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Abstract

Games have long been used as benchmarks and testing environments for research in
artificial intelligence. A key step in supporting this research was the development
of game description languages: frameworks that compile domain-specific code into
playable and simulatable game environments, allowing researchers to generalize
their algorithms and approaches across multiple games without having to manually
implement each one. More recently, progress in reinforcement learning (RL) has
been largely driven by advances in hardware acceleration. Libraries like JAX
allow practitioners to take full advantage of cutting-edge computing hardware,
often speeding up training and testing by orders of magnitude. Here, we present a
synthesis of these strands of research: a domain-specific language for board games
which automatically compiles into hardware-accelerated code. Our framework,
Ludax, combines the generality of game description languages with the speed of
modern parallel processing hardware and is designed to fit neatly into existing
deep learning pipelines. We envision Ludax as a tool to help accelerate games
research generally, from RL to cognitive science, by enabling rapid simulation and
providing a flexible representation scheme. We present a detailed breakdown of
Ludax’s description language and technical notes on the compilation process, along
with speed benchmarking and a demonstration of training RL agents. The Ludax
framework, along with implementations of existing board games, is open-source
and freely available.

1 Introduction

For the past 75 years, games have served as vital tests and benchmarks for artificial intelligence
research. While many specific games have been completely solved [36] or optimized beyond the
abilities of the strongest human players [5,42], the general space of games remains a fertile ground
for measuring improvements in reasoning, planning, and strategic thinking. A critical part of this
progress, however, is the ability to test approaches and algorithms on a set of environments that are
both diverse and computationally efficient. [41]

To help drive further games and learning research, we introduce Ludax: a domain-specific language
for board games that compiles into GPU-accelerated code written in the JAX library [3]. Ludax
draws on two main inspirations: (1) Ludii [32], a general purpose description language for board
games capable of representing more than 1400 games from throughout history and around the world,
and (2) PGX [26]], a collection of optimized JAX-native implementations of classic board games and
video games designed to facilitate rapid training and evaluation of modern reinforcement learning
(RL) agents. Ludax presents a flexible and general-purpose game representation format that can be
leveraged for efficient simulation and learning on modern computing hardware.
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The game takes place on an 8 by 8 board.

To begin, a white piece is placed at positions D4 and
E5 and a black piece is placed at positions D5 and
E4.

Players take turns placing a piece into an empty
square.

However, a legal move must form a “custodial”
arrangement - sandwiching one or more of the
opponent’s pieces between your own pieces.

After making a move, any of the opponent'’s pieces
that are sandwiched in this way are flipped and now
belong to the moving player. Then, each player’s
score is set to the number of pieces they have.

If (and only if) a player cannot make a legal move,
they must pass the turn.

If both players pass, then the game is over. The
winner is the player with the higher score (in the

(game "Reversi”
(players 2)
(equipment
(board (square 8))
)

(rules
(start
(place P1 (27 36))
(place P2 (28 35))

)
(play
(repeat (P2 P1)
(place
(destination empty)
(result
(exists
(custodial any)

)

)
(effects
(flip (custodial any))
(set_score mover (count (occupied mover)))
(set_score opponent
(count (occupied opponent))
)
)

(force_pass)
)
)

(end
(if (passed both) (by_score))

event of a tie, the game ends in a draw). ”

Figure 1: Natural language description of Reversi along with its corresponding translation
into Ludax. Ludax uses “ludemic” syntax that represents high-level game components as separate
program sections.

Ludax currently supports two-player, perfect-information, turn-based board games played by placing
pieces onto empty board cells. While this is a narrow class of games when compared to the full
breadth of human designs and the set of mechanics implemented by Ludii, it is still broad enough
to capture a wide range of existing games (e.g. Connect Four, Pente, Hex, ...) as well as many
unexplored novel games and variants that fall within that class. Further, Ludax is designed to be
easily expandable — like with Ludii, implementing new game mechanics in Ludax only requires
implementing new atomic components in the underlying description language. These components
can then be combined compositionally with existing elements of the language to produce an entirely
new range of possible games, instead of each game needing to be implemented separately.

Another design goal for Ludax is ease of use, both in terms of game design and experimentation.
The syntax of the description language is “ludemic” [32] — splitting game rules into clear sections
governing the game’s setup, play mechanics, and end conditions. Like with Ludii, game programs
in Ludax resemble English descriptions of rules (see[Figure IJ). Further, by leveraging the structure
of the existing PGX library, environments instantiated in Ludax can be easily combined with existing
frameworks for GPU-accelerated search, reinforcement learning, or evolution [11}45]. Ludax also
supports a basic web interface for interactive debugging, with the aim to provide support for online
interactive experiments in the future.

To our knowledge, Ludax is the first board game description language which compiles into GPU-
accelerated code. In the following sections, we provide a detailed description of the language syntax,
compilation process, and Ludax’s expressive range. We also provide speed benchmarking compared
to both Ludii and PGX, as well as an initial demonstration of training learned agents. Finally, we
conclude with a discussion of potential use cases and future directions.

