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ABSTRACT

Differentially private Stochastic Gradient Descent (DP-SGD) has become inte-
gral to privacy-preserving machine learning, ensuring robust privacy guarantees in
sensitive domains. Despite notable empirical advances leveraging features from
non-private, pre-trained models to enhance DP-SGD training, a theoretical un-
derstanding of feature dynamics in private learning remains underexplored. This
paper presents the first theoretical framework to analyze private training through
the feature perspective. Inspired by the multi-patch structure in image data, we
model a novel data distribution by clearly defining label-dependent features and
label-independent noise—a critical aspect overlooked by existing analyses in the
DP community. Employing a two-layer CNN with polynomial ReLU activation,
we quantify the learning dynamics of noisy gradient descent through signal-to-
noise ratio (SNR). Our findings reveal that (1) Effective private signal learning
requires a higher signal-to-noise ratio compared to non-private training, and (2)
When data noise memorization occurs in non-private learning, it will also oc-
cur in private learning, leading to poor generalization despite small training loss.
Our findings highlight the challenges of private learning and prove the benefit of
feature enhancement to improve SNR. Experiments on synthetic and real-world
datasets also validate our theoretical findings.

1 INTRODUCTION

Differentially private (DP) learning has emerged as a cornerstone of privacy-preserving machine
learning, addressing growing concerns about data privacy in sensitive domains such as healthcare
Lundervold & Lundervold (2019); (Chlap et al.|(2021); [Shamshad et al.| (2023)), finance |Ozbayoglu
et al.| (2020); Bi & Lian|(2024), and user-centric applications |Oroojlooy & Hajinezhad (2023). Dif-
ferential Privacy, introduced by Dwork et al.|(2006), provides robust privacy guarantees by limiting
the impact of any individual data points on the model’s output. Among DP learning methods, differ-
entially private stochastic gradient descent (DP-SGD)|Abadi et al.|(2016) has emerged as a canonical
algorithm for training private machine learning models.

However, DP-SGD often comes with a significant cost in model accuracy |Shokri & Shmatikov
(2015); |Abadi et al.| (2016); [Bagdasaryan et al.[|(2019). To improve the performance, recent work
Tramer & Boneh| (2020) shows that DP-SGD training benefits from handcrafted features and can
achieve better performance by leveraging features learned from public data in a similar domain.
Similarly, Tang et al.|2024b| highlights the advantages of transferring features learned from synthetic
data to private training, while [Sun et al.[2023|and Bao et al.|2023|illustrate the importance of feature
preprocessing in private learning. These findings suggest that improving feature quality is essential
for effective private learning. Benefiting from this principle and the advent of large-scale foundation
models, DP-SGD has demonstrated significant performance boosts by learning features from non-
private models pre-trained on large public datasets [Tramer & Boneh| (2020); |L1 et al.| (2021); |De
et al.[(2022); Arora & Ré|(2022)); Kurakin et al.| (2022); Mehta et al.|(2023); Nasr et al.| (2023); [Tang
et al.|(2024a); Bu et al.| (2024D)).

Despite the empirical success of DP-SGD from enhanced features, the theoretical understanding of
these phenomena remains in its infancy. Previous work on DP learning has primarily focused on
analyzing the utility bounds of private models, such as DP-SGD and its variants, with a particular
emphasis on both convex |Bassily et al.| (2014); Wang et al.| (2017); Bassily et al.[(2019)); |Feldman



Figure 1: Illustration of images with feature signal and data noise.

et al.| (2020); Song et al|(2020);[Su & Wang| (2021));/Asi et al.| (2021); Bassily et al.|(2021b); Kulkarni
et al.| (2021)); [Tao et al.| (2022)); |Su et al.| (2023} [2024) and non-convex models [Zhang et al.| (2017);
Wang et al.| (2017); [Wang & Xu| (2019); [Zhang et al| (2021)); Bassily et al| (2021a); [Wang et al.

(2023)); IDing et al.l leaving the role and explanation from the feature learning perspective largely
unexplored.

Only two recent works have studied the theoretical aspects of features in private learning, both with
several limitations. [Sun et al.|2023] confines its analysis to simple tasks using linear classification
models without addressing applicability to neural networks. investigates feature
shifts during private fine-tuning of the last layer under the framework of neural collapse |Papyan
(2020), simplifying the private model with the assumption of the equiangular tight frame
(ETF). Furthermore, both works focus exclusively on utility, providing limited explanations of the
learning dynamics of features in private learning. We will provide more discussions later.

In this paper, we develop a novel theoretical framework that studies the learning dynamics of features
in noisy gradient descent, a simple version of DP-SGD. Inspired by the structure of image data, we
consider a data distribution modeled as a multiple-patch structure, x = [y - v,£&] € (R?)2, where
y € {+1, —1} is the label, v represents the useful label-dependent feature signals, £ refers to label-
independent data noise randomly sampled from a Gaussian distribution with standard deviation o¢
and d is the dimension. For example, as illustrated in Figure[] the wheel serves as a feature for the
class ’car,” while the cat’s eye acts as label-independent data noise.

Beyond the linear classification model, we utilize a two-layer convolutional neural network (CNN)
with a polynomial ReLU activation function: o(z) = max{0, z}%, where ¢ > 2 is a hyperparameter.
Given a training dataset of n samples, we quantify noisy gradient descent in terms of feature signal
learning and data noise memorization, measured through the private model w with signal and data
noise. Specifically, we present the following (informal) results:

Theorem 1.1 (Informal). Let SNR := ||v||2/||€]|2 be the signal-to-noise ratio and € be the privacy
budget. Under appropriate conditions, it holds that

* When min{SNR -ne, SNR?-n} > Q(1), the private CNN model can capture the feature
signal.

* When min{SNR™!-¢, SNR™9-n~1} > Q(1), the private CNN model can capture the data
noise.

Theorem demonstrates the two results during private training: 1) When
min{SNR -ne,SNR?-n} > Q(1) and n~/2 < ¢ < SNRY"!, a lower privacy budget re-
quires a higher SNR, compared to standard non-private training to effectively capture the signal,
emphasizing the need for feature enhancement to improve SNR. 2) When data noise memo-
rization occurs in standard non-private learning, it will also occur in private learning as long as
e>SNR!"7p- L,

Moreover, under additional assumptions, we have the following results:
Corollary 1.2 (Informal). Let SNR := ||v||2/||&||2 be the signal-to-noise ratio and € be the privacy
budget. Under appropriate conditions and assumptions, for any x>0, it holds that

* When min{SNR -ne, SNR? -n} > Q(1), the training loss can converge to r, and the
trained CNN achieves a test loss of 6k + exp((ns)_l_l/q).



* When min{SNR ™" -, SNR™7-n~1} > Q(1), the training loss can converge to k, but the
trained CNN incurs a constant-order test loss regardless of how the sample size n and
privacy budget € chosen.

Corollary [I.2]demonstrate two conclusions. First, in an ideal scenario, private learning can achieve
an arbitrarily small training loss, and its test performance is influenced by both the sample size n
and privacy budgets €. Second, even if private learning achieves a small training loss, it may still fail
to deliver good test performance, regardless of how the sample size and privacy budget are chosen.
This limitation arises because the private model primarily learns label-independent data noise rather
than label-dependent feature signals. We summarize our contributions below:

* We present the first theoretical framework of the DP-SGD dynamic through a feature per-
spective. Our work, inspired by a multi-patch data structure, introduces a clear definition
of label-dependent features and label-independent noise—a critical aspect overlooked by
existing analyses of DP-SGD.

* We provide a detailed theoretical analysis of feature signal learning and data noise memo-
rization in the private setting with a two-layer convolutional neural network model. Specif-
ically, based on the signal-to-noise ratio, we show that 1) Effective private signal learning
requires a higher signal-to-noise ratio (SNR) compared to non-private training. 2) When
data noise memorization occurs in standard non-private learning, it will also occur in pri-
vate learning as long as ¢ > SNR' ™9 n~!. Consequently, the private model fails to gener-
alize well, even when achieving a small training loss, regardless of sample size and privacy
budget.

* Our findings underscore the importance of feature enhancement techniques in improving
SNR for effective private learning, aligning with previous empirical work |[Tramer & Boneh
(2020); [Sun et al.| (2023); Bao et al.| (2023); Tang et al.| (2024b). We conduct simulation
experiments on CNNs and validate our theoretical analysis across various privacy budgets
and signal-to-noise ratios. Additionally, experiments on the CIFAR-10 [Krizhevsky| (2009)
dataset also explore the impact of SNR in private learning.

2 RELATED WORK

Differentially Private Learning The most widely used technique for differentially private training
in deep learning is differentially private stochastic gradient descent (DP-SGD). However, the ac-
curacy of private deep learning still significantly lags behind that of standard non-private learning
across several benchmarks McMahan et al.| (2017); Papernot et al.[(2021); [Tramer & Boneh| (2020);
De et al.[(2022). To bridge this gap, various techniques have been proposed to enhance DP learning,
including adaptive gradient clipping methods that dynamically adjust clipping thresholds /Andrew
et al.|(2021); Bu et al.|(2024a), feature extraction or pre-processing before applying DP-SGD |Abadi
et al.[(2016)); [Tramer & Boneh! (2020); De et al.| (2022); |Sun et al.| (2023); Bao et al.| (2023)); [Tang
et al.| (2024b)), parameter-efficient training strategies via adapters, low-rank weights, or quantization
Yu et al.| (2021); [Luo et al.| (2021), and private noise reduction techniques using tree aggregation
mechanisms or filters Kairouz et al.|(2021); Zhang et al.[(2024).

Theory on Differentially Private Learning There has been a recent line of work that focuses on the
differential private optimization problems, which includes standard results for private empirical risk
minimization (Chaudhuri et al.| (2011); Bassily et al.|(2014)); [Wang et al.|(2017); Wang & Xu|(2019)
and private stochastic convex optimization Bassily et al.|(2019); |[Feldman et al.[(2020); Bassily et al.
(2021a). These studies have also been extended under various assumptions, such as heavy-tailed
data |Wang et al|(2020); Hu et al.| (2022); Kamath et al.| (2022) and non-Euclidean spaces Bassily
et al.| (2021a); |Ast et al| (2021)); |Su et al.| (2023)). Despite extensive research on DP optimization
theory, the theoretical understanding of private deep learning remains largely unexplored, particu-
larly from the feature perspective. Only two recent studies have explored the theoretical aspects of
features in private learning. Specifically, |[Sun et al.|2023| focuses on a linear classification model,
whereas we analyze a more challenging two-layer neural network model with a polynomial ReLU
activation function. |Wang et al.|(2024) considers a last-layer model converging to the columns of an
equiangular tight frame (ETF), which simplifies the learned features to normal vectors via a rotation
map and the model is still in a linear form. In contrast, our approach goes beyond this simplification.



Moreover, while [Wang et al.| (2024) emphasizes feature shift behavior, our work primarily focuses
on training dynamics and the importance of feature enhancement.

3 PRELIMINARIES

In this section, we introduce the necessary definitions and formally describe private learning under
the multi-patch data distribution and the convolutional neural network (CNN). Our analysis focuses
on binary classification, and the data distribution is defined as follows.

Notations. We use lowercase letters, bold lowercase letters, and bold uppercase letters to represent
scalars, vectors, and matrices, respectively. For a vector v = (vq, ... ,vd)T, its 5 norm is denoted

d
as [[ vz == (5, v)'/2.

