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ABSTRACT

Differentially private Stochastic Gradient Descent (DP-SGD) has become inte-
gral to privacy-preserving machine learning, ensuring robust privacy guarantees in
sensitive domains. Despite notable empirical advances leveraging features from
non-private, pre-trained models to enhance DP-SGD training, a theoretical un-
derstanding of feature dynamics in private learning remains underexplored. This
paper presents the first theoretical framework to analyze private training through
the feature perspective. Inspired by the multi-patch structure in image data, we
model a novel data distribution by clearly defining label-dependent features and
label-independent noise—a critical aspect overlooked by existing analyses in the
DP community. Employing a two-layer CNN with polynomial ReLU activation,
we quantify the learning dynamics of noisy gradient descent through signal-to-
noise ratio (SNR). Our findings reveal that (1) Effective private signal learning
requires a higher signal-to-noise ratio compared to non-private training, and (2)
When data noise memorization occurs in non-private learning, it will also oc-
cur in private learning, leading to poor generalization despite small training loss.
Our findings highlight the challenges of private learning and prove the benefit of
feature enhancement to improve SNR. Experiments on synthetic and real-world
datasets also validate our theoretical findings.

1 INTRODUCTION

Differentially private (DP) learning has emerged as a cornerstone of privacy-preserving machine
learning, addressing growing concerns about data privacy in sensitive domains such as healthcare
Lundervold & Lundervold (2019); Chlap et al. (2021); Shamshad et al. (2023), finance Ozbayoglu
et al. (2020); Bi & Lian (2024), and user-centric applications Oroojlooy & Hajinezhad (2023). Dif-
ferential Privacy, introduced by Dwork et al. (2006), provides robust privacy guarantees by limiting
the impact of any individual data points on the model’s output. Among DP learning methods, differ-
entially private stochastic gradient descent (DP-SGD) Abadi et al. (2016) has emerged as a canonical
algorithm for training private machine learning models.

However, DP-SGD often comes with a significant cost in model accuracy Shokri & Shmatikov
(2015); Abadi et al. (2016); Bagdasaryan et al. (2019). To improve the performance, recent work
Tramer & Boneh (2020) shows that DP-SGD training benefits from handcrafted features and can
achieve better performance by leveraging features learned from public data in a similar domain.
Similarly, Tang et al. 2024b highlights the advantages of transferring features learned from synthetic
data to private training, while Sun et al. 2023 and Bao et al. 2023 illustrate the importance of feature
preprocessing in private learning. These findings suggest that improving feature quality is essential
for effective private learning. Benefiting from this principle and the advent of large-scale foundation
models, DP-SGD has demonstrated significant performance boosts by learning features from non-
private models pre-trained on large public datasets Tramer & Boneh (2020); Li et al. (2021); De
et al. (2022); Arora & Ré (2022); Kurakin et al. (2022); Mehta et al. (2023); Nasr et al. (2023); Tang
et al. (2024a); Bu et al. (2024b).

Despite the empirical success of DP-SGD from enhanced features, the theoretical understanding of
these phenomena remains in its infancy. Previous work on DP learning has primarily focused on
analyzing the utility bounds of private models, such as DP-SGD and its variants, with a particular
emphasis on both convex Bassily et al. (2014); Wang et al. (2017); Bassily et al. (2019); Feldman
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Figure 1: Illustration of images with feature signal and data noise.

et al. (2020); Song et al. (2020); Su & Wang (2021); Asi et al. (2021); Bassily et al. (2021b); Kulkarni
et al. (2021); Tao et al. (2022); Su et al. (2023; 2024) and non-convex models Zhang et al. (2017);
Wang et al. (2017); Wang & Xu (2019); Zhang et al. (2021); Bassily et al. (2021a); Wang et al.
(2023); Ding et al., leaving the role and explanation from the feature learning perspective largely
unexplored.