2 Related Work

Game Description Languages: Game description languages have been used for many years and in
a variety of domains. The Stanford GDL [28 [17, 39} 46] is among the most influential, helping to
popularize research in general game playing [|33]] through its use in the International General Game
Playing Competition [[19,[18]]. Other notable examples include VGDL [[14} 37} 38] (primarily known
from its use in the General Video Game Al framework [31]), RBG [25]], Ludi [4]], and its successor
Ludii [32]]. GDLs have also been used to describe the rules of card games [15]] as well as to represent
human goals in naturalistic simulated environments [9,[10]. Modern game description languages
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have tended to move away from a basis in formal logic in favor of greater human usability, though
there are benefits in efficiency gained by the use of regular languages [24].

GPU-Accelerated Environments: Recent years have seen a proliferation of learning environments
implemented in the JAX library or other frameworks that enable hardware (typically GPU) acceler-
ation. Examples include single-agent and multi-agent physics simulators [[L6} 29, 1], ports of both
classic and recent reinforcement learning tasks [8, 27} 26} 130], combinatorial optimization problems
[2], multi-agent coordination problems [35]], and driving simulators [21} 23]. While these efforts
have spurred significant progress and span a wide range of domains and task formulations, each of
them implement a fixed environment or set of environments. As such, they cannot easily be extended
to novel environments without first writing new hardware-accelerated code. We do also note the
existence of a number of description languages for other domains (e.g. probabilistic programming,
planning, single-player puzzles) that leverage JAX for efficient execution [6} 20} 13} [12].

3 Description Language Details

Ludax’s game description language draws heavily on the Ludii description language, particularly in
its use of “ludemic” syntax that represents game rules in terms of high-level and easily-understandable
components [32]. The complete grammar file and syntax details are available in the Supplemental
Material.

3.1 Equipment

The equipment section contains information about the physical components used by the game.
Currently, this only specifies the size and shape of the board (i.e. whether it is square, rectangular,
hexagonal, or hexagonal-rectangular). The dimensions and shape of the board are used during compi-
lation to help pre-compute certain game-relevant properties, such as the board indices corresponding
to lines of specific lengths. In future versions of Ludax, the equipment section will also detail the
different pieces used by each player if the game specifies more than one.

3.2 Start Rules

The start section is an optional section that contains the rules for the game’s setup. For most games,
play begins on an empty board and the start section is omitted. In some games, such as Reversi
(see[Figure T)), pieces are placed in a particular arrangement at the start of play.

3.3 Play Rules

Typically, the play rules of each game are the most involved, as they detail the core mechanics and
dynamics of the game. The play section is itself broken into one or more subsections called “play
phases.” Each phase has its own rules for player actions and turn-taking, as well as specific conditions
for when to transition to another phase. Most games have only a single phase in which players
alternate turns until the game is over, specified with the repeat keyword. Some games include a
once_through phase that progresses through the turn order a single time before advancing to the
next phase. The sequence of player turns is specified independently for each phase. For instance,
Yavalax (Appendix bottom-left panel) begins with the first player making a single move
(i.e. (once_through (P1) ...) ) before both players alternate taking two turns for the rest of the
game (i.e. (repeat (P2 P2 P1 P1) ...)).

The core of each phase is a “play mechanic” that encodes the ways that players take their turns. In
the context of reinforcement learning, a play mechanic specifies both the action space (A) and the
transition function (7 : S X A — §). At a lower level, each play mechanic also defines a “legal
action mask function” that returns whether each action is valid from the current game state. Currently,
Ludax supports only one kind of play mechanic: place. A place mechanic’s primary argument is a
destination constraint which specifies where a piece may be placed on a given player’s turn. For
many games, such as Tic-Tac-Toe, this is simply the set of empty board positions. For some games,
however, the destination constraint is more involved: in Connect Four (Appendix [Figure 4] top-right
panel), legal actions are empty spaces that are on the bottom edge of the board or immediately
above an occupied position (see for a discussion of how actions are represented more



115
116
117
118
119
120
121
122
123
124

125
126
127
128
129
130

131
132
133
134
135
136
137
138
139

140
141

142

143
144
145
146
147
148
149

151
152
153
154
155
156
157
158
159
160
161
162

generally in Ludax). Even further, some games have what we call result constraints which require
that a legal action results or doesn’t result in a board with specific properties. Yavalax and Reversi
both use result constraints: the former forbids players from placing a piece that forms a line of five
or that forms only a single line of four, whereas the latter requires players to place a piece in a way
that “sandwiches” one or more of their opponent’s pieces in a line. Finally, a play mechanic may
optionally specify one or more effects that modify the game state after the action is performed.
Effects are used to handle mechanics like capturing or flipping pieces, as well as updating each
player’s score (if the game uses score). Both Reversi and Pente (Appendix [Figure 4] bottom-right
panel) use play effects to handle flipping and capturing pieces, respectively, with Pente also using the
score as an alternate winning condition.

Throughout this section, we have been referring to various properties of a game state and relationships
between pieces / positions (e.g. whether pieces are “sandwiched,” whether a line is formed, whether
a piece is adjacent to another, ...). These are the lowest-level component’s of Ludax’s description
language and are referred to collectively as masks, functions, and predicates. A mask takes in
the current game state and returns a boolean array over each position on the board. Some masks, like
occupied or edge, take additional grammatical arguments which might specify a particular player

or region of the boa.rd[] A function similarly takes in the current game state and returns a single
non-negative integer. In Ludax’s current form, 1ine is probably the most commonly-used function
— it returns the number of contiguous lines of a given player’s pieces on the board, with a specified
length and orientation. Lastly, a predicate maps from a game state to a single boolean truth value.
Many predicates operate over the outputs of masks and functions, such as exists or equals,
though some like mover_is are computed directly from game states. Crucially, the outputs of masks,
functions, and predicates can be combined compositionally using first-order logic (excluding
quantification) to form more complicated expressions. So, the condition “if Player 2 makes a line of
4 in a row or a diagonal line of 3...” would be rendered as follows:

(and (mover_is P2) (or (line 4) (line 3 orientation:diagonal)))

Note that, for ease of use, Ludax automatically interprets the presence of a bare function inside a
boolean operator as indicating a non-zero value. So, (1ine 4) is equivalentto (>= (line 4) 1).

