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Abstract

The practical utility of machine learning models in the sciences often hinges on
their interpretability. It is common to assess a model’s merit for scientific discov-
ery, and thus novel insights, by how well it aligns with already available domain
knowledge–a dimension that is currently largely disregarded in the comparison
of neural network models. While pruning can simplify deep neural network ar-
chitectures and excels in identifying sparse models, as we show in the context of
gene regulatory network inference, state-of-the-art techniques struggle with bio-
logically meaningful structure learning. To address this issue, we propose DASH‡,
a generalizable framework that guides network pruning by using domain-specific
structural information in model fitting and leads to sparser, better interpretable
models that are more robust to noise. Using both synthetic data with ground truth
information, as well as real-world gene expression data, we show that DASH, using
knowledge about gene interaction partners within the putative regulatory network,
outperforms general pruning methods by a large margin and yields deeper insights
into the biological systems being studied.

1 Introduction

With ever-growing neural network architectures encouraged by the success of overparametrization,
with over a trillion parameters in a single model such as GPT4, there is a similarly growing demand for
sparser, more parameter-efficient neural networks that are more resource-friendly and interpretable.
The Lottery Ticket Hypothesis (LTH) provides an empirical existence proof of sparse, trainable
network architectures [18], that eventually achieve a similar performance as their dense counterpart.
Subsequent work introduced structured pruning approaches, facilitating group-wise neuron- [32, 63],
or channel-sparsity [34, 25, 26], which are, however, focused on the structure of the architecture
design, aiming for better alignment with hardware implementations to eliminate operations, rather
than structure that reflects relevant domain information. Especially for scientific discovery, an
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alignment of learned structure with such domain knowledge is, however, essential for interpretability,
as only then the model represents meaningful domain-relevant relations. Such problem settings often
occur for example in physics or biology where a learned model should give an explanation to be able
to form a hypothesis. This poses the question: How can we select among multiple predictive models
and promote the search for meaningful neural network structures?

To guide the learning process, we argue that we need additional problem-specific structural informa-
tion, and should leverage any available - and reliable - domain knowledge. One of the fundamental
tasks of molecular biology is to understand the gene regulatory dynamics in health and disease.
Gene regulatory dynamics describe the changes of the expression of a gene—the generation of small
copies of a DNA segment that can serve among others as blueprint for proteins—dependent on other
regulatory factors such as transcription factors, which are proteins that bind next to the gene (DNA
segment) to modulate its expression. Yet, the exact dynamics are far from understood and changes in
these dynamics can be drivers for diseases such as cancer. As such, improving an understanding of
the mechanics behind these dynamics increases the understanding of the disease and can ultimately
inform therapy design. This problem setting of estimating gene regulatory dynamics requires high
interpretability, as an understanding of the true biological mechanics—the relationship between
regulatory factors and a gene’s expression—is needed, as well as sample-efficiency, as generating
time-course data even for a few patients is extremely expensive. While models to estimate gene
regulatory dynamics have been suggested [14, 1, 61, 27], none of these is particularly sparse or
interpretable. We propose a new approach of network sparsification that guides pruning by domain
knowledge implemented for a neural model for estimating gene regulatory dynamics, which yields
networks that are very sparse, align with underlying biology, while accurately predicting dynamics.

This idea of prior-informed or domain-aware pruning is at the heart of this paper. In particular, we
propose DASH (Domain-Aware Sparsity Heuristic, Fig. 1), an iterative pruning approach that scores
parameters taking into account structural domain-knowledge. With DASH, it is possible to control the
level of prior information taken into account for pruning and it automatically finds an optimal sparsity
level aligned with both the prior and the data. Considering the task of estimating gene regulatory
dynamics, we first show in synthetic experiments that DASH generally outperforms standard (task-
and architecture agnostic) pruning as well as task-specific pruning approaches. On real data with
a reference gene regulatory network (GRN) derived from gold standard biological experiments,
we show that DASH better recovers the reference GRN and reflects more biologically plausible
information. On recent single cell data on blood differentiation, we show that DASH, in contrast to
existing work, identifies biologically relevant pathways that can be used to generate new insights and
inform domain experts. We anticipate that our work serves both for future benchmarking on how well
pruning approaches are in structure learning, as well as a blueprint for guided network pruning in
fields where domain knowledge is readily available, such as in other hard sciences including physics
or material science, where knowledge about variables, e.g., associations between atoms or molecules
or equations relating quantities in a system, is available.

2 Related work

The Lottery Ticket Hypothesis (LTH) [18] provides an empirical existence proof of sparse, trainable
neural network architectures. It conjectures that dense, randomly initialized neural networks contain
subnetworks that can be trained in isolation with the same training algorithm that is successful for the
dense networks. However, a strong version of this hypothesis [52, 66], which has also been proven
theoretically [43, 49, 47, 17, 5, 12, 15], suggests that the identified initial parameters are not only
specific to the sparse structure but also the learning task and benefit from information about the larger
dense network that has been pruned [48]. Acknowledging this strong relation, other works have
proposed to combine mask and parameter learning directly in continuous sparsification approaches
[54] that employ regularization strategies that approximate L0 penalties [54, 41, 31, 56]. In the
following, we recap the key ideas behind the methods most relevant to ours.

Explicit pruning-based approaches

Magnitude pruning (MP) In magnitude pruning (MP) a neural network is trained and then (post-hoc)
pruned to a desired sparsity level by masking the corresponding proportion of smallest magnitude
weights. This smaller, masked network is then further trained, reminiscent of fine-tuning [22].
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Figure 1: DASH. A NN, here a neural ODE for gene regulatory dynamics, is traditionally sparsified
in a data-centric way (top). Pruning is done based on data alone, the pruning score Ω is a function of
the learned weights W . Such sparsified models often do not learn plausible relationships in the data
domain. We propose DASH (bottom), which additionally incorporates domain knowledge P into the
pruning score Ω, yielding sparse networks giving meaningful and useful insights into the domain.

More formally, we start with a fully connected neural network NNΘ with L layers parametrized
by Θ := {(W l, bl)}Ll=1. MP is performed after training is complete (i.e. post hoc). For a suitable
threshold of p%, MP “prunes" the trained Θ by setting the smallest (absolute value) p% of weights in
Θ to 0. The choice of parameters to prune can either be made in an unstructured way, by choosing
the the lowest p% across all {W l}Ll=1, semi-structured, by pruning the lowest weights per layer, or in
a structured way such that, e.g., neurons with lowest p% average outgoing weight are pruned. Once
pruning is complete the p%-sparse NNΘ′ is fine-tuned on the data so that Θ′ is learned appropriately.
Iterative magnitude pruning (IMP) [18] suggest to alternate between training and magnitude
pruning, iteratively sparsifying the network, to date still of the most successful pruning strategies. In
practice, a pruning schedule is used to iteratively sparsify Θ, until a Θ′ with desired target sparsity or
predictive performance plateau is reached. Importantly, weights are reset to initial pre-training values,
either after each round of pruning or once after the target sparsity has been reached.
Pruning with rewinding [53] have demonstrated that rewinding weights to an earlier training
point—a compromise between fine-tuning of MP and reset to initialization of IMP— provides good
performance, which also has been suggested in the context of Neural ODEs as SparseFlow [37].

Implicit penalty-based approaches

C-NODE [2] seek to reduce the overall number of input-output dependencies (i.e. paths of contri-
bution from input neuron i to output neuron j) through {W l}Ll=1. The approach can result in both
feature and weight sparsity in NeuralODEs.
L0 [40] incorporate a differentiable L0 norm regularizer term in the objective. It implicitly prunes
the network by encouraging weights to get exactly to zero. The L0 regularizer is operationalized
using non-negative stochastic gates which act as masks on the weights.
PathReg [1] innovatively combines the strengths of both C-NODE and the L0 approach to promote
both weight and feature sparsity in NeuralODEs. It uses stochastic gates similar to [40] and add a C-
NODE-inspired penalty terms that constrain the overall number of input-output paths by regularizing
the probability of any path from input i to output j being non-zero.

Modeling gene regulatory dynamics As application, we consider estimation of gene regulatory
dynamics. Early work, such as COPASI [45] use a fully parametric modeling approach that are limited
in their prediction capabilities. With recent advances in machine learning, tools such as Dynamo
[51], PROB [58], and RNA-ODE [39] aim to learn regulatory ODEs using sparse kernel regression,
Bayesian Lasso, and random forests, respectively. Leveraging high flexibility and performance of
neural models, PRESCIENT [65] uses a simple NN to learn regulatory ODEs, whereas tools such
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Figure 2: Results on simulated data. We visualize performance of pruning strategies in comparison
to original PHOENIX (baseline) in terms of achieved sparsity (x-axis) and balanced accuracy (y-axis)
of the recovered gene regulatory network against the ground truth on the SIM350 data with 5% noise.
Error bars are omitted when error is smaller than depicted symbol. ✓ indicate methods that leverage
prior information. Top left is best: recovering true, inherently sparse biological relationships.

as DeepVelo [9] and sctour [35] have a variational autoencoder as backbone. The latest line of
research [14, 1, 61, 27] uses neural ordinary differential equations [8]. However, a key limitation
of these methods is the lack of interpretability arising from non-sparse dynamics that do not align
with ground truth biology. Consequently, the induction of sparsity in gene regulatory ODEs has been
an active area of research with C-NODE and PathReg as most recent advances[2, 1], the achieved
sparsity levels are, however, not yet sufficient to capture the relevant biology.

