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ABSTRACT

Sparse Mixture of Experts (MoE) models offer a scalable and efficient architec-
ture for training large neural networks by activating only a subset of parameters
(“experts”) for each input. A learned router computes a distribution over these
experts, and assigns input tokens to a small subset. However, without auxiliary
balancing mechanisms, routers often converge to using only a few experts, severely
limiting model capacity and degrading performance. Most current load balancing
mechanisms encourage a distribution over experts that resembles a roughly uniform
distribution of experts per token. During training, this can result in inconsistent
routing behavior, resulting in the model spending its capacity to learn redundant
knowledge. We address this by introducing a novel load balancing loss that pre-
serves token-wise relational structure, encouraging consistent expert choices for
similar inputs during training. Our experimental results show that applying our loss
to the router results in 36% faster convergence and lower redundancy compared to
a popular load balancing loss.

1 INTRODUCTION

As the demand for larger and more capable neural networks continues to grow (Kaplan et al., 2020;
Brown et al., 2020), the need for architectures that can scale efficiently—without incurring prohibitive
computational costs—has become increasingly important. This is especially true in the context
of large language models (LLMs), where state-of-the-art performance often requires billions of
parameters and massive training datasets. One such approach, the Mixture of Experts (MoE) model
(Shazeer et al., 2017), introduces sparsely activated sub-networks at certain layers, allowing for
increased model capacity while preserving computational efficiency.

While MoE architectures offer improved parameter scalability, they often suffer from poor expert
utilization during pretraining. Without mechanisms that encourage balanced routing, the model
frequently learns to rely on only a small subset of experts (Eigen et al., 2014; Bengio et al., 2016).
Typically, routing decisions are made per token using a learned router that outputs a probability
distribution over experts—a paradigm known as Token Choice (TC) (Fedus et al., 2022). To encourage
balanced expert usage, various strategies have been proposed, including sequence-level auxiliary
losses such as load balancing loss (LBL) (Fedus et al., 2022) or the Expert Choice (EC) routing
variant which generates a distribution over a sparse set of activated tokens for each expert (Zhou et al.,
2022). Section 5 covers additional strategies for load balancing.

Load balancing strategies often encourage a uniform distribution over experts to avoid collapse. This
approach has proven to be useful to stabilize MoEs during training, and has been used in many
recent works (Muennighoff et al., 2025; Dai et al., 2024; DeepSeek-AI et al., 2025; Xue et al., 2024).
However, in this paper, we argue that imposing a uniform distribution over experts causes MoE
models to expend their capacity acquiring the same knowledge across multiple experts. Besides
the inefficiencies imposed by this approach, exposing similar tokens to several different experts
during training results in inconsistent routing behavior and expert assignments. This in turn further
exacerbates knowledge redundancy across experts. Previous work (Dai et al., 2024; Liu et al., 2024)
suggests that the amount of knowledge shared between experts is correlated to losses in performance.

To encourage consistent expert assignments for similar input tokens during training, we propose pre-
serving the relational structure among tokens during routing, resulting in similar expert distributions
for similar tokens. We achieve this by promoting orthogonality in the router’s weights, as orthogonal
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matrices are dot-product (and thus, angle) preserving. We introduce similarity-preserving routers
for MoE load balancing (SIMBAL), a novel load balancing auxiliary loss that maintains token-wise
relational structure by softly encouraging orthogonality in the router weights. Unlike methods that
impose orthogonality through explicit parameter constraints—which are computationally expensive
and numerically unstable (see Section 4.1)—SIMBAL aligns the Gram matrix (QJQ) of router
weights with the identity matrix. This softly regularizes router outputs to preserve pairwise token
similarities, achieving the benefits of orthogonal routing with significantly lower computational cost.

By maintaining semantic structure and promoting diverse expert usage, SIMBAL reduces redundancy,
accelerates convergence, and improves final model quality. Our models require 36% fewer tokens
when training to achieve the same loss as LBL, and achieve 0.213 lower perplexity given the same
compute budget.

2 BACKGROUND

2.1 MIXTURES OF EXPERTS

A Mixture of Experts (MoE) model sparsely activates certain parameters during inference, in contrast
to standard dense networks where all parameters are used. In this work, we focus on Mixture of
Experts models for the Transformer architecture (Vaswani et al., 2017), a popular choice for training
models on sequence-wise data such as those seen in natural language.

Transformers are typically composed of a series of blocks, each consisting of a self-attention module
followed by a feed-forward network (FFN). The FFN is usually a two-layer fully connected network
with a large hidden dimensionality. For example, given an input vector x P RDM , where DM is the
model (input/output) dimensionality, the standard FFN computes:

FFNpxq “ W2 ¨ σpW1x ` b1q ` b2, (1)

where W1 P RDF ˆDM , W2 P RDMˆDF , b1 P RDF , and b2 P RDM . The intermediate hidden
dimension DF is typically much larger than DM . The nonlinearity σ is an activation function; we
use SwiGLU (Shazeer, 2020).

In a Mixture of Experts Transformer, the FFN is replaced by a set of smaller, parallel FFNs called
“experts.” Let there be E such experts. Each expert has its own parameters tW

peq

1 ,W
peq

2 , b
peq

1 , b
peq

2 u,
where W

peq

1 P RDEˆDM , W peq

2 P RDMˆDE , bpeq

1 P RDE , and b
peq

2 P RDM . Here, DE is the hidden
dimension used within each expert.

A routing mechanism assigns each token x P RDM to a small subset of A activated experts (typically
A ! E). The router is a linear transformation R P RDMˆE followed by a sparse top-A selection,
producing expert indices i1, . . . , iA and associated routing weights r1, . . . , rA. The MoE layer then
computes:

MoEpxq “

A
ÿ

a“1

ra ¨

´

W
piaq

2 ¨ σpW
piaq

1 x ` b
piaq

1 q ` b
piaq

2

¯

. (2)

This definition of the MoE can also be viewed as a weighted sum over expert FFN outputs, skipping
the computation for any expert where the weight is zero. This architecture enables scaling model
capacity via E without a proportional increase in computational cost, as only A experts are active per
input.