3.4 End Rules

The last section of a game description in Ludax details the criteria that terminate a game. The end
section contains one or more “end conditions” — these are applied in order, with the first condition to
activate determining the ending behavior (i.e. which player wins or if the game ends in a draw). If
none of the conditions activate, then the game continues. For instance, Tic-Tac-Toe includes both the
end conditions (if (line 3) (mover win)) and (if (full_board) (draw)), with the draw
condition only triggering if the “three in a row condition” is not met. End conditions also frequently
refer to a player’s score, which is updated or set as a result of an action’s effects (see above).

3.5 Design Considerations

While Ludax draws heavily from the Ludii description language, there are some important dif-
ferences which go beyond just changes in syntax. The first of these relates to how both systems
represent a game’s action space. One of the design goals of Ludii is that game descriptions should
resemble as much as possible the rules in natural language. In Connect Four, for instance, players
take a move by dropping a piece into one of seven columns of the board, at which point the piece
falls until it reaches the bottom or rests on another piece. Accordingly, the canonical representa-
tion of Connect Four in Ludii features pieces that “Drop” into the “LastColumn” chosen by the
player (PGX implicitly represents the game in a similar way). As mentioned above, however, Ludax
represents the action space differently: players simply place a piece onto an empty board cell, with
actions that are not directly above an existing piece or the bottom of the board marked as illegal.
Mechanically, the two implementations of Connect Four are identical — the difference lies in how they
are encoded (especially to simulated players or reinforcement learning agents). The “column-based”

"The ad jacent mask is a special case — it takes another mask as an additional argument and returns the
board positions adjacent to any of the active positions in the original mask.
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representation has many advantages (it matches the physical properties of the game in real life and
lowers the branching factor), but it is also game-specific. While Ludax also strives to represent
game descriptions intuitively, we primarily aim to provide a unified representation format across
games, such that general game-playing agents can more easily transfer knowledge and expertise from
one game to another. As such, the size and form of the action space for any place-based game is
determined only by the size and shape of the board. This choice is also partially motivated by the
specifics of working with the JAX library (see [Section 4)) and has implications for benchmarking and
downstream use-cases (see[Section 6)).

4 Compiling Game Descriptions into Game Environments

In this section, we describe the high-level approach used to map from programs in the Ludax game
description language to hardware-accelerated simulation environments. While Ludax specifically
instantiates board game environments using the Lark Python library, the general approach is flexible
enough to be used with different domains and parsing toolkits. Broadly speaking, Ludax oper-
ates by defining the leaves of the grammatical parse tree (i.e. individual masks, functions, and
predicates) as atomic functions written in JAX, which are then dynamically composed from the
bottom-up to form higher-level operators used by the environment class. Consider again the following
game expression:

(and (mover_is P2) (or (line 4) (line 3 orientation:diagonal)))

During compilation, the leaf-level nodes (i.e. (mover_is P2) and (line 4)) are converted into
JAX functions which map from the current game state to (in this case) a boolean truth value, and
those functions are then passed up the parse tree. Higher-level nodes, such as (and . ..), receive the
JAX functions corresponding to each of their children and return a new JAX function that also takes
the game state as input and implements the appropriate operation (in this case, boolean conjunction).
In pseudocode, using the Lark library’s Transformer paradigm, this looks like the following:

def predicate_and(self, children):
def predicate_fn(state):
children_values = [child_fn(state) for child_fn in childrenl]
return all(children_values)

return predicate_fn

In actuality, both the “children functions” and the combined “predicate function” must be written to
be compatible with JAX’s vectorization scheme and just-in-time (JIT) compilation. This imposes a
number of implementational constraints, most notably that the size and shape of all arrays must be
fixed at compile time. This means, for instance, that the dimensions of the “legal action mask” (and,
hence, the size of the action space in general) cannot change as the game progresses. In addition,
values like the number of iterations in a loop or the positions of a lookup mask must essentially be
“pre-specified.” Crucially, however, values that are determined during parsing (such as the number of
children for a given node, or the value of any arguments) can be safely passed into compiled JAX
functions as static constants. This fact is what allows Ludax to create JAX functions dynamically
that nonetheless obey the constraints of vectorization and JIT compilation. At the top of the parse
tree, these composed JAX functions are ultimately used to define the behaviors that appear in the
environment’s step function, such as applying the player’s action to the board and handling move
effects.

We next discuss some of the specific optimizations used by Ludax. In general, these are not global
optimizations: they apply only to certain compositions of game rules and mechanics. Our approach is
to deploy these optimizations when they are available and to “fall back™ on slower but more general
solutions when they are not.