3 Domain-aware pruning with DASH

While the above sparsification strategies have shown to perform well in various settings, the resulting
models are often either not particularly sparse or do not reflect meaningful domain knowledge. We
hypothesize that this is due to two reasons: (1) the difficulty of identifying a good sparse network
and (2) the current focus on hardware-centric rather than task-centric pruning, valuing structural
pruning of a model in terms of groups of neurons (layers, channels) over structural pruning reflecting
task-specific knowledge. To overcome these problems, we suggest to ground the model search (here,
the network training) with existing domain-specific knowledge, which eases identifiability due to the
introduced constraints and enables task-aware pruning to identify meaningful domain knowledge.

In the following, we propose DASH (Domain-Aware Sparsity Heuristic), an iterative pruning-based
approach that accounts for prior knowledge by scoring parameters in terms of their alignment with
this prior, and show its usefulness for a neural model for the inference of gene regulatory dynamics.
We assume the domain knowledge to be given as input-output relations (e.g., known protein—gene
interactions in molecular biology), for which we want the network flow between any input and
output to align with. Suppose our domain knowledge for a task from this domain is given as a
real-valued relationship graph G = (V,E), where nodes are relevant entities from the domain, e.g.
genes or proteins, and edges are a strength of association between these entities, e.g. evidence of
association derived from literature or experiments. Examples for such relational information in case
of protein—gene associations can be derived from protein binding profiles [57]. For the rest of the
paper, we will assume that this domain knowledge is given as a matrix P ∈ Rk×r, which encodes
the strength of association between the k inputs and r outputs for our task of interest, such as known
proxies of protein—gene interactions . Intuitively, for a one-layer neural network, we encourage
pruning scores for a (neural) network edge to be proportional to the corresponding edge in the prior
knowledge graph G while still taking into account the data-specific knowledge, thus enabling learning
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of new knowledge and robustness to wrong or missing information in the prior. We begin with this
simple base case of task-aware pruning of a fully connected neural network with L = 1 layer and
extend to more layers below.

DASH for L = 1. For a single layer NN, with k input and r output neurons and corresponding
weight matrix W ∈ Rr×k, we compute non-negative pruning scores Ω ∈ Rr×k by leveraging
the domain knowledge P ∈ Rr×k. In practice, we allow balancing between data-driven and
prior-knowledge-driven pruning, implemented through a convex combination of the learned weights
W and prior domain knowledge P controlled by the parameter λ ∈ [0, 1]. Alternating between
training and pruning akin to Iterative Magnitude Pruning [18], we set the following pruning score
during a pruning phase:

Ω(t) := (1− λ) ˜|W (t)|+ λ|P | ,

where ˜|W (t)| represents the appropriately normalized matrix (details in Appendix B.2) of absolute
weights as learned up to epoch t. We then prune the parameters in W (t) corresponding to the lowest
absolute pt% of entries in Ω(t), where pt is the desired sparsity level at time t given by a schedule.

DASH for L = 2. For two-layered NNs with weights W1 ∈ Rm×k,W2 ∈ Rr×m, i.e k inputs, r
outputs, and m hidden neurons, we consider knowledge about input-output relationships P ∈ Rr×k

as before. We can additionally use further knowledge about input-input relationships C ∈ Rk×k.
In molecular biology this could be information about binding or interaction partners available in
databases such as STRINGDB [59], which has also been employed to guide static gene regulatory
network inference [62], or co-regulators, derived from co-occurrence of proteins. Intuitively, we
now project pruning scores for the first layer to the prior knowledge about input-input relations,
encouraging closeness to this prior, while projecting the product of pruning scores of first and second
layer to known input-output relations, reflecting the flow of information from input to output through
these two layers. Given that W (t)

1 represents how the k inputs are encoded by m neurons, and Ω
(t)
1

are the corresponding pruning scores, we surmise that the matrix product Ω(t)
1

⊺
Ω

(t)
1 ∈ Rk×k should

approximately align with the prior knowledge C. Since solving Ω
(t)
1

⊺
Ω

(t)
1 = C is not directly

feasible we initialize Ω
(0)
1 randomly, and resort to solving a recurrence relation version of problem,

that is Ω(t−1)
1

⊺
Ω

(t)
1 = C. Using the left and right pseudo-inverse to obtain a solution to the above,

defined as PInvL(X) = (X⊺X)−1X⊺ and PInvR(X) = X⊺(XX⊺)−1 respectively:

Ω
(t)
1 := (1− λ1)

˜|W (t)
1 |+ λ1

∣∣∣PInvL(Ω(t−1)
1

⊺)
·C
∣∣∣.

PInvL
(
Ω

(t−1)
1

)
·C encourages Ω(t)

1

⊺
Ω

(t)
1 to iteratively align with C as t increases (i.e. as training

progresses). With Ω
(t)
1 fixed, we can update scores Ω(t)

2 of the second layer parameters W (t)
2 . Since

the product W (t)
2 · W (t)

1 ∈ Rr×k represents the overall flow of information from inputs to outputs
at epoch t, we surmise that (Ω(t)

2 Ω
(t)
1 ) ∈ Rr×k should reflect P . We thus get

Ω
(t)
2 := (1− λ2)

˜|W (t)
2 |+ λ2

∣∣∣P · PInvR
(
Ω

(t)
1

)∣∣∣.
Similar to the case for DASH for L = 1 layer, we can now prune the parameters of W (t)

1 and W
(t)
2

based on the magnitude of pruning scores Ω(t)
1 and Ω

(t)
2 , respectively.

DASH for L > 2 For many interpretability-centric tasks, including our application to gene
regulatory networks, small architectures of L = 2 are common, as domain experts are interested
in understanding the exact flow of information through the network. Furthermore, we know that
two-layer neural networks exhibit universal approximation [11]. We however hypothesize that the
technique of computing pruning scores by fixing those of preceding layers can be extended to a larger
number L of fully connected layers and elaborate in App. B.6.

Flexibility While the λl can be tuned using cross-validation (see App. B.4), we note that it allows for
flexibly encoding different pruning philosophies. Specifically, when λl = 0 ∀l, DASH corresponds to
SparseFlow, and when λl = 1 ∀l, DASH represents fully prior-based sparsification (which we term
“BioPrune" and consider as experimental baseline).
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Table 1: Synthetic data results. We give model sparsity, balanced accuracy with respect to edges in
the ground truth gene regulatory network, mean squared error of predicted gene regulatory dynamics
on the test set, and number of epochs (till validation performance plateaus) as proxy of runtime. ✓ is
used to indicate methods that leverage prior information. Results are on SIM350 data with 5% noise.

Strategy (✓ = prior-informed) Sparsity(%) Bal. Acc.(%) MSE (10−3)

None/Baseline [27] 7.5± 0.1 51.8± 0.03 3.0± 0.4

Penalty-
based
(implicit)

L0 [40] 33.8± 4.7 55.0± 0.5 8.5± 1.0
C-NODE [2] 6.2± 0.5 55.9± 0.1 2.8± 0.6
PathReg [1] 56.5± 1.5 61.9± 1.0 8.0± 1.8
PINN [27] ✓ 9.9± 0.4 58.6± 0.7 2.5± 0.2
DST[38] 92.8± 0.3 71.9± 0.5 4.0± 0.5

Pruning-
based
(explicit)

IMP [18] 81.9± 6.6 61.7± 0.7 4.7± 1.1
Iter. SynFlow [60] 79.3± 1.2 58.4± 0.6 7.0± 2.1
SparseFlow [37] 96.0± 0.01 70.9± 1.5 3.6± 0.6
BioPrune (Ours, see 3) ✓ 83.5± 1.9 87.3± 0.8 2.6± 0.9
DASH (Ours) ✓ 94.6± 1.2 90.7± 0.4 2.4± 1.2

Hybrid PINN + MP (Ours) ✓ 87.0± 0.01 82.4± 0.2 2.3± 0.3

4 Task-aware pruning for sparse gene regulatory dynamics

Perhaps one of the most interesting applications of Machine Learning is in the field of Molecular
Biology with the goal of understanding human health and disease. A central mechanisms in humans
is the process of gene expression in each cell. There, copies of short segments of our genome
are produced. These copies are among other things the blueprint for the production of different
proteins, which are needed virtually everywhere in our bodies. If this tightly regulated process
of gene expression goes wrong, for example because of a mutation in our genome, this can have
profoundly bad effects, such as in the case of cancer. As such, studying this process is of great interest
to understand and improve human health and discover new therapeutic targets.

Here, we consider the task of predicting the regulatory dynamics of gene expression. To be able
to understand the model and transfer it to clinical practice, interpretability is key. The most recent
developments in modeling gene regulatory systems allow to model actual (temporal) regulatory
dynamics, but require complex models, such as NeuralODEs, that hinder interpretability. While
state-of-the-art results are now achieved with shallow architectures [27] that are more tractable
than deep, heavily over-parameterized networks, these models still encode information across many
thousands of weights and we show experimentally that such information does not reflect true biology
well. In fact, true gene regulatory networks and hence their underlying dynamics are inherently
sparse [6]. This sparsity should be properly reflected by neural dynamics models. The PHOENIX
NeuralODE model will serve as our base model for applying sparsification strategies and we show
that pruning aligned with prior domain knowledge improves interpretability as well as quality of
inferred (new) knowledge.

