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Abstract

As an alternative to hybrid neuro-symbolic approaches for combining the strengths of Neu-
ral Networks and symbolic AI, Vector Symbolic Architectures (VSAs) provide a seamless
framework for robust parallel computing with transparency. A product-like dyadic vector
operation in VSAs enables variable binding and the encoding of data structures by de-
composable distributed representations. One critical, long-standing problem in VSA-style
neuro-symbolic computing was how to decompose a representation of bound variables.
Given the encoding schemes of the variables, pattern matching and unbinding involves
vector factorization, that is, searching large combinatorial spaces of vector products. By
interleaving binding operations with attractor network dynamics, Resonator Networks can
efficiently solve this problem.

Recent advances demonstrate the versatility and potential of Resonator Networks.
Here, we present four key developments published in the past year: a hierarchical resonator
network handling non-commutative transformations in composed visual scenes, a neuromor-
phic hardware implementation, applications to visual odometry, and insights into cognitive
map formation in hippocampal-entorhinal circuits. These studies offer theoretical insights
and practical applications for neuro-symbolic parallel computing. In the future, incorpo-
rating learning mechanisms for the underlying generative models in Resonator Networks
offers a promising path toward compositional reasoning in neuro-symbolic AI systems.

Vector Symbolic Architectures (VSAs) enable neuro-symbolic computing through high-
dimensional vector operations: superposition, binding, and permutation (Plate, 1995; Kan-
erva, 1996; Gayler and Wales, 1998; Frady et al., 2020b). The multiplicative binding opera-
tion creates composite representations, but recovering individual factors from bound vectors
poses a combinatorial factorization challenge (Frady et al., 2020a; Kent et al., 2020). Res-
onator Networks address this through iterative dynamics interleaving binding with pattern
completion (Frady et al., 2020a; Kent et al., 2020), leveraging superposition to search mul-
tiple potential factorizations simultaneously. Recent work has significantly extended the
versatility and applicability of resonator networks, with several key developments:
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Visual Scene Understanding

Hierarchical Resonator Networks (HRNs) (Renner et al., 2024b) now handle non-commutative
geometric transformations in visual scenes encoded by fractional power encoding (Plate,
1995; Frady et al., 2018; Komer et al., 2019; Frady et al., 2021). This is achieved through
partitioned architectures simultaneously operating in multiple reference frames (Renner
et al., 2024b), outperforming deep learning with limited data on artificial 2d scenes. Kymn
et al. (2024c) show that augmenting resonator networks with convolutional sparse cod-
ing improves pattern separation, accuracy, and convergence time. Hersche et al. (2025);
Karunaratne et al. (2024) further address the resonator network’s operational capacity by
exploring the benefits of noise and sparsity.

Visual Odometry Application

Real-world applications in motion estimation (visual odometry) using event-based cameras
showcases the resonator networks practical utility (Renner et al., 2024a). The system repre-
sents images as sums of products of VSA vectors and uses hierarchical resonator networks to
estimate camera motion. Performance evaluation shows competitive performance requiring
fewer computational resources than large neural networks.

Neuromorphic Implementation

Addressing computational efficiency on classical hardware, neuromorphic hardware imple-
mentations of the resonator achieve in-memory factorization of holographic representations
(Renner et al., 2024b; Langenegger et al., 2023; Wan et al., 2024). Renner et al. (2024b)
uses complex-valued Fourier Holographic Reduced Representations (Plate, 1995), efficiently
encoding complex phase as spike timing. They can also be implemented by continuous-time
oscillator circuits (Kymn et al., 2025), which improve representational capacity.

Understanding cognitive maps

Resonator networks can also provide principled models of cognitive computations in the
brain. For example, Kymn et al. (2024a) models attractor dynamics in the hippocampus
and entorhinal cortex in part based on resonator networks. Such a system yields insights
into the high-capacity and likely compositional nature of grid-cell codes, and improvements
for positional encodings in VSA and resonator networks (Kymn et al., 2024b). Further-
more, building on previous work that links VSAs to grid-cells (Frady et al., 2018; Komer
et al., 2019), a grid-cell-inspired structured vector algebra (GC-VSA) (Krausse et al., 2025)
applies resonator networks to read out maps and episodic memory representations formed
by binding together timing, location and semantic information.

Discussion and Future Directions

These advances position resonator networks as a bridge between symbolic and neural com-
putation, addressing fundamental limitations of neural networks in compositional general-
ization, interpretability and efficiency. Interestingly, similar principles may be employed
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in biological systems (Kymn et al., 2024a; Krausse et al., 2025), where inference requires
recurrent dynamics to uncover the factors of variation.

Future directions include i) scaling the resonator network to parse more complicated
structures, such as in the visual disentanglement literature, ii) incorporating techniques
from energy-based models to learn more powerful data-driven generative models, and iii)
improving performance on combinatorial optimization problems such as subset sum (Kleyko
et al., 2022; Kymn et al., 2024b, 2025).

