
Ludax: A GPU-Accelerated Domain Specific
Language for Board Games

Anonymous Author(s)
Affiliation
Address
email

Abstract

Games have long been used as benchmarks and testing environments for research in1

artificial intelligence. A key step in supporting this research was the development2

of game description languages: frameworks that compile domain-specific code into3

playable and simulatable game environments, allowing researchers to generalize4

their algorithms and approaches across multiple games without having to manually5

implement each one. More recently, progress in reinforcement learning (RL) has6

been largely driven by advances in hardware acceleration. Libraries like JAX7

allow practitioners to take full advantage of cutting-edge computing hardware,8

often speeding up training and testing by orders of magnitude. Here, we present a9

synthesis of these strands of research: a domain-specific language for board games10

which automatically compiles into hardware-accelerated code. Our framework,11

Ludax, combines the generality of game description languages with the speed of12

modern parallel processing hardware and is designed to fit neatly into existing13

deep learning pipelines. We envision Ludax as a tool to help accelerate games14

research generally, from RL to cognitive science, by enabling rapid simulation and15

providing a flexible representation scheme. We present a detailed breakdown of16

Ludax’s description language and technical notes on the compilation process, along17

with speed benchmarking and a demonstration of training RL agents. The Ludax18

framework, along with implementations of existing board games, is open-source19

and freely available.20

1 Introduction21

For the past 75 years, games have served as vital tests and benchmarks for artificial intelligence22

research. While many specific games have been completely solved [36] or optimized beyond the23

abilities of the strongest human players [5, 42], the general space of games remains a fertile ground24

for measuring improvements in reasoning, planning, and strategic thinking. A critical part of this25

progress, however, is the ability to test approaches and algorithms on a set of environments that are26

both diverse and computationally efficient. [41]27

To help drive further games and learning research, we introduce Ludax: a domain-specific language28

for board games that compiles into GPU-accelerated code written in the JAX library [3]. Ludax29

draws on two main inspirations: (1) Ludii [32], a general purpose description language for board30

games capable of representing more than 1400 games from throughout history and around the world,31

and (2) PGX [26], a collection of optimized JAX-native implementations of classic board games and32

video games designed to facilitate rapid training and evaluation of modern reinforcement learning33

(RL) agents. Ludax presents a flexible and general-purpose game representation format that can be34

leveraged for efficient simulation and learning on modern computing hardware.35

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.

(game "Reversi"
 (players 2)
 (equipment
 (board (square 8))
)

 (rules
 (start
 (place P1 (27 36))
 (place P2 (28 35))
)
 (play
 (repeat (P2 P1)
 (place
 (destination empty)
 (result
 (exists
 (custodial any)
)
)
 (effects
 (flip (custodial any))
 (set_score mover (count (occupied mover)))
 (set_score opponent

(count (occupied opponent))
)

)
)
 (force_pass)
)
)

 (end
 (if (passed both) (by_score))
)))

The game takes place on an 8 by 8 board.

To begin, a white piece is placed at positions D4 and
E5 and a black piece is placed at positions D5 and
E4.

Players take turns placing a piece into an empty
square.

However, a legal move must form a “custodial”
arrangement -- sandwiching one or more of the
opponent’s pieces between your own pieces.

After making a move, any of the opponent’s pieces
that are sandwiched in this way are flipped and now
belong to the moving player. Then, each player’s
score is set to the number of pieces they have.

If (and only if) a player cannot make a legal move,
they must pass the turn.

If both players pass, then the game is over. The
winner is the player with the higher score (in the
event of a tie, the game ends in a draw).

Figure 1: Natural language description of Reversi along with its corresponding translation
into Ludax. Ludax uses “ludemic” syntax that represents high-level game components as separate
program sections.

Ludax currently supports two-player, perfect-information, turn-based board games played by placing36

pieces onto empty board cells. While this is a narrow class of games when compared to the full37

breadth of human designs and the set of mechanics implemented by Ludii, it is still broad enough38

to capture a wide range of existing games (e.g. Connect Four, Pente, Hex, ...) as well as many39

unexplored novel games and variants that fall within that class. Further, Ludax is designed to be40

easily expandable – like with Ludii, implementing new game mechanics in Ludax only requires41

implementing new atomic components in the underlying description language. These components42

can then be combined compositionally with existing elements of the language to produce an entirely43

new range of possible games, instead of each game needing to be implemented separately.44

Another design goal for Ludax is ease of use, both in terms of game design and experimentation.45

The syntax of the description language is “ludemic” [32] – splitting game rules into clear sections46

governing the game’s setup, play mechanics, and end conditions. Like with Ludii, game programs47

in Ludax resemble English descriptions of rules (see Figure 1). Further, by leveraging the structure48

of the existing PGX library, environments instantiated in Ludax can be easily combined with existing49

frameworks for GPU-accelerated search, reinforcement learning, or evolution [11, 45]. Ludax also50

supports a basic web interface for interactive debugging, with the aim to provide support for online51

interactive experiments in the future.52

To our knowledge, Ludax is the first board game description language which compiles into GPU-53

accelerated code. In the following sections, we provide a detailed description of the language syntax,54

compilation process, and Ludax’s expressive range. We also provide speed benchmarking compared55

to both Ludii and PGX, as well as an initial demonstration of training learned agents. Finally, we56

conclude with a discussion of potential use cases and future directions.57

2 Related Work58

Game Description Languages: Game description languages have been used for many years and in59

a variety of domains. The Stanford GDL [28, 17, 39, 46] is among the most influential, helping to60

popularize research in general game playing [33] through its use in the International General Game61

Playing Competition [19, 18]. Other notable examples include VGDL [14, 37, 38] (primarily known62

from its use in the General Video Game AI framework [31]), RBG [25], Ludi [4], and its successor63

Ludii [32]. GDLs have also been used to describe the rules of card games [15] as well as to represent64

human goals in naturalistic simulated environments [9, 10]. Modern game description languages65

2

have tended to move away from a basis in formal logic in favor of greater human usability, though66

there are benefits in efficiency gained by the use of regular languages [24].67

GPU-Accelerated Environments: Recent years have seen a proliferation of learning environments68

implemented in the JAX library or other frameworks that enable hardware (typically GPU) acceler-69

ation. Examples include single-agent and multi-agent physics simulators [16, 29, 1], ports of both70

classic and recent reinforcement learning tasks [8, 27, 26, 30], combinatorial optimization problems71

[2], multi-agent coordination problems [35], and driving simulators [21, 23]. While these efforts72

have spurred significant progress and span a wide range of domains and task formulations, each of73

them implement a fixed environment or set of environments. As such, they cannot easily be extended74

to novel environments without first writing new hardware-accelerated code. We do also note the75

existence of a number of description languages for other domains (e.g. probabilistic programming,76

planning, single-player puzzles) that leverage JAX for efficient execution [6, 20, 13, 12].77

3 Description Language Details78

Ludax’s game description language draws heavily on the Ludii description language, particularly in79

its use of “ludemic” syntax that represents game rules in terms of high-level and easily-understandable80

components [32]. The complete grammar file and syntax details are available in the Supplemental81

Material.82

3.1 Equipment83

The equipment section contains information about the physical components used by the game.84