In a nutshell, given a time series gene expression sample for k genes, PHOENIX uses NeuralODEs to
construct the predicted trajectory between gene expression g(t) ∈ Rk (inputs) at time t = ti to any
future expression ĝ(ti+1) (outputs), by implicitly modeling the RNA velocity (dg/dt). PHOENIX
uses biokinetics-inspired activation functions to separately model additive and multiplicative co-
regulatory effects. The trained model encodes the ODEs governing the dynamics of gene expression,
which can be directly extracted for biological insights. We apply DASH to PHOENIX and give a brief
review of the PHOENIX architecture in App. B.10 and a detailed account on how to apply DASH to
this architecture in App. B.11. Next, we provide experiments on synthetic and real data showing the
advantages of prior-informed pruning on the task of predicting gene-regulatory dynamics.
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Figure 3: Reconstruction of ground truth relationships. Estimated effect of gene gj (x-axis) on the
dynamics of gene gi (y-axis) in SIM350 for different levels of noise (rows). Ground truth is given on
the left, our suggested approach and baselines (DASH, BioPrune, and PINN+MP) on the right with
mean squared error between inferred regulatory relationships and ground truth in purple.

5 Experiments

For evaluation we consider synthetic data from an established simulator tool [4], as well as real world
data of gene expression from breast cancer tissue [13], from yeast with synchronized cell cycle [50],
and from human bone marrow [1]. In case of synthetic data, we use the ground truth regulatory
system from the generating model for validation. For breast cancer and yest cell cycle data we use
additional experimental data (ChIP-seq) from the corresponding studies, which are independent gold-
standard biological experiment measuring sample-specific TF–gene interactions, to evaluate inferred
regulatory relationships. We measure the correctness of a GRN learned by a model (see App. B.10.4)
in terms of balanced accuracy, which measures whether an edge is correctly reconstructed weighted
by the sparsity of the aforementioned ground truth graph. To evaluate predictive performance for
real data, we use a 6% hold-out test set for breast cancer and one of the biological replicates hold out
from training for the yeast data. As prior knowledge we leverage general information of transcription
factor binding to gene promoter regions as prior information, which can be computed from binding
motif matches with the corresponding genome (human respectively yeast). The result is a matching
score that can be thresholded to get a 0, 1-based matrix encoding which (TF-encoding) gene has a
relationship with which other gene. We follow the approach of Guebila et al. [3] to obtain matrix P .
As prior C, we use the STRING database [59], which gives a general (i.e., not tissue-specific) graph
of protein-protein interaction. Here, we use the interactions based on experimental evidence only and
employ a cutoff of .6 to get a binary adjacency matrix. (for more details, see App. B.3).

To compare pruning strategies, we consider the PHOENIX model as a basis, which is the state-of-the-
art NeuralODE for estimating gene regulatory dynamics [27] and provide an ablation on a standard
MLP architecture (see App. Tab. 7, App. Tab. 10, and App B.12). We compare DASH against
the PHOENIX model without additional pruning as performance reference, and suggest two simple
yet powerful baselines, which is post-hoc magnitude pruning of weights followed by finetuning
(PINN+MP), and BioPrune, a fully prior-based pruning (cf. Sec. 3). From the literature, we consider
L0-regularized pruning [40], C-NODE [2], and PathReg [1], which have been recently proposed for
the inference of sparse gene-regulatory relationships, PHOENIX with biological regularization [27],
and dynamic sparse training (DST) [38], all of which are implicit pruning approaches. We further
consider explicit, iterative score-based pruning approaches including Iterative Magnitude Pruning
(IMP) [18], the flow-based model-agnostic pruning method SynFlow [60], and the flow-based Neural
ODE pruning SparseFlow [37]. We tune hyperparameters, including λ for DASH, on a validation set.
Unlike other methods (e.g., L0) DASH does not prolong the runtime of training much. A common
pruning schedule where pruning scores are computed once every 10 epochs only increases runtime
by <2% for the full model fitting process.
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Simulated gene regulatory systems We simulate gene expression time-series data from a
fixed dynamical system, the ground truth was thus known (see App. B.1). In short, we adapt
SimulatorGRN [4] to generate noisy time-series expression data from two synthetic gene regulatory
systems (SIM350 and SIM690, consisting of 350 and 690 genes, respectively). We split trajectories
into training (88%), validation (6% for tuning λ), and testing (6%).We evaluate all methods in terms
of achieved sparsity and MSE of predicted gene expression values on the test set (App. B.2, B.4)
and investigate biological plausibility by calculating balanced accuracy of regulatory relationships
extracted from the PHOENIX model (for details, see App. B.5, B.10.4), We here report the results
for the data of 350 genes and 5% noise, noting that results are consistent across different noise levels
and with more number of genes (see App. Sec. A.1).

A general trend across all experiments that aligns with our initial motivation is that dense models
(sparsity < 50%) have a significantly worse reconstruction of the underlying biology – the ground
truth GRN – than sparse models (sparsity > 80%) (see Fig. 2). Furthermore, we see that DASH
retrieves not only among the sparsest networks, but also reflects the underlying GRN best across all
methods, outperforming comparably sparse IMP by about 20 percentage points accuracy in different
settings, even with decrease in quality of the prior (see sensitivity analysis in App. Tab. 6). Due to the
prior-informed structured pruning, it is able to occupy the sweet spot of highly sparse at the same
time biologically meaningful models.

Consistent with the literature, PathReg outperforms L0 as well as C-NODE in terms of sparsity [1], we
additionally find evidence that it also delivers more biologically meaningful results. Yet, IMP as well
as prior-informed pruning approaches outperform PathReg by a large margin. The MSE of predicted
gene expression of DASH is among the best, within one standard error of the best overall method.
The only better approach is our suggested baseline, a combination of posthoc magnitude pruning of
PHOENIX combined with additional finetuning (PINN+MP), which is, however, impractical as it
requires to train and prune many PHOENIX models along a grid of sparsity levels (see App. B.9.3).

Visualizing the estimated against ground truth regulatory effects (i.e., functional relationships between
variables), we observe that DASH captures the effects much better than competitors (see Fig. 3).
Virtually all existing approaches discover spurious regulatory effects, whereas prior-informed pruning
identify the main regulatory effects correctly. Moreover, with increasing levels of noise in the
simulation, we observe that both BioPrune as well as PINN+MP start finding spurious dependencies,
while DASH still recovers the overall structure well. While not perfect, as seemingly there are more
dependencies than in the sparse ground truth, potentially introduced by correlations between features,
DASH provides a sparse estimation of regulatory effects that most closely resembles the ground truth
relationships among existing work.

Pseudotime-ordered breast cancer samples To investigate the performance of DASH on real data,
we consider gene expression measurements from a cross-sectional breast cancer study [13]. This
data of 198 breast cancer patients with measurements for 22000 genes has been preprocessed and
ordered in pseudotime [58], which we use as basis for our experiments (cf App. B.7). Across methods,
we observe that implicit sparsification methods generally perform poorly in terms of sparsity and
accuracy of recovered relationships (see Tab. 2). While pruning-based sparsification approaches
achieve greater sparsity and performance in predicted gene expression, with SparseFlow reaching
the highest sparsity (95.7%) among all methods, the recovered biological relations are not better
than random chance, which renders the underlying models useless for scientific discovery. DASH in
contrast finds a comparably sparse network (92.7% sparsity) while having top of the line performance
in terms of test MSE and high alignment with true biology (95.7% balanced accuracy). For this
particular dataset, we observe that DASH primarily builds on the prior knowledge, not surprisingly
performing similarly as BioPrune, which is our suggested baseline pruning approach taking only the
prior into account. We will see for other real-world data that this weight of domain knowledge is
highly task-specific and BioPrune yields sub-optimal results on different data.

To better understand whether the inferred gene regulatory dynamics align with meaningful biology,
we additionally perform a pathway analysis (see App. B.8). Such pathway analysis are a standard
approach for domain experts to distill information for example for therapeutic design. The genes that
show the highest impact on the dynamics within the derived model are tested whether they enrich
in a specific higher level biological pathways. For the top-20 most significantly enriched pathway
per model (App. Fig. 5), we observe that in contrast to prior-informed methods, the existing pruning
approaches show only very few significant pathways, consistent with our quantitative results on
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Table 2: Results on breast cancer and yeast data. Balanced accuracy is based on reference gold
standard experiments (transcription factor binding ChIP-seq) available for this data. DASH found
optimal λ-values of (0.995, 0.95) respectively (0.75, 0.75) for breast cancer and yeast. * marks our
suggested baselines and method, ✓ marks methods that use prior information for sparsification.

Data Breast cancer in pseudotime Yeast cell cycle
Strategy Sparsity Bal. Acc. MSE (10−5) Sparsity Bal. Acc. MSE (10−2)

None/Baseline 0.03% 49.99% 7.78 0.10% 49.87% 4.84
L0 10.77% 50.15% 7.90 34.43% 48.43% 5.33
C-NODE 11.20% 50.01% 8.06 10.89% 50.04% 4.87
PathReg 14.09% 50.24% 7.92 12.09% 50.11% 5.35
PINN ✓ 0.11% 49.99% 7.82 0.17% 49.93% 5.77
DST 67.02% 50.42% 7.78 77.80% 49.92% 5.18

IMP 36.02% 50.34% 7.77 83.22% 49.99% 5.46
Iter. SynFlow 91.93% 49.37% 7.78 85.65% 49.57% 5.41
SparseFlow 95.70% 49.70% 7.76 95.22% 49.89% 5.38
BioPrune ∗,✓ 93.44% 95.67% 7.80 94.69% 79.23% 5.94
DASH ∗,✓ 92.71% 95.69% 7.76 97.18% 88.43% 5.27

PINN + MP ∗,✓ 92.00% 54.02% 7.79 95.01% 55.39% 6.09

inferred regulatory relations. Moreover, disease-relevant pathways such as TP53 activity or FOXO
mediated cell death, both of which are highly relevant in cancer [44, 28], are only visible in models
pruned with prior information. This provides evidence that pruning informed by a biological prior
recovers biological signals that are relevant in the disease and which can not be picked up otherwise.
Furthermore, we find Heme-signaling as a pathway uniquely identified as relevant in our approaches
(cf. App. Fig. 5). Heme as a signaling molecule has key roles in the gene regulatory system [46],
and turns out to have an anti-tumor role in breast cancer specifically [19]. Subsequent approaches
pharmaceutically targeting Heme signaling showed success [30], with one of the key regulators
affected being Bach1. To suggest further targets for e.g. combination treatment, we hence examined
the top-5 regulatory factors in terms of weights in our estimated gene regulatory dynamics. These
factors include PBX1 and FOXM1, for which a drug repurposing of existing compounds, such as [55],
could lead to a potential new treatment for this specific cancer.