Only two recent works have studied the theoretical aspects of features in private learning, both with
several limitations. Sun et al. 2023 confines its analysis to simple tasks using linear classification
models without addressing applicability to neural networks. Wang et al. 2024 investigates feature
shifts during private fine-tuning of the last layer under the framework of neural collapse Papyan
et al. (2020), simplifying the private model with the assumption of the equiangular tight frame
(ETF). Furthermore, both works focus exclusively on utility, providing limited explanations of the
learning dynamics of features in private learning. We will provide more discussions later.

In this paper, we develop a novel theoretical framework that studies the learning dynamics of features
in noisy gradient descent, a simple version of DP-SGD. Inspired by the structure of image data, we
consider a data distribution modeled as a multiple-patch structure, x = [y · v, ξ] ∈ (Rd)2, where
y ∈ {+1,−1} is the label, v represents the useful label-dependent feature signals, ξ refers to label-
independent data noise randomly sampled from a Gaussian distribution with standard deviation σξ

and d is the dimension. For example, as illustrated in Figure 1, the wheel serves as a feature for the
class ’car,’ while the cat’s eye acts as label-independent data noise.

Beyond the linear classification model, we utilize a two-layer convolutional neural network (CNN)
with a polynomial ReLU activation function: σ(z) = max{0, z}q , where q > 2 is a hyperparameter.
Given a training dataset of n samples, we quantify noisy gradient descent in terms of feature signal
learning and data noise memorization, measured through the private model w with signal and data
noise. Specifically, we present the following (informal) results:

Theorem 1.1 (Informal). Let SNR := ∥v∥2/∥ξ∥2 be the signal-to-noise ratio and ε be the privacy
budget. Under appropriate conditions, it holds that

• When min{SNR ·nε,SNRq ·n} ≥ Ω̃(1), the private CNN model can capture the feature
signal.

• When min{SNR−1 ·ε,SNR−q ·n−1} ≥ Ω̃(1), the private CNN model can capture the data
noise.

Theorem 1.1 demonstrates the two results during private training: 1) When
min{SNR ·nε, SNRq ·n} ≥ Ω̃(1) and n−1/2 ≤ ε ≤ SNRq−1, a lower privacy budget re-
quires a higher SNR compared to standard non-private training to effectively capture the signal,
emphasizing the need for feature enhancement to improve SNR. 2) When data noise memo-
rization occurs in standard non-private learning, it will also occur in private learning as long as
ε ≥ SNR1−q n−1.

Moreover, under additional assumptions, we have the following results:

Corollary 1.2 (Informal). Let SNR := ∥v∥2/∥ξ∥2 be the signal-to-noise ratio and ε be the privacy
budget. Under appropriate conditions and assumptions, for any κ>0, it holds that

• When min{SNR ·nε, SNRq ·n} ≥ Ω̃(1), the training loss can converge to κ, and the
trained CNN achieves a test loss of 6κ+ exp((nε)

−1−1/q
).

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

• When min{SNR−1 ·ε, SNR−q ·n−1} ≥ Ω̃(1), the training loss can converge to κ, but the
trained CNN incurs a constant-order test loss regardless of how the sample size n and
privacy budget ε chosen.

Corollary 1.2 demonstrate two conclusions. First, in an ideal scenario, private learning can achieve
an arbitrarily small training loss, and its test performance is influenced by both the sample size n
and privacy budgets ε. Second, even if private learning achieves a small training loss, it may still fail
to deliver good test performance, regardless of how the sample size and privacy budget are chosen.
This limitation arises because the private model primarily learns label-independent data noise rather
than label-dependent feature signals. We summarize our contributions below:

• We present the first theoretical framework of the DP-SGD dynamic through a feature per-
spective. Our work, inspired by a multi-patch data structure, introduces a clear definition
of label-dependent features and label-independent noise—a critical aspect overlooked by
existing analyses of DP-SGD.

• We provide a detailed theoretical analysis of feature signal learning and data noise memo-
rization in the private setting with a two-layer convolutional neural network model. Specif-
ically, based on the signal-to-noise ratio, we show that 1) Effective private signal learning
requires a higher signal-to-noise ratio (SNR) compared to non-private training. 2) When
data noise memorization occurs in standard non-private learning, it will also occur in pri-
vate learning as long as ε ≥ SNR1−q n−1. Consequently, the private model fails to gener-
alize well, even when achieving a small training loss, regardless of sample size and privacy
budget.