2.2 EXPERT ROUTING

Despite the small parameter count of MoE routers (in our larger setting, 0.018% of the total parame-
ters), they have an outsized impact on the performance and capacity of the model, as they orchestrate
billions of parameters. Thus, it is imperative to pay careful attention to this mechanism when training
MoE models. In MoE Transformers, routing is computed from the previous attention output x P RDM

via a learned router matrix R P RDMˆE , producing scores xR P RE . Applying a gating function G
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results in routing weights r “ GpxRq. We use softmax, which generates a probability distribution
over experts, from which the top-A active experts are selected and weighted for each token.

We compare our approach to balancing with the Load Balancing Loss (LBL) presented by Fedus et al.
(2022). This setup is highly popular and represents the state-of-the-art, being used in Muennighoff
et al. (2025); DeepSeek-AI et al. (2025); Dai et al. (2024), and (Xue et al., 2024) (we give an overview
of alternative methods and their limitations in Section 5.) LBL encourages uniform expert usage by
correlating how frequently each expert is selected with how much routing weight it receives. Let fi
be the fraction of tokens routed to expert i, Pi the average routing probability for expert i, and E the
number of experts. The LBL is defined as:

LLBL “ α ¨ E ¨

E
ÿ

i“1

fi ¨ Pi (3)

Minimizing this loss encourages the router to distribute tokens more evenly across experts. However,
it may require tuning of a loss coefficient α to avoid overpowering the main training objective. We
include PyTorch implementation details in Appendix A.4.

3 METHODS

We propose preserving token-wise structural relationships to ensure effective and consistent usage
of experts during training. We accomplish this by encouraging orthogonality in the router, which
preserves the pairwise angles of the inputs. In this section, we explain the methods used to achieve
our results, and our design choices.

3.1 LOAD BALANCING VIA ORTHONORMAL ROUTERS

A natural strategy to ensure expert choices correlate with token-wise relationships is to constrain the
router weights to form an orthonormal (and thus, dot-product preserving) matrix. PyTorch (Paszke
et al., 2019) provides a utility for this using a QR decomposition, producing a matrix Q P Rmˆn

such that QJQ “ In if m ě n (as is typically the case with MoE routers).

While appealing, the cost of using this orthogonal parameterization is prohibitively expensive in wall-
clock time when applied to large-scale models, because the algorithms used to ensure this property
are computationally expensive. Instead, we propose a loss that encourages structure preservation
without requiring explicit parameterization.

Let the router be a matrix R P RDMˆE , where DM is the model dimension and E is the number of
experts. Since E ! DM , we minimize the deviation of the Gram matrix RJR from the identity:

Lorth “
›

›RJR ´ IE
›

›

1
(4)

This loss is dataset-agnostic and computationally cheap. This is important, as Qiu et al. (2025) finds
that existing losses, which are dependent on the data, require large batch sizes to be effective. We
additionally initialize the router with a (near) orthogonal initialization (Saxe et al., 2014) (though it
should be sufficient to simply run a few router-only training steps, see Table 2), as we find it results in
quicker convergence. We call this method SIMBAL, as we are effectively balancing by preserving the
pair-wise similarity of the tokens. The experiments in our paper scale this coefficient by 0.1, but we
find that this is not important, as shown in Section 4.2. We include PyTorch implementation details in
Appendix A.4.

3.2 MODEL ARCHITECTURE AND TRAINING

Model Architecture. Our model architecture closely follows prior work by OLMo et al. (2025) and
Muennighoff et al. (2025). We use a Transformer backbone with RMSNorm (Zhang and Sennrich,
2019), SwiGLU activations (Shazeer, 2020), and Rotary Position Embeddings (RoPE) (Su et al.,
2021). We apply Z-loss Team (2025); Chowdhery et al. (2022) with a coefficient of 1e-5, as in
OLMo et al. (2025). Unlike OLMo 2, we do not modify the placement of normalization layers nor do
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Table 1: Parameters used for the model architecture and training. Parameter (active, total) counts
include token embeddings. All MoE models have 32 experts, with the top 4 activated.

Parameter Dense-M MoE-M Dense-L MoE-L
DM 768 768 1536 1536
Depth 8 8 12 12
Heads 8 8 12 12
DF 3072 768 6144 1536
RoPE θ 1e4 1e4 1e5 1e5
Peak LR 5e-4 5e-4 3e-4 3e-4
Embedding Params 77M 77M 154M 154M
Active Params 230M 230M 761M 761M
Total Params 230M 627M 761M 3.14B

we apply QK-Norm (Dehghani et al., 2023). We replace all FFN layers with MoE layers. Further
architectural details can be found in Table 1. Our implementation largely builds upon the open-source
OLMo codebase (OLMo et al., 2025), except for data loading and processing due to differences in
infrastructure. For the LBL baseline, we follow Muennighoff et al. (2025) and Wang et al. (2024),
using a loss coefficient of 0.01.