Yest cell-cycle data We next consider real data of synchronized yeast cell [50] (see App. B.2 for
training setup). We observe an overall trend similar to the breast cancer study in terms of achieved
sparsity and balanced accuracy (cf. Tab. 2), with implicit sparsification methods generally finding
significantly less sparse models and all methods that do not incorporate prior knowledge having
inferred relationships that are not better than random chance. For this data, however, DASH finds
an optimal lambda value that incorporates more data-specific knowledge (λ = 0.75) compared to
the breast cancer study above. This shows the advantage of DASH over our BioPrune baseline
model (prior-only pruning), as here we gain about 10% points in balanced accuracy over BioPrune
for ChIP-seq validation data [23] and 2% points over BioPrune for an independent TF perturbation
network curated to derive a "true" causal GRN [21] (see App. Tab. 8). We also retrieve a 3% points
sparser model. Comparing inferred biological knowledge between BioPrune and DASH through a
pathway analysis, we see that DASH recovers more significantly enriched pathways related to cell
cycle processes (cf. App. Fig. 6).

Cell differentiation in human bone marrow Lastly, we investigate the performance of DASH in
an exploratory setting with single cell data of human bone marrow ordered in pseudotime [1]. Here,
we are interested in better understanding the gene regulatory dynamics of blood cell differentiation,
the process of hematopoietic stem cells specializing into cells taking over roles such as immune
response (e.g., B- and T-cells). This process is called hematopoiesis. We follow the steps of [1] to
first split samples (i.e., cells) into the three different lineages (paths of differentiation), and train
separate models for each (see App. B.7). We will here focus on the analysis of the Erythroid lineage.
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As before, DASH yields highly sparse (95%) networks, the most sparse among all competitors
(App. Tab. 9). IMP shows similarly strong sparsification as DASH while PathReg achieves much
less sparsity (14%). In terms of performance, all methods achieve similar MSE of predicted gene
expression dynamics on the test set, meaning that even though much sparser, both DASH and IMP
predict equally well as an order of magnitude more dense network. For this data, there are no
gold-standard experiments for regulatory relations available, we hence focus on analysing the network
topology. From the literature, we would expect sparser networks to be better align with biology [6].
DASH indeed shows the lowest out-degree in the inferred regulatory network, less than half of what
IMP recovers. PathReg shows an order of magnitude larger average out-degree. To confirm the
biological plausability, we again do a pathway analysis. DASH seems to find significant enrichment
in biologically relevant pathways (App. Fig. 7) that can directly be linked to hematopoiesis, such
as heme signaling or RUNX1 regulates differentiation of hematopoietic stem cells, which neither
BioPrune nor SparseFlow—the only other method yielding a proper sparse model—could recover.

6 Discussion & Conclusion

We considered the problem of identifying sparse neural networks in the context of interpretability
with a focus on the application to gene regulatory systems modeling. In domains such as biology and
contexts when the true underlying systems are sparse, interpretability is key for experts, rendering the
use of the common over-parametrized and complex neural network architectures difficult. Although
NNs do not directly encode e.g. the regulatory relationship between genes its deep architecture is
necessary to model complex functional relationships while ensureing stable learning. Yet, we can
ensure that Recent advances in neural network pruning, such as those around the Lottery Ticket
Hypothesis [18], promise sparse and well-performing models, yet, hardness results prove finding
optimally sparse models to be challenging [43], which is also reflected by recent benchmarking
results [16]. Our experiments confirmed that general pruning strategies provide sub-optimal sparsity,
moreover, the underlying biological relationships are not properly reflected in the model. We
proposed to guide pruning by domain knowledge, leveraging existing prior information to improve
the interpretability and meaningfulness of pruned models.

In case studies on gene regulatory dynamic inference, a key task in molecular biology with high
relevance in cancer research, we showed based on simulated as well as real world data that our
method, DASH, in contrast to a wide range of state-of-the-art methods, is able to recover neural
networks that are both very sparse and at the same time biologically meaningful, allowing for direct
extraction of a sparse gene regulatory network. On real data, DASH not only better aligns with
gold-standard experimental evidence of regulatory interactions, but also uniquely reflects the data-
specific biological pathways, which can be used by domain experts to generate new insights.. It thus
serves as a proof of concept that in critical domains, where interpretability is essential and domain
knowledge exists, pruning can be heavily improved by alignment with prior knowledge. While our
guided pruning approach is in principle agnostic to the type of neural network and task, we here
focused on a specific case study that we deemed important. In the future, it would be interesting to
apply DASH to different cases and domains, including other biomedical tasks, but also to physics
or material sciences, where interpretability is also key and domain knowledge exists in the form of
physical constraints and models. For any application, an important consideration to apply DASH
is on the one hand the availability of prior knowledge, but on the other hand its quality; while we
show here that even with incomplete and noisy prior knowledge we receive good results, factually
wrong priors could steer the solution towards a wrong model. We hence assume that DASH will be
of primary use in classical hard sciences mentioned above, with priors that stood the test of time
over several decades. Another line of future work includes different architectural designs, such as
convolution or attention mechanisms, where input-output relationships are less straightforward to
project to across several layers.

In summary, we make a case for pruning informed by domain knowledge and provide evidence that
such approaches can massively improve sparsity along with domain specific interpretability.
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A Supplementary results

A.1 Synthetic data

Figure 4: SIM690 data with 5% noise. We visualize performance of pruning strategies in comparison
to original PHOENIX (baseline) in terms of achieved sparsity (x-axis) and balanced accuracy (y-axis)
of the recovered gene regulatory network against the ground truth. Error bars are omitted when
error is smaller than depicted symbol. Checkmarks (✓) are used to indicate methods that leverage
prior information. Ideal models are in the top left quadrant; they recover the true, inherently sparse
biological relationships.

Table 3: Simulation study results – 0% noise. We provide achieved model sparsity, balanced accuracy
of inferred gene regulatory network, and MSE of predicted gene expression dynamics on test data at
0% noise level for SIM350 (the synthetic system of 350 genes). * marks our suggested baselines and
method, ✓ marks methods that use prior information for sparsification.

Strategy Sparsity(%) Bal. Acc.(%) MSE (10−3) Epochs

None/Baseline [27] 11.5± 0.3 54.8± 0.6 3.6± 1.7 69± 2

Penalty-
based
(implicit)

L0 [40] 34.7 ± 2.4 61.3± 0.1 6.1± 1.8 119± 43
C-NODE [2] 10.7 ± 0.2 60.5± 0.1 1.9± 0.5 213± 5
PathReg [1] 59.7 ± 1.5 64.2± 0.8 6.1± 2.3 213± 7
PINN [27] ✓ 11.3 ± 0.3 60.3± 0.3 2.3± 0.4 206± 7
DST[38] 94.3± 0.5 72.3± 1.2 4.2± 1.4 216± 86

Pruning-
based
(explicit)

IMP [18] 86.1± 5.1 63.2± 1.7 4.1± 0.6 251± 7
Iter. SynFlow [60] 79.1± 2.1 60.0± 0.9 5.8± 1.6 323± 37
SparseFlow [37] 95.8± 0.3 72.8± 0.7 2.9± 0.5 195± 16
BioPrune ∗,✓ 83.5 ± 3.5 88.0± 0.5 3.6± 0.8 94± 22
DASH ∗,✓ 92.6 ± 1.2 91.1± 1.2 1.9± 0.6 164± 22

Hybrid PINN + MP ∗,✓ 90.0 ± 0.01 89.8± 0.3 2.6± 0.5 1788± 77
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Table 4: Simulation study results – 10% noise. We provide achieved model sparsity, balanced accuracy
of inferred gene regulatory network, and MSE of predicted gene expression dynamics on test data at
10% noise level for SIM350 (the synthetic system of 350 genes). * marks our suggested baselines
and method, ✓ marks methods that use prior information for sparsification.