Currently, this only specifies the size and shape of the board (i.e. whether it is square, rectangular,85

hexagonal, or hexagonal-rectangular). The dimensions and shape of the board are used during compi-86

lation to help pre-compute certain game-relevant properties, such as the board indices corresponding87

to lines of specific lengths. In future versions of Ludax, the equipment section will also detail the88

different pieces used by each player if the game specifies more than one.89

3.2 Start Rules90

The start section is an optional section that contains the rules for the game’s setup. For most games,91

play begins on an empty board and the start section is omitted. In some games, such as Reversi92

(see Figure 1), pieces are placed in a particular arrangement at the start of play.93

3.3 Play Rules94

Typically, the play rules of each game are the most involved, as they detail the core mechanics and95

dynamics of the game. The play section is itself broken into one or more subsections called “play96

phases.” Each phase has its own rules for player actions and turn-taking, as well as specific conditions97

for when to transition to another phase. Most games have only a single phase in which players98

alternate turns until the game is over, specified with the repeat keyword. Some games include a99

once_through phase that progresses through the turn order a single time before advancing to the100

next phase. The sequence of player turns is specified independently for each phase. For instance,101

Yavalax (Appendix Figure 4, bottom-left panel) begins with the first player making a single move102

(i.e. (once_through (P1) ...)) before both players alternate taking two turns for the rest of the103

game (i.e. (repeat (P2 P2 P1 P1) ...)).104

The core of each phase is a “play mechanic” that encodes the ways that players take their turns. In105

the context of reinforcement learning, a play mechanic specifies both the action space (A) and the106

transition function (T ∶ S × A → S). At a lower level, each play mechanic also defines a “legal107

action mask function” that returns whether each action is valid from the current game state. Currently,108

Ludax supports only one kind of play mechanic: place. A place mechanic’s primary argument is a109

destination constraint which specifies where a piece may be placed on a given player’s turn. For110

many games, such as Tic-Tac-Toe, this is simply the set of empty board positions. For some games,111

however, the destination constraint is more involved: in Connect Four (Appendix Figure 4, top-right112

panel), legal actions are empty spaces that are on the bottom edge of the board or immediately113

above an occupied position (see subsection 3.5 for a discussion of how actions are represented more114

3

generally in Ludax). Even further, some games have what we call result constraints which require115

that a legal action results or doesn’t result in a board with specific properties. Yavalax and Reversi116

both use result constraints: the former forbids players from placing a piece that forms a line of five117

or that forms only a single line of four, whereas the latter requires players to place a piece in a way118

that “sandwiches” one or more of their opponent’s pieces in a line. Finally, a play mechanic may119

optionally specify one or more effects that modify the game state after the action is performed.120

Effects are used to handle mechanics like capturing or flipping pieces, as well as updating each121

player’s score (if the game uses score). Both Reversi and Pente (Appendix Figure 4, bottom-right122

panel) use play effects to handle flipping and capturing pieces, respectively, with Pente also using the123

score as an alternate winning condition.124

Throughout this section, we have been referring to various properties of a game state and relationships125

between pieces / positions (e.g. whether pieces are “sandwiched,” whether a line is formed, whether126

a piece is adjacent to another, ...). These are the lowest-level component’s of Ludax’s description127

language and are referred to collectively as masks, functions, and predicates. A mask takes in128

the current game state and returns a boolean array over each position on the board. Some masks, like129

occupied or edge, take additional grammatical arguments which might specify a particular player130

or region of the board.1 A function similarly takes in the current game state and returns a single131

non-negative integer. In Ludax’s current form, line is probably the most commonly-used function132

– it returns the number of contiguous lines of a given player’s pieces on the board, with a specified133

length and orientation. Lastly, a predicate maps from a game state to a single boolean truth value.134

Many predicates operate over the outputs of masks and functions, such as exists or equals,135

though some like mover_is are computed directly from game states. Crucially, the outputs of masks,136

functions, and predicates can be combined compositionally using first-order logic (excluding137

quantification) to form more complicated expressions. So, the condition “if Player 2 makes a line of138

4 in a row or a diagonal line of 3...” would be rendered as follows:139

(and (mover_is P2) (or (line 4) (line 3 orientation:diagonal)))

Note that, for ease of use, Ludax automatically interprets the presence of a bare function inside a140

boolean operator as indicating a non-zero value. So, (line 4) is equivalent to (>= (line 4) 1).141

3.4 End Rules142

The last section of a game description in Ludax details the criteria that terminate a game. The end143

section contains one or more “end conditions” – these are applied in order, with the first condition to144

activate determining the ending behavior (i.e. which player wins or if the game ends in a draw). If145

none of the conditions activate, then the game continues. For instance, Tic-Tac-Toe includes both the146

end conditions (if (line 3) (mover win)) and (if (full_board) (draw)), with the draw147

condition only triggering if the “three in a row condition” is not met. End conditions also frequently148

refer to a player’s score, which is updated or set as a result of an action’s effects (see above).149

3.5 Design Considerations150

While Ludax draws heavily from the Ludii description language, there are some important dif-151

ferences which go beyond just changes in syntax. The first of these relates to how both systems152

represent a game’s action space. One of the design goals of Ludii is that game descriptions should153

resemble as much as possible the rules in natural language. In Connect Four, for instance, players154

take a move by dropping a piece into one of seven columns of the board, at which point the piece155

falls until it reaches the bottom or rests on another piece. Accordingly, the canonical representa-156

tion of Connect Four in Ludii features pieces that “Drop” into the “LastColumn” chosen by the157

player (PGX implicitly represents the game in a similar way). As mentioned above, however, Ludax158

represents the action space differently: players simply place a piece onto an empty board cell, with159

actions that are not directly above an existing piece or the bottom of the board marked as illegal.160

Mechanically, the two implementations of Connect Four are identical – the difference lies in how they161

are encoded (especially to simulated players or reinforcement learning agents). The “column-based”162

1The adjacent mask is a special case – it takes another mask as an additional argument and returns the
board positions adjacent to any of the active positions in the original mask.

4

representation has many advantages (it matches the physical properties of the game in real life and163

lowers the branching factor), but it is also game-specific. While Ludax also strives to represent164

game descriptions intuitively, we primarily aim to provide a unified representation format across165

games, such that general game-playing agents can more easily transfer knowledge and expertise from166

one game to another. As such, the size and form of the action space for any place-based game is167

determined only by the size and shape of the board. This choice is also partially motivated by the168

specifics of working with the JAX library (see Section 4) and has implications for benchmarking and169

downstream use-cases (see Section 6).170

4 Compiling Game Descriptions into Game Environments171

In this section, we describe the high-level approach used to map from programs in the Ludax game172

description language to hardware-accelerated simulation environments. While Ludax specifically173

instantiates board game environments using the Lark Python library, the general approach is flexible174

enough to be used with different domains and parsing toolkits. Broadly speaking, Ludax oper-175

ates by defining the leaves of the grammatical parse tree (i.e. individual masks, functions, and176

predicates) as atomic functions written in JAX, which are then dynamically composed from the177

bottom-up to form higher-level operators used by the environment class. Consider again the following178

game expression:179

(and (mover_is P2) (or (line 4) (line 3 orientation:diagonal)))

During compilation, the leaf-level nodes (i.e. (mover_is P2) and (line 4)) are converted into180

JAX functions which map from the current game state to (in this case) a boolean truth value, and181

those functions are then passed up the parse tree. Higher-level nodes, such as (and ...), receive the182

JAX functions corresponding to each of their children and return a new JAX function that also takes183

the game state as input and implements the appropriate operation (in this case, boolean conjunction).184