Precomputation: An important optimization used by the PGX library (and JAX environments more
generally) is to express functions as batched matrix operations rather than iterative procedures. For
instance, rather than checking for a line of pieces in Tic-Tac-Toe by starting at the position of the last
move and scanning out in each direction (as Ludii’s implementation does), PGX hard-codes the set
of board indices that correspond to each possible line of three in the game (i.e. [[0, 1, 2], [0,
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Figure 2: Average throughput (moves per second) on various exemplar games for Ludax, Ludii,
and PGX. The top row of games are implemented in all three frameworks, while the bottom row of
games are implemented only in Ludax and Ludii. Speeds for Ludax and PGX are reported for 500
episodes of various batch sizes on a workstation with a single NVIDIA 4090 GPU and 32 CPU cores,
while speeds for Ludii are reported for parallel execution on the same workstation across 1, 16, and
32 threads. Error bars are standard deviations calculated over the 500 episodes.

3, 6], [0, 4, 7], ...]) and performs a single multi-dimensional index into the board array —
if any of the of the board index triples all correspond to positions occupied by a single player, then
the game is over. Ludax adopts and generalizes this approach: during parsing of 1ine, for example,
the line indices are computed with respect to the size and shape of the game board (i.e. rectangular,
hexagonal, ...) as well as the length and orientation of the desired line (i.e. diagonal, vertical, ...).
Again, because these values depend only on attributes that are determined during parsing, they can
be passed into JAX functions as constants. Precomputation naturally causes a trade-off between
compile-time and run-time efficiency. In our case, we opt to use precomputation whenever possible,
though some masks and functions cannot be expressed this way.

Dynamic State Attributes: Different games require tracking different kinds of information about
the current game state. Most obviously, some games track a score for each player while others do
not. When Ludax compiles a game, it automatically extracts the attributes required to instantiate a
game state and omits the others, thereby reducing the memory footprint of the entire state object.
More importantly, Ludax also automatically adds intermediary computations to each call of the
environment’s step function that help speed up later mask, function, or predicate evaluations.
For example, in Hex, the game ends when one player manages to connect two opposite sides of
the board with a continuous path of their pieces. Naively, checking whether the edges of the board
are linked requires the expensive step of computing the board’s connected components after each
move. However, updating the board’s connected components as a result of placing a single piece
can be done very efficiently (a technique used well in the PGX implementation). At compile time,
Ludax determines whether a game makes use of a “connection” rule and modifies the step function
to iteratively update and track the board’s connected components if so, greatly speeding up later
checks. In future extensions, this functionality will be used to accommodate games with atypical or
computationally expensive rules without affecting the runtime of existing games.

S Expressive Range

As mentioned above, Ludax currently supports a relatively narrow class of games: two-player,
perfect-information board games played by placing, capturing, and flipping pieces. Both Ludii
and PGX contain many games that Ludax does not: PGX includes implementations of Backgammon,
Chess, Shogi, and Go, along with hidden-information and Atari-style games (though Ludax also
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Figure 3: Performance of reinforcement learning agents trained in the Ludax and PGX imple-
mentations of Reversi against the PGX baseline agent. On the left, we plot the average winrate of
the learned agents against the baseline over time and across three separate runs. On the right, we plot
the average and variance of the winrates. Each run took roughly 3 hours to complete on a workstation
with a single A100 GPU.

supports games that do not appear in PGX), while Ludii’s description language can encode a vast
array of board game styles and subgenres. Despite this, Ludax’s description language remains quite
expressive. In addition to simple m — n — k line completion games, Ludax supports complex and
asymmetric winning conditions (e.g. misére variants, score-based victory), piece capturing and
flipping, directional adjacency checks and restrictions, “custodial” mechanics, and games based
on connecting arbitrary board regions. Ludax also supports regular rectangular and hexagonal
boards of arbitrary sizes, as well as “hexagonal-rectangular” boards (e.g. as used in Hex). These
components can then be combined compositionally to form a wide array of unique mechanics and
dynamics. In addition, because Ludax is a general description language, implementing a single new
game component expands the entire space of games in the framework. While the class of games
representable in Ludax may at present be smaller than that of Ludii or other game description
languages, it remains expansive.

6 Benchmarking

We benchmark the speed of Ludax on a set of 8 games, 4 of which are also implemented in both
Ludii and PGX (allowing for a full comparison) and 4 of which are implemented only in Ludax and
Ludii. Again, we emphasize that these 8 games are just exemplars of the class of games which
Ludax supports, not an exhaustive list. A full description of each benchmark game is available in the
Supplementary Material. We perform each of our benchmarking experiments on a workstation with a
single NVIDIA 4090 GPU, 32 CPU cores, and 128GB of memory. In we plot the throughput
(in steps per second) under a uniformly random action policy for each game environment against the
batch size (log scale on both axes), with the standard deviation of throughputs across episodes as
error bars. Ludii supports parallelization via multi-threading: we report throughput on the same
workstation when parallelized on 1, 16, and 32 threads. Evaluations for Ludax and PGX were obtained
by performing 100 warmup full-game episodes at the specified batch size, followed by measuring the
speed over 500 episodes, with each evaluation taking at most a few minutes to complete. Evaluations
for Ludii were obtained by runniﬁ warmup episodes for 10 seconds, followed by measuring the

speed over 30 seconds of episodes

Overall, Ludax achieves speeds that are competitive with state-of-the-art JAX environments. At small
batch sizes, its throughput is similar to that of the PGX implementations. At larger batch sizes in more
complicated games (i.e. Hex and Reversi), PGX takes a clear edge — though Ludax remains within
an order of magnitude of PGX. The comparative “plateauing” of Ludax’s speed at high batch sizes
may be due to memory pressure — for instance, Ludax’s implementation of Hex maintains both a
board and the connected components for each game state, whereas the PGX implementation cleverly

*We opted to measure speed for Ludax and PGX using a fixed number of episodes because JAX’s compilation
procedure makes it difficult to halt execution after a specific elapsed wall time.
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combines both into a single array. This kind of optimization is of course theoretically implementable
in Ludax as well, though again we emphasize the desiderata of avoiding game-specific solutions.