Definition 3.1 (Data Distribution). Let v € R? be a fixed vector representing the feature signal
contained in each data point. Each data point (x,y) with input x = [x1,x2] € (R%)? and label
y € {+1, —1} is generated from the following distribution:

(1) The label y is generated as a Rademacher random variable;

(2) The input x is generated as a vector of 2 patches, i.e., x = [x1,X2] € (R%)2. The first patch
is given by x; = y - v and the second patch is given by xo = £, where & ~ N(0, og -H)
and is independent of the label y, where H = (I — vv ' - ||v||5?).

Note that here H is designed to ensure that v is orthogonal to &, i.e., the data noise is unrelated to the
feature. Our data generation model is inspired by the structure of image data, which has been widely
utilized in previous work (Allen-Zhu & Li| 2020; |Cao et al., [2022; [Jelassi & Li, [2022; [Kou et al.,
2023} |Zou et al.}[2023). Notably, we introduce a term, data noise &, into the data distribution, which
is often overlooked in analyses within the differential privacy community. However, this seemingly
‘negligible’ component significantly influences the model’s generalization ability, as underscored by
the signal-to-noise ratio.

Learner Model. We consider a two-layer convolutional neural network (CNN) that processes input
data by applying convolutional filters to two patches, x; and xs, separately. The second-layer
parameters of this network are fixed as +1/m and —1/m, respectively, leading to the following
network representation:

f(W,X) = F+1(W+1,X) - F—l(w—17x)7
where F;1(W41,x) and F_1(W_1,x) are defined as:
1 m
Fj(Wj,x) = — > lo((wjr,x1)) + 0 ((wj . x2))], ey
r=1
for j € {£1}, where m denotes the number of convolutional filters in each of F'y; and F__;. Here,
o(z) = (max{0, z})? represents the polynomial ReLU activation function with ¢>2, W denotes
the set of model weights associated with F};, corresponding to the positive or negative filters. Each

weight vector w; . € R is the parameters of the r-th neuron/filter in W;. We use W to represent
the complete set of model weights across all filters.

Differential Private Learning. Given a training dataset D = {(x;,y;)}, sampled from a joint
distribution D over x X y, the goal is to train the learner model by minimizing the following empirical
risk, measured by logistic loss, while simultaneously preserving privacy:

Lo(W) = =5ty (W, ), @
i=1

where £(z) = log(1l 4 exp(—2z)). More formally, the trained private model W should satisfy the
mathematical definition of differential privacy as follows:

Definition 3.2 (Dwork et al.|[2006). Two datasets D, D’ are neighbors if they differ by only one
element, which is denoted as D ~ D’. A randomized algorithm A is (e, §)-differentially private

(DP) if for all adjacent datasets D, D’ and for all events S in the output space of A, we have
P(A(D) € S) < et -P(A(D') € S) + 6.



Definition 3.3 (Gaussian Mechanism [Dwork et al.|2010). For a function f : X" +— R? with
Lo-sensitivity Aqo(f) = maxp p/ ||f(D) — f(D')||2, where D and D’ are neighboring datasets,
the Gaussian Mechanism outputs f(D) + z. Here, z ~ N(0,021,) is Gaussian noise with scale

S Da(f)y/2In(1.25/5)
- g

. This mechanism satisfies (&, §)-differential privacy.

Noisy Gradient Descent. Noisy Gradient Descent (NoisyGD) and its stochastic counterpart, Noisy
Stochastic Gradient Descent (Song et al., 2013; |Abadi et al., 2016), are fundamental algorithms in
differentially private deep learning. In this paper, we apply the NoisyGD algorithm to optimize
Equation (2) and to update the filters in the CNN with the Gaussian mechanism/'| Specifically,

w](,fjl) w(t) n- (ij,,LD(W(t)) tz) 3
N .
)= LS (w0 60) -k~ }:g Wi, yiv)) - 3 — .
=1

where z; is the private noise sampled from N (0, 021,), 6;( is a shorthand notation of ¢'[y; -

F(W® x;)]. We assume that the noisy gradient descent algorithm starts from a Gaussian ini-
tialization, where each element of W1 and W_; is drawn from a Gaussian distribution N (0, 03)
with o3 representing the variance.

4 MAIN RESULTS

In this section, we present our main theoretical results, demonstrating how the signal-noise-
decomposition (Cao et al., 2022} [Jelassi & Lil 2022} [Kou et al.l 2023} [Zou et al. 2023)) behaves
during private learning using noisy gradient descent. It is clear that Equation (3] can be represented
as a linear combination of random initialization, the signal feature, the data noise, and the accumu-
lation of private noise, which can be formulated as the following definition.

Definition 4.1. Let w(.t) for j € {£1},r € [m] be the convolution filters of the CNN at the ¢-th

iteration of noisy gradient descent. Then there exist unique coefficients F(t) > 0 and 3" such that

7,
¢
Wl g T e S Y,
=1 s=1
We further denote ¢§ 2 = (t) ]l((b(t) > 0), <I>(t) : (t) ]I(Qyz ; < 0). Then, we have that

t
wi = w0 4T vl v+§jtzw&mf&+§)ﬁanaw?afnzp& @)
= s=1

In the decomposition of Equation H F(t) represents the extent to which the model learns the feature

signal from data, whereas 3 ; quantifies the degree of data noise memorization by the model. Both
components are influenced l])y the interplay of private noise, as shown in the following lemma.

Lemma 4.2. The coefficients F(t) 3 oM ip Deﬁmtlonsatlsfy the following equations:

a0 =3,7,1

r® O O _

g, T gy =g,y
g =150 m1§ym o/ (Wit ye V) - VI3

S =@ - L g0 o (wil) &) - €15 - Ly = ),
ot = o) + Lo ((wll) &) &l - 1w = =)

Lemma [4.2] reveals that the process of private learning can be explored by the iterative dynamics

of I‘; 2 ‘bgtz , and fI)(t) It is noticed that private noise only influences the interior of ¢’(-). Since

"Note that, similar to previous studies on the theory of DP-SGD, we assume there is no clipping on gradients.



Kl(t) < 0, LemmaW.2{provides favorable properties for the dynamics of ) ol . (t) and ")

Jyre T gyt i
increase monotomcally, while &7, r, i®) decreases monotonically. Then, we could demonstrate that
these coefficients remain bounded throughout the private training process.

Proposition 4.3. Under appropriate conditions, Let T
n~ poly (k1 ||v]j3 d_10g2, oy tin,m,d) and Ty = min{T™*,n~'Cmneoop™" (|v|2 + [|€]]2 )

where C' = 4log(T*) = O(1) and p = max{1,||v|,||€|l2}. Then, with at least probability
1 —1/d, it holds that, for t < T, -

c0<TW o) < 4log(Ty) forall j € {£1},r € [m] and i € [n].

7, T g,re

« 0>, > —2max; j, {|(Wi), v)[, (W), &)[}—16my/ LU0 0.2 > —dlog(T})
forall j € {£1}, r € [m] and i € [n].

Compared to standard training |Cao et al.| (2022); |[Kou et al.| (2023), private learning also ensures
bounded coefficients but imposes stricter limits on the maximum number of training iterations due
to the cumulative effect of private noise.

Lemma 4.4. For any iteration t, with at least probability 1 — 1/d, it holds that

t
03 () < POV IVIBlog(d) 1

e 1+ sxr) (5)
t 2

mne

Lemma characterizes the influence of private noise (z:) on the training process by decompos-
ing its interaction with the feature signal (v) and data noise (£). According to » Equation (3), the
gradient sensitivity at each step can be bounded by Mi\lﬁ”?) where C' = O( ) follows from
Proposition[D.3| Here, T" denotes the total training iterations, which differs from 777, the maximum
permissible iterations. Moreover, recall the definition of SNR := [|v||2/|£]|2, then the Equation (6]
can be further represented as

> (2. &) < 770\/757||V||§10g(1/6)( 1 1

mne SNR? + SNR)'

It indicates that the cumulative influences of private noise on both the feature signal and data noise
are affected by the SNR. Specifically, when the SNR exceeds 1, the effect of private noise on the
data noise becomes less significant.

Our analysis is based on an over-parameterized model, ensuring that the model has the capacity to
learn sufficient feature signals. However, a critical question arises: given the over-parameterization,
the model may also learn substantial data noise. Thus, under what conditions does the model priori-
tize learning feature signals over data noise? To address this, we analyze two scenarios based on the
signal-to-noise ratio.

4.1 FEATURE SIGNAL LEARNING

Next, we first introduce conditions that guarantee the model’s ability to effectively learn feature
signals.

Condition 4.5 (Conditions of Signal Learning). Suppose that:
* Dimension d is sufficiently large, specifically d = (NZ(mQV[4/(‘772)]714\/[(2q72)/(q’2)]).
* Training sample size n and neural network width m satisfy n, m = Q(poly log(d)).

* The learning rate n < O(min{||v||3 2, ||€]|32}).

'



e The standard deviation of Gaussian initialization o is appropriately chosen such that

O((ne) 7 |Iv]l3") < o0 < O(min{e~7[|€]l5", ()2 |[v]|5, (ne) = [1€llz)}).

The conditions on d, m,n are set to ensure that the learning problem is in a sufficiently over-
parameterized setting, similar to the assumptions adopted in |Cao et al.| (2022); [Frei et al.| (2022);
Chatterji & Long| (2023); |[Kou et al.| (2023). Additionally, the conditions on initialization ¢y and
step size n are to guarantee that gradient descent can effectively minimize the training loss. In
private deep learning, the privacy budget is typically moderately larger compared to private opti-
mization theory |Abadi et al. (2016)); [Tramer & Boneh| (2020); De et al.| (2022); |Sun et al.| (2023));
Bao et al.|(2023)); Tang et al.| (2024bja)). Therefore, we assume that the privacy budget remains larger
than 1/+/n here.

Theorem 4.6. Under the same conditions as signal learning, if min{SNR -ne, SNR? -n} > Q(1),
q—1
with at least probability 1 — 1/d, there exists Ty = O (21 o0lV]l2)Amy g py ypgat

—2
naog " llvi§

T ,
* max, F§',r1) > 2 forj e {£1}.

. |<I)(-t) = O(0goeVd) forall j € {£1},r € [m],i € [n]and 0 <t < T.

2,752

Here, we present one of our formal results. Based on Prop. [.3]and Theorem at the end
of the training stage 737, when min{SNR -ne,SNR?-n} > (1), the maximum signal learn-

ing, max, F;?;}), achieves é(l) Additionally, as the initialization scale o satisfies o9 <

O((ne)~*~1/1)|¢||3*) in Condition this indicates the memorization of data noise, |®'") | re-

7,70
mains bounded by O((ne)~*~1/49) and it is smaller than the feature signal when ¢ > 1/+/n. More-
over, compared to non-private learning, the condition SNR -ne > (1) introduces more challenges.
Even when the feature learning conditions (SNR? -n > (1)) for standard non-private learning are

satisfied, private learning may still fail to capture the feature signal if SNR -ne < Q(1) < SNR? -n.
It demonstrates stronger feature signals are required in private learning compared to non-private
learning, which aligns the empirical principles in previous work Tramer & Boneh!(2020); /Sun et al.
(2023)); Bao et al.[(2023); [Tang et al.| (2024b).

