa-
tion from the ‘future’; for instance, the path to be followed
defined as set of locations that varies with ¢t. Conditioning
the input features directly as in Equation 3 remains possible,
by replacing h. by h., at each timestep ¢. However, be-
cause of the causal masking, an auto-regressive model pre-
dicts z; only from past information; therefore with the con-
ditioning in Equation 3 only past context is available when
predicting a timestep ¢. The model then has to predict the
future path rather than use the available information, which
will deteriorate output quality. This is probably why most
methods are limited to a sequence-wide context, i.e., a sin-
gle action label for [27] or a text prompt represented with
CLIP features [57]. We now detail our proposed solution to
circumvent this issue.

Future conditioning. To implement future conditioning,
we propose to use a network with two branches to com-
pute two stacks of features — a causal one responsible
for the prediction of the next timestep and a non-causal
one that can propagate information about the conditioning
at all timesteps — and inject the non-causal one into the
causal one. More precisely, given an input token sequence

hpmmpt = (hm h17 s

(z1,...,27) and a conditioning sequence (ci,...,cp ),
both are embedded into feature sequences h® and g°, re-
spectively.

As in standard auto-regressive models, a stack of L
causal layers fl ... fL is used to compute features
h', ..., h% such that for any [ and any ¢, h! is a function

of z1,...,2z;—1 only. In addition, a second stack of non-
causal layers f!,..., f¥ is used to process g°, and for any
1<t<T:

hy = fihy T,

gi=flg gt g, )

hl = hl + gl
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With this construction, h’ is a function of zy, . . ., z;_; only
and can be used to predict z;, see Figure 3 for an illustra-
tion. Additionally, any feature h! is a function of all con-
ditioning signals (ci, ..., ¢ ), and increasingly complex
conditioning features g', ..., g" can be learned. This con-
struction circumvents the causal masking, and the standard
auto-regressive architecture does not need other modifica-
tions.

3.3. Motion generation with context

We now describe the different types of context we consider
to put human motion generation in context, namely scene
geometry, past observations or future target trajectories, and
semantic information such as action labels or target human-
object interaction.

Conditioning on scene geometry. To condition motions
on a scene, we represent the geometry of the scene, given
as an input point cloud, with a constant feature embedding
h. and condition with prompting. A scene point cloud
S = {s;|li = 1,... N5} is embedded using PointNet [37]
following [52]. The output is then projected with a learn-

able linear layer W,: ¢, = W, - PointNet(S), with cq
the vector containing the scene information to condition pg
with prompting.

Conditioning on past observations. An auto-regressive ar-
chitecture naturally allows conditioning on observed past
motion, as long as the latent sequence is produced by a
causal encoder. More precisely, if a past motion pq, ..., pt
of arbitrary length is observed as context, it can be encoded
by the encoder into E(p1,...,pt) = 21,...,Zy. A future
human motion of length 7" can be sampled from our model
conditioned on the observation:

ro
T +t

1—[ (21|21, . ..

I=t'+1

zi-1). ()

c(z|z1,.. .2

Thus by design, an auto-regressive model has the flexibil-
ity to be conditioned on past motion without change and/or
retraining.

Conditioning on trajectories and target poses. In ad-
dition to past observations, our model can also be condi-
tioned on future target poses, or trajectories. For this type
of conditioning, the causal conditioning approach taken
by PoseGPT does not allow the future path or targets to
be observed when generating a given timestep. However,
by using the future conditioning from Section 3.2, we can
condition on trajectories or arbitrarily chosen future poses.
Note that while this would allow us to condition the model
on a future pose in arbitrary time steps in the future, for
our purposes we chose the last pose in the sequence. Let
((x1,91),- .., (@1, y7)) be a 2D trajectory on a bird’s eye
view of the scene, p;; some future poses, and W), and W
two learnable linear layers. We can write the path and future
poses conditions as:

Cp = (Wp'(xlayl)a-“va'(xTvyT)) (6)
cy (Wy - Di)ier (7)



where T is a set of time steps; ¢, and c; are then used as
input to compute h° in Equation 4. Note that conditioning
on the final target pose is a special case of this, which could
also be achieved with a simpler conditioning such as an ad-
ditional token.

Conditioning on semantic information. We consider two
semantic contexts: (a) action labels and (b) a target final
human-object interaction.

o Action labels: We use sequence-wide conditioning to in-
clude action information into the model.