Ludax also outspeeds Ludii on 16 and 32 threads across all 8 games, achieving a maximum speedup
of between ~3x (Hex) and ~55x (Pente). We note that there are factors that both advantage and
disadvantage Ludax in this specific comparison against Ludii. One potential advantage for Ludax is
its smaller representation space — implementations of basic mechanics in Ludii support a wider range
of optional arguments and board types, with a corresponding increase in computational overhead
(though see for how this may be avoided). Conversely, Ludii’s ability to use dynamically-
sized data structures brings advantages that are particularly beneficial in uniformly random playouts,
but would (partially) disappear in playouts using deep reinforcement learning. Specifically, where
Ludax samples random actions from categorical probability distribution by masking over the entire
board at each step, Ludii selects random actions simply by taking a random index from a list. Ludii
also has optimized playout implementations tailored towards the many of the categories of games
covered by Ludax [43], though these optimizations are also more difficult to apply in the context of
deep learning.

7 Learned Agents

Finally, we demonstrate the feasibility of training reinforcement learning agents using the Ludax
framework. We train our agent on the game Reversi (also known as Othello) using the AlphaZero-

style [42] training script from the PGX libraryﬂ (making only slight modifications to accommodate
minor differences between the Ludax and PGX APIs). We use the same ResNetV2 [22]] network
architecture and training hyperparameters as PGX (full details available in the Supplementary Material)
and train three separate runs on a single A100 GPU. Each run lasted roughly 57 million frames and
took roughly three hours to complete.

We compare the performance of agents trained in the Ludax and PGX environments against the
baseline Reversi agent provided by the PGX library in Evaluations were performed by
playing two batches of 1024 games (one with the learned agent as the first player and one as the
second player), with actions sampled from the normalized output of the policy head at each step. We
see that both learned agents achieve remarkably similar performances against the baseline, with little
to no differences in learning speed or stability. While a more thorough, tournament-based evaluation
would be necessary to properly rank the agents against each other, our objective is to demonstrate the
general success of the training procedure and not to definitively defeat the baseline agent. Although
the PGX implementation of the Reversi environment is slightly more efficient, this translated into only
marginal improvements in overall runtime (about 1.5%) owing to the shared overhead of network
forward passes and weight updates. Like PGX, Ludax offers a familiar API and an efficient set of
implementations with which to train learned player agents.

8 Limitations

Generality: As mentioned in[Section 3] Ludax currently supports a smaller class of games than other
comparable game description languages. While we aim to increase the range of games expressible in
Ludax (see below), it will likely never match the full generality of Ludii. As such, other frameworks
may be more appropriate for use-cases in which a broad range of games is more important than
rapid simulation. Further, Ludax does not support genres other than board games (e.g. video games,
card games, ...) — we leave the development of hardware accelerated description languages for such
domains as an exciting area of future work.

Efficiency: Compared to bespoke JAX implementations of board games (such as in the PGX library),
environments in Ludax have worse throughput — especially at larger batch sizes. While we deploy
a number of optimizations to help close the efficiency gap when possible (see [Section 4), there
are ultimately unavoidable trade-offs between speed and generality. For the purpose of training or
benchmarking single-task agents on existing games, hard-coded simulators are likely the superior
choice. We note, however, that Ludax also provides a way for non-experts to design and benchmark
on novel games without having to write any JAX code themselves.

3https://github.com/s0te:tsuk/pgx/blob/main/examples/alphazero/train.py (used under Apache 2.0 license)
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9 Future Work

The most obvious avenue of extension for Ludax is the implementation of additional game mechanics.
In particular, we aim to support games based on piece movement (e.g. Amazons), games with multiple
piece types (e.g. Checkers), and games with multiple distinct gameplay phases (e.g. Nine-Men’s
Morris). Other generalizations, such as support for irregular board shapes, would also help expand
the space of games representable in Ludax. In addition, it’s also very likely that the implementation
of specific gameplay elements could be further optimized for throughput and / or memory footprint.
However, a balance must be struck between efficiency and generality: a less efficient solution which
accommodates all valid games under the grammar is ultimately preferable to one which only applies
to a subset of games. Lastly, we aim to provide a more robust visual interface for Ludax, both for the
purpose of facilitating human-subject research and the potential development of more “human-like”
artificial agents which process the game board at the pixel level and select actions spatially.