Strategy Sparsity(%) Bal. Acc.(%) MSE (10−3) Epochs

None/Baseline [27] 1.3± 0.3 50.1± 0.3 3.5± 0.03 55± 5

Penalty-
based
(implicit)

L0 [40] 31.9± 1.6 50.2± 0.3 13.3± 1.8 156± 11
C-NODE [2] 7.2± 0.3 50.5± 0.3 36.6± 12.5 189± 11
PathReg [1] 47.8± 1.8 50.2± 1.2 12.7± 1.4 224± 8
PINN [27] ✓ 2.9± 0.5 51.3± 0.3 5.5± 1.9 211± 15
DST[38] 93.3± 2.0 67.2± 2.6 4.1± 1.1 286± 33

Pruning-
based
(explicit)

IMP [18] 79.8± 0.1 59.5± 2.1 6.7± 1.5 240± 26
Iter. SynFlow [60] 79.7± 1.3 55.9± 1.2 7.8± 0.03 165± 5
SparseFlow [37] 89.9± 5.0 63.8± 3.0 5.1± 0.8 142± 13
BioPrune ∗,✓ 79.7± 1.3 85.2± 0.3 5.6± 0.3 67± 18
DASH ∗,✓ 90.8± 4.7 85.4± 4.2 5.8± 1.3 154± 4

Hybrid PINN + MP ∗,✓ 92.0± 0.01 83.8± 0.7 4.1± 1.8 1813± 94

Table 5: Comparison of systems with different number of genes Ng . We provide achieved model spar-
sity, balanced accuracy of inferred gene regulatory network, and MSE of predicted gene expression
dynamics on test data at 5% noise level for SIM350 and SIM690. * marks our suggested baselines
and method, ✓ marks methods that use prior information for sparsification.

Ng Strategy Sparsity(%) Bal. Acc.(%) MSE (10−3) Epochs

350

None/Baseline [27] 7.5± 0.1 51.8± 0.03 3.0± 0.4 67± 6

Penalty-
based
(implicit)

L0 [40] 33.8± 4.7 55.0± 0.5 8.5± 1.0 134± 37
C-NODE [2] 6.2± 0.5 55.9± 0.1 2.8± 0.6 214± 4
PathReg [1] 56.5± 1.5 61.9± 1.0 8.0± 1.8 200± 29
PINN [27] ✓ 9.9± 0.4 58.6± 0.7 2.5± 0.2 160± 7
DST[38] 92.8± 0.3 71.9± 0.5 4.0± 0.5 244± 61

Pruning-
based
(explicit)

IMP [18] 81.9± 6.6 61.7± 0.7 4.7± 1.1 308± 13
Iter. SynFlow [60] 79.3± 1.2 58.4± 0.6 7.0± 2.1 271± 38
SparseFlow [37] 96.0± 0.01 70.9± 1.5 3.6± 0.6 220± 3
BioPrune ∗,✓ 83.5± 1.9 87.3± 0.8 2.6± 0.9 79± 2
DASH ∗,✓ 94.6± 1.2 90.7± 0.4 2.4± 1.2 192± 24

Hybrid PINN + MP ∗,✓ 87.0± 0.01 82.4± 0.2 2.3± 0.3 1721± 50

690

None/Baseline [27] 1.1± 0.3 50.6± 0.1 4.4± 0.4 188± 17

Penalty-
based
(implicit)

L0 [40] 34.9± 1.1 53.0± 0.3 12.8± 3.1 100± 26
C-NODE [2] 4.3± 0.4 54.0± 0.2 24.4± 10.2 210± 2
PathReg [1] 57.7± 0.5 57.4± 0.2 35.3± 2.2 244± 17
PINN [27] ✓ 7.7± 0.1 56.7± 0.03 4.3± 0.3 166± 29
DST[38] 94.1± 0.2 69.2± 0.9 4.7± 0.4 188± 28

Pruning-
based
(explicit)

IMP [18] 81.1± 5.2 58.3± 2.1 6.2± 0.7 319± 24
Iter. SynFlow [60] 77.6± 1.4 55.9± 0.4 6.7± 0.05 215± 18
SparseFlow [37] 95.8± 0.3 69.9± 1.5 6.3± 3.1 205± 10
BioPrune ∗,✓ 80.8± 4.3 87.7± 1.7 5.9± 2.4 71± 23
DASH ∗,✓ 93.9± 0.01 91.4± 0.2 4.3± 0.5 178± 2

Hybrid PINN + MP ∗,✓ 87.0± 0.01 75.9± 0.2 3.7± 0.2 1657± 106
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Table 6: Sensitivity of DASH to noise in prior. To understand the impact of the quality of the prior
knowledge on the performance of DASH, we show results for different levels of prior corruption in
the synthetic data (SIM 350). We keep expression noise constant at 0% to understand the impact of
prior corruption alone.

Strategy Prior corruption Sparsity(%) Bal. Acc.(%) MSE (10−3)

None/Baseline Does not use prior 11.5 54.8 3.6

L0 Does not use prior 34.7 61.3 6.1
C-NODE Does not use prior 10.7 60.5 1.9
PathReg Does not use prior 59.7 64.2 6.1
DST Does not use prior 94.3 72.3 4.2
IMP Does not use prior 86.1 63.2 4.1
Iter. SynFlow Does not use prior 79.1 60.0 2.3
SparseFlow Does not use prior 95.8 72.8 2.9

PINN
0% 11.3 60.3 2.3

20% 12.4 60.8 3.1
40% 11.2 60.6 2.7

BioPrune
0% 83.5 88.0 3.6

20% 80.9 81.5 7.6
40% 86.8 80.1 11.1

DASH
0% 92.6 91.1 1.9

20% 92.4 86.2 6.7
40% 85.9 79.5 6.1

Table 7: Prior-informed pruning on an MLP for simulated data. We compare sparsification strategies
on PHOENIX base model and a simple 2-layer MLP base model with ELU activations. We tested on
SIM350 with 5% noise. Balanced Accuracy is included since ground truth regulatory structure is
known.

PHOENIX base model MLP base model (with ELU)

Strategy Sparsity Bal Acc Test MSE (10−3) Sparsity Bal Acc Test MSE (10−3)

None 7.5% 51.8% 3.0 0% 50.0% 5.2
L0 33.8% 55.0% 8.5 29.6% 51.2% 8.1
C-NODE 6.2% 55.9% 2.8 48.8% 50.3% 5.3
PathReg 56.5% 61.9% 8.0 47.1% 55.3% 8.2
DASH 94.6% 90.7% 2.4 89.4% 88.4% 3.8
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A.2 Breast cancer data

Figure 5: BRCA pathway analysis. We visualize the top-20 significant pathways for each method,
showing the pathway z-score (x-axis) and indicate significant results after FWER correction (Bonfer-
roni, p-value cutoff at .05) with *.
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A.3 Yeast data

Figure 6: Yeast pathway analysis. We visualize the top-20 significant pathways for each method,
showing the pathway z-score (x-axis) and indicate significant results after FWER correction (Bonfer-
roni, p-value cutoff at .05) with *.
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Strategy Sparsity Bal. Acc. (ChipSeq) Bal. Acc. (TF Perturb) MSE (10−2)

None/Baseline 0.10% 49.87% 49.92% 4.84
L0 34.43% 48.43% 49.28% 5.33
C-NODE 10.89% 50.04% 50.17% 4.87
PathReg 12.09% 50.11% 49.92% 5.35
PINN ✓ 0.17% 49.93% 50.01% 5.77
DST 77.80% 49.92% 50.33% 5.18

IMP 83.22% 49.99% 48.45% 5.46
Iter. SynFlow 85.65% 49.57% 49.77% 5.41
SparseFlow 95.22% 49.89% 51.58% 5.38
BioPrune ∗,✓ 94.69% 79.23% 64.50% 5.94
DASH ∗,✓ 97.18% 88.43% 66.79% 5.27

PINN + MP ∗,✓ 95.01% 55.39% 52.95% 6.09
Table 8: Balanced accuracies for experiments on yeast data. Balanced accuracy is based on 1)
transcription factor binding ChIP-seq available for this data [23] and 2) A TF perturbation network
created by Hackett et al. based on their TF perturbation experiments [21]. * marks our suggested
baselines and method, ✓ marks methods that use prior information for sparsification.
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A.4 Bone marrow data

Table 9: Results on Hematopoesis data for the Erythroid lineage. We give sparsity of pruned model
and test MSE on predicted gene expression dynamics. No reference gene regulatory network is
available to compute the accuracy of the recovered network we hence resort to reporting the average
out-degree of nodes in the recovered network. DASH found an optimal λ-value of (0.80, 0.80).
* marks our suggested baselines and method, ✓ marks methods that use prior information for
sparsification.

Strategy Sparsity OutDeg Test MSE (10−4)

None/Baseline 0.25% 529 2.12
L0 12.03% 518 2.14
C-NODE 1.33% 529 2.17
PathReg 13.94% 522 2.12
PINN ✓ 5.93% 529 2.14
DST 90.54% 328 2.23

IMP 73.00% 404 2.26
Iter. SynFlow 82.28% 350 2.18
SparseFlow 94.44% 123 2.12
BioPrune ∗,✓ 87.09% 319 2.14
DASH ∗,✓ 95.95% 54 2.12
PINN + MP ∗,✓ 92.00% 218 2.14

Figure 7: Hematopoesis pathway analysis. We visualize the top-20 significantly enriched pathways
on the Erythroid lineage. For each method (x-axis) we show the pathway z-score and indicate
significant results after FWER correction (Bonferroni, p-value cutoff at .05) with *.
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Table 10: Prior-informed pruning on an MLP for bone marrow data. We compare sparsification
strategies on PHOENIX base model and a simple 2-layer MLP base model with ELU activations. We
tested on Erythroid lineage of the bone marrow data.

PHOENIX base model MLP base model (with ELU)

Strategy Sparsity Test MSE (10−4) Sparsity Test MSE (10−4)

None 0.25% 2.12 0.00% 2.11
L0 12.03% 2.14 8.41% 2.29
C-NODE 1.33% 2.17 2.55% 2.22
PathReg 13.94% 2.12 21.48% 2.15
DASH 95.95% 2.12 84.06% 2.13
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B Supplementary methods

B.1 Synthetic data generation

The purpose of simulation based data is so that the the underlying dynamical system that produced the
this gene expression was known. Do this end, we closely follow the steps outlined by the simulation
pipeline provided by [27] to generate reliable synthetic time-series gene expression data from two
ground truth gene regulatory networks G350 and G690 consisting of 350 and 690 genes, respectively.