Model Scales and Training. We pretrain models at two scales: a medium model (MoE-M) with
230M active and 627M total parameters, and a large model (MoE-L) with 762M active and 3.14B
total parameters (including embeddings). For each scale, we performed a brief hyperparameter sweep
across three learning rates. All models are trained using the AdamW optimizer (Loshchilov and
Hutter, 2019), with a weight decay of 0.01, linear warm-up from 10% of the peak learning rate over
2000 steps, followed by cosine decay (Loshchilov and Hutter, 2017) to 10% of the peak learning rate.
Additional model specifications are listed in Table 1. All model parameters are in bfloat16.

All models are trained on a subset of tokens from the DCLM-pool-400m-1x dataset (Li et al., 2025)
(used in other work such as Muennighoff et al. (2025)), tokenized using the cl100k base tokenizer
from the tiktoken library (OpenAI, 2024). We reserve one file shard (77M tokens) for validation. All
MoE-M models are trained on 19.9B tokens, while MoE-L mdoels are trained on 78.6B tokens. No
further fine-tuning is performed, as our focus is on the pretraining phase, which is typically the most
computationally intensive stage of LLM development.

Compute and FLOP Estimates. All models are trained using Distributed Data Parallelism (DDP)
(Li et al., 2020). For MoE-M, we use 8 NVIDIA A100 40GB GPUs per training run; for MoE-L, we
use 8 AMD MI300X 192GB accelerators.

To estimate total training FLOPs, we follow the approximation from Brown et al. (2020), using
6 ˆ N ˆ T per forward pass, where N is the number of non-embedding active parameters and T is
the number of training tokens.

For MoE-M and Dense-M, with 230M active parameters and 77M in embeddings, trained on 2ˆ1010

tokens, this results in:

6 ˆ pp230 ´ 77q ˆ 106q ˆ 2 ˆ 1010 “ 1.836 ˆ 1019 FLOPs

For MoE-L and Dense-L, with 761M active parameters and 154M in embeddings, trained on 7.8 ˆ

1010 tokens, this results in:

6 ˆ pp761 ´ 154q ˆ 106q ˆ 7.8 ˆ 1010 “ 2.840 ˆ 1020 FLOPs

3.3 MEASURING EXPERT SIMILARITY

Previous work evaluates expert specialization by measuring performance degradation when the top
fraction of experts is dropped (Dai et al., 2024). However, this approach is expensive to compute when
ablating each combination of dropped experts for exhaustive comparison, as it requires inference on
the full validation set per combination of dropped experts.

We instead propose Pairwise Expert Similarity (PES): a smoother, scalable, and robust metric for
quantifying expert specialization based on the similarity of expert outputs across a batch of tokens.
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Table 2: Comparison of orthogonality preservation methods, average and standard deviation over
100 trials. We report the maximum deviation from orthonormality (Max Dev) and the mean L1
distance to the identity matrix (L1 Dist) after casting to our training precision. Trained refers to our
loss-based method after 100 optimization steps. Param uses the orthogonal parameterization from
Lezcano-Casado (2019). OrthoInit follows the initialization from Saxe et al. (2014). All matrices
have shape 1536 ˆ 32, matching our router dimensions. Best results in each column are bolded.

Method Max Dev L1 Dist
Trained 1.03 ˆ 10´5 ˘ 2.76 ˆ 10´6 8.52 ˆ 10´7 ˘ 5.84 ˆ 10´8

Param 2.00 ˆ 10´4 ˘ 2.31 ˆ 10´5 4.80 ˆ 10´5 ˘ 1.60 ˆ 10´6

OrthoInit 1.93 ˆ 10´4 ˘ 1.88 ˆ 10´5 4.62 ˆ 10´5 ˘ 1.79 ˆ 10´6

Ideally, specialized experts should produce more diverse (i.e., less similar) outputs, maximizing the
representational span of the expert set. PES is defined as:

PESmodel “
1

|B|

ÿ

bPB

Cexpertpxq (5)

Cexpertpxq “
2

NpN ´ 1q

N
ÿ

i“1

N
ÿ

j“i`1

cos pfipxq, fjpxqq (6)

Here, Cexpertpxq denotes the mean cosine similarity of expert outputs for batch sample x, and PESmodel
is the batch-averaged similarity across all |B| samples. N is the number of experts, fi is the function
computed by the i-th expert. The cosine similarity cospu,vq is defined as u¨v

}u}¨}v}
, measuring the

angle between output vectors.

PES is intuitive (lower similarity indicates greater diversity and lower redundancy), considers all
experts rather than just the most frequently selected, and is highly scalable. Unlike dropout-based
evaluation, which requires repeated forward passes per ablation, PES requires less additional com-
putation. This function can be computed batch-wise within the expert computation to reduce cost,
and requires inference once with the full model parameter count (a multiplier of 3.6-4.9x FLOPs
in our case), rather than (potentially) hundreds of evaluation passes with the MoE for similarly
comprehensive evaluations. We use 4M randomly sampled tokens to calculate PES.

4 EXPERIMENTS

4.1 ORTHOGONALIZATION AND BALANCING

Our key contribution is that we perform load balancing by using a router that is encouraged to be
orthogonal, and thus preserves token-wise relationships. Rather than enforcing orthogonality through
explicit parameter constraints—which is computationally expensive, requires frequent reparame-
terization, and is prone to numerical instability, particularly when training large-scale models—we
instead use the loss function described in Section 3.1. We now evaluate the effectiveness of promoting
orthogonality in the router.