The convergence of theoretical advances (Frady et al., 2020a; Kent et al., 2020; Kleyko
et al., 2023; Renner et al., 2024b; Kymn et al., 2024b; Karunaratne et al., 2024; Hersche
et al., 2025), practical applications (Renner et al., 2024b,a; Kymn et al., 2024c), and biolog-
ical insights (Kymn et al., 2024a,b; Krausse et al., 2025) establishes resonator networks as
a promising candidate for next-generation interpretable neuro-symbolic AI systems capable
of compositional reasoning.
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Seelen, Jan C. Vorbrüggen, Bernhard Sendhoff, Gerhard Goos, Juris Hartmanis, and

3



Renner Kymn Frady Sommer

Jan Leeuwen, editors, Artificial neural networks —ICANN 96, volume 1112 of Lecture
notes in computer science, pages 869–873. Springer Berlin Heidelberg, Berlin, Heidelberg,
1996. ISBN 978-3-540-61510-1. doi: 10.1007/3-540-61510-5\ 146. URL http://link.

springer.com/10.1007/3-540-61510-5_146.

Geethan Karunaratne, Michael Hersche, Abu Sebastian, and Abbas Rahimi. On the
role of noise in factorizers for disentangling distributed representations. arXiv preprint
arXiv:2412.00354, 2024.

Spencer J Kent, E Paxon Frady, Friedrich T Sommer, and Bruno A Olshausen. Resonator
networks, 2: Factorization performance and capacity compared to optimization-based
methods. Neural computation, 32(12):2332–2388, 2020.

Denis Kleyko, Connor Bybee, Christopher J Kymn, Bruno A Olshausen, Amir Khosrow-
shahi, Dmitri E Nikonov, Friedrich T Sommer, and E Paxon Frady. Integer factorization
with compositional distributed representations. In Proceedings of the 2022 Annual Neuro-
Inspired Computational Elements Conference, pages 73–80, 2022.

Denis Kleyko, Connor Bybee, Ping-Chen Huang, Christopher J Kymn, Bruno A Olshausen,
E Paxon Frady, and Friedrich T Sommer. Efficient decoding of compositional structure
in holistic representations. Neural Computation, 35(7):1159–1186, 2023.

Brent Komer, Terrence C Stewart, Aaron R Voelker, and Chris Eliasmith. A neural rep-
resentation of continuous space using fractional binding. In Proceedings of the Annual
Meeting of the Cognitive Science Society, volume 41, 2019.

Sven Krausse, Emre Neftci, Friedrich T Sommer, and Alpha Renner. A grid-cell-inspired
structured vector algebra for cognitive maps. In Proceedings of the 2025 Annual Neuro-
Inspired Computational Elements Conference. IEEE, 2025.

Christopher Kymn, Sonia Mazelet, Anthony Thomas, Denis Kleyko, Edward Frady, Fritz
Sommer, and Bruno Olshausen. Binding in hippocampal-entorhinal circuits enables com-
positionality in cognitive maps. Advances in Neural Information Processing Systems, 37:
39128–39157, 2024a.

Christopher Kymn, Connor Bybee, Zeyu Yun, Denis Kleyko, and Bruno Olshausen. Oscil-
lator associative memories facilitate high-capacity, compositional inference. In Interna-
tional Conference on Learning Representations (ICLR) Workshop on New Frontiers in
Associative Memories, 2025.

Christopher J Kymn, Denis Kleyko, E Paxon Frady, Connor Bybee, Pentti Kanerva,
Friedrich T Sommer, and Bruno A Olshausen. Computing with residue numbers in
high-dimensional representation. Neural Computation, 37(1):1–37, 2024b.

Christopher J Kymn, Sonia Mazelet, Annabel Ng, Denis Kleyko, and Bruno A Olshausen.
Compositional factorization of visual scenes with convolutional sparse coding and res-
onator networks. In 2024 Neuro Inspired Computational Elements Conference (NICE),
pages 1–9. IEEE, 2024c.

4

http://link.springer.com/10.1007/3-540-61510-5_146
http://link.springer.com/10.1007/3-540-61510-5_146


Resonator Networks for Neuro-Symbolic Computing

Jovin Langenegger, Geethan Karunaratne, Michael Hersche, Luca Benini, Abu Sebastian,
and Abbas Rahimi. In-memory factorization of holographic perceptual representations.
Nature Nanotechnology, 18(5):479–485, 2023.

Tony A. Plate. Holographic reduced representations. IEEE Transactions on Neural Net-
works, 6(3):623–641, May 1995. ISSN 10459227. doi: 10.1109/72.377968.

Alpha Renner, Lazar Supic, Andreea Danielescu, Giacomo Indiveri, E. Paxon Frady,
Friedrich T. Sommer, and Yulia Sandamirskaya. Visual odometry with neuromorphic
resonator networks. Nature Machine Intelligence, 6(6):653–663, June 2024a. ISSN 2522-
5839. doi: 10.1038/s42256-024-00846-2.

Alpha Renner, Lazar Supic, Andreea Danielescu, Giacomo Indiveri, Bruno A. Olshausen,
Yulia Sandamirskaya, Friedrich T. Sommer, and E. Paxon Frady. Neuromorphic visual
scene understanding with resonator networks. Nature Machine Intelligence, 6(6):641–652,
June 2024b. ISSN 2522-5839. doi: 10.1038/s42256-024-00848-0.

Zishen Wan, Che-Kai Liu, Mohamed Ibrahim, Hanchen Yang, Samuel Spetalnick, Tushar
Krishna, and Arijit Raychowdhury. H3dfact: Heterogeneous 3d integrated cim for fac-
torization with holographic perceptual representations. In 2024 Design, Automation &
Test in Europe Conference & Exhibition (DATE), pages 1–6. IEEE, 2024.

5