Moreover, we can further demonstrate that if some stronger assumptions are satisfied, the following
corollary ensures that private learning can achieve training loss comparable to those of non-private
learning.

Corollary 4.7. Let T, T} be defined as above. Then, under the same conditions as signal learning,
forany t € [Ty, T), it holds that |<I>§f2)l| < ggoeVd forall j € {+1}, v € [m] and i € [n] if
(ne)?*tt > m. Moreover, let W* denote the collection of CNN parameters with convolution filters

defined as w3, = WJ(-?T) + 2gmlog(2q/k) - j - | V|52 - v for a constant k > 0. Then, with at least

probability 1 — 1/d, the following bound holds

wWT _WH |2 t—-Ti + 1)k ndo? 4+ O(a.m®?||v||; )
Low®) < | F : +(t—Ti+1) = . 22 (1)
2 Lo(W?) < (2 —1)n (2 -1) (t-Ti+1) (2 -1)

Non-private terms Private terms

for all t € [Ty, T), where we denote |W | r = \/[[Wi1]|% + [[W_1]2.

Corollary characterizes the empirical risk of private learning under signal learning conditions,
which can be decomposed into two terms. For standard non-private learning, by setting 7' = 77 +
LHW<T“*W*H§

T | and dividing ¢ — T7 + 1 into both sides, the non-private term in the empirical loss

can be bounded by 2;’51 , allowing the empirical loss to converge to . However, private learning

introduces two key differences: 1) There are stricter limitations on the total training time, which may
prevent T' from being as large as necessary for stable training. 2) In addition to the non-private term,
the empirical risk involves a private term that appears unbounded, posing additional challenges to
achieving convergence. Nonetheless, if we can assume the data satisfies:

MNET(
nu([[vil2 + 11€]l2)

. * o * —1
T=T;=0( )=T">r"",
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Figure 2: Comparison of Feature Signal and Data Noise in Private and Non- Private Learning. The

figure compares the dynamic of feature learning max; , |F( )| and max; , ; |<I> ;| for varying pri-
vacy budgets ¢ under higher SNR conditions. Subfigures correspond to SNR = 0.6 with ¢
values of 5, 1 and 0.2, respectively, while subﬁgure@corresponds to SNR = 3 withe = 0.2.

where we denote © = max{1, ||v]2,||&||2}. Recalling the scale of private noise, we can obtain

that o, = oo/nuy/T. Then, it can be verified that the empirical risk in Equation (7)) will be upper
bounded by O(k), provided there exists a step size i satisfying:

2do?  2m*/3|v|5 oo }
p*Tr’ Tk '

By combining the above results, we derive the following corollary, which states that the private CNN
can achieve a test loss related to privacy budget € under Condition 4.3]

nzmax{

Corollary 4.8. Under the same conditions as above, suppose SNR -ne > Q( ) and (ne)t/at1 >
Q(1). Then, with at least probability 1 — 1/d and with Lp(W®) < O(k) for any t < T, the test
error satisfies Lp(W®)) < O(r + exp((ne) "~ 1/7)).

Here, the test error is defined as

Lp(W) := Py ~ply - (f(W,x))<0].

4.2 DATA NOISE MEMORIZATION

Next, we explore the scenario where the model primarily learns label-independent noise rather than
the feature signal.

Condition 4.9 (Conditions of Data Noise Memorization). Suppose that the initial three conditions
of data noise memorization are the same as Condition Additionally, we have

e The standard deviation of o9 is appropriately  chosen  such  that

O(max{e=/1¢[l;", (n/VA)|v];'}) < o0 < O(min{(ne)~9|vIl; ", €]l })-

Similar to feature signal learning, we also establish conditions for data noise memorization, but with
a difference in the initialization setup and requirement on € > 1.

Theorem 4.10. Under the same conditions as data noise memorization , if
min{SNR™*.¢,SNR™%-n"'} > Q(1), with at least probability 1 — 1/d, there exists

. log(1/(cooeVd))mn
T = 0(0.15Q*2nqg§i2(¢7§\/ﬁ)4) such that

* max; , ) > 2 for alli € [n].

R

* max;, [, = = O(oo||vl|2) forall 0 < t < Ty.

= O(00oeVd) forall 0 < t < T.

¢ max,r.i |(b]r7.|

Theorem shows that the data noise memorization, max; , <I>§ le, exceeds the feature signal

learning at the end of the first training stage T3, provided that rrnn{SNRf1 €,SNR™?-n~1} >
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Figure 3: Comparison of Feature Signal and Data Noise in Private and N on-Private Learning. The

figure compares the dynamic of feature learning max; , \F | and max; ,; |<I> | under lower

SNR = 0.2 conditions with ¢ values of 5, 1 and 0.2, respectlvely

J,7r0

Q(1). In contrast to Theorem here demonstrates that when SNR™! -e < Q(1) < SNR™7.n~1,
the memorization of data noise does not occur in private learning, even though it may happen in
standard non-private learning. However, it is important to note that this scenario only arises under the
highly restrictive condition ¢ < n~9, which is an overly stringent condition and unlikely to be met
in practical private deep learning scenarios. In other words, when data noise memorization occurs
in standard non-private learning, it Will also occur in private learning as long as ¢ > SNR'~7pn~1.
Moreover, it is noticed that max; . ; \<I> o0 Z| is bounded by O(O’()O'g V/d), while under stricter privacy
budget (smaller ¢), this term is much larger than the non-private learning, indicating that private
learning may amplifying the data noise memorization of the other filter.

Since we assume the model is over-parameterized, even if it fails to learn a good feature signal, it
can still fit the data noise well enough for the training loss to converge to a small value, similar to
the case of feature signal learning.

Corollary 4.11. Let T, Ty be defined as above. Then under the same conditions as data noise
| < ool||vllz forall j € {£1} and r € [m]
if n'% > m. Moreover, let W* be the collection of CNN parameters with convolution filters
Wi, = ( ) + 2gmlog(2q/k))[> i 1(j = vi) - €£H2} Then, with at least probability 1 — 1/d,
the followmg bound holds

memorization, for any t € [Ty, T), it holds that |F

7,7y

i Low®)y < IWD =Wl (= T1+ Dr ndo? +O(o-m*n'/?|j¢]|5")
(2¢ —1)n (2 -1) (2¢-1)

Non-private terms Private terms

+(t7T1+1)-

s=T1

®)

forall t € [T1,T), where we denote ||W || = \/[[Wi1]% + [[W_1]]2%.

Corollary .11 shares the same empirical loss structure as Corollary .7] with the only difference
being the bound on ||[W(T1) — W*|| .. This results in the term O(o,m?n'/2||¢||;") appearing here.
Therefore, under the same data assumptions as Corollary 4.7 the empirical risk in Equation (8) can
also be upper bounded by O(k), provided there exists a step size 7 satisfying:

2do?  2m2n'/?||€||5 oo }
pPTr’ uVTr '
However, even if the private CNN model achieves a sufficiently small training loss under the data

noise memorization scenario, it still fails to exhibit good generalization ability, as it primarily learns
the label-independent data noise rather than the label-dependent feature signals.

77>max{

Corollary 4.12. Under the same conditions as data noise memorization, within T iterations, re-
gardless of how the sample size n and privacy budget € chosen, with at least probablllty 1-1/d,
we can find W) such that Lp (W(T ) < O(k). Additionally, for any 0 < t < T we have that
Lp(W®) > 0.1.



5 EXPERIMENT

5.1 SYNTHETIC DATA EXPERIMENT

In this experiment, we aimed to compare the feature signal and data noise in NoisyGD and standard
(non-private) training.

Experimental Setup. We conducted experiments by generating synthetic data defined in Defini-
tion with a controlled signal-to-noise ratio (SNR = 0.2,0.6,3). The dataset was constructed
using a fixed signal vector v and a data noise component £&. We implemented a two-layer CNN with
an input dimension of d = 1000, m = 10 filters, and a polynomial ReL.U activation function with
a power parameter ¢ = 3. The model weights were initialized randomly from a normal distribution
with a small variance (0o = 0.001), and training was performed using gradient descent with a learn-
ing rate of = 0.01 over 500 epochs. For private learning, we consider the noisy gradient descent
during weight updates, with a privacy budget of e = 0.2, 1,5 and § = 10~°. Throughout the training
process, we monitored the maximum inner products between the learned weights and the signal and

() |, respectively.

: ®)
data noise components, denoted as max;, - [I'; | and max; .; |5 ;. ;

Private learning requires stronger feature signal. In Figure 2] we compare the dynamics of fea-
ture signal learning and data noise memorization during the non-private and private training process
under the higher SNR. In subfigures [2a] and 2b] it can be observed that when the SNR = 0.6 is
sufficient for non-private training and the privacy budgets € = 1, 5 are moderately larger, the feature
learning trajectories in private training closely align with those of non-private training. However, in
subfigures 2c| when the SNR = 0.6 is sufficient for non-private training and ¢ = 0.2 is relatively
smaller, the data noise memorization (represented by the blue dashed line) no longer remains below
the feature signal like the non-private training. This indicates the SNR = 0.6 is insufficient for
private training under stronger privacy constraints. When we increase SNR to 3 in Figure we
observe that private training regains its ability to perform feature learning, exhibiting trends simi-
lar to non-private training. This demonstrates that as the privacy budget € decreases (i.e., stronger
privacy guarantees), the requirement for a higher SNR becomes more pronounced.

Private learning may amplify data noise memorization. In Figure [3] we observe that if non-
private training exhibits data noise memorization (the blue line is higher than the orange line),
private training is also prone to this behavior (corresponding to the dashed line). Moreover, as
illustrated in Figure [3d] the green DP line (representing noise memorization under private learning)
shows a noticeable increase, while the corresponding non-DP green line remains unchanged. This
indicates that private training, particularly with smaller privacy budgets, not only fails to suppress
data noise but also amplifies its memorization for other filters, aligning with our theoretical analysis
in Theorem [4.10

6 CONCLUSION

In this paper, we introduced the first theoretical framework to analyze the dynamics of feature learn-
ing in differentially private learning, focusing on the trade-offs between feature signals and data
noise through a decomposition of these components. Using a two-layer CNN, we demonstrated that
private learning necessitates a higher signal-to-noise ratio (SNR) compared to non-private training to
effectively capture features, particularly under stringent privacy budgets. Additionally, we showed
that data noise memorization, if present in non-private learning, persists in private learning, resulting
in poor generalization even when training losses are minimized. Our findings highlight the critical
role of feature enhancement in private learning, aligning with prior empirical studies and providing
valuable insights for designing effective privacy-preserving learning systems.
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A  NOTATIONS TABLE

B ADDITIONAL EXPERIMENTAL DETAILS

Experimental Setup for Appendix We conducted experiments on the CIFAR-10 dataset
Krizhevsky| (2009), training on a version of the dataset corrupted with Gaussian noise applied at
varying scales to control the signal-to-noise ratio Hendrycks & Dietterich| (2019). The training data
was corrupted with noise levels corresponding to different SNR values, while the test set remained
clean. A ResNet-20 architecture He et al.| (2016) was employed as the baseline model, designed for
CIFAR-10 with an input image size of 32x32 pixels. Training was performed using noisy gradient
descent with an initial learning rate of 0.1. The model was trained for 100 epochs with a batch size
of 1000.
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Table 1: Notation Summary

Symbol  Description

x Input data point with multi-patch structure x = [yv, £] € (R9)?
y Binary label (£1)