Action labels are embedded and projected into ¢, and pg
is conditioned on the result by inputting c, to the unmasked
stream.

o Target human-object interactions: We also integrate the
possibility to control the interaction of the motion with spe-
cific objects by conditioning our motion samples on pairs
of actions and objects, {(at,0:)}, e.g. (lie, couch). To
achieve that, we decouple the problem into (a) generat-
ing a static pose P(q,,) conditionally on (a,0), following
the pioneering approach of [64] , and (b) conditioning the
motion model on this target pose, which is embedded into
Ca,0) = Wao " P(a,0), Where W, is a learnable linear
layer. Then, a latent sequence is sampled using this pose as
target, and the latent sequence is decoded into a human mo-
tion with the decoder D(-). At train time, we condition the
model on final target poses extracted from the data rather
than generated.

Finally, based on the different types of conditioning that
we have introduced above we can re-write Equation (1) with
the following conditioning:

’

T
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In Figure 4, we recap how the different contextual informa-
tion is embedded. To generate motion, latent variables are
iteratively sampled and added to the conditioning sequence
before being decoded.

3.4. Training setup

We directly use the discrete auto-encoder from [27] trained
on BABEL [36]. To train the auto-regressive model we use
the scene-conditioned data from HUMANISE, a synthetic
dataset composed of a subset of BABEL motions placed in
ScanNet [11] scenes. It contains 19.6K human motion se-
quences in 643 3D scenes and consists of actions that are
commonly performed when interacting with a scene. We
train each or our generative networks with the relevant in-
puts as conditioning. Finally, to evaluate on real-world but
smaller-scale data, we fine-tune the model on PROX [16],
which consists of 100K frames with pseudo ground truth.
It captures dynamic sequences of 20 subjects in 12 scenes

at 30fps. Implementation details are included in the supple-
mentary material.

3.5. Generating long-term sequences

While our model is trained on short sequences, taking ad-
vantage of its autoregressive nature, and using various sets
of conditioning allows us to generate long-term motions
that are coherent with a virtual scene by chaining short-term
motions. Specifically, we can define an ‘object interaction’
configuration to generate motions that interact with scene
objects, e.g. sit/lie down, by giving the proper conditioning
as input. We can then use a ‘locomotion’ configuration to
generate walking motion sequences to navigate the scene
and connect between different interaction motions that are
far apart in the scene, if needed. Each of these configu-
rations is conditioned with relevant information. The ‘ob-
ject interaction’ model is mainly conditioned with a target
pose that encodes a correct interaction to guide the motion
to reach that pose at the end of the sequence. Other than the
target pose, this model is configured with the rest of the rel-
evant conditioning: action labels, scene geometry and past
observations. The ‘locomotion’ model is mainly guided
with a path, e.g. the shortest path between the two locations
where the two motion interactions happen in the scene, e.g.
from the A* algorithm. Although, this path could be set
in any other different manner if needed. The ‘locomotion’
configuration does not need the use of a target pose but in-
stead only the desired (x, y) position is specified. For chain-
ing any two consecutive sequences together we take the last
n poses from the first sequence and use those to condition
the generation of the next sequence. Concretely, we use
n = 2 for our results as the donwsample factor from the
pose space p to the latent space z is 2. Thus, the minimum
number of conditioning poses is n = 2 (Section 3.1). For
more detail about the exact conditioning both of these con-
figurations please refer to Table 1 in Section 4.2.

4. Experiments

Given that without any conditioning our method boils down
to a standard discrete auto-regressive model such as [27],
we focus our experiments on different conditioning scenar-
ios. We aim to apply our model to populate virtual scenes.
We thus focus our experiments on scene-conditioned mo-
tion generation, with various types of context on top. Af-
ter introducing the datasets and metrics in Section 4.1, we
present several ablations in Section 4.2. Finally, we com-
pare our method to the state of the art in Section 4.3.

Conditionings. We clearly state in each table the condition-
ing that was used. In addition to scene conditioning either
at the feature-level (F) or with prompting, i.e., an extra to-
ken (T), we consider other conditioning forms: first pose
(first), target pose (target/P) or target position (target/XY),



action label and path. Action labels conditioning is used in
all cases unless noted otherwise.

4.1. Datasets and metrics

Datasets. We perform most experiments on the HUMAN-
ISE dataset, following the official splits [54] with 16.5K
motions in 543 scenes for training and 3.1K motions in 100
scenes for testing. We also experiment on the PROX dataset
with the standard splits (8 training scenes and 4 scenes for
testing) as in [52, 53], and rely on the improved fittings pro-
vided in [59] and action labels from [64].