We are particularly excited about the potential application of Ludax to the study of automated game
design (or reward-guided program synthesis more generally [7]] [44] [34]). Systems like GAVEL [47]]
depend on both a broad representation space and rapid evaluation of novel games. The efficiency of
Ludax may make it possible to train a reinforcement learning agent from scratch as part of the inner
loop of game evaluation, potentially unlocking a new range of computational features (e.g. learning
curves) that correlate with human notions of fun and engagement. Relatedly, Ludax may prove useful
to research on human behavior and play. Recent work has explored heuristic-based computational
models of human play on simple line completion games [48], and Ludax offers the possibility to both
accelerate computation and broaden the domain to a wider class of games. Finally, Ludax offers an
avenue to extend recent research in general game playing (e.g. with large language models [40]) by
providing a wide base of efficient game implementations that can in turn be leveraged for tree search
algorithms or training world models.

10 Conclusions

We introduce a novel framework for games research that combines the generality of game description
languages with the efficiency of modern hardware-accelerated learning environments. Our framework,
Ludax, represents a broad class of two-player board games and compiles directly into code in the
JAX Python library. Games in Ludax achieve speeds that are competitive with hand-crafted JAX
implementations and faster than the widely-used Ludii game description language, and Ludax
environments can easily be deployed in existing pipelines for deep reinforcement learning. Our
framework helps generalize and accelerate games research, with the potential to unlock entirely new
kinds of agents and systems.

Broader Impact

This paper presents a general framework with the goal of advancing reinforcement learning and
games research. While there are many potential societal consequences of such work in general, we
do not feel that any must be specifically highlighted here. Ludax does not use or reproduce any
copyrightable game material (i.e. art, specific expressions of rules, or game code).
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Appendices

A Example Games and Syntax

Below we present the Ludax syntax for a small set of exemplar games (Reversi, Connect Four,

Yavalax, and Pente) to help illustrate aspects of Ludax’s syntax and structure.

(game "Reversi"
(players 2)
(equipment
(board (square 8))
)

(rules
(start
(place P1 (28 35))
(place P2 (27 36))
)
(play
(repeat (P1 P2)
(place
(destination empty)
(result
(exists
(custodial any)
)
)
(effects
(flip (custodial any))
(set_score mover (count (occupied mover)))
(set_score opponent
(count (occupied opponent))
)
)

(force_pass)
)
(end

(if (passed both) (by_score))
)

(game "Connect-Four"
(players 2)
(equipment
(board (rectangle 6 7))
)

(rules
(play
(repeat (P1 P2)
(place (destination (and
empty
(or
(edge bottom)
(adjacent occupied direction:up)

)
)
(end

(if (line 4) (mover win))
(if (full_board) (draw))

(game "Yavalax"
(players 2)
(equipment
(board (square 13))
)

(rules
(play
(once_through (P1)
(place (destination empty))

)
(repeat (P2 P2 P1 P1)
(place
(destination empty)
(result
(and
(not (line 5))
(not (= (line 4) 1))

)

)

(end
(if (>= (line 4) 2) (mover win))
(if (full_board) (draw))

(game "Pente"
(players 2)
(equipment
(board (square 19))
)

(rules
(play
(once_through (P1)
(place (destination center))

)
(repeat (P2 P1)
(place
(destination empty)
(effects
(capture (custodial 2) increment_score:true)

)

)
)
(end
(if (line 5) (mover win))
(if (>= (score mover) 10) (mover win))
(if (full_board) (draw))

Figure 4: Ludax syntax for Reversi and Connect Four (classic board games), as well as Yavalax

and Pente (modern board games).

B Ludax Grammar

Below we present the complete grammar specification for Ludax, using the syntax of the Lark

Python library.
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game: "(game" name players equipment rules ")"

// ---Players---
players: "(players" positive_int ")"

// ---Equipment---

equipment: "(equipment" board")"

board: "(board" (board_square | board_rectangle | board_hexagon | board
_hex_rectangle) ")"

board_square: "(square" number ")"

board_rectangle: "(rectangle" number number ")"

board_hexagon: "(hexagon" number ")"

board_hex_rectangle: "(hex_rectangle" number number ")"

// ---Rules---
rules: "(rules" start_rules? play_rules end_rules ")"

// ---Start rules---

start_rules: "(start" start_rulet+ ")"

start_rule: start_place

start_place: "(place" player_reference pattern_arg ")"

// ---Play rules---

play_rules: "(play" play_phase+ ")"

play_phase: phase_once_through | phase_repeat

phase_once_through: "(once-through" play_mover_order play_mechanic ")"
phase_repeat: "(repeat" play_mover_order play_mechanic ")"
play_mover_order: "(" player_reference+ ")"

play_mechanic: play_place force_pass?

play_place: "(place" mover_reference? place_destination_constraint place
_result_constraint? play_effects?")"

force_pass: "(force_pass" ")"

// ---Constraints---
place_destination_constraint: "(destination" super_mask ")"
place_result_constraint: "(result" super_predicate ")"

// ---Effects---
play_effects: "(effects" play_effect+ ")"
play_effect: effect_capture

| effect_flip

| effect_increment_score

| effect_set_score

effect_capture: "(capture" super_mask mover_reference? increment_score_arg?
II) n

effect_flip: "(flip" super_mask mover_reference? ")"

effect_increment_score: "(increment_score" mover_reference function ")"

effect_set_score: "(set_score" mover_reference function ")"