As PyTorch currently lacks support for orthogonal parameterizations in lower-precision formats
commonly used to train language models (that we use), we perform orthogonalization in float32,
and then cast the resulting matrix to bfloat16, our training precision. Our loss-based method
trains the matrix directly in bfloat16. We report both the maximum and mean deviation from
orthonormality, as well as the final loss values, in Table 2. We find that our loss consistently produces
matrices that more closely approximate orthonormality than direct orthogonal parameterizations
in our scenario. In fact, our approach matches or exceeds the throughput of efficient orthogonal
parameterizations, while avoiding the need for expensive reorthogonalization steps. For this synthetic
experiment, we train with AdamW (with no weight decay), and a learning rate cosine decayed from
1ˆ10´4 to 1ˆ10´5 over 100 consecutive steps. In our MoEs, we simply add our loss as an auxiliary
loss term and update once per language model training step. We examine the coefficient sensitivity of
SIMBAL to determine if tuning is necessary.

5
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Table 3: Load balancing and orthogonalization of LBL and SIMBAL on MoE-L.
Metric SEU Entropy pRTR ´ Iq2

LBL 1.000 1.268 0.0311
SIMBAL 0.991 1.168 2.121 ˆ 10´8

(a) MoE-M (b) MoE-L

Figure 1: Validation loss curves for checkpoints during training. In both MoE-M and MoE-L, we
achieve the same loss roughly 36% faster.

In terms of expert utilization in MoEs, our method avoids collapse comparably to LBL, ensuring
that no experts remain unutilized. Figure 5 illustrates the unique expert usage over time at two
different scales, compared to LBL and using no losses (which results in unused experts). To verify
that sequence-wise balance is not substantially degraded, we compare SIMBAL against LBL by
measuring the entropy of the routing distributions and Sequence-wise Expert Utilization (SEU), as
reported by the mean over the fraction of experts used per sequence, to show that load balance within
a sequence is not significantly degraded. We report our results in Table 3.

To analyze whether SIMBAL is able to effectively orthogonalize routing matrices, we analyze the
mean layer-wise L2 distance of the final router gram matrix from the identity matrix in Table 3. More
in-depth data with layer-wise values across MoE-L and MoE-M can be found in Appendix A.3.

4.2 LANGUAGE MODELING

We compare our method to LBL by training language models according to the setup described in
Section 3.2, evaluating performance based on the perplexity of the final checkpoint. The resulting
models are reported in Table 4. We additionally report the SEU of the models.

Across both MoE-M and MoE-L scales, SimBal converges approximately 36% faster than LBL. We
show validation values during training in Figure 1 For MoE-L, SimBal approaches the target loss
after processing roughly 50B tokens, compared to 78.6B for LBL—a 36% improvement. Similarly,
in the MoE-M setting, SimBal reaches comparable loss levels at around 12.7B tokens, versus 19.9B
for LBL. We additionally evaluate MoE-L on standard downstream benchmarks to test whether the
perplexity gains of SIMBAL translate to broader tasks, comparing against LBL (Table 5). Overall,
our method outperforms LBL in both downstream performance and training efficiency.

We train 4 additional models (for a total of 5 models) for both SIMBAL and LBL on MoE-M (due
to computational limitations) to parse the statistical significance of our results. We find that models
trained with LBL have a mean perplexity of 14.051 with a standard deviation of 0.026. In comparison,
SIMBAL achieves a mean perplexity of 13.691 with standard deviation 0.039. The mean SIMBAL
performance is over 13 standard deviations lower than the perplexity of LBL, showing that our results
are very statistically significant.

Finally, we examine sensitivity to the auxiliary loss coefficient (0.01, 0.1, 1.0), with results in Table 7.
Based on our 5-seed runs on MoE-M, the effect is negligible, and we do not recommend tuning this
hyperparameter.
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(a) Redundancy Per Layer, Lower = Better (b) ∆ Redundant Expert Knowledge

Figure 2: Analysis of expert redundancy in MoE-L models. (a) PES across different layers, our
approach (blue) maintains significantly lower redundancy than LBL (orange). Darker = later in
training. (b) Rate of change of PES during training, averaged over all layers. Redundancy occurs
when many distinct experts see similar tokens, and is most likely to happen early in training, as we
observe. We note that this is ą 0 at most points for LBL, suggesting it exacerbates redundancy during
the majority of training.

Table 4: Model setup and performance.
Model Dense-M MoE-M MoE-M Dense-L MoE-L MoE-L
Balancing – LBL SimBal – LBL SimBal
Perplexity Ó 19.468 14.086 13.685 10.047 8.517 8.304
Min PES Ó – 0.0255 0.0044 – 0.0241 0.0028

Table 5: Comparison of LBL-L and SimBal-L performance across benchmarks.
Benchmark LBL-L ˘ stderr SimBal-L ˘ stderr
ARC Challenge (Clark et al., 2018) 22.44% ˘ 1.22% 23.21% ˘ 1.23%
ARC Easy (Clark et al., 2018) 40.49% ˘ 1.01% 41.16% ˘ 1.01%
HellaSwag (Zellers et al., 2019) 35.45% ˘ 0.48% 35.74% ˘ 0.48%
PIAQ (Bisk et al., 2019) 66.49% ˘ 1.10% 66.81% ˘ 1.10%
WinoGrande (Sakaguchi et al., 2019) 49.72% ˘ 1.41% 52.49% ˘ 1.40%
GLUE (Wang et al., 2018) 45.10% ˘ 1.98% 51.73% ˘ 1.97%
mean 43.28% 45.19%

4.3 REDUNDANCY AND SPECIALIZATION IN EXPERTS

Motivated by Dai et al. (2024), we study expert specialization and redundancy. As described in
Section 3.3, we measure these properties with Pairwise Expert Similarity (PES), in contrast to their
expert dropout approach. In Figure 3, we validate the correlation between PES and their method,
reproducing their redundancy analysis. By their metric, SIMBAL shows lower redundancy, as
validation perplexity rises more sharply when top experts are dropped. However, such dropout-based
metrics lack granularity and are prohibitively expensive for large-scale evaluation. PES instead
provides a lightweight, scalable measure of redundancy, enabling per-layer, per-checkpoint analysis
across all experts in parallel.