The pipeline adapts SimulatorGRN [4] to generate from two synthetic S. cerevisiae gene regulatory
systems (SIM350 and SIM690, consisting of 350 and 690 genes respectively). For every noise setting
∈ {0%, 5%, 10%}, the connectivity structure of each in silico system is used to synthesize 160 noisy
expression trajectories for each gene across t ∈ T = {0, 2, 3, 7, 9}. We split up the trajectories
into training (88%), validation (6% for tuning λ), and testing (6%). Since the average simulated
expression value is ≈ 0.5, adding Gaussian noise of N (0, σ2) using σ ∈ {0, 1

40 ,
1
20} corresponds

roughly to average noise levels of {0%, 5%, 10%}.

B.2 Setup for model training

B.2.1 Model complexity

Since the number of genes k in each problem is different, the number of neurons m in PHOENIX’s
hidden layer is chosen to roughly scale with this k according to the original paper [27]:

• SIM350: k = 350, m = 40

• SIM690: k = 690, m = 50

• Bone marrow data: k = 529, m = 50

• Yeast data: k = 3551, m = 120

• Breast cancer data: k = 11165, m = 300

B.2.2 Initialization and optimizers

For initialization values for each of NNsums, NNprods, NNΣcombine, and NNΠcombine, as well as
that of υis we choose the default provided by the PHOENIX implementation [27]. The ODESolver
(dopri5) and optimizer (Adam) are also chosen as the PHOENIX defaults across all experiments.

B.2.3 Pruning details

We use iterative pruning schedules that are initially very aggressive and then become much more
gradual. We found this approach to achieve high sparsity without adversely affecting the training
dynamics (and subsequently the validation performance).

• SIM350: prune 70% at epoch 3, and then 10% every 10 epochs

• SIM690: prune 70% at epoch 3, and then 10% every 10 epochs

• Bone marrow data: prune 70% at epoch 3, and then 10% every 10 epochs

• Yeast data: prune 90% at epoch 10, and then 10% every 20 epochs

• Breast cancer data: prune 90% at epoch 10, and then 10% every 20 epochs

Weight normalization for DASH pruning scores As described in Section 3, the weight matrices of

PHOENIX need to be normalized to |W̃ (t)
Σ |, |W̃ (t)

Π |, |Ũ (t)
Σ |, and |Ũ (t)

Π | in the formula for calculating
DASH pruning scores ΩΣ,ΩΠ,ΨΣ,ΨΠ. We perform the following normalizations:

• For|W̃ (t)
Σ | we simply normalize by taking elementwise absolute values of W (t)

Σ and divid-
ing all entries by the overall sum of absolute values.
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• For |W̃ (t)
Π |we approach similarly, with the only modification that the weights are element-

wise exponentiated instead of elementwise absolute value, given that W̃ (t)
Π operates on the

log-space.

• For|Ũ (t)
Σ | and |Ũ (t)

Π | we approach again similarly, with the important modification that the
gene-specific multipliers (from Section B.10.2) are row-wise multiplied into the weight
matrices prior to normalization. This allows the effect of gene multipliers to appropriately
be considered when performing pruning.

B.2.4 Learning rates

The learning rate is used as the PHOENIX default of 10−3. We reduce the learning rate by 10% every
3 epochs, unless the validation set performance shows reasonable improvement. Importantly, we
reset the learning rate back to 10−3 immediately after a pruning step is completed, thereby allowing
the newly sparsified model to start learning with a higher learning rate.

B.2.5 Stopping criteria

We train for up to 500 epochs on an AWS c5.9xlarge instance, where each epoch consisted of the
entire training set being fed to the model, preceded by any pruning step that is prescribed by the
pruning schedule. Training is terminated if the validation set performance fails to improve in 40
consecutive epochs. Upon training termination, we have obtained a model that has been iteratively
sparsified to an extent that fails to improve the validation set performance. Hence this training
procedure automatically finds an optimal sparsity level using the validation set.

B.3 Prior knowledge to obtain DASH pruning scores

As mentioned in Section 3, DASH can leverage prior matrices P and C to inform its pruning score.
We use the following in our experiments:

• SIM350 and SIM690:

– for synthetic experiments we choose P = Aσ% to be noisy/corrupted versions (see
B.3.1) of the adjacency matrices of ground truth networks G350 and G690 to reflect
that transcription factor binding to target genes can itself be a noisy process in real life.
A 1 Aσ% represents prior knowledge of an interaction existing between two genes, and
a 0 represented no interaction.

– For C we use the outer product C = Aσ%(Aσ%)⊺, to represent prior knowledge of
coregulation. We again applied the corruption/missepecification procedure from B.3.1
so that C is also noisy.

• Breast cancer data:

– For the prior domain knowledge, we set P = W0, where W0 was a motif map derived
from the human reference genome, for the breast tissue specifically, which we obtained
through GRAND [3]. W0 is a binary matrix with W0i,j ∈ {0, 1} where 1 indicates a
likely occurence of a TF sequence motif in the promoter of the target gene, and hence
indicating a putative interaction. More simply put, it indicates that whether there is
(likely) a binding interface for the protein close to the target gene.

– Based on information from the STRING database [59], we obtained a protein-protein
interaction matrix (PPI) which could use to operationalize our C matrix, since a PPI is
a again a binary matrix that is suggestive of which transcription factors have combined
(or coregulatory) effects. In a nutshell, the STRING database is a graph with proteins as
vertices and knowledge about interactions between two proteins in the graph specifying
edges. We set an entry Pij to 1 if the experimental evidence score on the edge between
protein i and j is larger than 0.6, and set Pij to 0 otherwise.

• Bone marrow data:

– For the prior domain knowledge, we followed a similar strategy as the breast cancer
analysis, and set P and C based on the motif map and PPI matrix used in [62]. We
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appropriately subsetted P and C to only be limited to the k = 529 genes that were
selected by the PathReg authors [1] in the analysis.

• Yeast data:
– For prior domain knowledge model we set P to reflect the regulatory network structure

of a motif map. The map is based on predicted binding sites for 204 yeast transcription
factors (TFs) [23]. These data include 4360 genes with tandem promoters. 3551 of
these genes are also covered on the yeast cell cycle gene expression array. 105 total
TFs in this data set target the promoter of one of these 3551 genes. The motif map
between these 105 TFs and 3551 target genes provides the adjacency matrix A of 0s
and 1s, representing whether or not a prior interaction is likely between TF and gene.

– We set C to be the PPI matrix used for the same data in the PANDA paper [20]. We
appropriately subsetted C to only be limited to the k = 3551 genes that were in the
data.

B.3.1 Creating corrupted/misspecified prior models for synthetic data

For each noise level σ% ∈ {0%, 5%, 10%} in our in silico experiments, we created a shuffled version
of G350 (and similarly G690) where we shuffled σ% of the edges by relocating those edges to new
randomly chosen origin and destination genes within the network. This yielded the shuffled network
G

σ%

350 (and similarly G
σ%

690) with corresponding adjacency matrix Aσ% . We additionally performed
sensitivity analyses using σ% ∈ {20%, 40%} to investigate the effect of even higher levels of prior
corruption. We then used Aσ% to obtain “corrupted“ P and C as described in B.3.

B.4 Validation and testing

The choice of λ = (λ1, λ2) is important for optimally combining prior information with model
weights. Hence we implement a K-fold cross validation approach to choose λ. Test set performance
is measured as the mean squared error between predictions and held-out expression values in the test
set.

B.5 Measuring biological alignment of sparsified models

To validate biological alignment of trained and sparsified models, we extracted GRNs from each
models (as explained in B.10.4), and compared back to the validation networks. Specifically, once
we extracted a GRN from the trained model, we looked at how well 0s vs non-zeros in that network
aligned with 0s vs non-zeros in the validation network. Our comparison metric was balanced
accuracy, which is the average of the true positive and true negative rates. The validation networks
were as follows:

• SIM350, SIM690: We used the ground truth networks G350 and G690.
• Breast cancer data: We used ChIP-seq data from the MCF7 cell line (breast cancer) in the

ReMap2018 database [10] to create a validation network of TF-target interactions.
• Bone marrow data: As also noted by [1], validation network was not available, so we

resorted to the pathway analysis.
• Yeast data: We used two kinds of validation networks

1. ChIP-seq data [23] to create a network of TF-target interactions, and used this as a
validation network to test explainability. The targets of transcription factors in this
ChIP-chip data set were filtered using the criterion p < 0.001.

2. A TF perturbation network created by Hackett et al., who fit dynamical systems to their
TF perturbation experiments [21].