• Our findings underscore the importance of feature enhancement techniques in improving
SNR for effective private learning, aligning with previous empirical work Tramer & Boneh
(2020); Sun et al. (2023); Bao et al. (2023); Tang et al. (2024b). We conduct simulation
experiments on CNNs and validate our theoretical analysis across various privacy budgets
and signal-to-noise ratios. Additionally, experiments on the CIFAR-10 Krizhevsky (2009)
dataset also explore the impact of SNR in private learning.

2 RELATED WORK

Differentially Private Learning The most widely used technique for differentially private training
in deep learning is differentially private stochastic gradient descent (DP-SGD). However, the ac-
curacy of private deep learning still significantly lags behind that of standard non-private learning
across several benchmarks McMahan et al. (2017); Papernot et al. (2021); Tramer & Boneh (2020);
De et al. (2022). To bridge this gap, various techniques have been proposed to enhance DP learning,
including adaptive gradient clipping methods that dynamically adjust clipping thresholds Andrew
et al. (2021); Bu et al. (2024a), feature extraction or pre-processing before applying DP-SGD Abadi
et al. (2016); Tramer & Boneh (2020); De et al. (2022); Sun et al. (2023); Bao et al. (2023); Tang
et al. (2024b), parameter-efficient training strategies via adapters, low-rank weights, or quantization
Yu et al. (2021); Luo et al. (2021), and private noise reduction techniques using tree aggregation
mechanisms or filters Kairouz et al. (2021); Zhang et al. (2024).

Theory on Differentially Private Learning There has been a recent line of work that focuses on the
differential private optimization problems, which includes standard results for private empirical risk
minimization Chaudhuri et al. (2011); Bassily et al. (2014); Wang et al. (2017); Wang & Xu (2019)
and private stochastic convex optimization Bassily et al. (2019); Feldman et al. (2020); Bassily et al.
(2021a). These studies have also been extended under various assumptions, such as heavy-tailed
data Wang et al. (2020); Hu et al. (2022); Kamath et al. (2022) and non-Euclidean spaces Bassily
et al. (2021a); Asi et al. (2021); Su et al. (2023). Despite extensive research on DP optimization
theory, the theoretical understanding of private deep learning remains largely unexplored, particu-
larly from the feature perspective. Only two recent studies have explored the theoretical aspects of
features in private learning. Specifically, Sun et al. 2023 focuses on a linear classification model,
whereas we analyze a more challenging two-layer neural network model with a polynomial ReLU
activation function. Wang et al. (2024) considers a last-layer model converging to the columns of an
equiangular tight frame (ETF), which simplifies the learned features to normal vectors via a rotation
map and the model is still in a linear form. In contrast, our approach goes beyond this simplification.
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Moreover, while Wang et al. (2024) emphasizes feature shift behavior, our work primarily focuses
on training dynamics and the importance of feature enhancement.

3 PRELIMINARIES

In this section, we introduce the necessary definitions and formally describe private learning under
the multi-patch data distribution and the convolutional neural network (CNN). Our analysis focuses
on binary classification, and the data distribution is defined as follows.

Notations. We use lowercase letters, bold lowercase letters, and bold uppercase letters to represent
scalars, vectors, and matrices, respectively. For a vector v = (v1, . . . , vd)

⊤, its ℓ2 norm is denoted
as ∥v∥2 := (

∑d
j=1 v

2
j )

1/2.

Definition 3.1 (Data Distribution). Let v ∈ Rd be a fixed vector representing the feature signal
contained in each data point. Each data point (x, y) with input x = [x1,x2] ∈ (Rd)2 and label
y ∈ {+1,−1} is generated from the following distribution:

(1) The label y is generated as a Rademacher random variable;

(2) The input x is generated as a vector of 2 patches, i.e., x = [x1,x2] ∈ (Rd)2. The first patch
is given by x1 = y · v and the second patch is given by x2 = ξ, where ξ ∼ N (0, σ2

ξ ·H)

and is independent of the label y, where H = (I− vv⊤ · ∥v∥−2
2 ).