In pseudocode, using the Lark library’s Transformer paradigm, this looks like the following:185

def predicate_and(self, children):186

def predicate_fn(state):187

children_values = [child_fn(state) for child_fn in children]188

return all(children_values)189

190

return predicate_fn191

In actuality, both the “children functions” and the combined “predicate function” must be written to192

be compatible with JAX’s vectorization scheme and just-in-time (JIT) compilation. This imposes a193

number of implementational constraints, most notably that the size and shape of all arrays must be194

fixed at compile time. This means, for instance, that the dimensions of the “legal action mask” (and,195

hence, the size of the action space in general) cannot change as the game progresses. In addition,196

values like the number of iterations in a loop or the positions of a lookup mask must essentially be197

“pre-specified.” Crucially, however, values that are determined during parsing (such as the number of198

children for a given node, or the value of any arguments) can be safely passed into compiled JAX199

functions as static constants. This fact is what allows Ludax to create JAX functions dynamically200

that nonetheless obey the constraints of vectorization and JIT compilation. At the top of the parse201

tree, these composed JAX functions are ultimately used to define the behaviors that appear in the202

environment’s step function, such as applying the player’s action to the board and handling move203

effects.204

We next discuss some of the specific optimizations used by Ludax. In general, these are not global205

optimizations: they apply only to certain compositions of game rules and mechanics. Our approach is206

to deploy these optimizations when they are available and to “fall back” on slower but more general207

solutions when they are not.208

Precomputation: An important optimization used by the PGX library (and JAX environments more209

generally) is to express functions as batched matrix operations rather than iterative procedures. For210

instance, rather than checking for a line of pieces in Tic-Tac-Toe by starting at the position of the last211

move and scanning out in each direction (as Ludii’s implementation does), PGX hard-codes the set212

of board indices that correspond to each possible line of three in the game (i.e. [[0, 1, 2], [0,213

5

20 21 22 23 24 25 26 27 28 29 210 211 212 213 214 215
103

104

105

106

107

108

109

M
ea

n
Th

ro
ug

hp
ut

 (m
ov

es
/s

ec
)

Tic Tac Toe

Ludii (1 thread)
Ludii (16 threads)
Ludii (32 threads)
Ludax
PGX

20 21 22 23 24 25 26 27 28 29 210 211 212 213 214 215
103

104

105

106

107

108

109
Connect Four

20 21 22 23 24 25 26 27 28 29 210 211 212 213 214 215
103

104

105

106

107

108

109
Hex

20 21 22 23 24 25 26 27 28 29 210 211 212 213 214 215
103

104

105

106

107

108

109
Reversi

20 21 22 23 24 25 26 27 28 29 210 211 212 213 214 215

Batch size

103

104

105

106

107

108

109

M
ea

n
Th

ro
ug

hp
ut

 (m
ov

es
/s

ec
)

Gomoku

20 21 22 23 24 25 26 27 28 29 210 211 212 213 214 215

Batch size

103

104

105

106

107

108

109
Pente

20 21 22 23 24 25 26 27 28 29 210 211 212 213 214 215

Batch size

103

104

105

106

107

108

109
Yavalath

20 21 22 23 24 25 26 27 28 29 210 211 212 213 214 215

Batch size

103

104

105

106

107

108

109
Yavalax

Figure 2: Average throughput (moves per second) on various exemplar games for Ludax, Ludii,
and PGX. The top row of games are implemented in all three frameworks, while the bottom row of
games are implemented only in Ludax and Ludii. Speeds for Ludax and PGX are reported for 500
episodes of various batch sizes on a workstation with a single NVIDIA 4090 GPU and 32 CPU cores,
while speeds for Ludii are reported for parallel execution on the same workstation across 1, 16, and
32 threads. Error bars are standard deviations calculated over the 500 episodes.

3, 6], [0, 4, 7], ...]) and performs a single multi-dimensional index into the board array –214

if any of the of the board index triples all correspond to positions occupied by a single player, then215

the game is over. Ludax adopts and generalizes this approach: during parsing of line, for example,216

the line indices are computed with respect to the size and shape of the game board (i.e. rectangular,217

hexagonal, ...) as well as the length and orientation of the desired line (i.e. diagonal, vertical, ...).218

Again, because these values depend only on attributes that are determined during parsing, they can219

be passed into JAX functions as constants. Precomputation naturally causes a trade-off between220

compile-time and run-time efficiency. In our case, we opt to use precomputation whenever possible,221

though some masks and functions cannot be expressed this way.222

Dynamic State Attributes: Different games require tracking different kinds of information about223

the current game state. Most obviously, some games track a score for each player while others do224

not. When Ludax compiles a game, it automatically extracts the attributes required to instantiate a225

game state and omits the others, thereby reducing the memory footprint of the entire state object.226

More importantly, Ludax also automatically adds intermediary computations to each call of the227

environment’s step function that help speed up later mask, function, or predicate evaluations.228

For example, in Hex, the game ends when one player manages to connect two opposite sides of229

the board with a continuous path of their pieces. Naively, checking whether the edges of the board230

are linked requires the expensive step of computing the board’s connected components after each231

move. However, updating the board’s connected components as a result of placing a single piece232

can be done very efficiently (a technique used well in the PGX implementation). At compile time,233

Ludax determines whether a game makes use of a “connection” rule and modifies the step function234

to iteratively update and track the board’s connected components if so, greatly speeding up later235

checks. In future extensions, this functionality will be used to accommodate games with atypical or236

computationally expensive rules without affecting the runtime of existing games.237

5 Expressive Range238

As mentioned above, Ludax currently supports a relatively narrow class of games: two-player,239

perfect-information board games played by placing, capturing, and flipping pieces. Both Ludii240

and PGX contain many games that Ludax does not: PGX includes implementations of Backgammon,241

Chess, Shogi, and Go, along with hidden-information and Atari-style games (though Ludax also242

6

0 10 20 30 40 50
Millions of frames

0.0

0.2

0.4

0.6

W
in

 r
at

e
vs

 b
as

el
in

e

Reversi : Individual Runs

Ludax runs
PGX runs
(PGX) Baseline

0 10 20 30 40 50
Millions of frames

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Mean and Variance

Ludax mean (smoothed)
 ±1σ
PGX mean (smoothed)
 ±1σ

Figure 3: Performance of reinforcement learning agents trained in the Ludax and PGX imple-
mentations of Reversi against the PGX baseline agent. On the left, we plot the average winrate of
the learned agents against the baseline over time and across three separate runs. On the right, we plot
the average and variance of the winrates. Each run took roughly 3 hours to complete on a workstation
with a single A100 GPU.

supports games that do not appear in PGX), while Ludii’s description language can encode a vast243

array of board game styles and subgenres. Despite this, Ludax’s description language remains quite244

expressive. In addition to simple m − n − k line completion games, Ludax supports complex and245

asymmetric winning conditions (e.g. misère variants, score-based victory), piece capturing and246

flipping, directional adjacency checks and restrictions, “custodial” mechanics, and games based247

on connecting arbitrary board regions. Ludax also supports regular rectangular and hexagonal248

boards of arbitrary sizes, as well as “hexagonal-rectangular” boards (e.g. as used in Hex). These249

components can then be combined compositionally to form a wide array of unique mechanics and250

dynamics. In addition, because Ludax is a general description language, implementing a single new251

game component expands the entire space of games in the framework. While the class of games252

representable in Ludax may at present be smaller than that of Ludii or other game description253

languages, it remains expansive.254

6 Benchmarking255

We benchmark the speed of Ludax on a set of 8 games, 4 of which are also implemented in both256