We hypothesize that SIMBAL produces less redundant experts than LBL. LBL enforces uniform
distributions, leading to instability in early training as changing embeddings cause frequent routing
shifts. Under near-uniform assignment, small input perturbations can reassign tokens, creating
redundancy as many experts see similar tokens. We capture this effect by measuring changes in
redundancy.

As shown in Figure 2(b), most redundancy in LBL (orange) arises early, coinciding with embedding
volatility and unstable routing. Redundancy remains above zero through much of training, reinforcing
that LBL amplifies it. In contrast, SIMBAL (blue) stabilizes quickly: while expert distributions adapt,

7
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(a) MoE-L

Figure 3: Number of dropped top experts vs.
validation loss, as proposed by Dai et al. (2024).
SIMBAL exhibits lower redundancy, as shown by
larger degradation when top experts are dropped.

(a) MoE-L

Figure 4: Rate of change in minimum PES
(over the layers of a model) over a training run,
comparing LBL (higher perplexity) and SimBal
(lower perplexity).

Table 6: Dynamic-K expert stage 3 selection (Szatkowski et al., 2024) synergy with SIMBAL vs.
LBL (perplexity and runtime on a full validation run, MoE-L). SIMBAL is able to provide similar or
better perplexity with lower runtime when properly configured.

Dropped P pEq ă SimBal (PPL) SimBal (s) LBL (PPL) LBL (s)
0 8.304 620.927 8.517 619.657
0.1 8.364 571.147 8.542 575.121
0.15 8.598 503.065 8.621 543.027
0.2 9.380 472.915 9.057 495.200

they converge to consistently lower PES (Figure 2(a)). Moreover, the rate of change remains near
zero for most of training, showing that our method avoids the issues of LBL.

Final PES values are summarized in Table 4. To reduce sensitivity to outliers, we report the minimum
PES across all layers, filtering out spikes in a single individual layer (common with LBL). We choose
minimum, since we do not observe substantial dips in PES by layer, primarily jumps, and we wanted
this metric to be as simple and intuitive as possible. SimBal consistently produces models with
substantially lower minimum PES than LBL. Figure 4 shows the rate of change in minimum PES
over time.

4.4 INFERENCE-TIME EXPERT PRUNING

We further evaluate SIMBAL under inference-time expert pruning, following Szatkowski et al. (2024),
where experts with assignment probabilities below a threshold are dropped at runtime. Results are
presented in Table 4.4. SimBal produces less uniform assignments, allowing pruning to drastically
improve efficiency with minimal perplexity cost. In contrast, LBL shows weaker synergy with
pruning: while its performance drop is smaller (likely due to redundancy, similarly to Figure 3(a)),
improvements in throughput are limited. Notably, when experts below a weight of 0.15 are dropped
(where both perplexities are most similar), SIMBAL achieves a 7.4% speedup (543s vs. 503s).

Table 7: Performance across three scaling coefficients to SIMBAL. We find that the differences are
not significant enough to warrant hyperparameter tuning.

Model MoE-M MoE-M MoE-M
Coefficient 1.0 0.1 0.01
Perplexity Ó 13.716 13.685 13.687
Min PES Ó 0.0045 0.0044 0.0050
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5 RELATED WORK

There has been significant interest in MoE models for scaling LLMs, as shown in Lepikhin et al.
(2020); Zoph et al. (2022); Fedus et al. (2022); Xue et al. (2024); DeepSeek-AI et al. (2025);
Databricks (2024); Llama (2025); Muennighoff et al. (2025), and more. We explore related design
choices below.

Routing and Load Balancing Mechanisms. Efficient routing in MoE architectures involves selecting
appropriate experts for each token (Token Choice) (Fedus et al., 2022) while ensuring balanced expert
utilization. Some previous work suggests allowing experts to choose the tokens they process (Expert
Choice) (Zhou et al., 2022), but this tends to have issues regarding performance in autoregressive
generation (Muennighoff et al., 2025), and leak information about future tokens (Wang et al., 2024).

Traditional approaches employ an auxiliary load balancing loss (Fedus et al., 2022) to encourage a
uniform distribution over experts, which can interfere with the main training objective and potentially
degrade performance. To address this, auxiliary-loss-free (LF) strategies have been introduced (Wang
et al., 2024), notably used in DeepSeek-V3 (DeepSeek-AI et al., 2025), but always in conjunction
with an auxiliary balancing loss. LF dynamically adjusts per-expert bias terms added to the routing
scores, guiding top-K expert selection without introducing additional gradients. While this improves
global balance, it struggles to balance MoE usage sequence-wise, often degrading throughput.

Due to difficulties in achieving effective load balance in our early experiments, we did not pursue
full-scale MoE-L training with LF in the main paper, and instead provide an in-depth analysis in
Appendix A.2. Moreover, LF is highly sensitive to batch size: Qiu et al. (2025) report a substantial
perplexity drop when training with batch size 512 vs. 4 (per-device, no sync). This effect is far
milder for LBL, and entirely absent for SimBal, which is invariant to the data. Finally, while Qiu
et al. (2025) argue that LBL requires distributed synchronization to maximize batch size and improve
specialization, SimBal eliminates this need altogether.