Note that here H is designed to ensure that v is orthogonal to ξ, i.e., the data noise is unrelated to the
feature. Our data generation model is inspired by the structure of image data, which has been widely
utilized in previous work (Allen-Zhu & Li, 2020; Cao et al., 2022; Jelassi & Li, 2022; Kou et al.,
2023; Zou et al., 2023). Notably, we introduce a term, data noise ξ, into the data distribution, which
is often overlooked in analyses within the differential privacy community. However, this seemingly
‘negligible’ component significantly influences the model’s generalization ability, as underscored by
the signal-to-noise ratio.

Learner Model. We consider a two-layer convolutional neural network (CNN) that processes input
data by applying convolutional filters to two patches, x1 and x2, separately. The second-layer
parameters of this network are fixed as +1/m and −1/m, respectively, leading to the following
network representation:

f(W,x) = F+1(W+1,x)− F−1(W−1,x),

where F+1(W+1,x) and F−1(W−1,x) are defined as:

Fj(Wj ,x) =
1

m

m∑
r=1

[σ(⟨wj,r,x1⟩) + σ(⟨wj,r,x2⟩)], (1)

for j ∈ {±1}, where m denotes the number of convolutional filters in each of F+1 and F−1. Here,
σ(z) = (max{0, z})q represents the polynomial ReLU activation function with q>2, Wj denotes
the set of model weights associated with Fj , corresponding to the positive or negative filters. Each
weight vector wj,r ∈ Rd is the parameters of the r-th neuron/filter in Wj . We use W to represent
the complete set of model weights across all filters.

Differential Private Learning. Given a training dataset D = {(xi, yi)}ni=1, sampled from a joint
distribution D over x×y, the goal is to train the learner model by minimizing the following empirical
risk, measured by logistic loss, while simultaneously preserving privacy:

LD(W) =
1

n

n∑
i=1

ℓ[yi · f(W,xi)], (2)

where ℓ(z) = log(1 + exp(−z)). More formally, the trained private model W should satisfy the
mathematical definition of differential privacy as follows:
Definition 3.2 (Dwork et al. 2006). Two datasets D,D′ are neighbors if they differ by only one
element, which is denoted as D ∼ D′. A randomized algorithm A is (ε, δ)-differentially private
(DP) if for all adjacent datasets D,D′ and for all events S in the output space of A, we have
P(A(D) ∈ S) ≤ eε · P(A(D′) ∈ S) + δ.
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Definition 3.3 (Gaussian Mechanism Dwork et al. 2010). For a function f : Xn 7→ Rd with
L2-sensitivity ∆2(f) = maxD,D′ ∥f(D) − f(D′)∥2, where D and D′ are neighboring datasets,
the Gaussian Mechanism outputs f(D) + z. Here, z ∼ N (0, σ2

zId) is Gaussian noise with scale

σz ≥ ∆2(f)
√

2 ln(1.25/δ)

ε . This mechanism satisfies (ε, δ)-differential privacy.

Noisy Gradient Descent. Noisy Gradient Descent (NoisyGD) and its stochastic counterpart, Noisy
Stochastic Gradient Descent (Song et al., 2013; Abadi et al., 2016), are fundamental algorithms in
differentially private deep learning. In this paper, we apply the NoisyGD algorithm to optimize
Equation (2) and to update the filters in the CNN with the Gaussian mechanism.1 Specifically,

w
(t+1)
j,r = w

(t)
j,r − η · (∇wj,rLD(W (t)) + zt) (3)

= w
(t)
j,r −

η

nm

n∑
i=1

ℓ
′(t)
i · σ′(⟨w(t)

j,r, ξi⟩) · jyiξi −
η

nm

n∑
i=1

ℓ
′(t)
i · σ′(⟨w(t)

j,r, yiv⟩) · jv − ηzt.

where zt is the private noise sampled from N (0, σ2
zId), ℓ

′(t)
i is a shorthand notation of ℓ′[yi ·

f(W(t),xi)]. We assume that the noisy gradient descent algorithm starts from a Gaussian ini-
tialization, where each element of W+1 and W−1 is drawn from a Gaussian distribution N(0, σ2

0)
with σ2

0 representing the variance.