B.6 Strategy to potentially extend DASH to arbitrary number of layers

Supposing we only have access to prior knowledge in the form of putative prior effect sizes between
the n inputs and o outputs P ∈ Ro×n. Then, for an NN with L − 1 layers W1 ∈ Rm1×n,W2 ∈
Rm2×m1 , . . . ,WL ∈ Ro×mL , we can adopt a strategy where we consider the pruning scores to be
fixed for all but one layer.
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Since the product W (t)
L . . .W

(t)
2 · W (t)

1 ∈ Ro×n represents the overall flow of information from
inputs to outputs at epoch t, we surmise that Ω(t)

L . . .Ω
(t)
2 · Ω(t)

1 ∈ Ro×n should reflect P . We can
thus prune as follows:

1. Starting with the last layer, we fix the pruning scores of all other layers and compute as
follows:

Ω
(t)
L := (1− λL)

˜|W (t)
L |+ λL

∣∣∣P · PInvR
(
Ω

(t)
L−1 . . .Ω

(t)
2 Ω

(t)
1

)∣∣∣.
2. For the middle layers l ∈ {2, 3, . . . , L− 1}, we do:

Ω
(t)
l := (1−λl)

˜|W (t)
l |+λl

∣∣∣PInvL(Ω(t)
L . . .Ω

(t)
l+2Ω

(t)
l+1

)
·P ·PInvR

(
Ω

(t)
l−1 . . .Ω

(t)
2 Ω

(t)
1

)∣∣∣.
3. The first layer can be pruned using:

Ω
(t)
1 := (1− λ1)

˜|W (t)
1 |+ λ1

∣∣∣PInvL(Ω(t)
L . . .Ω

(t)
3 Ω

(t)
2

)
· P
∣∣∣.

B.7 Processing steps for real data

B.7.1 Breast cancer

The original data set comes from a cross-sectional breast cancer study (GEO accession GSE7390
[13]) consisting of microarray expression values for 22000 genes from 198 breast cancer patients,
that is sorted along a pseudotime axis. We note that the same data set was also ordered in pseudotime
by [58] in the PROB paper. For consistency in pseudotime inference, we obtained the same version
of this data that was already preprocessed and sorted by PROB. We normalized the expression values
to be between 0 and 1. We limited our analysis to the genes that had measurable expression and
appeared in the aforementioned motif map and PPI matrices. This resulted in a pseudotrajectory
of expression values for 11165 genes across 186 patients. We removed a contiguous interval of
expression across 8 time points for testing (5%), and split up the remaining 178 time points into
training (170, 90%) and validation for tuning λprior (8, 5%).

B.7.2 Yeast

GPR files were downloaded from the Gene Expression Omnibus (accession GSE4987 [50]), and
consisted of two dye-swap technical replicates measured every five minutes for 120 minutes. Each of
two replicates were separately ma-normalized using the maNorm() function in the marray library in
R/Bioconductor [64]. The data were batch-corrected [29] using the ComBat() function in the sva
library [33] and probe-sets mapping to the same gene were averaged, resulting in expression values
for 5088 genes across fifty conditions. Two samples (corresponding to the 105 minute time point)
were excluded for data-quality reasons, as noted in the original publication, and genes without motif
information were then removed, resulting in an expression data set containing 48 samples (24 time
points in each replicate) and 3551 genes.

B.7.3 Bone marrow

The data is originally from [42] (GEO accession code = GSE194122). The cleaning, preprocessing,
and pseudotime analysis and was appropriately performed by [1] in the PathReg paper, and made
publicly available, allowing us to access the processed version. Importantly, [1] split up the data into
3 different lineages (Erythroid, Monocyte, and B-Cell), and we fit a separate PHOENIX model on
each lineage. The set contains 5 separate batches of data for each lineage, we used 1 for training
(batch S1D2), 1 for validation (batch S1D1) and 3 for testing (batches S1D1, S2D4, and S3D6).

B.8 Pathway analyses for breast cancer, yeast, and bone marrow datasets

We followed very closely the steps below from the Methods section of the PHOENIX paper [27] in
order to compute pathway scores, with the only difference that we compute scores between different
sparsification strategies Pru.
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B.8.1 Gene influence scores

Given MPru a PHOENIX model trained on a dataset consisting of k genes, and sparsified using the
pruning strategy Pru (for Pru ∈ {DASH, IMP, C-NODE, . . . , PathReg}), we performed perturbation
analyses to compute gene influence scores ISPru,j . We randomly generated 200 initial (t = 0)
expression vectors via i.i.d standard uniform sampling {g(0)r ∈ Rk}200r=1. Next, for each gene j in
MPru, we created a perturbed version of these initial value vectors {gj(0)r}200r=1, where only gene
j was perturbed in each unperturbed vector of {g(0)r}200r=1. We then fed both sets of initial values
into MPru to obtain two sets of predicted trajectories {{ĝ(t)r ∈ Rk}t∈T }200r=1 and {{ĝj(t)r ∈
Rk}t∈T }200r=1 across a set of time points T . We calculated influence as the average absolute difference
between the two sets of predictions, that represented how changes in initial (t = 0) expression of
gene j affected subsequent (t > 0) predicted expression of all other genes in the Pru-dimensional
system

ISPru,j =
1

200

200∑
r=1

[
1

|T |
∑
t∈T
t ̸=0

(
1

k

k∑
i=1
i ̸=j

∣∣ĝi(t)r − ĝi
j(t)r

∣∣)].
B.8.2 Pathway influence scores

Having computed gene influence scores ISPru,j for each gene j in each dynamical system of
dimension k genes sparsified with method Pru, we translated these gene influence scores into
pathway influence scores. We used the Reactome pathway data set, GO biological process terms,
and GO molecular function terms from MSigDB [36], that map each biological pathway/process,
to the genes that are involved in it. For each system sparsified by Pru, we obtained the pathway (p)
influence scores (PSPru,p) as the sum of the influence scores of all genes involved in pathway p

PSPru,p =
∑
j∈p

ISPru,j .

We statistically tested whether each pathway influence score is higher than expected by chance using
empirical null distributions. We randomly permuted the gene influence scores across the genes to
recompute “null" values PS0

Pru,p. For each pathway, we performed Q = 1000 permutations to obtain
a null distribution {PS0

Pru,p,q}
Q
q=1 that can be compared to PSPru,p. We could then compute an

empirical p-value as p = 1
Q

∑Q
q=1 IPS0

Pru,p,q>PSPru,p
, where I is the indicator function. Finally, we

used the mean (µ0(Pru,p)) and variance (σ2
0(Pru,p)) of the null distribution {PS0

Pru,p,q}
Q
q=1 to obtain

and visualize pathway z-scores that are now comparable across pathways (p) and sparsification
strategies (Pru)

z(Pru,p) =
PSPru,p − µ0(Pru,p)√

σ2
0(Pru,p)

.

B.9 Implementation details for other sparsification strategies on the PHOENIX architecture

B.9.1 Iterative magnitude pruning

As discussed in Section 3, IMP can be operationalized as a special case of DASH by setting
λ1 = λ2 = 0.

B.9.2 PINN

This is simply the PHOENIX model equipped with the prior-informed loss term. This loss-term in
the original PHOENIX paper [27] is inspired by Physics-informed neural networks (PINNs).

B.9.3 PINN + MP

Once a PHOENIX model (trained including the prior-informed loss term, i.e. the PINN term)
is fully trained (without any pruning), we inspect the trained model and pruned the lowest p% of
parameters in each of WΣ,WΠ,UΣ,UΠ based on on the normalized weights (see B.2) to 0. We
then fine-tune (i.e retrain without training the pruned parameters) this p% sparsified model and
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calculate its performance on the validation set. We repeat this process for a grid of values for
p ∈ {0.50, 0.75, 0.83, 0.87, 0.90, 0.92, 0.95, 0.97, 0.99}. The validation set can then inform the best
value of p. We repeated this entire procedure 3 times, so that we could apply the 1 standard error rule
[24] and choose the optimal p as the sparsest fine-tuned model whose validation MSE is within 1
standard error of lowest obtained average validation MSE.

B.9.4 Penalty based methods

C-NODE, PathReg, and L0 implementations were obtained from the code associated with the PathReg
paper [1]. We adapted the code so that the base NN architecture was exactly that of the PHOENIX
model, including an implementation of the gene-specific multipliers (from Section B.10.2). Finally,
we tuned the relevant parameters λ0 and λ1 in the objective function using the validation set.

The code for DST was obtained from: https://github.com/junjieliu2910/DynamicSparseTraining

B.10 A brief overview of PHOENIX NeuralODE model

The following are adapted from [27] and provided here for the reader’s convenience.

B.10.1 Neural ordinary differential equations

NeuralODEs [8] learn dynamical systems by parameterizing the underlying derivatives with neural
networks: dg(t)

dt = f(g(t), t) ≈ NNΘ(g(t), t). Given an initial condition g(t0), the output g(ti) at
any given time-point ti can now be approximated using a numerical ODE solver of adaptive step size:

ĝ(t1) = g(t0) +

∫ t1

t0

NNΘ(g(t), t) dt.

A loss function L
(
g(t1) ; g(t0)+

∫ t1
t0

NNΘ(g(t), t) dt
)

is then optimized for Θ via back propagation,
using the adjoint sensitivity method [7] to carry the backpropagation through the integration steps of
the ODESolver.

B.10.2 PHOENIX - overview

PHOENIX models gene expression dynamics using NeuralODEs. Notably, for an expression vector
of r genes, PHOENIX models both additive and multiplicative regulatory effects using two parallel
linear layers with m neurons each: NNsums (with weights WΣ ∈ Rm×r, and biases bΣ ∈ Rm)
and NNprods (WΠ ∈ Rm×r, bΠ ∈ Rm). Here, NNsums and NNprods are equipped with activation
functions that model the Hill equation

ϕΣ(x) =
x− 0.5

1+ | x− 0.5 |
and ϕΠ(x) = log

(
ϕΣ(x) + 1

)
.

The Hill equation is a classical formula in biochemistry that models molecular binding in dependence
of concentration. This results in outputs of the two parallel layers

cΣ(g(t)) = WΣϕΣ(g(t)) + bΣ and
cΠ(g(t)) = exp ◦(WΠϕΠ(g(t)) + bΠ).