TERY Label-dependent feature vector (signal component)

¢ Label-independent Gaussian noise ~ N(0, 07 H)

Zt Gaussian privacy noise added at iteration ¢

SNR Signal-to-noise ratio ||v||2/]|&]|2

T Total number of training iterations

Ty Maximum number of private training iterations

m Number of convolutional filters per class

d Dimension of feature/noise vectors

n Number of training samples

n Learning rate in noisy gradient descent

0o Standard deviation of Gaussian weight initialization

o¢ Standard deviation of Gaussian data noise

0, Standard deviation of Gaussian private noise

€, 0 (e, §)-differential privacy parameters

I‘gtz Signal learning coefficient for filter r in class j at iteration ¢

Noise memorization coefficient for sample ¢ and filter r in class j
o(z) Polynomial ReLU activation: max{0, z}¢ with ¢ > 2

Lp(W) Empirical risk with logistic loss over dataset D

Lp(W)  Population risk with logistic loss over data distribution D

q Polynomial degree in activation function (¢ > 2)
H Orthogonal projection matrix I — vv ' /||v||3
K Convergence threshold for training loss

B.1 REAL-WORLD DATA EXPERIMENT

In this experiment, we explore the impact of SNR in the private learning. Due to the space limitation,
we provide experimental setup and more results in Appendix [B.T]

Higher SNR Improves Accuracy Across Various Privacy Budgets. The results, illustrated in
Figure {4] reveal that higher SNR, values consistently lead to improved model accuracy under var-
ious privacy budgets, as the cleaner signal allows the model to better learn useful feature signals.
Moreover, as the privacy budget € decreases (indicating stronger privacy guarantees), the model’s
accuracy degrades, particularly under low SNR conditions. This degradation is attributed to the
combined effects of data noise and the additional noise introduced by private learning.

Figure[5] Figure[6]and Figure[7]depict the Class Activation Maps (CAMs) using GradCAM |Selvarajul
et al.| (2020) for different classes in the CIFAR-10 dataset under varying SNR. In CAMs, the colors
represent the intensity of activation in specific regions of the input image. These activations indicate
how strongly the model associates different areas of the image with a specific class. CAMs highlight
the most important regions contributing to the model’s prediction.
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Figure 5: Class Activation Mappings for CIFAR-10 Across Different SNRs (e = 8).

C SUPPORT LEMMAS

Lemma C.1. Suppose that 6, > 0 and n. > 8log(4/6,). Then with probability at least 1 — 6,
i€l :yi=1},{i € n]:yi = —1}[ = n/4
Proof of Lemma[C.Il We first establish the bound for |[{i € [n] : y; = 1}| and the bound for |{i €

[n] : y; = —1}| follows identically. Using Hoeffding’s inequality, we know that with probability at
least 1 — /2, the following holds:

=3 i =1y - 5l 20,

2n
=1
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Figure 7: Class Activation Mappings for CIFAR-10 Across Different SNRs (e = 2).
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Thus, for n > 8log(4/4), the size of the subset where y; = 1 satisfies:

(i € [n] ;yi:1}|zzl{%:1}zg_ 10gé4/5)

=1

%\3

O

Lemma C.2. Suppose that §¢ > 0 and d = Q(log(4n/d¢)). Then, for alli,i" € [n], with probability
at least 1 — ¢,

0£d/2 < &3 < 30d/2

|(€i,€1)] < 20% - | /dlog(4n?/é¢).

Meanwhile, there is §, such that 6, > 0 and d = Q(log(4n/d,)). It holds, with probability at least
1- 6Zy
G?02d/2 < ||zi||3 < 3G?02d/2

(zi,2:)| < 2G%02 - \/dlog(4n2/6.).

Proof of Lemma Both £ and z follow Gaussian distributions; therefore, it suffices to provide the
proof for one case. Using Bernstein’s inequality, we find that with probability at least 1 — 6/(2n),
the following holds:

I1€:l13 — oZd] = O(of - v/dlog(4n/)).

Thus, when d = Q(log(4n/4)), : ag < 1€ < 305 . Next, note that (&;, £&;/) has a mean
of zero for any 7 # 4'. Again, by Bernstein’s inequality, W1th probability at least 1 — 6/(2n?), the

following bound holds: [{(&;,&;/)| < 20? - y/dlog(4n?/4). Finally, applying a union bound over all

i and i’ completes the proof. O
Lemma C.3. Suppose that d > Q(log(mn/d)),m = Q(log(1/d)). Then with probability at least
1-9,

(W), v)| < v/2log(8m/6) - oo v]l2

|(w jr7€z|<2 log(8mn/d) - 0'005\[

forallr € [m],j € {£1} and i € [n]. Moreover,

7577

O-OO—E\/i/Zl < m?Xj _507)751 < 2 log 8mn/5 Joggf

forall j € {£1} and i € [n].

ool[vll2/2 < max ;- W% v) < \/210g(8m/3) - || V]2,

Proof of Lemma[C3] For each r € [m], the term j - (ng,v) is a Gaussian random variable

with mean zero and variance o ||v||3. Applying the Gaussian tail bound and the union bound, we
conclude that with probability at least 1 — §/4,

§- w9 vy < (w0 V)| < v/21og(8m/6) - oo V]2

Furthermore, the probability P(oq||v]|2/2 > j - <w§02 ,v)) is an absolute constant. Thus, under the
given condition on m, we have

O ) =1 = P(oy||v][s/2 > max j - (!, v))

(O-OHV||2/2 < max ] <W],r7 rE[m] 7,77

re[m]
=1~ P(oo||v]l2/2 > j - (W', v))?m
>1-4/4.

By Lemma with probability at least 1 —J/4, the inequality o¢v/d/v/2 < ||&ll2 < 1/3/2. 0eVd
holds for all ¢ € [n]. Consequently, the result for <W(O)

Jr

as for j - <w§?T), V). O

&;) can be derived using the same argument
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D DECOMPOSITION

Definition D.1. Let wgtz for j € {£1},r € [m] be the convolution filters of the CNN at the ¢-th

iteration of noisy gradient descent. Then there exist unique coefficients thi > 0 and @;ti , such that

t
wit) = w4 5.0 v v+ Z@YL l&l;% & —n 2 ©)
Wefurtherdenote(bﬁl:: (t) ]l((D(t) >0), d)ﬁtil:_ (t) ]l((bgtzl 0). Then we have that
t
t 0 t t — t _
wi =w!% Tl ;2 v+Z<I>§3, H&IIJE#ZQL ledz? & —n 2.
1= s=1

Lemma D.2. The coefficients i) W ol Definition 4.1 satisfy the following equations:

7, T3 =g,

1 30 O _g

3yr T g =j4,10

t+1 t n - t t
B =T = o 2 ) - vl
(t+1) _ =(t) U /(t) (t) .
(I)]TZ (I)]rz_nm'gi 'U(<Wg ’ > H£Z||2']l(yi_])7
1 .
ot = @)+ L0 o (Wi €)) - &3 - 1y = —)

Proof of Lemma[D.2l We prove the statement by induction. For the base case t = 0, it holds that
F§?) 0and @', = 0. Now, assume the statement holds for ¢t = k. We proceed to the inductive

7oyt

step, considering ¢t =k + 1:
k k 1 & ik k ) k) .
W§,r+1) = W§2 ey Zfli( Vo' 52,50) Jyi&i + Zél( o' ((w; ") yiv)) GV — 1z

=wl? 4 i T v v+2<1> &5 ﬁi—nzzs
s=1

k . n = k .

—%25 (r), z>)']yi$i—%24( o' (( (r),yz V) -V — Nz
0 . _ k k k
= w4 vl ? v () - Zﬂ’” (W, i) - [VI3)
n k+1

k /(k k

+ZH&II 8- (00— g 0o (w60 - D) — 3
k+1

0 . k41 - k41 _
=w!? 4.l ’~HVI|22~V+Z¢>§”) l&lz2 & — 1> 2.

The last equality follows directly from the data distribution and it is clear that the vectors involved
are linearly independent. Thus, the decomposition is unique. Then, we have:

t
Ui s s i
B, = =30 O o (w2 [ v
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Moreover, note that Z;(t) < 0 due to the definition of the cross-entropy loss. Consequently,
t—1 .
t /(s .
==y o (W 6) - &3 Ly = ),

) _ Ui /(s) .
@) == L4 o' (wl) &) - &l - 1w = ),

which completes the proof.
O

Parameters. Let In the following analysis, we demonstrate that for effective private learning, the
learning of feature signals and noise will remain controlled throughout the training process. Let

mne log(d)
5Cu([vll2 + €ll2)’

represent the maximum allowable number of iterations. Denote o = log(7T};).

Ty =n~ ' min{(poly(I'" ", ||v]; ", d "0, %, 05 " n,m, d)),

n= O(min{nm/(qa?d)7 nm/(q2q"’2ozq_ZUEd)7 mn/(q292a172||v||2)}) (10)
d > 10241og(4n?/8)a’n? (11)

Letﬂ—Qmaxwr{K jr, V)|, (w ”,EZ|} ByLemma | with probability at least 1 — J, we can

bound 3 as follows: 3 < 44/log(32%) - o - max{||v|2, o0¢v/d}. Using o (we can add additional
log constrain on the oy in the main), and Equation , it can be obtained that

log(%)a nCTyplog(1/6)(([[v]l2 + [1€]12))

4max < 3,8n ,
d mne

;¢ <L 12)

Given that the above conditions hold, we claim that the following property is satisfied for 0 < ¢ <
T
p

Proposition D.3. Under Condition 4.2, for 0 <t < T;, we have that

o<1 8" <a, (13)
log(4n2 /5
0> 0, > 8- 16ny/ 2 02> o (14)

forallr € [m],j € {£1} and i € [n)].

Bounds of coefficients. In the following, we first prove the bounds of coefficients.

Lemma D4. For any t > 0, it holds that (w; ( ) wﬁ?,v} =7 I‘Etz — (2, V) for all
re[ml],je {1}

Proof of Lemma[D.4l For any time ¢ > 0, according to the decomposition Equation (9), it holds
that:

t

(wi) —wl? vy = 5.1 Zcbﬁwnsifn;?-<sw,v>+2@§m|\sz/|| &0, V) =0 > (2, V)

i’ V= s=1
t

=j-rf) nzzs,
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Lemma D.5. Under Parameter Choices, suppose Proposition|D.3|holds at iteration t. Then, it holds
that

log(4n2?/§)
) (0) <‘I’§3~z+8 M a—=nY ey (s, &),

_Wj,r’ l>{ oa(dn
>8]~ m/@a Y (2. £)

< @5+ 8/ a0 S (2, &),
. t 0 = s= Sy
When yi = ji - (wji) = wiill &){ — 7 log(1n2/5) 1
Zé’,"_gn _7723 1< >

When y; # j: (w

S~

forallr € [m],j € {£1} and i € [n)].