// ---Functions---
function: function_add
| function_connected
| function_constant
| function_count
| function_line
| function_multiply
| function_score
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570 | function_subtract
571
s72 function_add: "(add" function+ ")"
573 function_connected: "(connected" multi_mask_arg mover_reference?
574 direction_arg? ")"
575 function_constant: positive_int
s76 function_count: "(count" super_mask ")"
577 function_line: "(line" positive_int orientation_arg? exact_arg? ")"
578 function_multiply: "(multiply" function+ ")"
579 function_score: "(score" mover_reference ")"
580 function_subtract: "(subtract" function function ")"
581
se2 // ---End rules---
583 end_rules: "(end" end_rule+ ")"
584 end_rule: "(if" super_predicate end_rule_result ")"
s85 7end_rule_result: result_win | result_lose | result_draw | result_by_score
586
587 // -- Result definitions --
s8¢ result_win: " (" mover_reference "win" ")"
589 result_lose: "(" mover_reference "lose" ")"
s0 result_draw: "(" "draw" ")"
591 result_by_score: "(" "by_score" ")"
592
503 // -- Mask definitions --
594 super_mask: mask | super_mask_and | super_mask_or | super_mask_not
595 super_mask_and: "(and" super_mask+ ")"
s96 super_mask_or: "(or" super_mask+ ")"
597 super_mask_not: "(not" super_mask ")"
598
509 mask: mask_adjacent
600 | mask_center
601 | mask_corners
| mask_custodial
603 | mask_edge
604 | mask_empty
605 | mask_occupied
606 | mask_pattern
607 | mask_prev_move
608
609 mask_adjacent: "(adjacent" super_mask direction_arg? ")"
610 mask_center: "center"
611 mask_corners: "corners"
612 mask_custodial: "(custodial" custodial_length_arg mover_reference?
613 orientation_arg? ")"
614 mask_edge: "(edge" edge ")"
615 mask_empty: "empty"
616 mask_occupied: "occupied" | "(occupied" mover_reference ")"
617 mask_pattern: "(pattern" dimensions_arg pattern_arg rotate_arg? ")"
618 mask_prev_move: "(prev_move" mover_reference ")"
619
620 // "Multi-masks" are special keywords that are manually split into multiple
621 // sub-masks at compile time. This is mostly useful for the "connected"
622 function,
623 // which expects a list of masks to check for connections between
624 multi_mask: multi_mask_corners
625 | multi_mask_edges
626 | multi_mask_edges_no_corners
627
628 multi_mask_corners: "corners"
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multi_mask_edges: "edges"
multi_mask_edges_no_corners: "edgesNoCorners"

// ---Predicate definitions---

super_predicate: predicate | super_predicate_and | super_predicate_or |
super_predicate_not

super_predicate_and: "(and" super_predicate+ ")"

super_predicate_or: "(or" super_predicate+ ")"

super_predicate_not: "(not" super_predicate ")"

predicate: predicate_equals
| predicate_exists
| predicate_full_board
| predicate_function
| predicate_greater_equals
| predicate_less_equals
| predicate_mover_is
| predicate_passed

predicate_equals: "(=" function+ ")"
predicate_exists: "(exists" super_mask ")" // technically equivalent to (>=
(count mask) 1)

predicate_full_board: "(" "full_board" ")"

predicate_function: function // special syntax which is equivalent to "(>=
function 1)"

predicate_greater_equals: "(>=" function function ")"

predicate_less_equals: "(<=" function function ")"

predicate_mover_is: "(mover_is" player_reference ")"

predicate_passed: "(passed" (mover_reference | BOTH) ")"

// Additional (potentially optional) arguments for predicates
custodial_length_arg: ANY | positive_int

dimensions_arg: "(" positive_int positive_int ")"
direction_arg: "direction:" direction

exact_arg: "exact:" boolean

increment_score_arg: "increment_score:" boolean
multi_mask_arg: multi_mask | "(" super_mask+ ")"
orientation_arg: "orientation:" orientation

pattern_arg: "(" positive_int+ ")"

rotate_arg: "rotate:" boolean

// General-purpose definitions

?number: SIGNED_NUMBER

?positive_int: /[0-9]+/

?boolean: TRUE | FALSE

7edge: TOP | BOTTOM | LEFT | RIGHT | TOP_LEFT | TOP_RIGHT | BOTTOM_LEFT |
BOTTOM_RIGHT

?direction: UP | DOWN | LEFT | RIGHT | UP_LEFT | UP_RIGHT | DOWN_LEFT |
DOWN_RIGHT | VERTICAL | HORIZONTAL | ORTHOGONAL | DIAGONAL |
BACK_DIAGONAL | FORWARD_DIAGONAL | ANY

?orientation: VERTICAL | HORIZONTAL | ORTHOGONAL | DIAGONAL | BACK_DIAGONAL

| FORWARD_DIAGONAL | ANY

?player_reference: P1| P2
?mover_reference: MOVER | OPPONENT
name: STRING

variable_name: /\7[a-z][a-z0-9]*/
id: /[a-zA-Z0-9_]+/
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// Constants

TOP: "top"

BOTTOM: "bottom"

UP: Ilupll

DOWN: "down"

LEFT: "left"

RIGHT: "right"

TOP_LEFT: "top_left"
TOP_RIGHT: "top_right"
BOTTOM_LEFT: "bottom_left"
BOTTOM_RIGHT: "bottom_right"
UP_LEFT: "up_left"