Ludii and PGX (allowing for a full comparison) and 4 of which are implemented only in Ludax and257

Ludii. Again, we emphasize that these 8 games are just exemplars of the class of games which258

Ludax supports, not an exhaustive list. A full description of each benchmark game is available in the259

Supplementary Material. We perform each of our benchmarking experiments on a workstation with a260

single NVIDIA 4090 GPU, 32 CPU cores, and 128GB of memory. In Figure 2 we plot the throughput261

(in steps per second) under a uniformly random action policy for each game environment against the262

batch size (log scale on both axes), with the standard deviation of throughputs across episodes as263

error bars. Ludii supports parallelization via multi-threading: we report throughput on the same264

workstation when parallelized on 1, 16, and 32 threads. Evaluations for Ludax and PGX were obtained265

by performing 100 warmup full-game episodes at the specified batch size, followed by measuring the266

speed over 500 episodes, with each evaluation taking at most a few minutes to complete. Evaluations267

for Ludii were obtained by running warmup episodes for 10 seconds, followed by measuring the268

speed over 30 seconds of episodes.2269

Overall, Ludax achieves speeds that are competitive with state-of-the-art JAX environments. At small270

batch sizes, its throughput is similar to that of the PGX implementations. At larger batch sizes in more271

complicated games (i.e. Hex and Reversi), PGX takes a clear edge – though Ludax remains within272

an order of magnitude of PGX. The comparative “plateauing” of Ludax’s speed at high batch sizes273

may be due to memory pressure – for instance, Ludax’s implementation of Hex maintains both a274

board and the connected components for each game state, whereas the PGX implementation cleverly275

2We opted to measure speed for Ludax and PGX using a fixed number of episodes because JAX’s compilation
procedure makes it difficult to halt execution after a specific elapsed wall time.

7

combines both into a single array. This kind of optimization is of course theoretically implementable276

in Ludax as well, though again we emphasize the desiderata of avoiding game-specific solutions.277

Ludax also outspeeds Ludii on 16 and 32 threads across all 8 games, achieving a maximum speedup278

of between ∼3x (Hex) and ∼55x (Pente). We note that there are factors that both advantage and279

disadvantage Ludax in this specific comparison against Ludii. One potential advantage for Ludax is280

its smaller representation space – implementations of basic mechanics in Ludii support a wider range281

of optional arguments and board types, with a corresponding increase in computational overhead282

(though see Section 4 for how this may be avoided). Conversely, Ludii’s ability to use dynamically-283

sized data structures brings advantages that are particularly beneficial in uniformly random playouts,284

but would (partially) disappear in playouts using deep reinforcement learning. Specifically, where285

Ludax samples random actions from categorical probability distribution by masking over the entire286

board at each step, Ludii selects random actions simply by taking a random index from a list. Ludii287

also has optimized playout implementations tailored towards the many of the categories of games288

covered by Ludax [43], though these optimizations are also more difficult to apply in the context of289

deep learning.290

7 Learned Agents291

Finally, we demonstrate the feasibility of training reinforcement learning agents using the Ludax292

framework. We train our agent on the game Reversi (also known as Othello) using the AlphaZero-293

style [42] training script from the PGX library3 (making only slight modifications to accommodate294

minor differences between the Ludax and PGX APIs). We use the same ResNetV2 [22] network295

architecture and training hyperparameters as PGX (full details available in the Supplementary Material)296

and train three separate runs on a single A100 GPU. Each run lasted roughly 57 million frames and297

took roughly three hours to complete.298

We compare the performance of agents trained in the Ludax and PGX environments against the299

baseline Reversi agent provided by the PGX library in Figure 3. Evaluations were performed by300

playing two batches of 1024 games (one with the learned agent as the first player and one as the301

second player), with actions sampled from the normalized output of the policy head at each step. We302

see that both learned agents achieve remarkably similar performances against the baseline, with little303

to no differences in learning speed or stability. While a more thorough, tournament-based evaluation304

would be necessary to properly rank the agents against each other, our objective is to demonstrate the305

general success of the training procedure and not to definitively defeat the baseline agent. Although306

the PGX implementation of the Reversi environment is slightly more efficient, this translated into only307

marginal improvements in overall runtime (about 1.5%) owing to the shared overhead of network308

forward passes and weight updates. Like PGX, Ludax offers a familiar API and an efficient set of309

implementations with which to train learned player agents.310

8 Limitations311

Generality: As mentioned in Section 5, Ludax currently supports a smaller class of games than other312

comparable game description languages. While we aim to increase the range of games expressible in313

Ludax (see below), it will likely never match the full generality of Ludii. As such, other frameworks314

may be more appropriate for use-cases in which a broad range of games is more important than315

rapid simulation. Further, Ludax does not support genres other than board games (e.g. video games,316

card games, ...) – we leave the development of hardware accelerated description languages for such317

domains as an exciting area of future work.318

Efficiency: Compared to bespoke JAX implementations of board games (such as in the PGX library),319

environments in Ludax have worse throughput – especially at larger batch sizes. While we deploy320

a number of optimizations to help close the efficiency gap when possible (see Section 4), there321

are ultimately unavoidable trade-offs between speed and generality. For the purpose of training or322

benchmarking single-task agents on existing games, hard-coded simulators are likely the superior323

choice. We note, however, that Ludax also provides a way for non-experts to design and benchmark324

on novel games without having to write any JAX code themselves.325

3https://github.com/sotetsuk/pgx/blob/main/examples/alphazero/train.py (used under Apache 2.0 license)

8

9 Future Work326

The most obvious avenue of extension for Ludax is the implementation of additional game mechanics.327

In particular, we aim to support games based on piece movement (e.g. Amazons), games with multiple328

piece types (e.g. Checkers), and games with multiple distinct gameplay phases (e.g. Nine-Men’s329

Morris). Other generalizations, such as support for irregular board shapes, would also help expand330

the space of games representable in Ludax. In addition, it’s also very likely that the implementation331

of specific gameplay elements could be further optimized for throughput and / or memory footprint.332

However, a balance must be struck between efficiency and generality: a less efficient solution which333

accommodates all valid games under the grammar is ultimately preferable to one which only applies334

to a subset of games. Lastly, we aim to provide a more robust visual interface for Ludax, both for the335

purpose of facilitating human-subject research and the potential development of more “human-like”336

artificial agents which process the game board at the pixel level and select actions spatially.337

We are particularly excited about the potential application of Ludax to the study of automated game338

design (or reward-guided program synthesis more generally [7] [44] [34]). Systems like GAVEL [47]339

depend on both a broad representation space and rapid evaluation of novel games. The efficiency of340

Ludax may make it possible to train a reinforcement learning agent from scratch as part of the inner341

loop of game evaluation, potentially unlocking a new range of computational features (e.g. learning342

curves) that correlate with human notions of fun and engagement. Relatedly, Ludax may prove useful343

to research on human behavior and play. Recent work has explored heuristic-based computational344

models of human play on simple line completion games [48], and Ludax offers the possibility to both345

accelerate computation and broaden the domain to a wider class of games. Finally, Ludax offers an346

avenue to extend recent research in general game playing (e.g. with large language models [40]) by347

providing a wide base of efficient game implementations that can in turn be leveraged for tree search348

algorithms or training world models.349

10 Conclusions350

We introduce a novel framework for games research that combines the generality of game description351

languages with the efficiency of modern hardware-accelerated learning environments. Our framework,352