As shown above, ϕΠ(x) yields the output of NNprods in the log space and is subsequently exponenti-
ated in cΠ to represent multiplicative effects in the linear space. The outputs cΣ(g(t)) and cΠ(g(t))
are then separately fed into two more parallel linear layers NNΣcombine (with weights UΣ ∈ Rr×m)
and NNΠcombine (UΠ ∈ Rr×m), respectively. The outputs of NNΣcombine and NNΠcombine are
summed to obtain

c∪(g(t)) = UΣcΣ(g(t)) +UΠcΠ(g(t)).

Finally, PHOENIX includes gene-specific multipliers υ ∈ Rr for modeling steady states of genes
that do not exhibit any temporal variation

(dgi(t)
dt = 0,∀t

)
. Accordingly, the output for each gene i in

c∪(g(t)) is multiplied with ReLU(υi) in the final estimate for the local derivative

NNΘ(g(t), t) = ReLU(υ)⊙
[
c∪(g(t))− g(t)

]
.

Although PHOENIX achieves some sparsity in its weight matrices (WΣ,WΠ,UΣ,UΠ) without
any external sparsification strategy, the achieved sparsity level is, however, at most 12% (see
Figure 2, and Tables 1, 3, 4).
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B.10.3 Prior knowledge incorporation in base PHOENIX model itself

PHOENIX has the option to promote the NeuralODE to flexibly align with structural domain
knowledge, while still explaining the observed gene expression data. This is operationalized via a
modified loss function

Lmod

(
g(t1), ĝ(t1)

)
=τ

loss based on matching observed gene expression data︷ ︸︸ ︷
L
(
g(t1) ; g(t0) +

∫ t1

t0

NNΘ(g(t1), t) dt
)

+ (1− τ)

loss based on matching domain-knowledge︷ ︸︸ ︷
L
(
P∗(g(t1)) ; NNΘ(g(t1), t)

)
that incorporates the effect of any user-provided prior model P∗, using a tuning parameter τ , and
the original loss function L(x, x̂). PHOENIX implements P∗ as a simple linear model P∗(γ) =
A · γ − γ, where A is the adjacency matrix of likely connectivity structure based on prior domain
knowledge (such as experimentally validated interactions) with Aij ∈ {+1,−1, 0} representing an
activating, repressive, or no prior interaction, respectively.

For synthetic experiments, we used the simple linear model: P∗(γ) = Aσ% ·γ−γ, where we chose
Aσ% to be noisy/corrupted versions of the adjacency matrices of ground truth networks G350 and
G690 (details in B.3.1). We set activating and repressive edges in Aσ% to 1, while “no interaction"
was represented using 0.

B.10.4 Algorithm for efficiently retrieving encoded GRN from trained PHOENIX model

We start with PHOENIX’s prediction for the local derivative given a gene expression vector g(t) ∈ Rr

in an r-gene system:

d̂g(t)

dt
= ReLU(υ)⊙

[
W∪{cΣ(g(t))⊕ cΠ(g(t))} − g(t)

]
, where

cΣ(g(t)) = WΣϕΣ(g(t)) + bΣ and cΠ(g(t)) = exp ◦(WΠϕΠ(g(t)) + bΠ)

A trained PHOENIX model encodes interactions between genes primarily within the gene-specific
multipliers υ ∈ Rr, and the weight parameters from its neural network blocks WΠ,WΣ ∈ Rm×r

and W∪ ∈ Rr×2m. This inspired an efficient means of projecting the estimated dynamical system
down to a gene regulatory network (GRN) Ĝn. In particular a matrix D ∈ Rr×r is calculated, where
Dij approximated the absolute contribution of gene j to the derivative of gene i’s expression

D = W∪

[
WΣ

WΠ

]
.

Gene-specific multipliers υ are applied, before adapting the marginal attribution approach described
by Hackett et al. [21]. This resulted in the dynamics matrix D̃ where D̃ij was scaled according to
the relative contribution of gene j to the rate of change in gene i’s expression:

D̃ij =
υiDij∑n

j′=1|υiDij′ |
.

B.11 Subjecting PHOENIX to DASH pruning

With its simple yet powerful architecture, PHOENIX provides an ideal base setting for applying
and testing the merits of the discussed neural network sparsification strategies (Section 2), including
DASH. We discuss the DASH implementation here and provide implementation details for other
sparsification strategies in Appendix B.9.

For DASH, we follow the steps of the L = 2 case in Section 3. Note that in PHOENIX we have
k = r, since we are modeling how a set of k genes (inputs) affects each others derivatives (i.e.
k outputs). We apply the steps from Section 3 on each parallel member of the first {WΣ,WΠ}
and second {UΣ,UΠ} layers. For the first layer, we leverage prior knowledge of transcription
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factor coregulation (often available in the form of protein-protein interaction matrices) to formulate
C ∈ Rk×k. This is then used to calculate pruning scores ΩΣ,ΩΠ for WΣ,WΠ. Similarly, for
UΣ,UΠ in the second layer, we utilize P ∈ Rr×k which are easily obtainable motif map matrices
encoding prior knowledge of transcription factor binding sites around genes to calculate pruning
scores ΨΣ,ΨΠ.

Algorithm 1 Computing Ω
(t)
Σ ,Ω

(t)
Π ,Ψ

(t)
Σ ,Ψ

(t)
Π

Inputs: weights W (t)
Σ ,W

(t)
Π ,U (t)

Σ ,U
(t)
Π ; priors C,P ; epoch t;

previous scores Ω(t−1)
Σ ,Ω

(t−1)
Π ; tuning λ1, λ2

• Normalize W
(t)
Σ to get |W̃ (t)

Σ | (see Appendix B.2)

• Similarly obtain |W̃ (t)
Π |, |Ũ (t)

Σ |, and |Ũ (t)
Π |

• If t = 0

– Initialize Ω
(t)
Σ and Ω

(t)
Π randomly with values from a standard Gaussian

• Else

– Ω
(t)
Σ := (1− λ1)

˜|W (t)
Σ |+ λ1

∣∣∣PInvL

(
Ω

(t−1)
Σ

⊺)
·C
∣∣∣

– Ω
(t)
Π := (1− λ1)

˜|W (t)
Π |+ λ1

∣∣∣PInvL

(
Ω

(t−1)
Π

⊺)
·C
∣∣∣

• Ψ
(t)
Σ := (1− λ2)|̃U (t)

Σ |+ λ2

∣∣∣P · PInvR

(
Ω

(t)
Σ

)∣∣∣
• Ψ

(t)
Π := (1− λ2)|̃U (t)

Π |+ λ2

∣∣∣P · PInvR

(
Ω

(t)
Π

)∣∣∣
B.12 Ablation study using a plain MLP instead of PHOENIX as the base model

We believe that DASH should remain performant even when using a base model that is different
from PHOENIX. To be more explicit, the base model would give a new expression for NNΘ(g(t), t)
in B.10.2.

For PHOENIX as base model we have: NNΘ(g(t), t) = ReLU(υ)⊙
[
c∪(g(t))− g(t)

]
.

For alternative base model we have: NNΘ(g(t), t) = alternative base model(g(t))−g(t)

In our ablation experiments, with used a simple two-layer MLP with ELU activation functions
as the alternative base model . The choice of ELU activation is motivated by the PathReg paper [1].
We chose the number of hidden neurons such that the total number of parameters was comparable
between the MLP and the PHOENIX base models. We tested a few sparsification strategies against
DASH on this new base model, for both synthetic data and the bone marrow data.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We explain the new concept of prior-informed pruning (Fig. 1) in Section 3,
introduce it to the state-of-the-art model of gene regulatory dynamics in Section 4 and show
in Extensive Experiments in Sec. 5 and App. A that it finds more meaningful and domain
relevant models.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We provide a short discussion in Sec. 6, pointing to potential new direction
of future work applying DASH to different domains, and provide critical analysis in the
Experiments (see e.g. closing remarks of synthetic data study).
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: There are no theorems nor proofs in this paper.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide discussion of synthetic data generation (App. B.1), setup of
training (App. B.2), and information about how prior knowledge was defined (App. B.3).
We further provide information on which reference gold standard was used for evaluation
of the inferred gene regulatory network (App. B.5), any pre-processing steps for the real
world data (App. B.7) and how analyses were carried out (App. B.8). We further discuss all
necessary details on how different pruning methods were implemented (App. B.9) and how
regulatory networks were extracted (App. B.10.4). We provide an implementation of DASH
as supplementary material.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We provide code and data via GitHub: https://github.com/
QuackenbushLab/DASH and reference where all data can be found in the text (note that all
real data is publicly available through the respective original authors).
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: See questions above.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We provide error ranges for all synthetic data experiments and provide statisti-
cal significance (multiple test corrected) for pathway analyses.
Guidelines:
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• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [No]
Justification: All experiments were carried out on the same machine. As these are compara-
bly small-scale experiments (i.e., network parameters are in the thousands) most standard
hardware will easily reproduce these experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We follow the NeurIPS Ethics Guidelines.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [No]
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Justification: We do not see a direct harmful application of our suggested approach, it is
a foundational line of research and our suggested application is in molecular biology. As
such, it will rather bring a positive societal impact by improving understanding of health
and disease and thereby improving therapy design.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Not applicable

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [No]

Justification: We properly cite the work for the compared methods and all data used within
the scope of this work. We also checked that each license is applicable. But we do not list
each license and terms explicitly.
Guidelines:
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• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The primary contribution of this work is foundational, yet we do provide code
and data-generating scripts as supplementary material.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
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Justification: All data used within the experiments was from public sources and databases,
which have undergone reviews to ensure no risks are involved prior to their respective
publication.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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