Proof of Lemma[D.3, For j # y;, it holds that ') . = 0 and

7,

t

(W) =Wy € Z B el 2 (€ &) + S 00 lgnls? - (€ &) — 0>z €1)
=1 s=1
log(4n2/d log( 4n log(4n?/5)
\/72| Jrt 4 Zl—j,r1|+¢)jr1 nz ZS,&Z
i Fi i #i
D e

i [log(4 n2 6
< gj,r,i + 8n / 772 Zs7£z

The second inequality (i) is derived by Lemma [C.2]and the last inequality (ii) holds due to Proposi-
tion Similarly, for y; = j, it holds that 3 = 0and

]T’L

wi ¢ Z ) €z - (€ &)+ D @) L llEnlZ - (En &) — 0> (s, &)

/=1 s=1

i [log( 4n log(4n?/6) log(4n2/5) _ ¢

=4 Z | J,T @ \/TZ |Q(’2,i" + ‘I’Yiz -1 Z<st &)
i 4 =

) log(4n?/0)

S (bgi)",z + Sn\/i/ 77 Z Zs, éz

Moreover, it is clear that, according to Lemma[C.2] inequalities (i) can also be bounded by:

log(4n2 log (4
When y; # j: >‘1>§t3~1 4/ o n/(S SIS -4y ol n/6 Sole) ) - Z<Zs»5%>

il i’ i s=1

3 [log(4n2/6) :
® g
> Q5 —8n ¥ 04_775521<Zsu£i>7

Similarly, the following also holds for the inequalities (iii):

J,TZ -4 10g4n /6 Z'—,rz|_nzz.§7£z

(i)’ 1 4
When y; = j: > - og( n/(5 Z|

] T8
/;ﬁl '751
(v’ _ log(4n?/4) g
(t) g
> (I)j,r,i — 8n TCM — ﬂsz::l<zs7£i>a

which completed the proof.
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Lemma D.6. Under Parameter Choices, suppose Proposition|D.3|holds at iteration t. Then, it holds
that

t
(Wit yav) < (Wil yiv) nzzs,yz

t
log(4n2/6
< §t3’£l> S 17761 _T]Z Zsa€2 %av
s=1

Sforallr € [m] and j # ;.

Proof of Lemma[D.6l According to Lemma [D.2] it is clear that F;ti is increasing and F( 2 >0
holds. For y; # j, it holds that

(Wi yiv) = (Wi yiv) g T8 — 772 (2, yiv) < (WSO i) =0 Y (e, yiv).

Moreover, according to Lemma[D.3] we have

log(4n2/6 ! log( n2 d)
<wj(f2,£1> < <w§?2,£1>+<1>§t7) ;+8n %a—n Z(ZS,&> < <W§-?7.,€i>+8n\/ g(4n*/9) T]Z (zs, &),

s=1

(t)

[o)pap < 0. Therefore, we can further obtain

where the last inequality is due to ®:

1 m
FW %) = 23 It =3 - v)) +o((wi, £0)
2 CT>ulog(1/6
< 20 e[ (wl%, )1, (w2, &) sy | B0 1T loB L0 vla * Ela),,
g d mne

<1

The first inequality derives from the previous two conclusions and the second inequality is by Equa-
tion (12).

Lemma D.7. Under Parameter Choices, suppose Proposition|D.3|holds at iteration t. Then, it holds
that

(w ](7)“7y1 )= 5‘?273/2 +F(t) 772 Zs,YiV

t

log(4n?/d
< §t7)~7£2>§< (Or)v Z>+(I>§t7)~z+8 MO“UZ(%;&%

d s=1
forall v € [m]and j € {£1} and i € [n). Ifmax{fbgt?)nz, gtl} O(1), we further have

t
(W x;) = 0(1).
Proof of Lemma[D.7l According to Lemma|D.2] it is clear that, for y; = j, we have

t
(Wi yiv) = (Wi yv) + T8 = >z, yv).
s=1

Moreover, according to Lemma|[D.5] we have

2
< jr7£1>g< jr7€l>+q)§trz+8 M —UZ ZSsz
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Ifmax{(I)(t F(t)} O(1), we have

Fj(W Z )+ a((wl €))]
< 2 50 max{| (wyi), V)L | (w)1), €3}l 8n log(?g/é)avnCT’Wog(l/mig‘V”ﬁ”5””}'1
=0(1).

The first inequality derives from the previous two conclusions and the second inequality is by Equa-
tion (12).
Lemma D.8. For any iteration t, with probability 1 — 0, it holds that

0> (g vy < POV g1/ L) Z )] < TOVITIEI log(1/)

1
mne (1+ SNR mne

(1+SNR).

15)

Proof of Lemma[D.8l According to Proposition and the update of w( ) in Equation (4 , it is

clear that the sensitivity can be bounded by W(HV”Q + ||€]|2) with C = O( ). Therefore, with
probability 1 — J, we have:

t
3 nCVIT||v|[3log(1/9)
<
|77 <Z57v>| — mne (]‘ SNR

where we use Hoeffding’s inequality and the definition of SNR = ||vll2/]|&||2-

(1+ SNR).

nZ o e < TOVITIEI3 0g(1/0)

mne

Now we are ready to provide the proof of Proposition[D.3]

Proof of Proposition We prove Proposition[D.3]using an induction process. It is clear that the
claim holds for ¢ = 0 since the coefficients are zero in this case. Suppose there exists s < 777 such
that Proposition[D.3]holds for all ¢ < s — 1. Our goal is to prove that the claim also holds for ¢ = s.

We first consider when <I>( ) < —0.58 — \/Ma — 0.1. Notice that for any j = y;, we

=7,7,
have <I>§f7) ; = 0. Thus, we only need to focus on j # y;. Additionally, according to Lemrna and
Lemma[D.8] it holds that

2
< ]r7£l><(1)(t) < JT‘7£Z> M _772 ZS7£’L =

Therefore, for t + 1, we have

D) _g® L () e 2
D =+ Lo (i) €)1 = )l
o
—]rz
2
> _5-16 MQ—OQ.

When considering ® <I>( ) ;> —0.58—28n W& — 0.1, it holds that

t+1 t 77 t T-1 .
ot =2l + i o ((wil TV €)) 1w = i) &3

Q log(4n2/é ozd log(4n2 /6

D 058 — sny/ 28U 01— 017 (058 + sny | 2BEE/D) 4 g 1)
d nm d

@ log(4n2 /6 oid log(4n2 /6

Y 058 — sy 128UR20) g O(%)(o.w gy 108ER20) o

(iti) log (4n2

> —f—16n Ma_()g’
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where (7) holds due to E;(t) < 1 and [&lla = O(cgd); (ii) holds because of 0.553 +
8n4/ W@ + 0.1 < 1; (423) derives from n = O(nm/(qagd)).

Now, we proceed to prove Equation (13)). Recall the update rule for 3D and denote t;r; as the

7,75
first time such that <I>(t) . > 0.5a, then we can decompose the following

1 n .
)~ ), — 0 o' (wii)€)) - 1y = &3

F A\, r, i n dyr,i .
= ¢\t - gt o (W) €))Ly = )12

nm

Term 1 (16)
t

Ui (p) — 2
— Z %Eip o' ((wih, &) - Ly = 5) &l -
p=t;j rit+1

Term 2
Then, we need to bound Term 1 and Term 2, respectively. For Term 1, we have

_ W) | reg ()
|Term 1| = om A (< ]r7£l>) I(y; = J)||£Z||2
D o tm () 4 (w© 0.9)9-1
gnm” n(y; g +(w; ., &) +0.2) H£1”2

Wi
(@)
< 207 tm T et &3

(44%)

< 0.25a.

Here, (i) holds due to Lemma , Lemma Lemma and the parameter choices of T;;
(#i) derives from the parameter choices of o and induction hypothesis; (iiz) holds by n <
O(nm/(q27+*a=2||€[13)).

For Term 2 and y; = j, we have

t
(with) &) =(wi), &) + ), - 8"\/@“ =0 (7 &)
s=1

(1)
> —0.5640.5a — 0.2 > 0.25.
Here, (i) holds due to the definition of ¢, ; and Lemma Similarly, we can also upper bound

<w(t+1), &) as follows:

Jr
_ log(4n2/9)
< t+1)’£l> < ]7‘7£7f> (bjrz+8 M a—1- ZZ37EZ

<0.58 + a4+ 0.2 < 2a.
Combining the above upper and lower bounds of ( , &) into Term 2, it holds that

Term2|=| > L0 o/ (W), &) - 1y = j)l&l3]

S Y akexp(-o(twi) &) + 1) o' ((wh. &) - &3

(i)
< eq2'nT; exp(—a?/4%) o™ |&; |13

(4)
< 0.25T; exp(—a?/4%)a

(2i1)

< 0.257, exp(—log(T;)?)a

(iv)
< 0.25a.
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Here, (ii) follows from Lemma (4t) is derived from the parameter choice of 7; (¢i7) and (iv)
holds due to the choice o = 41log(7};) and the fact log?(7,;) > log(7};). Additionally, (i) is
established as follows:

69 = 1
L+ exp{y; - [Faa (W, %) — Py (W, %)}
< exp{—y; - [F (W, %) — Foy (WY )]}
< exp{—F,, (W), x;) + 1},

where the last inequality follows from Lemma[D.6] Combining the bounds for Term 1 and Term 2
into Equation (I6), we complete the proof of Equation @I) The same procedure applies to prove
' < a, with parameter choice n = O(nm/(q29T2a272||v[|3)).

Lemma D.9. Under parameter choices, for 0 < t < T.%, with probability 1 — 0, the following result
holds.
IVLo(WP)[[7 < O(max{||v]3,02d}) Lo (W®) + O(02dlog(1/5)).

Proof of Lemma According to the triangle inequality and the definition of noisy gradient, we
have

1 n
IVLs (W[5 < 2[ S Ui f (WD ) [VFWD %) 7] + 2|z 3. (17
i=1
The first term is bounded using Lemma C.7 in |Cao et al.| (2022)), as it shares the same properties,
while the second term is bounded by Lemma|C.2] This concludes the proof.

E SIGNAL LEARNING

E.1 FIRST STAGE

Lemma E.1 (Restatement of Theorem[.6). Under the same conditions as signal learning, in par-
ticular, if we choose

44 log(16/el/200Hv||2)

SNR -ne > Cra n - SNR? > Cy log(6/0||v]|2)2%7+%[41og(8mn/8)] (@~ /2
(18)
-1
where C; = O(1) is a positive constant, there exists Th = log(gji;;o ”q‘iuzi‘)ﬁ o such that
1M499¢ Vilz
e max, T = Q(1) for j € {1}
rdgr .
|<I)]M\ = O(0goeVd) forall j € {£1},r € [m],i € [n] and 0 < t < T.
nmn 1‘7(2) ‘o %d" /2 oomne oomne

Proof of Lemma[E1l First, whent < 77" = min{;

it can be notlced that the n01se remains well controlled. To proceed, define ¥®*) =
i —@Yiz} and assume W) < %ﬁ\/& forall 0 <t < T5". Then,

we aim to prove that the same holds for ¢ 4 1 using an induction process. Recall the update of ®
and P as follows:

maxjm|<l> | —max7”{<1>

IR

— ’r} s .
) =5 Lo (w) e - ll€2 - Ly = g),

t Ui 5 .
8} == LA o (wi) &) - &3 - L = —)-
Moreover, according to Definition we have

w®) = w® 4 7.7 e
2

+Z: 521' H€2||2 _T]Zzs.
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Substituting this expression into the updates for ® and @, it follows that:
t