Ludax, represents a broad class of two-player board games and compiles directly into code in the353

JAX Python library. Games in Ludax achieve speeds that are competitive with hand-crafted JAX354

implementations and faster than the widely-used Ludii game description language, and Ludax355

environments can easily be deployed in existing pipelines for deep reinforcement learning. Our356

framework helps generalize and accelerate games research, with the potential to unlock entirely new357

kinds of agents and systems.358

Broader Impact359

This paper presents a general framework with the goal of advancing reinforcement learning and360

games research. While there are many potential societal consequences of such work in general, we361

do not feel that any must be specifically highlighted here. Ludax does not use or reproduce any362

copyrightable game material (i.e. art, specific expressions of rules, or game code).363

References364

[1] M. Bettini, R. Kortvelesy, J. Blumenkamp, and A. Prorok. VMAS: A vectorized multi-agent365

simulator for collective robot learning. In Proceedings of the 16th International Symposium on366

Distributed Autonomous Robotic Systems, DARS ’22. Springer, 2022.367

[2] C. Bonnet, D. Luo, D. Byrne, S. Surana, V. Coyette, P. Duckworth, L. I. Midgley, T. Kalloniatis,368

S. Abramowitz, C. N. Waters, et al. Jumanji: a diverse suite of scalable reinforcement learning369

environments in jax. CoRR, 2023.370

[3] J. Bradbury, R. Frostig, P. Hawkins, M. J. Johnson, C. Leary, D. Maclaurin, G. Necula, A. Paszke,371

J. VanderPlas, S. Wanderman-Milne, and Q. Zhang. JAX: composable transformations of372

Python+NumPy programs, 2018.373

9

[4] C. B. Browne. Automatic Generation and Evaluation of Recombination Games. Phd thesis, Fac-374

ulty of Information Technology, Queensland University of Technology, Queensland, Australia,375

2009.376

[5] M. Campbell, A. J. Hoane Jr, and F.-h. Hsu. Deep blue. Artificial intelligence, 134(1-2):57–83,377

2002.378

[6] K. Chandra, T. Chen, J. B. Tenenbaum, and J. Ragan-Kelley. A domain-specific probabilistic379

programming language for reasoning about reasoning (or: a memo on memo). 2025.380

[7] C. Cui, W. Wang, M. Zhang, G. Chen, Z. Luo, and B. C. Ooi. Alphaevolve: A learning381

framework to discover novel alphas in quantitative investment. In Proceedings of the 2021382

International Conference on Management of Data, SIGMOD/PODS ’21, page 2208–2216.383

ACM, June 2021.384

[8] S. Dalton and I. Frosio. Accelerating reinforcement learning through gpu atari emulation. In385

H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan, and H. Lin, editors, Advances in Neural386

Information Processing Systems, volume 33, pages 19773–19782. Curran Associates, Inc.,387

2020.388

[9] G. Davidson, T. M. Gureckis, and B. Lake. Creativity, compositionality, and common sense in389

human goal generation. In Proceedings of the annual meeting of the cognitive science society,390

volume 44, 2022.391

[10] G. Davidson, G. Todd, J. Togelius, T. M. Gureckis, and B. M. Lake. Goals as reward-producing392

programs. Nature Machine Intelligence, 7(2):205–220, 2025.393

[11] DeepMind, I. Babuschkin, K. Baumli, A. Bell, S. Bhupatiraju, J. Bruce, P. Buchlovsky, D. Bud-394

den, T. Cai, A. Clark, I. Danihelka, A. Dedieu, C. Fantacci, J. Godwin, C. Jones, R. Hemsley,395

T. Hennigan, M. Hessel, S. Hou, S. Kapturowski, T. Keck, I. Kemaev, M. King, M. Kunesch,396

L. Martens, H. Merzic, V. Mikulik, T. Norman, G. Papamakarios, J. Quan, R. Ring, F. Ruiz,397

A. Sanchez, L. Sartran, R. Schneider, E. Sezener, S. Spencer, S. Srinivasan, M. Stanojević,398

W. Stokowiec, L. Wang, G. Zhou, and F. Viola. The DeepMind JAX Ecosystem, 2020.399

[12] S. Earle, G. Todd, Y. Li, A. Khalifa, M. U. Nasir, Z. Jiang, A. Banburski-Fahey, and J. Togelius.400

Puzzlejax: A benchmark for reasoning and learning, 2025.401

[13] S. Earle and J. Togelius. Autoverse: An evolvable game langugage for learning robust embodied402

agents. CoRR, 2024.403

[14] M. Ebner, J. Levine, S. M. Lucas, T. Schaul, T. Thompson, and J. Togelius. Towards a video404

game description language. 2013.405

[15] J. M. Font, T. Mahlmann, D. Manrique, and J. Togelius. A card game description language. In406

Applications of Evolutionary Computation: 16th European Conference, EvoApplications 2013,407

Vienna, Austria, April 3-5, 2013. Proceedings 16, pages 254–263. Springer, 2013.408

[16] C. D. Freeman, E. Frey, A. Raichuk, S. Girgin, I. Mordatch, and O. Bachem. Brax-a differen-409

tiable physics engine for large scale rigid body simulation. In Thirty-fifth Conference on Neural410

Information Processing Systems Datasets and Benchmarks Track (Round 1), 2021.411

[17] M. Genesereth and M. Thielscher. General Game Playing. Synthesis Lectures on Artificial412

Intelligence and Machine Learning. Morgan & Claypool Publishers, 2014.413

[18] M. R. Genesereth and Y. Björnsson. The international general game playing competition. AI414

Magazine, 34(2):107–111, 2013.415

[19] M. R. Genesereth, N. Love, and B. Pell. General game playing: Overview of the AAAI416

competition. AI Magazine, 26(2):62–72, 2005.417

[20] M. Gimelfarb, A. Taitler, and S. Sanner. Jaxplan and gurobiplan: Optimization baselines418

for replanning in discrete and mixed discrete and continuous probabilistic domains. In 34th419

International Conference on Automated Planning and Scheduling, 2024.420

10

[21] C. Gulino, J. Fu, W. Luo, G. Tucker, E. Bronstein, Y. Lu, J. Harb, X. Pan, Y. Wang, X. Chen,421

J. D. Co-Reyes, R. Agarwal, R. Roelofs, Y. Lu, N. Montali, P. Mougin, Z. Yang, W. B, A. Faust,422

R. McAllister, D. Anguelov, and B. Sapp. Waymax: An accelerated, data-driven simulator for423

large-scale autonomous driving research. In Proceedings of the Neural Information Processing424

Systems Track on Datasets and Benchmarks, 2023.425

[22] K. He, X. Zhang, S. Ren, and J. Sun. Identity mappings in deep residual networks. In B. Leibe,426

J. Matas, N. Sebe, and M. Welling, editors, Computer Vision – ECCV 2016, pages 630–645,427

Cham, 2016. Springer International Publishing.428

[23] S. Kazemkhani, A. Pandya, D. Cornelisse, B. Shacklett, and E. Vinitsky. Gpudrive: Data-driven,429

multi-agent driving simulation at 1 million fps. In Proceedings of the International Conference430

on Learning Representations (ICLR), 2025.431

[24] J. Kowalksi, R. Miernik, M. Mika, W. Pawlik, J. Sutowicz, M. Szykuła, and A. Tkaczyk.432