Orthogonality in MoE. Prior studies have applied orthogonality to diversify expert representations in
MoE models. OMoE (Liu et al., 2024) introduces an optimizer that updates each expert in a direction
orthogonal to the subspace spanned by other experts, enhancing representation diversity. MOORE
(Hendawy et al., 2024) employs the Gram-Schmidt process to enforce orthogonality among expert
representations in multi-task reinforcement learning. In contrast, our approach applies orthogonality at
the router level, not the experts themselves. This strategy offers computational efficiency by avoiding
expensive operations during training and allows seamless integration into existing architectures.
Moreover, by not constraining expert weights, we avoid potential performance degradation due to
restrictive parameter constraints.

6 LIMITATIONS

While we train our models with relatively large data multipliers, prior work such as Muennighoff
et al. (2025) suggests that substantially more data (trillions of tokens) may be necessary to achieve
strong performance on downstream benchmarks. Nevertheless, our training setup provides sufficient
scale to meaningfully compare the relative effectiveness of different balancing methods, which we
supplement with statistical significance comparisons.

Finally, although our architectural choices align with recent MoE literature, our study is limited to a
single set of design decisions. We leave the exploration of alternative configurations to future work.
For instance, we do not investigate how token dropping might affect the performance of our balancing
mechanism (instead focusing on higher-quality dropless models (Gale et al., 2022)), which could be
a valuable direction for further analysis.

7 CONCLUSION

In this work, we introduced a novel load balancing mechanism for Mixture-of-Experts (MoE)
models that consistently outperforms popular approaches across two scales. We also proposed
efficient, scalable metrics for quantifying expert redundancy, and demonstrated that models with
lower redundancy—as measured by our proposed metric and existing methods—exhibit improved
parameter efficiency.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

8 ETHICS STATEMENT

We adhere to the terms of service and respect all relevant licenses of software used. The environmental
impact of our experiments are negligible compared to full-scale trillion-token LLM training, and we
find an improvement in the efficiency of language models.

REFERENCES

E. Bengio, P.-L. Bacon, J. Pineau, and D. Precup. Conditional computation in neural networks for
faster models, 2016. URL https://arxiv.org/abs/1511.06297.

Y. Bisk, R. Zellers, R. L. Bras, J. Gao, and Y. Choi. Piqa: Reasoning about physical commonsense in
natural language, 2019. URL https://arxiv.org/abs/1911.11641.

T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A. Neelakantan,
P. Shyam, G. Sastry, A. Askell, et al. Language models are few-shot learners. arXiv preprint
arXiv:2005.14165, 2020.

A. Chowdhery, S. Narang, J. Devlin, M. Bosma, G. Mishra, A. Roberts, P. Barham, H. W. Chung,
C. Sutton, S. Gehrmann, P. Schuh, K. Shi, S. Tsvyashchenko, J. Maynez, A. Rao, P. Barnes, Y. Tay,
N. Shazeer, V. Prabhakaran, E. Reif, N. Du, B. Hutchinson, R. Pope, J. Bradbury, J. Austin, M. Isard,
G. Gur-Ari, P. Yin, T. Duke, A. Levskaya, S. Ghemawat, S. Dev, H. Michalewski, X. Garcia,
V. Misra, K. Robinson, L. Fedus, D. Zhou, D. Ippolito, D. Luan, H. Lim, B. Zoph, A. Spiridonov,
R. Sepassi, D. Dohan, S. Agrawal, M. Omernick, A. M. Dai, T. S. Pillai, M. Pellat, A. Lewkowycz,
E. Moreira, R. Child, O. Polozov, K. Lee, Z. Zhou, X. Wang, B. Saeta, M. Diaz, O. Firat, M. Catasta,
J. Wei, K. Meier-Hellstern, D. Eck, J. Dean, S. Petrov, and N. Fiedel. Palm: Scaling language
modeling with pathways, 2022. URL https://arxiv.org/abs/2204.02311.

P. Clark, I. Cowhey, O. Etzioni, T. Khot, A. Sabharwal, C. Schoenick, and O. Tafjord. Think you
have solved question answering? try arc, the ai2 reasoning challenge. arXiv:1803.05457v1, 2018.

D. Dai, C. Deng, C. Zhao, R. X. Xu, H. Gao, D. Chen, J. Li, W. Zeng, X. Yu, Y. Wu, Z. Xie, Y. K.
Li, P. Huang, F. Luo, C. Ruan, Z. Sui, and W. Liang. Deepseekmoe: Towards ultimate expert
specialization in mixture-of-experts language models, 2024. URL https://arxiv.org/
abs/2401.06066.

Databricks. Introducing dbrx: A new state-of-the-art open llm, March 2024. URL https://www.
databricks.com/blog/introducing-dbrx-new-state-art-open-llm. Ac-
cessed: 2025-05-15.