1 n 52 751 ’L z
(I)Et;rz) (I)§t7)"1_7 1t) ' jT"gl +Z ]) +Z—]7‘z % _T]Z<ZS’£Z>)”£1H§’
i'=1

nm ST 2

t+1 t n t O t £zv£z ’L 1
ggrz) ng)"z—’_ 4() / ’EZ +Z(I)() Z*]TZ' ; 2 _nzzs’él ”ElH%
2

nm i A TP

Therefore, it holds that

t
WO 00 e T 0] (w2, )+ Y w0 B g MELEI s, ey ey

7,mt MM ||€ ||2 =1 H£ ||2 s=1

i'=1
t

(1)
200 (o) 2. Y w0 O8I S ) e )

girsd = 1€::13 =

(“) &, &
@umw—o«ﬁ@+wMﬂZ@t——iﬂZm@ e

jmi nm Py 1€:-113
(447) dno? - /d 10g(4n2/5) ¢
(t) . . 3 g § : N
< gt 1 - 12 V/log(8mn/d) - opoeVd + (2 + o242 ). nS:1<ZS?€Z>]q

(iv) i
t nq t -1 2
< o 4 . (2 - /log(8mn/d) - cooeVd + 4¥®) —p E (zs,&i))7 " - 20¢d

s=1

(v)

<o 4 (4 - \/log(8mn/d) - cpoeVd) T~ 205

Here, the mequahty ( ) holds due to the fact |€ < 1; the equality (i) is the decomposition of
index 4; the inequality (i74) comes from Lemma (iv) is derived from the condition of d >
16n2 log(4n?/d); (v) follows from the induction hypothesis, Lemma and T;". By applying a
telescoping sum over ¢, we obtain the following result:

WD < (4 1) B (4 /log(8mn/3) - dooeVd) - 202d
na
<1 - (4 \/log(8mn/6) - aooe Vd) T} -20%d
<CTQO'§\/&,

where the second inequality follows from the induction hypothesis, while the last inequality is due
to the range of 7}

Now, we move forward to the proof of I'. Without loss of generality, we first consider j = 1.
Let T7 ; be the first time such that max,. th)) < 2 in the period of [0, 7}"], then it also holds that

max;,. i {|9") |} = O(o0oeVd) = O(1).

According to Lemma and Lemma it holds that F_ (W(_t)17 xl) Fiq (WSH, x;) = O(1) for
O]

all 7 with y; = 1 with the conditions that max, I'; }, max; ; , \<I> ;.ri| are bounded. Moreover, we

know that ()| = v [F+1(W(t11xz) W Tl which implies the existence of a positive
constant C such that £ ® > (] for all s with y; = 1.
Thus, with the update of I' in Definition[D.I] we have
n t
t+1 t n t 0 t
DY =T = = 30 oy (wilhov) e T = =0 ) (e iv) - V3
i=1

s=1

0177 0
=T+ Y o ((wh ) —nz 25, v)) - VI3
w=1
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: : + oomne
It is noticed that 7" < MW
it holds that maxr<w§?27v> — 3 (z,v) > 0¢|v|l2/4. Denote F(t) = th)r + (W), V) —
3 (zs,v) and let A®) = max I‘(lt) , then it follows that

C
A = A® 4 2N 6/ (AD) v = (@, V)

yi=1

y and maxr(wgol,v) > o9l|v]|2/2 due to Lemma then
(©

(%) C vII2 _
ZA(t)‘f' 1774qn|L H2[A(t)}q 1_77<Zt+1;V>

@ Cing|v|l3

> (14 2TV [40)02) 40 — iz, 1, v)
a5 C ng*Q vl|2
> (1+ 1774(18—1”%“”2)14(” — {Zt+1, V)

-1

Cunga*|[vI3
S U

_ () + 40) _ 4
Let gr=(1+ 101, ),then =" qr.A (QF —
Here, (i) holds due to the lower bound on the number of positive data in Lemma|C.1} (ii) and (iii)
follow from that the facts A(*) is increasing and max,. <w1 VY= Zg 1(zs, V) > ogl|v]||2/4; (iv)

is the summation of geometric series. In addition, we know that 1 4+ z > exp(z/2) for z < 2 and
1+ z < exp(z) for z > 0, then the following inequality holds

q —1
A® > (14 Clanfol HV”Z)tA(O) 4 M-y [vll2([v]l2 + [[€]l2)
4= tm Crqog " [IvII3 mmne
_ _ —2
>exp(0177q0’8 |\V||§t)00||VH2 o Am (Cmqag ||V|\gt)_ [vli2(lIvll2 + [1€]l2)
- 49=1 % 2m, 2 Ciqod™?|v]|4 49=1m mne

_ (61/200HV||2 A (vl + HEH2))_ . (0177q08_2||V||3t)
2 Cigog *|IvII3 "ne 477tm
anlvl | Cioaot g,
4 49-1m ’
where the last inequality holds due to the choice of o > O(||v||y ' (ne)~/2~1). Therefore, it
is clear that A®) will reach 4 within 73 =

v

log(16 /00 ||v|]2)47~'m
Cingold?||v|4

iterations, which indicates that
max, thl will reach 2 within 77 iterations. Moreover, we can verify that
log(16/00|[v][2)47~m _ _,

Ty = V22 ™ L ogmne([vils + €ll) ! < T,
Cingoy [vl5

The inequality follows from the SNR condition in Equation and the choice of 0y. Moreover,

since we also have oq < O(|€]|5 *e~'/9), it holds that

log(16/00]|v[2)4*tm _ _ mmi oy o 99/
Cingold 2||vlld  ~ 20+ [4log(8mn/6)]<q n/2 =

Hence, by the definition of T 1, 117 < T7 < T;F /2 holds. A similar proof applies for j = —1,

where we can prove that max, FSTf,’; 1) >2withT) ; < Ty < TfL /2, thereby completing the
proof. O

T = <T.

E.2 SECOND STAGE

It is clear that we have the following results at the end of the first stage:

(T1) () (T T) (T
Wi = Wi T3 T +Z \&Ilﬁ,Z*”l’ |£H2_772

”2 s=1

Meanwhile, at the beginning of the second stage, we have the following results:
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* max, T\ > 2,vj € {£1}.
* maxj,; |<I>§T7}2\ < Bwhere 3 = aoogx/&/l

Based on Lemma [4.2] and Lemma [4.4] we conclude that signal learning does not deteriorate over
time. Specifically, for any Ty < ¢ < T, it holds that T\ > T'") which implies max, T/} > 2.

If we consider w ( ) + 2gmlog(2q/k) - j “:’Hz , then we can derived:
2

Lemma E.2. Under the same conditions as signal learning, we have that |W™T) — W*|p <
O(m*2|v]ly").

Proof of Lemma According to triangle inequality, we have

W) — W < HW(Tl) WO e+ WO — W7
Tl) (I)(Tl)

9 gyror Dj il c m3/2 . —1
—Jzuvnz ZMHQ ZH&H £33 7l + O og(1/x) V]

7, s=1

< O(m|v|™!) + O(nmay) + O(may) + O(m** log(1/w))|[vIl; "

(i#d) ~

< Om®2|[v|3") + O(nmao)

(iv) ~

< O(m*2||v]ly").
Here, (i) holds due to the decomposition of w in Definition and the definition of W*; (i)
follows from Proposition [D.3] Lemma [E.T|and Lemma|D.8} (i47) comes from the conditions of o

in signal learning; (7v) holds due to the choice of oy. O

Lemma E.3. Under the same conditions as signal learning, we have that y;(V f(W®)  x;), W*) >
qlog(2q/k) foralli € [n]and Ty <t < T*.

Proof of Lemma We know that
FOWW x;) = (1/m) Z] (W yi-v) +o((wj, &)l

Therefore, it holds that

y2<vf(w(t)v ZU J r’yl )<V,jW;—:T,> + % Z (< _gt',)a€2>)<y1£za.7w;,r>
7,r
Za O,y 20m1o08(2a/x) + 37 0 (w1 g v, )
7,r

+— Z j rv yléhng?rb
(u 1 () ~
fza ) yev))2am108(20/x) — - 37 o' (w2 yv))Oloolv]o)

7,r
- Z §t7)'7 (anf f)

where (i) holds due to the definition of w* and (i) follows from Lemma[C.3] Moreover, according
to Lemma|[D.4] we have that for j = y;:

(41)
max{ (wi’), yiv)} = max{T'") + (w{’), y;v) —nzzs,yl 1322~ Boolvil) 2 1.
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Here, (i) holds due to the analysis in Lemmaand (ii) comes from o9 < O(n~/2|v||y). Addi-
tionally, we can also have

(4)
[(wi vy < [(w!? \+|F(t)|+lnzzs, 19 60

g VIS KWWV
) log(4n?/d)
< —a

Here, (i) holds due to Lemma and Lemma [D.8} (ii) is given by Lemma (ii) and
D3

(iv) follows from Proposition and Lemma Combining these results, we return to
yi(VF(W® x;), W*), which gives:

(Wi, &) +12Y) |+ (@) | +8n

t .
(iv) ~
|< §t2‘752> =470 7,y O(+|T]Z<Zs,£i>| < O(l)
s=1

yi(VF (W, x;), W*) > 2qlog(2q/r) — O(00]|v]l2) — O000Vd) = qlog(2q/x),
where the last inequality is driven by the conditions of o as signal learning. O
Lemma E.4. Under the same conditions as signal learning, it holds that
WO —W*| 5= [WEHD W3 > (2¢-1)nLp(WH) —nr—n*O(do?) —nO(a.m®?|v|; )
forallTy <t < T,

Proof of Lemma[E.4l According to the optimization properties, we know the first equality holds:
WO — W3 — [WED — W3,
= 2n<VLs<W<”> WO - W) —?|VLs (W)

@ 20 Ze Dlgyi f(WO, x;) = (VAW x;), W] + iz, W — W)
OV, 201 Lo(WY) + Ol (1/6))

2057 (0l WO ) glog(2a/) 1)
Sl WO~ W) — 2O (max (VIR o2} Lo (W) + O(o2dlog(1/5))
Sy (W ) — e 20)

 Blom ]z — 7 Ol o2 Lo (W) + 0o log(1/6))

(iv) ~ ~
> (29 = )nLp(WY) —nr — n*O(do?) — nO(o.m*?|[v|3 ).

Here, () holds due to the definition of noisy gradient, the neural network is ¢ homogeneous, and
Lemma [D.9; (i7) is driven from Lemma (#i1) is due to the convexity of the cross entropy
function; (iv) comes from definition of Lp. O

Lemma E.5 (Restatement of Corollary [A.7). Let T, T be defined in respectively. Then under the

same conditions as signal learning, for any t € [T1,T), it holds that |F§t2\ < oo||vll2 for all
j € {£1} and r € [m]. Moreover, let W* be the collection of CNN parameters with convolution

filters w3, = ( ) + 2gmlog(2q/K) - j - |v|5? - v. Then the following bound holds

t T (2 2.0 3/2 -1
1 Z LD(W( )) < W™ —w i3 K + ndo? + O(a.m?/ vz )
t—T1+1 = 2¢—1pt—-T1+1) (2¢-1) (2¢—1)

Private terms

forall t € [Ty, T], where we denote |W || = \/|[Wi1][% + [[W_1]2.
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Proof of Lemma[E.5l According to Lemma|[E.4] we have, for any ¢t < T":
WO W7~ [ WD W3 > (2g-1)nLp(W)—nr—n?O(do?) =0 (o.m™?||v] ;).