Physical plausibility. We evaluate the physical plausibil-
ity of generated interactions using the non-collision metric
proposed in [62], which measures how much the generated
human mesh interpenetrates the mesh of the scene, and the
contact score proposed in [52] which is complementary as
it ensures that the motion actually makes contact with the
object — non-collision alone would be maximized by stand-
ing away from everything. For the contact scores, we fol-
low [54] and use a threshold of 0.02, except for some tables
that are clearly specified where we follow [52, 53] use 0.01.
Diversity metrics. To evaluate the diversity of gener-
ated samples, we follow common practices in the litera-
ture [21, 52, 54] and report the average pairwise distance
(APD) metric. This metric measures the average Lo dis-
tance between all pairs of motion of K samples computed
with exactly the same input information. When evaluating
on HUMANISE, we follow the practice of [54] .When com-
paring on PROX, we follow [21]. In both cases K = 20.
Additionally, following [21], we measure APD for a spe-
cific set of 61 markers (APD mark.) extracted from the body
meshes. As advocated for in [27], and given that all com-
ponents of our model are likelihood based, we also report
likelihood-based metrics for the generator G.

Quality metrics. To measure the quality of sampled mo-
tion, we compute the Fréchet distance score [20]. For com-
parison with existing work, we compute the FD metric with
a VPoser [33] model. We denote this metric by FDggc as
this model only takes individual frames as input. Please
also find qualitative video results in the supplementary for a
complementary perspective.

4.2. Ablation of design choices

In Table 1, we first ablate the impact of the different condi-
tioning information used by our model: future stream, first
and target poses, scene point-cloud, and path. Note that ‘fu-
ture stream’ is not a type of information but a novel com-
ponent of our model that conditions the information in a
special way. The first two rows correspond to our baseline,
namely, PoseGPT [27].

First pose. In Table 1, rows 1 and 2, we observe that us-
ing the first observed pose as conditioning significantly im-
proves the non-collision and contact metrics. This is ex-

conditioning NLL| APD? phys. plausibility?

stream first scene target path mark. non-coll. contact
X X X X X 0.86 4.83 55.73 93.93
X v’ X X X 0.86 4.09 69.56 92.68
X v’ F X X 0.96 4.08 69.10 93.10
X v’ T X X 0.87 391 70.19 92.79
X v’ T P X 0.62 3.05 71.64 91.86
v’ v’ T XY v’ 0.70 591 71.24 92.59
v’ v’ T P v’ 0.48 3.02 71.76 94.15
v’ v’ T P X 0.42 3.13 73.28 94.29

Table 1. Ablation study on HUMANISE [54] with action la-
bel conditioning and without post-processing optimization. XY
means that it uses target position instead of target pose (P).

pected as it guides the motion in a correct direction where
less collisions are likely to occur, weather the model is con-
ditioned on the scene or not. Thus adding a first pose, which
can be obtained from past observed motion, improves scene
interaction and motion control while retaining generation
diversity.
Scene. Using scene information helps to improve the qual-
ity of the generated motion by forcing it to better fit the
given scene. However, this depends on how we input this
information to our model. As seen in Table 1 row 3, if done
at the feature level (F), i.e., by concatenation with the input
embeddings, the model’s performance does not improve,
or even deteriorates, both in terms of next index prediction
negative likelihood (NLL) and non-collision. On the other
hand, if we introduce this information with token prompting
(T) (row 4), we both maintain the generation quality (NLL)
and improve penetration (69.56% vs. 70.19%).
Target pose. To guide motion towards human-scene in-
teraction, we design our model to take as input a target
conditioning pose. These target poses can be taken from
the ground-truth data or sampled at test time, given action
object pairs. As observed in Table 1 (row 5), using a tar-
get pose gives an important increase of 1.46% in the non-
collision score while also improving the generation quality
(NLL). Contact score is slightly reduced, possibly as acon-
sequence of reducing scene penetration. Furthermore, APD
decreased but this is expected, as the generated motion is
more constrained and therefore there is less variability in
the outputs.
Future Stream. The future conditioning block proposed
in Section 3.3 allows conditioning on time-step dependent
future signal and is a key component of our method. The
last three rows of Table 1 show that variants using this com-
ponent outperforms non-‘future stream’ counterparts. We
hypothesize that this is because (a) it enables the use of
all available path information and (b) it is a more flexible
way to condition on the rest of features, e.g., target pose
and scene. Using the time-dependent path as input (row
6) yields an improvement in non-collision score (0.70%),
maintains contact score, and substantially improves NLL.
We refer to this setting as the locomotion model. The