DeepSeek-AI, A. Liu, B. Feng, B. Xue, B. Wang, B. Wu, C. Lu, C. Zhao, C. Deng, C. Zhang, C. Ruan,
D. Dai, D. Guo, D. Yang, D. Chen, D. Ji, E. Li, F. Lin, F. Dai, F. Luo, G. Hao, G. Chen, G. Li,
H. Zhang, H. Bao, H. Xu, H. Wang, H. Zhang, H. Ding, H. Xin, H. Gao, H. Li, H. Qu, J. L. Cai,
J. Liang, J. Guo, J. Ni, J. Li, J. Wang, J. Chen, J. Chen, J. Yuan, J. Qiu, J. Li, J. Song, K. Dong,
K. Hu, K. Gao, K. Guan, K. Huang, K. Yu, L. Wang, L. Zhang, L. Xu, L. Xia, L. Zhao, L. Wang,
L. Zhang, M. Li, M. Wang, M. Zhang, M. Zhang, M. Tang, M. Li, N. Tian, P. Huang, P. Wang,
P. Zhang, Q. Wang, Q. Zhu, Q. Chen, Q. Du, R. J. Chen, R. L. Jin, R. Ge, R. Zhang, R. Pan,
R. Wang, R. Xu, R. Zhang, R. Chen, S. S. Li, S. Lu, S. Zhou, S. Chen, S. Wu, S. Ye, S. Ye, S. Ma,
S. Wang, S. Zhou, S. Yu, S. Zhou, S. Pan, T. Wang, T. Yun, T. Pei, T. Sun, W. L. Xiao, W. Zeng,
W. Zhao, W. An, W. Liu, W. Liang, W. Gao, W. Yu, W. Zhang, X. Q. Li, X. Jin, X. Wang, X. Bi,
X. Liu, X. Wang, X. Shen, X. Chen, X. Zhang, X. Chen, X. Nie, X. Sun, X. Wang, X. Cheng,
X. Liu, X. Xie, X. Liu, X. Yu, X. Song, X. Shan, X. Zhou, X. Yang, X. Li, X. Su, X. Lin, Y. K. Li,
Y. Q. Wang, Y. X. Wei, Y. X. Zhu, Y. Zhang, Y. Xu, Y. Xu, Y. Huang, Y. Li, Y. Zhao, Y. Sun, Y. Li,
Y. Wang, Y. Yu, Y. Zheng, Y. Zhang, Y. Shi, Y. Xiong, Y. He, Y. Tang, Y. Piao, Y. Wang, Y. Tan,
Y. Ma, Y. Liu, Y. Guo, Y. Wu, Y. Ou, Y. Zhu, Y. Wang, Y. Gong, Y. Zou, Y. He, Y. Zha, Y. Xiong,
Y. Ma, Y. Yan, Y. Luo, Y. You, Y. Liu, Y. Zhou, Z. F. Wu, Z. Z. Ren, Z. Ren, Z. Sha, Z. Fu, Z. Xu,
Z. Huang, Z. Zhang, Z. Xie, Z. Zhang, Z. Hao, Z. Gou, Z. Ma, Z. Yan, Z. Shao, Z. Xu, Z. Wu,
Z. Zhang, Z. Li, Z. Gu, Z. Zhu, Z. Liu, Z. Li, Z. Xie, Z. Song, Z. Gao, and Z. Pan. Deepseek-v3
technical report, 2025. URL https://arxiv.org/abs/2412.19437.

10

https://arxiv.org/abs/1511.06297
https://arxiv.org/abs/1911.11641
https://arxiv.org/abs/2204.02311
https://arxiv.org/abs/2401.06066
https://arxiv.org/abs/2401.06066
https://www.databricks.com/blog/introducing-dbrx-new-state-art-open-llm
https://www.databricks.com/blog/introducing-dbrx-new-state-art-open-llm
https://arxiv.org/abs/2412.19437


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

M. Dehghani, J. Djolonga, B. Mustafa, P. Padlewski, J. Heek, J. Gilmer, A. Steiner, M. Caron,
R. Geirhos, I. Alabdulmohsin, R. Jenatton, L. Beyer, M. Tschannen, A. Arnab, X. Wang,
C. Riquelme, M. Minderer, J. Puigcerver, U. Evci, M. Kumar, S. van Steenkiste, G. F. Elsayed,
A. Mahendran, F. Yu, A. Oliver, F. Huot, J. Bastings, M. P. Collier, A. Gritsenko, V. Birodkar,
C. Vasconcelos, Y. Tay, T. Mensink, A. Kolesnikov, F. Pavetić, D. Tran, T. Kipf, M. Lučić, X. Zhai,
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(a) MoE-M (b) MoE-L

Figure 5: Expert utilization throughout training for MoE-M (left) and MoE-L (right), comparing
LBL, our method (SimBal), and a baseline with no load balancing. We measure the number of unique
experts activated on our full 77M-token validation set over time. Without any balancing, the expert
routing collapses to a smaller set of experts. Both LBL and SimBal maintain full expert avoid expert
collapse. The no-loss baseline was truncated early.

A APPENDIX

A.1 ICLR LARGE LANGUAGE MODEL USAGE

Large language models (LLMs) were used to assist in the writing of the paper, and all outputs were
thoroughly vetted and edited prior to being used.

A.2 LOSS-FREE LOAD BALANCING COMBINATION

Table 8: Model setup and performance. Sequence-wise Expert Utilization (SEU) is computed as the
mean over the fraction of activated experts within a sequence. SIMBAL can improve sequence-wise
balance without significant performance degradation, sometimes improving performance. All models
use all experts throughout the full validation set, LF is the least balanced per-batch. While LBL
asserts near-perfect balance, it also causes substantial perplexity degradation.