By summing over all terms and dividing ¢t — 7T} — 1 on both sides, we obtain:

¢ . ~ _
s wey e WO W s ot 4 Ol V)
t—Ti+1 = T (2¢-Dnt-Ti+1)  (2¢-1) (2 -1)
— ||‘A7(7”1) W% _ Cmn — .
Ifwehave T =T + | S E| = nu(|\v\|2+T\€H2) > k1, then it holds that
W™ — WJ3 K 3k
2¢—1n(T-T1+1) 2¢—1" 2¢—1’
. oy
and with o, = VT
wdo? + 0oVl _ w2l @ s
(2¢—-1) = nuPT(2q — 1) nu\f(Qq —1) = (2¢—-1)

where (i) comes from the assumption of 7. Therefore, combining above results, we conclude that

1
- - Lr(W®) <
t—T1+1ZT p(W) < s
S=171

Next, we will use induction to prove that W; = max; ; ; |} ; .| < 200[/€]|2 holds for all ¢ € [T3, T7.

According to Lemma we know it holds for T7. Now, assume it holds for some ¢ € [T7,T), and
we will show that it also holds for ¢ + 1.

. t
v L 0O (0] o' (w6 Y423 w. £Z’£’>|—nz<zm &) - 1€}

L ] 7 2
2 ez &

(@) |(&ir, &)
SO N I?EE({% . \Eg(t)\ .o (< SOT),&> +20® 4+ QZ\I’(t) W - 772 zs,&:)) ”EZ'”%a
5T )

4no’E -y/dlog(4n?/4)
U?d/Q

(@)

<w® 4 o max |€(t)| 4 - \/log(8mn/d) - cooeVd + (2 + ) - w®)a-t. 2a?d

(i47)

<g® 4 o max|€(t)| (4 \/log(8mn/8) - dooevVd + 4 - 1)171 . 2524,

Here, (i) holds due to Definition (i4) comes from Lemma|[C.3] Lemma C.2]and the choice of
T. (i42) is due to the condition of d. By summing the above over ¢ , we have:

) t—1 o~
v < ™ 4 S max |6 0(o2d) (00 €]12)" !
S:Tl

(”) t—1
< ¥ + O (o2d) (oo ¢]l2) Y max s

s=T1

(#4%)
Dy 4 Gmtota ol Y Le(W)

S= T1

(iv) ~
< BT 4 O(m2 SNR™)(0]€]))7 "

—~

v) -
< (00[l€llz) + O(m?(ne)?(ne)~172=/4) (00 €] 2)
(v9)
< 2(00/€]l2)-
Here, (i) holds due to induction hypothesis (#4) is by |[¢'| < £, (i4i) comes from maxz é(s) <

Sl = nLp(W®): (iv) is due to 25, Lp(W®) < 04 Lp(W®) = O(n~'m? [v]3)
from the choice of T'; (v) is by the COIldlthIlS of o9 and SNR; (m) 1s due to (ne)?tt > m.

O
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Now we consider the generalization performance of the privately trained model. Given a new data
point (x,y) drawn from the distribution defined in Definition [3.1] we assume x = [yv, £] without
loss of generality.

Lemma E.6. Under the same conditions as signal learning, we have that max; , |<W§t7),, &) <1/2
forall0 <t <T.

Proof of Lemma According to the signal-noise decomposition, the private model satisfies:

t
t 0 t t —
w =w!% i Tl vy v+Z<1>m l&i152 - & +Zg21 l&l;% & —n 2.
s=1

Then, we have

log(4n?/0)
d
log(4n?/9) N

0 t
(w N,sm 2 w &) +128) [+ 18%) | + 8n a+0.1

(i1)
< 2y/log(8mn/9) - aooeVd + ogoeVd + 8n +0.1

(i)
< 1/2.

Here, (i) holds due to Lemma and the assumption of training iterations; (i¢) comes from
i

Lemma (#41) is driven from the condition of o and the assumptions of ne, d. O

Lemma E.7. Under the same assumptions as Theorem 4.3, with probability at least 1 —
4~mTeXp(—C'1_100_2U£_2d_1), we have max . |[(w jT,£>| < 1/2forall0 <t < T, where C; =
o(1).

Proof of Lemmal[E.7l Define v~v§-7) = W( ) _ j-T
Additionally, we have:

ti V. It follows that (v~v§-?,,£> <JT,£>

Ivi3

(
J,

152112 < OoVd + nog + ousevd) = O(o0vd),

where the equality holds due to the condition d > ﬁ(m2n4) and the analysis in Theorem
Thus, we know that max; . ||VA\7§?||2 < Cyo9Vd, where C; = O(1). Since <v~v§fl,£> follows a
Gaussian distribution with mean zero and standard deviation bounded by C;0g0¢ V/d, the probability
of deviation can be bounded as:

~ (1) 1
P - >1/2) <2 ————
(|<Wj,rv€>| > 1/2) < 2exp( Sclzago_gd)

By applying a union bound over all indices j, , and ¢, the proof is complete. O

Lemma E.8 (Restatement of Corollary {.8). Under the same conditions as above, for any t < T
with Lp(W®)) < k, with at least probability 1 —1/d, it holds that Lp(W 1)) < 65 + exp(s~2/9).

Proof of Corollary[d.8] Let K represent the event where Lemma holds. We can partition
Lp(W®) into two components:

E[t(yf (W, x))] = E[L(K)0(y /(W ,%))] + E[L(K)(y f (W), x))]

11 12

We will now bound I; and I separately. The term /; can be bounded by 6L p (Wt) < k according
to Lemma D.8 in |Cao et al.| (2022)). Next, we bound the second term I>. We select an arbitrary
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training data point ( x;/, y,;- ) such that y;; = y. Then, we have:

Uyf (W, x)) < log(1 + exp(F_, (W), x)))

(i)
<1+ F_,(W® x)

Dl sl s Y o(whe)

j=—y,r€[m] j=—y,r€[m]
(iid) 1 ®
< 1+ F_yi/ (W—yu ’ Xi/) + E Z (<W],r7 >)
j=—y,r€[m]
(v) 1
<2+ — Z (< j T €>)
j=—y,r€[m]

D 54 BVl

Here, (i) is due to F,,(W®) x) > 0; (ii) follows from the property of the logarithmic function;
(4i7) holds due to

1
— Z o((w §t1)vyv>) SFy(Weoy,xi) =F_y, (W_y,,xir);

j=—vy,r€[m]

(v) is by Lemma (iv) comes from Lemma that ||v7/§t3|‘2 < O(ooV/d). Therefore, we can
bound term 2 as follows:

NiZia) ¢4+o (c0v/d)2)E[€]12

(#47) ~
< exp[—Q(aO_205_2d_1) + poly log(d)]

()
< exp((ne) Y.
Here, (i) holds due to Cauchy-Schwartz inequality; (i) and (i%i) come from the fact

\/4 + O((0oVd)20)E[|€]129] = O(poly(d)) and Lemma (v) is by the condition of oy <
(ne)~1=1/49||¢||5 . This completes the proof. O

F NOISE MEMORIZATION

Lemma F.1. Under the same conditions as noise memorization, then it holds that B > 0q0¢ Vd /4>

20m/ W@, if we have oy > 80n/ W@ -min{(oevV/d) "L [[v]5 1}

Proof of Lemma[FE1l Given the SNR condition in noise memorization gg(\/&)q > Q(n||v]|9), it
follows that: o¢v/d > ||v||2. Thus, we have:

aoag\/ﬁ _ 09

log(4n?
4 vy -max{oeVd, ||v]2} > 20n Ma

3>
b=z d

where the first inequality follows from and the last inequality is a result of the lower bound condition
on oy stated in noise memorization.

O
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F.1 FIRST STAGE

Lemma F.2 (Restatement of Theorem[d.10). Under the same conditions as noise memorization, in
particular, if we choose

0292 10g(20/ (dooeVd))(1/210g(8m/5))12 € < C'log(10/0¢0eV/d)
0.154-2 "(1+SNR) = 0.15¢ %
(20

n~'SNR™? >

where C' = O(1) is a positive constant, then there exist
_ Clog(10/(ogoeVd))dmn
0.150-2pgod 2 (02Vd)e

such that
e max;, ") > 2 foralli € [n].
7T T g,re
* max;, [, = = O(oo||vl|2) forall 0 < t < Ty.
* max; |<I)§t31| = (ogagxf)forallo <t<T.
. + . m gomne _
Proof of Lemma[E2 First, let 7," = min{ 21 (2o Em )Tl A IE T e - Ac

cording to the proof of Proposition , it follows that Qgtzl > —f3 — 16n4/ W o —02.
Notably, the constant 0.2 here is chosen for simplicity in the proof and can be replaced with any

value. For example, if we take @gt?_i > —f — 16n4/ Ma - 6(0005\/@, the proof of

Proposition [D.3| still holds, provided that T < % Moreover, we have @Stlz < 0 and

B<B= 0(0005\[) Therefore, max; , ; |<I>j”| = (0005\[).

Now, we proceed to prove the dynamics of F( 1) Similar to the signal learning, we define A®) =
max;, r{F(t) + [(w! W O =y X, (2, >} then it holds that

t+1 t n t
e T D’” o (w3 - ) VB

t

n
<7+ Z O+ T8 =y Yz DIV @b
s=1

v
A(t+1) < A(t nqun|‘2[A(t ]q 1 +77yz‘<Zt+1,V>-

Next, we will prove A < 349 for t < T;" by induction. First, A(®) < 3A() holds at t = 0 due
to the definition and we assume it holds for ¢. Now suppose that there exists some ¢ < 7} such that
AG) <240 holds 0 < s < t — 1. Applying a telescoping sum to Equation yields:

t 2 t
v
A< AO 1Y %[A(”]q*1 + ) nyi(Zet1,v)
s=0 s=0

ng|v|3T5 371
m

(@) ~
< A0+ [AO 4 Oouv]2)

(1) 2T+ q—1
& a0 ¢ MIVETS AR - o lvilz)o? A 4 A©
m

(? 3A0),

Here, (i) holds due to the induction hypothesis and 7" < PR ABE (i) follows Lemma

and (4ii) is derived from 7,". Moreover, we have max; i) < A0 4 max;, r{|< W T, >| +

~ j7’,‘
Yin ZZ:1<ZS,V>} <540 = O(ao||v]2).
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Now, we consider proving that the maximum of noise memorization is larger than 2. For y; = 7,
according to Lemma[D.5] we have:

1 2/5 :
W, €) > (wi®, &) + 89, —sn %a—zws,s»

s=1

>3\ 4 (wi%. &) — 045 - Z 25, ;).
s=1

Similar to the proof of signal learning, let BZ-(t) = MaX =y, , {<I>§t2z + (ng, ) — 048 —

ZZ:1<ZS, &;)}. For each i, let Tl(i) denote the first time in the period [0, 7} Jsuch that fi)(t) > 2.
For ¢ < Tl(i), it holds that maxj’r{@(t) [, |<I>§t; ;I3 = O(1) and max; , Fﬁ < 440 = O(l).
Therefore, by Lemmaand Lemma m we have F_; (W®) x;), F 1 (W® x;) = O(1). Asa
result, there exists a positive constant C such that 74(1‘/) >(Cqiforall) <t < TI(Z). Additionally,

it is clear that Bgo) >0.65 > 0.15000¢ v/d. We can then analyze the dynamics of Bgt).