Efficient reasoning in regular boardgames. In Proceedings of the 2020 IEEE Conference on433

Games, pages 455–462. IEEE, 2020.434

[25] J. Kowalski, M. Maksymilian, J. Sutowicz, and M. Szykuła. Regular boardgames. In Pro-435

ceedings of the 33rd AAAI Conference on Artificial Intelligence, volume 33, pages 1699–1706.436

AAAI Press, 2019.437

[26] S. Koyamada, S. Okano, S. Nishimori, Y. Murata, K. Habara, H. Kita, and S. Ishii. Pgx:438

Hardware-accelerated parallel game simulators for reinforcement learning. Advances in Neural439

Information Processing Systems, 36:45716–45743, 2023.440

[27] R. T. Lange. gymnax: A JAX-based reinforcement learning environment library, 2022.441

[28] N. Love, T. Hinrichs, D. Haley, E. Schkufza, and M. Genesereth. General game playing: Game442

description language specification. Technical Report LG-2006-01, Stanford Logic Group, 2008.443

[29] V. Makoviychuk, L. Wawrzyniak, Y. Guo, M. Lu, K. Storey, M. Macklin, D. Hoeller, N. Rudin,444

A. Allshire, A. Handa, and G. State. Isaac gym: High performance GPU based physics445

simulation for robot learning. In J. Vanschoren and S. Yeung, editors, Proceedings of the Neural446

Information Processing Systems Track on Datasets and Benchmarks, volume 1. Curran, 2021.447

[30] M. Matthews, M. Beukman, B. Ellis, M. Samvelyan, M. Jackson, S. Coward, and J. Foerster.448

Craftax: A lightning-fast benchmark for open-ended reinforcement learning. In International449

Conference on Machine Learning (ICML), 2024.450

[31] D. Perez-Liebana, J. Liu, A. Khalifa, R. D. Gaina, J. Togelius, and S. M. Lucas. General451

video game AI: A multitrack framework for evaluating agents, games, and content generation452

algorithms. IEEE Transactions on Games, 11(3):195–214, 2019.453

[32] É. Piette, D. J. N. J. Soemers, M. Stephenson, C. F. Sironi, M. H. M. Winands, and C. Browne.454

Ludii – the ludemic general game system. In G. D. Giacomo, A. Catala, B. Dilkina, M. Milano,455

S. Barro, A. Bugarín, and J. Lang, editors, Proceedings of the 24th European Conference456

on Artificial Intelligence (ECAI 2020), volume 325 of Frontiers in Artificial Intelligence and457

Applications, pages 411–418. IOS Press, 2020.458

[33] J. Pitrat. Realization of a general game-playing program. In IFIP Congress (2), pages 1570–459

1574, 1968.460

[34] B. Romera-Paredes, M. Barekatain, A. Novikov, M. Balog, M. P. Kumar, E. Dupont, F. J. R.461

Ruiz, J. S. Ellenberg, P. Wang, O. Fawzi, P. Kohli, and A. Fawzi. Mathematical discoveries462

from program search with large language models. Nature, 625(7995):468–475, 2024.463

[35] A. Rutherford, B. Ellis, M. Gallici, J. Cook, A. Lupu, G. Ingvarsson, T. Willi, A. Khan, C. S.464

de Witt, A. Souly, et al. Jaxmarl: Multi-agent rl environments in jax. CoRR, 2023.465

[36] J. Schaeffer, N. Burch, Y. Björnsson, A. Kishimoto, M. Müller, R. Lake, P. Lu, and S. Sutphen.466

Checkers is solved. Science, 317(5844):1518–1522, 2007.467

11

[37] T. Schaul. A video game description language for model-based or interactive learning. In468

Proceedings of the IEEE Conference on Computational Intelligence in Games, pages 193–200.469

IEEE, 2013.470

[38] T. Schaul. An extensible description language for video games. IEEE Transactions on Compu-471

tational Intelligence and AI in Games, 6(4):325–331, Dec. 2014.472

[39] S. Schiffel and M. Thielscher. Representing and reasoning about the rules of general games473

with imperfect information. Journal of Artificial Intelligence Research, 49:171–206, 2014.474

[40] J. Schultz, J. Adamek, M. Jusup, M. Lanctot, M. Kaisers, S. Perrin, D. Hennes, J. Shar, C. Lewis,475

A. Ruoss, et al. Mastering board games by external and internal planning with language models.476

arXiv preprint arXiv:2412.12119, 2024.477

[41] D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez, M. Lanctot, L. Sifre,478

D. Kumaran, T. Graepel, T. Lillicrap, K. Simonyan, and D. Hassabis. A general reinforcement479

learning algorithm that masters chess, shogi, and Go through self-play. Science, 362(6419):1140–480

1144, 2018.481

[42] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez, T. Hubert, L. Baker,482

M. Lai, A. Bolton, et al. Mastering the game of go without human knowledge. Nature,483

550(7676):354–359, 2017.484

[43] D. J. N. J. Soemers, É. Piette, M. Stephenson, and C. Browne. Optimised playout implementa-485

tions for the Ludii general game system. In C. Browne, A. Kishimoto, and J. Schaeffer, editors,486

Advances in Computers Games (ACG 2021), volume 13262 of Lecture Notes in Computer487

Science, pages 223–234. Springer, Cham, 2022.488

[44] A. Surina, A. Mansouri, L. Quaedvlieg, A. Seddas, M. Viazovska, E. Abbe, and C. Gulcehre.489

Algorithm discovery with llms: Evolutionary search meets reinforcement learning, 2025.490

[45] Y. Tang, Y. Tian, and D. Ha. Evojax: Hardware-accelerated neuroevolution. In Proceedings of491

the Genetic and Evolutionary Computation Conference Companion, pages 308–311, 2022.492

[46] M. Thielscher. GDL-III: A description language for epistemic general game playing. In493

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence, IJCAI-494

17, pages 1276–1282, 2017.495

[47] G. Todd, A. Padula, M. Stephenson, É. Piette, D. J. N. J. Soemers, and J. Togelius. GAVEL:496

Generating games via evolution and language models. In A. Globerson, L. Mackey, D. Bel-497

grave, A. Fan, U. Paquet, J. Tomczak, and C. Zhang, editors, Advances in Neural Information498

Processing Systems, volume 37, pages 110723–110745. Curran Associates, Inc., 2024.499

[48] C. E. Zhang, K. M. Collins, L. Wong, A. Weller, and J. Tenenbaum. People use fast, goal-500

directed simulation to reason about novel games. In Proceedings of the Annual Meeting of the501

Cognitive Science Society, volume 46, 2024.502

12

Appendices503

A Example Games and Syntax504

Below we present the Ludax syntax for a small set of exemplar games (Reversi, Connect Four,505

Yavalax, and Pente) to help illustrate aspects of Ludax’s syntax and structure.506

(game "Reversi"
 (players 2)
 (equipment
 (board (square 8))
)

 (rules
 (start
 (place P1 (28 35))
 (place P2 (27 36))
)
 (play
 (repeat (P1 P2)
 (place
 (destination empty)
 (result
 (exists
 (custodial any)
)
)
 (effects
 (flip (custodial any))
 (set_score mover (count (occupied mover)))
 (set_score opponent

(count (occupied opponent))
)

)
)
 (force_pass)
)
)

 (end
 (if (passed both) (by_score))
)))

(game "Yavalax"
 (players 2)
 (equipment
 (board (square 13))
)