Model MoE-M MoE-M MoE-M MoE-M MoE-M MoE-M
Gating Softmax Softmax Softmax Sigmoid Sigmoid Sigmoid
Balancing LF LF+LBL LF+SimBal LF LF+LBL LF+SimBal
Perplexity Ó 13.708 14.154 13.695 13.618 14.015 13.637
SEU Ò 0.505 0.997 0.755 0.381 0.997 0.476

Loss-Free (LF) balancing (Wang et al., 2024) applies a direct bias to routing scores (s “ xR, rather
than routing weights r “ GpxRq) without adding an auxiliary loss. Let fi be the expert frequency in
the current batch and f̄ “ 1{E the uniform target. Each expert’s score is adjusted by a fixed scalar γ:

b1
i “ bi ` γ ¨ signpf̄ ´ fiq (7)

The scores are then used for computing the top-A experts with the new scores si:

si “ xR ` bi (8)

This encourages uniform expert assignment, but is not used in the weighting of the experts (r). It
thus allows non-uniform expert weighting but still allocates experts uniformly over the full dataset.
Additionally, γ is a hyperparameter that may need to be tuned, though the original authors recommend
0.001 since it provides a good balance between balancing while preventing fluctuations later in
training.

Other work (DeepSeek-AI et al., 2025) use LBL in conjunction with LF for batch-wise load balancing,
as they find that it can result in substantial imbalance in expert use sequence-wise. We do not include
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these results in earlier charts due to this extreme imbalance. Instead, in this section, we explore
whether a combination with SIMBAL works similarly to LBL to improve sequence-wise balancing.

While the original authors of LF use sigmoid gating (over our softmax gating), we find that softmax
gating is substantially more common in state-of-the-art work. Thus, to maximize relevance (regardless
of performance), we additionally compare with softmax gating. The training setup for MoE-M
remains identical to Section 3.2 otherwise.

We evaluated the balancing capabilities of this method using the MoE-M configuration, comparing
its performance against both LBL and SIMBAL. We summarize our results in Table 8. We find
that sigmoid gating leads to significant degradation in sequence-wise balance, especially compared
to using only SIMBAL or LBL (as seen in Table 4). In exchange, there was a minor and possibly
statistically insignificant (using the deviation values from Section 4.2. This is not ideal, as with larger
models, when using model parallelism, extra consideration may be needed to ensure full utilization of
all devices. Using LBL mitigates some of this, but leads to a substantial degradation in performance.

A.3 LAYER-WISE ORTHOGONALIZATION

We provide tables for layer-wise orthogonalization performance for SIMBAL, and compare the results
to LBL on MoE-M (Table 9) and MoE-L (Table 10). LBL alone does not orthogonalize the router
whatsoever, while SIMBAL is able to achieve mean squared error similar to commonly used ϵ for
numerical stability.

Router SimBal LBL
Layer 0 Router 1.94017e-10 0.00146701
Layer 1 Router 1.70156e-10 0.01486
Layer 2 Router 1.91267e-10 0.0155954
Layer 3 Router 1.89254e-10 0.0102319
Layer 4 Router 1.50925e-08 0.0100937
Layer 5 Router 2.99727e-08 0.0143029
Layer 6 Router 1.82301e-10 0.020765
Layer 7 Router 1.73648e-10 0.0258847

Table 9: Router orthogonality of MoE-M, as measured by pRTR ´ Iq2

Router SimBal LBL
Layer 0 Router 1.49951e-08 0.0125956
Layer 1 Router 1.00854e-10 0.027788
Layer 2 Router 1.03228e-10 0.0183506
Layer 3 Router 4.47955e-08 0.0128958
Layer 4 Router 1.5001e-08 0.00668315
Layer 5 Router 9.38376e-11 0.00399825
Layer 6 Router 1.16159e-10 0.00375414
Layer 7 Router 2.99078e-08 0.00736187
Layer 8 Router 4.47949e-08 0.0200508
Layer 9 Router 2.99088e-08 0.0377724
Layer 10 Router 5.97087e-08 0.083971
Layer 11 Router 1.49907e-08 0.138501

Table 10: Router orthogonality of MoE-L, as measured by pRTR ´ Iq2

A.4 IMPLEMENTATION DETAILS

Here we provide some implementation details related to the auxiliary losses used in the paper in
Figure 6. For our LBL baseline, we use an open-source repository implementation based on Zoph
et al. (2022), available at lucidrains/st-moe-pytorch on GitHub. For both, we multiply the output of
the function by the scaling coefficient if/where applicable during training. These losses can then be
added to the final model loss (by adding them), or included using the AddAuxiliaryLoss autograd
trick used in DeepSeek’s modeling deepseek.py on HuggingFace.
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1 import torch
2 from einops import reduce
3

4 # LBL
5 def balance_loss(gates: torch.Tensor) -> torch.Tensor:
6 batch_size, num_tokens, num_experts = gates.shape
7

8 # bal_loss = E * sum(f_i * P_i), expert i
9 # impl largely stolen from lucidrains/st-moe-pytorch

10 # compatible with sigmoid or softmax gating
11 expert_mask = gates > 0.0
12 f_i = reduce(expert_mask.float(), "b t e -> b e", "mean")
13 P_i = reduce(gates, "b t e -> b e", "mean")
14 loss_per_batch = num_experts * torch.sum(f_i * P_i, dim=-1)
15 return loss_per_batch.mean()
16

17 # SimBal
18 def simbal_loss(router_linear, p=1):
19 w = router_linear.weight
20 # no transpose needed since w is assumed to be the router
21 # in jax w should be transposed due
22 # to linear implementation differences
23 # thus w.shape[0] <<< w.shape[1]
24 w_ortho = torch.matmul(w, w.T)
25 eye = torch.eye(w.shape[0], device=w.device)
26 loss = torch.norm(w_ortho - eye, p=p)
27 return loss

Figure 6: Python implementations of the LBL and SimBal loss functions.
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