1 Cingll€]l3
BIT2BY BTt €
(i) 017’](] 6
2 1+ QR 0250 g, )
(i1) C10.1572g08 2 €14
Y+ 1 190 ||£||2)B§t)_n<zt+1,£>

mn

159 2pqod 2| |€]4 i L—1
GOITmagh 8 e ) gf 5O — (L yyig,,, ).

Let ¢ = (14
mn ge —1

Here, (i) and (i7) follow from that the facts A(*) is increasing and max,.<w1 &) Zs 1(2,€) >

0; (i4) is the summation of geometric series. Additionally, we know that 1 + z > exp(z/2) for

z <2and 1+ z < exp(z) for z > 0, then the following inequality holds

BO 5 (1 4 Com015 20 el o dmn_ el £ 8])
o 4mn ’ C10.159 20~ H€||2 mne
q—2 q—2 q q—2 q—2 q
+ exp(CM8 OABRES i exp( C1998 0152 €l €IV
dmn (C1¢0.1592¢ ||§H2 dmn mne
A(vll2 + [1€]]2) C1ng0.157 20" H£H2
= (0.150 — - ex t
(01500l = o T2 espl - )

C1ng0.15% 250> |1€]|4
4dmn

> 0.10¢][€]|2 - exp(

t),
where the last inequality holds due to the choice of 0. Therefore, it is clear that B, ®)

ci1t Clog(10/(cooeVd))dmn

within Tl(z) iterations. Moreover, we can verify that

will reach

iterations, which indicates that max;—,, , i)(t) will reach 2

B C'log(10/(cooeVd))dmn P
0159 2ngof 2(o2Vd)t

gomne(||vll2 + €]l2) 7 = T,

The inequality follows from the SNR condition in Equation . Hence, by the definition of T(i),
T\ < Ty < T} /2 holds.
O
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F.2 SECOND STAGE

It is clear that we have the following results at the end of the first stage:

n Ty
R N T AP LT ||2+Z*57;11 O
o i=1 2 s=1

2 =1

Meanwhile, at the beginning of the second stage, we have the following results:

. maxjﬂn(b( 1) > 2foralli € [n].

j’l”L
* max;, ;) = O(ao|[v|2) forall 0 < t < Ty.
(*)

]rz|_

. maxjm@ (angf) forall 0 <t <Tj.

Based on Lemma and Lemma . we conclude that noise memorization <I)( 1) does not dete-
(I)(t""l) (I)(t)

7,751 7,77

riorate over time. Specifically, for any 77 < ¢ < T7, it holds that

max;,, (i)yfw > 2. If we consider w7 . = 52 +2gmlog(2q/k)) > iy 1(j = yi) - W]’ then we

can derived:

which implies

Lemma F.3. Under the same conditions as noise memorization, we have that ||[W (™) — W*||p <
O(anl/gagld’l/Q) + O(nmay).

Proof of Lemma According to triangle inequality, we have
W — W < W) — W(O)HF + WO — Wl
Tl) Tl) | (T1)|

Ty
—Z srrl S il 5 SR 06 g1/ v
EE ||a||2 2], e

(i) ~ ~

< O(m|v|™) + O(n\/aagldfl/z) + O(moyg) + O(m3/?n1/? 1og(1//<)05_1d71/2)
(ZZ 6( 1/20_€—1d—1/2).

Here, (i) holds due to the decomposition of w in Definition and the definition of W*; (i7)

follows from Proposition Lemma and Lemma (i27) comes from the conditions of o
in noise memorization. O

Lemma Fd4. Under the same conditions as noise memorization, we have that
(VW x:), W*) > qlog(2q/k) foralli € [n] and T} <t < T*.

Proof of Lemma [E4] We know that

fW = (1/m) ZJ (Wi, g - V) + o (Wi, &)
Therefore, it holds that
1
v (VIWO x; Za S VDV W) D (Wil &) (wiin dw,)
7,r
LS S () 4) 20m o 20/m) 1 = i) T
j’l“ =1 v
+— ZU ]rayz DAV, ]W ZU §ta)~7 yzEza]W )>

(” i Zg w; ,,yl v))2gmlog(2q/k) — %ZU (¢ 51&7)’% ))O(00]|v]l2)

7,r

—*Z (w2, €)0(on0eVd) — 3" o' (w1}, )0 (mnd 1),

Jir
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where () holds due to the definition of w* and (ii) follows from Lemma|C.2} Moreover, according
to Lemma|[D.4] we have that for j = y;:

_ log(4n?/4d)
maef(w!!) &)} = max(@() 1 (wi%, &) - sny B —nzzs,yz

Here, (7) holds due to the analysis in LemmaE Additionally, we can also have

[(wlh), w2 wi vy + ¢ |+|nzzs, B

log(4n?/6) (iv) ~
i, €01 < Il 0] + 1o, Pell/o), +|nzz57ez )1'< o).

Here, (i) holds due to Lemma and Lemma [D.8} (i) is given by Lemma D.5} (ii) and
BXj

(4v) follows from Proposition and Lemma Combining these results, we return to
yi(VF(W® x;), W*), which gives:

(VWD x;), W*) > 2¢log(2q/r)—O0(00||v]|2) —O (000 Vd)—O(mnd~'/?) > qlog(2q/r),
where the last inequality is driven by the conditions as noise memorization that ¢ > 1/qlog(2q/k).
O

YR

Lemma F.5. Under the same conditions as noise memorization, it holds that
WO W3~ [WHD—W* |2 > (2g—1)nLp(W®)—nr—n?O(do?)—nO(c.m*n' ot d=/?)~O(0.nmay)
forallTy <t <T*

Proof of Lemma According to the optimization properties, we know the first equality holds:
W — W[ — [WHD — W3,
= 29(VLs(W®), W — W*) —?|VLs(W)]|7

0% SO qy f WD, %) — (VFWD, x;), W] + 1z, WO — W)
n
i=1

— n*(O(max{||v|}3,08d}) Lp(W®) + O(o2dlog(1/4)))

@ 2 Zé'(t » Y x;) — qlog(2q/r)] (22)
+ n<zf,w< )W) - <0<max{||v|\§,ogdeD(w(”) + 0(0%dlog(1/5)))
2 2 Z yi FOWD x2)) — 1/ (29)]

n0(o. m2n1/2 <1 d7?) = (O(max{|[v[3,0¢d}) Lp (W) + O(02dlog(1/5)))

(iv) ~ ~

> (2¢ — 1)nLp(W®) =k — n20(do?) — nO(Uzanl/QUgld_l/Z).
Here, (i) holds due to the definition of noisy gradient, the neural network is ¢ homogeneous, and
Lemma [D.9; (i) is driven from Lemma [F.4} (ii7) is due to the convexity of the cross entropy
function; (iv) comes from definition of L p. O
Lemma F.6 (Restatement of Corollary @.11). Let T, Ty be defined in respectively. Then under the
same conditions as signal learning, for any t € [T1,T), it holds that |F§t2\ < oo||vll2 for all

Jj € {:I:l} and r € [m]. Moreover, let W* be the Collection of CNN parameters with convolution
filters w , ( ) +2gmlog(2q/k)) > i 1(j = i) - T ” |- Then the following bound holds

: Z Low®) < W =W Kk ndo?+O(ozm®n! o td 112
t=Ti+1 & T (2¢-Dnt-Ti+1)  (2¢-1) (29 -1)

Private terms

forall t € [Ty, T], where we denote |W || = \/|[Wi1][% + [[W_1]2.
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Proof of Lemma[E6l According to LemmalE.4] we have, for any ¢t < T
WO —W* |5~ [WED W3 > (20— 1)nLp (W) —nr—nO(do2)—nO(a.m*?|v]3 ).
By summing over all terms and dividing ¢ — 77 — 1 on both sides, we obtain:

Z Lo W) — W2 o ndo? + 5(azm2n1/20g1d—1/2).
t_T1+1 (2(1_1) t-Tv+1) (2¢—1) (2 — 1)
_ [WTD w2, | Crmne . )
If we have T' = Tl + I_ 21k EJ = e(vIz+El=) > K, then it holds that
||W(T1) _ W*H%«“ K 3k

2¢q—1n(T-T1+1) 2¢—1" 2¢—1’

. _ 1 .
and with o, = ik

ndo? + Olozm?n!/ 2o d"1%) d m*n' 2 €]l vl @ &

< )
(2¢-1) T (2 - 1) mvT(2¢—1)  ~— (2¢—1)
where (7) comes from the assumption of 7. Therefore combining above results, we conclude that

1

—_— Lp(W®) <

t—T1+1Z:; p(WH) < s
S=11

Moreover, we will use induction to prove that max; ; [I'% .| < 20¢||v||2 holds for all ¢t € [T}, T].

According to Lemma we know it holds for T7. Now, assume it holds for some ¢ € [T7,T), and
we will show that it also holds for t + 1.

t Ty) U - t s
Iy =15 —anZW o' (W) i V) T3, = (2, V) VI3,
s=T1 i=1

204 B e S 30
s=Ty 1=1
) t—1
< T 4 g5y v B oo v]2)T Y Ls(W)
s=T,
(i) N
< T+ (0]|v]2)*~ O(m*n SNR?)
(iv) B
< T 4 (g v]|2) (ne) 0= D/90 (m2n1—2/9)

< T
@
<27

Here, () is due to induction hypothesis and the choice of T’; (i) holds by |¢'| < ¢; (i) comes from
Lemma|F.3|and the choice of T’; (iv) is driven from o < (ne)~/9||v||;* and SNR; (v) holds due
to nl/ie > m. O

Lemma F.7 (Restatement of Corollary 4.12). Under the same conditions as data noise memoriza-
tion, within T iterations, regardless of how the sample size n and privacy budget € chosen, with

at least probability 1 — 1/d, we can find W) such that Lp(WT)) < k. Additionally, for any
0 <t < T we have that LD(W@) > 0.1.

Proof of Lemma[E7l Consider a new sample (x, y) drawn from Definition [3.1} we have:

t
Il = I+ 712 mnsuﬁzw'nw 12l
=1 =1 5 s=1
n &) n_ et

Dt Z Hgﬂl' + ||77229H2
(i)

< O(Jof)JrO(no Ya- 1/2)+O(nﬁoz)
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Here, (7) is due to triangle inequality; (é¢) holds by Lemma and Proposition Addition-
ally, we know that (w'"), &) ~ N(0,02||w'")[|3), it holds that with probability at least 1 — 1/4,
|<w§t2, ) < 6(0005\/g + nd=Y? + @) due to o, = oo/(nV/T). Moreover, accord-
ing to Lemma we have max; , ) < O(oo||v]|2), which also indicates that \(W(t) v)| <

~ Jr YR
O(ao|lv|l2)-

Then, by the union bound, with probability at least 1 — 1/2, we have

<max <W](t7)n, v)|? + max \<w§t3, &)\

(9 ~9,79/2 —q/2 q q Ug”&”%
SO(O'(]O'qu +nid™1 +O'O||VH2+T)

@~ 1 1 1
smg+wmw+

)

ne e
(i1)
< 1.
Here, (i) and (i7) holds due to we restrict oy = O(c1||€[|2) and £2 > O(1). Notice that here 1 can

be any number, and we use 1 without loss of generality. Therefore, with probability at least 1 —1/2,

we have £(y - f(W®),x)) > log(1 + e~!), which indicates that Lp(W®) > log(1 +e~1)-0.5 >
0.1. O
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