 (rules
 (play
 (once_through (P1)
 (place (destination empty))
)
 (repeat (P2 P2 P1 P1)
 (place
 (destination empty)
 (result
 (and
 (not (line 5))
 (not (= (line 4) 1))
)
)
)
)
)
 (end
 (if (>= (line 4) 2) (mover win))
 (if (full_board) (draw))
)
)
)

(game "Pente"
 (players 2)
 (equipment
 (board (square 19))
)

 (rules
 (play
 (once_through (P1)
 (place (destination center))
)
 (repeat (P2 P1)
 (place
 (destination empty)
 (effects
 (capture (custodial 2) increment_score:true)
)
)
)
)
 (end
 (if (line 5) (mover win))
 (if (>= (score mover) 10) (mover win))

 (if (full_board) (draw))
)
)
)

(game "Connect-Four"
 (players 2)
 (equipment
 (board (rectangle 6 7))
)

 (rules
 (play
 (repeat (P1 P2)
 (place (destination (and

empty
(or

(edge bottom)
(adjacent occupied direction:up)

)
)))

)
)

 (end
 (if (line 4) (mover win))
 (if (full_board) (draw))
)
)
)

Figure 4: Ludax syntax for Reversi and Connect Four (classic board games), as well as Yavalax
and Pente (modern board games).

B Ludax Grammar507

Below we present the complete grammar specification for Ludax, using the syntax of the Lark508