UP_RIGHT: "up_right"
DOWN_LEFT: "down_left"
DOWN_RIGHT: "down_right"
VERTICAL: "vertical"
HORIZONTAL: "horizontal"
ORTHOGONAL: "orthogonal"
DIAGONAL: "diagonal"
BACK_DIAGONAL: "back_diagonal"
FORWARD_DIAGONAL: "forward_diagonal"

ANY: "any"
TRUE: "true"
FALSE: "false"

MOVER: "mover"

OPPONENT: "opponent"

P1: "P1"

P2: "P2"

BOTH: "both"

F A e e LT
C Benchmark Game Descriptions

Below, we present natural language descriptions of the rules for each of the exemplar games analyzed

in[Section 6

Tic-Tac-Toe: Players take turns placing a piece into an empty space on a square 3-by-3 board. If a
player forms a line of three of their pieces in a row (either vertically, horizontally, or diagonally), they
win. If the board is completely full but no lines have been formed, then the game ends in a draw.

Connect Four: Players take turns placing a piece into the top of one of the seven columns on a 6-by-7
board. The piece then “falls” until it rests on either the bottom of the board or another piece. A player
can’t place a piece into a column that is already “full.” If a player forms a line of four of their pieces
in a row (either vertically, horizontally, or diagonally), they win. If the board is completely full but
no lines have been formed, then the game ends in a draw.

Hex: Players take turns placing a piece into an empty space on an 11-by-11 board composed of
hexagonal tiles (forming a parallelogram, see visual depiction here). The objective for the first player
is to form a continuous path of their pieces that connects the top edge of the board with the bottom
edge, while the objective for the second player is to do the same but connect the left and right edges
of the board. The first player to achieve their objective wins the game. Because of the geometric
properties of the board, it’s not possible for the game to end in a draw.

Reversi: The game takes place on a square 8-by-8 board. To begin, a white piece is placed at positions
D4 and ES and a black piece is placed at positions D5 and E4 (see visual depiction here). Players
take turns placing a piece into an empty space such that a line of one or more of the opponent’s pieces
are “sandwiched” on either end by the player’s pieces. This configuration is called a “custodial”
arrangement of pieces. After placing a piece, any of the opponent’s pieces which are in such a
custodial arrangement are flipped and now belong to the player who just moved. It’s possible for a
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single move to form multiple custodial arrangements in different directions, in which case all of the
relevant pieces are flipped. If a player cannot make a legal move, they must pass (and they cannot
pass without making a move otherwise). If both players pass, then the game is over. The winner is
determined by the player who has the largest number of pieces on the board at the end of the game
(in the event of a tie, the game ends in a draw).

Gomoku: Players take turns placing a piece into an empty space on a square 15-by-15 board. If a
player forms a line of exactly five of their pieces in a row (either vertically, horizontally, or diagonally),
they win. However, forming a line of six or more does not count — the player must have at least one
line of exactly five. If the board is completely full but no lines of exactly five have been formed, then
the game ends in a draw.

Pente: Players take turns placing a piece into an empty space on a square 19-by-19 board. If a player
forms a line of five of their pieces in a row (either vertically, horizontally, or diagonally), they win.
In addition, if placing a piece causes a line of exactly two of the opponent’s pieces to be put into a
custodial arrangement, the two pieces are captured and removed from a board. Note that placing
a piece into a custodial arrangement formed by the opponent does not result in any pieces being
captured. A player who captures at least 10 of the opponent’s pieces over the course of the game
wins. In the variant of Pente implemented in Ludii and Ludax, the first player must make their first
move into the exact center of the board.

Yavalath: Players take turns placing a piece into an empty space on a regular hexagonal board with a
diameter of 9 spaces. If a player forms a line of four of their pieces in any direction (either diagonally

or horizontally| '), they win. However, if a player forms a line of three of their pieces in a row without
also forming a line of four, they lose. If the board is completely full but no lines of four or three have
been formed, then the game ends in a draw.

Yavalax: To begin, the first player places a piece into an empty space on a square 13-by-13 board.
Starting with Player 2, players then take turns placing two pieces into empty spaces on the board.
If a player forms at least two distinct lines of four of their pieces in any direction (either vertically,
horizontally, or diagonally), they win. However, a player may not place a piece into a space if doing
so would form a line of five pieces in any direction or if it would form exactly one line of four pieces
in any direction. Note that this restriction applies to a player’s first move of their turn even if they
could form a second line of four pieces with their second move of the turn (and thus win). If the
board is completely full and neither player has formed at least two distinct lines of four pieces, then
the game ends in a draw.

D Training Hyperparameters

Below we provide the exact training hyperparameters used in the reinforcement learning experiments
in These are largely copied from the PGX implementation.

* Model architecture: ResnetV2
* Number of channels: 128
* Number of layers: 6
* Self-play batch size: 1024
¢ Self-play simulations: 32
* Self-play max steps: 256
* Training batch size: 4096
* Learning rate: 0.001
* Evaluation frequency: 5
* Training iterations: 219
Note that each “iteration” consists of generating play data for 256 steps using the self-play batch size

of 1024 (see [26]). We train the model for 219 iterations, which corresponds to 256 X 1024 X 219 =
57409536 (or roughly 57 million) steps in the environment.

*Ludax assumes a canonical orientation for hexagonal boards in which the diameter stretches from left to
right, though it is functionally equivalent to the orientation in which the diameter runs vertically)
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