NLL| APD? FDgugc | phys. plausibility !
(all) non-coll.  contact

X 2.69 2.06 30.11 95.23 99.98
v’ 2.69 3.02 29.76 99.24 99.96

optim

Table 2. Impact of the optimization step on PROX, performed
with first/last pose cond., scene prompt, but without action and
path information to match the conditions of [52]. Contact score
threshold of 0.01.

Name conditioning APD? FDguic | phys. plausibility?
act path  (all) non-coll.  contact
Wang et al.[52] X X 0.00 — 99.91 99.35

Purposer X 3.02 29.76 99.24 99.96

X
Wang et al.[53] v Vv 2.78 111.65 99.61 99.35
Purposer v v 2.58 29.84 99.33 99.89

Table 3. Comparison on PROX with Wang et al. [52] and
Wang et al. [53]. Contact score threshold is 0.01. Results use
first and last pose conditioning to match the compared SOTA. Re-
sults are refined by an optimization step.

last row presents the performance when conditioned on a
target pose, but no path. It obtains the best performance in
motion quality, non-collision, and contact, and is referred to
as the object interaction model. Note that all configurations
in Table 1 can generate any action present in the dataset;
thus, we evaluate them all together.

Impact of post-processing optimization. Previous meth-
ods [52, 53] leverage a post-processing step that optimizes
the generated motions to avoid collision and favor contacts.
We measure the impact of such post-processing optimiza-
tion on the PROX dataset and later compare to other SOTA
methods that apply the same post-processing, see Table 2.
This optimization step slightly improves the physical plau-
sibility scores, but produces less natural and stiffer motion.
This is best appreciated in the qualitative results.
Qualitative results and long-term generation. In Fig-
ure 5, we present qualitative results that illustrate the impact
of incorporating target pose conditioning (top row) to en-
able scene interaction. Our model is able to interact with the
same object when initialized with random initial body loca-
tions and orientations. Additionally, we present the effect
of the path conditioning (bottom row) for walking actions.
Our model is capable of generating realistic locomotion in
random directions and with arbitrarily chosen paths. In the
supplementary video, we also show examples of long-term
motions combining short-term motions for object interac-
tion and for locomotion, see Section 3.5.

4.3. Comparison to the state of the art

We compare our method to the state of the art [52, 53] on
PROX in Table 3. Different sets of metrics and condition-
ings have been reported in the literature. To make a fair
comparison, we match the conditioning with each method

Figure 5. Effect of target pose and path conditioning. Upper
row: examples of object interaction. Here we use the same object
with different and random initial body position and orientation.
Lower row: demonstration of the effects of path conditioning:
we can define the final position and trajectory given a common
starting point. The green dots represent the conditioning path.

being compared.

We observe that our model provides a good trade-off be-
tween diversity (APD), quality (FD), and physical plausi-
bility. In particular, non-collision scores for Purposer does
not vary substantially from the competing approaches while
our model consistently has the highest contact score, which
indicates a rich interaction with the scene. Simultaneously,
a low FD score is achieved, which is a measure of realistic
generations. To provide a more comprehensive understand-
ing of how our method compares to these baselines, we have
included qualitative video results in the supplementary ma-
terial.

4.4. Limitations

Since our method is purely kinematic, i.e., it does not take
into account physics constraints, interpenetrations with the
scene may occur in some cases. Furthermore, HUMANISE
is a synthetic dataset and provides short motion clips that
may not comprehensively capture all the subtleties associ-
ated with interacting with objects. We leave the use of more
realistic datasets such as SAMP [17] for future work.

5. Conclusion

In this work, we introduce Purposer, a novel approach
grounded in neural discrete representation for generating
human motion within 3D virtual scenes. Purposer can gen-
erate realistic motions while also capturing human-object
interactions. This is an important step forward due to its
potential applications in indoor activity simulation and syn-
thetic data creation, among others. Experiments show that
Purposer consistently improves upon the baselines. Addi-
tionally, our model can be controlled semantically, gener-
alizes to a variety of new scenes, and generates long-term
motions even if only very short sequences are present in the
training data.
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