Python library.509

// --510

13

game: "(game" name players equipment rules ")"511

512

// ---Players---513

players: "(players" positive_int ")"514

515

// ---Equipment---516

equipment: "(equipment" board")"517

board: "(board" (board_square | board_rectangle | board_hexagon | board518

_hex_rectangle) ")"519

board_square: "(square" number ")"520

board_rectangle: "(rectangle" number number ")"521

board_hexagon: "(hexagon" number ")"522

board_hex_rectangle: "(hex_rectangle" number number ")"523

524

// ---Rules---525

rules: "(rules" start_rules? play_rules end_rules ")"526

527

// ---Start rules---528

start_rules: "(start" start_rule+ ")"529

start_rule: start_place530

start_place: "(place" player_reference pattern_arg ")"531

532

// ---Play rules---533

play_rules: "(play" play_phase+ ")"534

play_phase: phase_once_through | phase_repeat535

phase_once_through: "(once-through" play_mover_order play_mechanic ")"536

phase_repeat: "(repeat" play_mover_order play_mechanic ")"537

play_mover_order: "(" player_reference+ ")"538

539

play_mechanic: play_place force_pass?540

play_place: "(place" mover_reference? place_destination_constraint place541

_result_constraint? play_effects?")"542

force_pass: "(force_pass" ")"543

544

// ---Constraints---545

place_destination_constraint: "(destination" super_mask ")"546

place_result_constraint: "(result" super_predicate ")"547

548

// ---Effects---549

play_effects: "(effects" play_effect+ ")"550

play_effect: effect_capture551

| effect_flip552

| effect_increment_score553

| effect_set_score554

555

effect_capture: "(capture" super_mask mover_reference? increment_score_arg?556

")"557

effect_flip: "(flip" super_mask mover_reference? ")"558

effect_increment_score: "(increment_score" mover_reference function ")"559

effect_set_score: "(set_score" mover_reference function ")"560

561

// ---Functions---562

function: function_add563

| function_connected564

| function_constant565

| function_count566

| function_line567

| function_multiply568

| function_score569

14

| function_subtract570

571

function_add: "(add" function+ ")"572

function_connected: "(connected" multi_mask_arg mover_reference?573

direction_arg? ")"574

function_constant: positive_int575

function_count: "(count" super_mask ")"576

function_line: "(line" positive_int orientation_arg? exact_arg? ")"577

function_multiply: "(multiply" function+ ")"578

function_score: "(score" mover_reference ")"579

function_subtract: "(subtract" function function ")"580

581

// ---End rules---582

end_rules: "(end" end_rule+ ")"583

end_rule: "(if" super_predicate end_rule_result ")"584

?end_rule_result: result_win | result_lose | result_draw | result_by_score585

586

// -- Result definitions --587

result_win: "(" mover_reference "win" ")"588

result_lose: "(" mover_reference "lose" ")"589

result_draw: "(" "draw" ")"590

result_by_score: "(" "by_score" ")"591

592

// -- Mask definitions --593

super_mask: mask | super_mask_and | super_mask_or | super_mask_not594

super_mask_and: "(and" super_mask+ ")"595

super_mask_or: "(or" super_mask+ ")"596

super_mask_not: "(not" super_mask ")"597

598

mask: mask_adjacent599

| mask_center600

| mask_corners601

| mask_custodial602

| mask_edge603

| mask_empty604

| mask_occupied605

| mask_pattern606

| mask_prev_move607

608

mask_adjacent: "(adjacent" super_mask direction_arg? ")"609

mask_center: "center"610

mask_corners: "corners"611

mask_custodial: "(custodial" custodial_length_arg mover_reference?612

orientation_arg? ")"613

mask_edge: "(edge" edge ")"614

mask_empty: "empty"615

mask_occupied: "occupied" | "(occupied" mover_reference ")"616

mask_pattern: "(pattern" dimensions_arg pattern_arg rotate_arg? ")"617

mask_prev_move: "(prev_move" mover_reference ")"618

619

// "Multi-masks" are special keywords that are manually split into multiple620

// sub-masks at compile time. This is mostly useful for the "connected"621

function,622

// which expects a list of masks to check for connections between623

multi_mask: multi_mask_corners624

| multi_mask_edges625

| multi_mask_edges_no_corners626

627

multi_mask_corners: "corners"628

15

multi_mask_edges: "edges"629

multi_mask_edges_no_corners: "edgesNoCorners"630

631

// ---Predicate definitions---632

super_predicate: predicate | super_predicate_and | super_predicate_or |633

super_predicate_not634

super_predicate_and: "(and" super_predicate+ ")"635

super_predicate_or: "(or" super_predicate+ ")"636

super_predicate_not: "(not" super_predicate ")"637

638

predicate: predicate_equals639

| predicate_exists640

| predicate_full_board641

| predicate_function642

| predicate_greater_equals643

| predicate_less_equals644

| predicate_mover_is645

| predicate_passed646

647

predicate_equals: "(=" function+ ")"648

predicate_exists: "(exists" super_mask ")" // technically equivalent to (>=649

(count mask) 1)650

predicate_full_board: "(" "full_board" ")"651

predicate_function: function // special syntax which is equivalent to "(>=652

function 1)"653

predicate_greater_equals: "(>=" function function ")"654

predicate_less_equals: "(<=" function function ")"655

predicate_mover_is: "(mover_is" player_reference ")"656

predicate_passed: "(passed" (mover_reference | BOTH) ")"657

658

// Additional (potentially optional) arguments for predicates659

custodial_length_arg: ANY | positive_int660

dimensions_arg: "(" positive_int positive_int ")"661

direction_arg: "direction:" direction662

exact_arg: "exact:" boolean663

increment_score_arg: "increment_score:" boolean664

multi_mask_arg: multi_mask | "(" super_mask+ ")"665

orientation_arg: "orientation:" orientation666

pattern_arg: "(" positive_int+ ")"667

rotate_arg: "rotate:" boolean668

669

// General-purpose definitions670

?number: SIGNED_NUMBER671

?positive_int: /[0-9]+/672

?boolean: TRUE | FALSE673

?edge: TOP | BOTTOM | LEFT | RIGHT | TOP_LEFT | TOP_RIGHT | BOTTOM_LEFT |674

BOTTOM_RIGHT675

?direction: UP | DOWN | LEFT | RIGHT | UP_LEFT | UP_RIGHT | DOWN_LEFT |676

DOWN_RIGHT | VERTICAL | HORIZONTAL | ORTHOGONAL | DIAGONAL |677

BACK_DIAGONAL | FORWARD_DIAGONAL | ANY678

?orientation: VERTICAL | HORIZONTAL | ORTHOGONAL | DIAGONAL | BACK_DIAGONAL679

| FORWARD_DIAGONAL | ANY680

// ----------------------------681

682

?player_reference: P1| P2683

?mover_reference: MOVER | OPPONENT684

name: STRING685

variable_name: /\?[a-z][a-z0-9]*/686

id: /[a-zA-Z0-9_]+/687

16

688

// Constants689

TOP: "top"690

BOTTOM: "bottom"691

UP: "up"692

DOWN: "down"693

LEFT: "left"694

RIGHT: "right"695

TOP_LEFT: "top_left"696

TOP_RIGHT: "top_right"697

BOTTOM_LEFT: "bottom_left"698

BOTTOM_RIGHT: "bottom_right"699

UP_LEFT: "up_left"700

UP_RIGHT: "up_right"701

DOWN_LEFT: "down_left"702

DOWN_RIGHT: "down_right"703

VERTICAL: "vertical"704

HORIZONTAL: "horizontal"705

ORTHOGONAL: "orthogonal"706

DIAGONAL: "diagonal"707

BACK_DIAGONAL: "back_diagonal"708

FORWARD_DIAGONAL: "forward_diagonal"709

ANY: "any"710

TRUE: "true"711

FALSE: "false"712

MOVER: "mover"713

OPPONENT: "opponent"714

P1: "P1"715

P2: "P2"716

BOTH: "both"717

// --718

C Benchmark Game Descriptions719

Below, we present natural language descriptions of the rules for each of the exemplar games analyzed720

in Section 6.721

Tic-Tac-Toe: Players take turns placing a piece into an empty space on a square 3-by-3 board. If a722

player forms a line of three of their pieces in a row (either vertically, horizontally, or diagonally), they723

win. If the board is completely full but no lines have been formed, then the game ends in a draw.724

Connect Four: Players take turns placing a piece into the top of one of the seven columns on a 6-by-7725

board. The piece then “falls” until it rests on either the bottom of the board or another piece. A player726

can’t place a piece into a column that is already “full.” If a player forms a line of four of their pieces727

in a row (either vertically, horizontally, or diagonally), they win. If the board is completely full but728

no lines have been formed, then the game ends in a draw.729

Hex: Players take turns placing a piece into an empty space on an 11-by-11 board composed of730

hexagonal tiles (forming a parallelogram, see visual depiction here). The objective for the first player731

is to form a continuous path of their pieces that connects the top edge of the board with the bottom732

edge, while the objective for the second player is to do the same but connect the left and right edges733

of the board. The first player to achieve their objective wins the game. Because of the geometric734

properties of the board, it’s not possible for the game to end in a draw.735

Reversi: The game takes place on a square 8-by-8 board. To begin, a white piece is placed at positions736

D4 and E5 and a black piece is placed at positions D5 and E4 (see visual depiction here). Players737

take turns placing a piece into an empty space such that a line of one or more of the opponent’s pieces738

are “sandwiched” on either end by the player’s pieces. This configuration is called a “custodial”739

arrangement of pieces. After placing a piece, any of the opponent’s pieces which are in such a740

custodial arrangement are flipped and now belong to the player who just moved. It’s possible for a741

17

https://en.wikipedia.org/wiki/Hex_(board_game)
https://en.wikipedia.org/wiki/Reversi#Rules

single move to form multiple custodial arrangements in different directions, in which case all of the742

relevant pieces are flipped. If a player cannot make a legal move, they must pass (and they cannot743

pass without making a move otherwise). If both players pass, then the game is over. The winner is744

determined by the player who has the largest number of pieces on the board at the end of the game745

(in the event of a tie, the game ends in a draw).746

Gomoku: Players take turns placing a piece into an empty space on a square 15-by-15 board. If a747

player forms a line of exactly five of their pieces in a row (either vertically, horizontally, or diagonally),748

they win. However, forming a line of six or more does not count – the player must have at least one749

line of exactly five. If the board is completely full but no lines of exactly five have been formed, then750

the game ends in a draw.751

Pente: Players take turns placing a piece into an empty space on a square 19-by-19 board. If a player752

forms a line of five of their pieces in a row (either vertically, horizontally, or diagonally), they win.753

In addition, if placing a piece causes a line of exactly two of the opponent’s pieces to be put into a754

custodial arrangement, the two pieces are captured and removed from a board. Note that placing755

a piece into a custodial arrangement formed by the opponent does not result in any pieces being756

captured. A player who captures at least 10 of the opponent’s pieces over the course of the game757

wins. In the variant of Pente implemented in Ludii and Ludax, the first player must make their first758

move into the exact center of the board.759

Yavalath: Players take turns placing a piece into an empty space on a regular hexagonal board with a760

diameter of 9 spaces. If a player forms a line of four of their pieces in any direction (either diagonally761

or horizontally4), they win. However, if a player forms a line of three of their pieces in a row without762

also forming a line of four, they lose. If the board is completely full but no lines of four or three have763

been formed, then the game ends in a draw.764

Yavalax: To begin, the first player places a piece into an empty space on a square 13-by-13 board.765

Starting with Player 2, players then take turns placing two pieces into empty spaces on the board.766

If a player forms at least two distinct lines of four of their pieces in any direction (either vertically,767

horizontally, or diagonally), they win. However, a player may not place a piece into a space if doing768

so would form a line of five pieces in any direction or if it would form exactly one line of four pieces769

in any direction. Note that this restriction applies to a player’s first move of their turn even if they770

could form a second line of four pieces with their second move of the turn (and thus win). If the771

board is completely full and neither player has formed at least two distinct lines of four pieces, then772

the game ends in a draw.773

D Training Hyperparameters774

Below we provide the exact training hyperparameters used in the reinforcement learning experiments775

in Section 7. These are largely copied from the PGX implementation.776

• Model architecture: ResnetV2777

• Number of channels: 128778

• Number of layers: 6779

• Self-play batch size: 1024780

• Self-play simulations: 32781

• Self-play max steps: 256782

• Training batch size: 4096783

• Learning rate: 0.001784

• Evaluation frequency: 5785

• Training iterations: 219786

Note that each “iteration” consists of generating play data for 256 steps using the self-play batch size787

of 1024 (see [26]). We train the model for 219 iterations, which corresponds to 256 × 1024 × 219 =788

57409536 (or roughly 57 million) steps in the environment.789

4Ludax assumes a canonical orientation for hexagonal boards in which the diameter stretches from left to
right, though it is functionally equivalent to the orientation in which the diameter runs vertically)

18

	Introduction
	Related Work
	Description Language Details
	Equipment
	Start Rules
	Play Rules
	End Rules
	Design Considerations

	Compiling Game Descriptions into Game Environments
	Expressive Range
	Benchmarking
	Learned Agents
	Limitations
	Future Work
	Conclusions
	Example Games and Syntax
	Ludax Grammar
	Benchmark Game Descriptions
	Training Hyperparameters