4 MAIN RESULTS

In this section, we present our main theoretical results, demonstrating how the signal-noise-
decomposition (Cao et al., 2022; Jelassi & Li, 2022; Kou et al., 2023; Zou et al., 2023) behaves
during private learning using noisy gradient descent. It is clear that Equation (3) can be represented
as a linear combination of random initialization, the signal feature, the data noise, and the accumu-
lation of private noise, which can be formulated as the following definition.

Definition 4.1. Let w(t)
j,r for j ∈ {±1}, r ∈ [m] be the convolution filters of the CNN at the t-th

iteration of noisy gradient descent. Then there exist unique coefficients Γ(t)
j,r ≥ 0 and Φ

(t)
j,r,i such that

w
(t)
j,r = w

(0)
j,r + j · Γ(t)

j,r ·
v

∥v∥22
+

n∑
i=1

Φ
(t)
j,r,i ·

ξi
∥ξi∥22

− η

t∑
s=1

zs.

We further denote Φ̄
(t)
j,r,i := Φ

(t)
j,r,i1(Φ

(t)
j,r,i ≥ 0),Φ

(t)
j,r,i := Φ

(t)
j,r,i1(Φ

(t)
j,r,i ≤ 0). Then, we have that

w
(t)
j,r = w

(0)
j,r + j · Γ(t)

j,r · ∥v∥
−2
2 · v +

n∑
i=1

Φ̄
(t)
j,r,i · ∥ξi∥

−2
2 · ξi +

n∑
i=1

Φ
(t)
j,r,i · ∥ξi∥

−2
2 · ξi − η

t∑
s=1

zs. (4)

In the decomposition of Equation (4), Γ(t)
j,r represents the extent to which the model learns the feature

signal from data, whereas Φ̄(t)
j,r,i quantifies the degree of data noise memorization by the model. Both

components are influenced by the interplay of private noise, as shown in the following lemma.

Lemma 4.2. The coefficients Γ(t)
j,r, Φ̄

(t)
j,r,i,Φ

(t)
j,r,i in Definition 4.1 satisfy the following equations:

Γ
(0)
j,r , Φ̄

(0)
j,r,i,Φ

(0)
j,r,i = 0

Γ
(t+1)
j,r = Γ

(t)
j,r −

η

nm
·

n∑
i=1

ℓ
′(t)
i · σ′(⟨w(t)

j,r, yi · v⟩) · ∥v∥
2
2

Φ̄
(t+1)
j,r,i = Φ̄

(t)
j,r,i −

η

nm
· ℓ′(t)i · σ′(⟨w(t)

j,r, ξi⟩) · ∥ξi∥
2
2 · 1(yi = j),

Φ
(t+1)
j,r,i = Φ

(t)
j,r,i +

η

nm
· ℓ′(t)i · σ′(⟨w(t)

j,r, ξi⟩) · ∥ξi∥
2
2 · 1(yi = −j)

Lemma 4.2 reveals that the process of private learning can be explored by the iterative dynamics
of Γ(t)

j,r, Φ̄(t)
j,r,i and Φ

(t)
j,r,i. It is noticed that private noise only influences the interior of σ′(·). Since

1Note that, similar to previous studies on the theory of DP-SGD, we assume there is no clipping on gradients.
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ℓ
′(t)
i < 0, Lemma 4.2 provides favorable properties for the dynamics of Γ(t)

j,r, Φ̄(t)
j,r,i: Γ

(t)
j,r and Φ̄

(t)
j,r,i

increase monotonically, while Φj, r, i(t) decreases monotonically. Then, we could demonstrate that
these coefficients remain bounded throughout the private training process.

Proposition 4.3. Under appropriate conditions, Let T ∗ =
η−1 poly(κ−1, ∥v∥−1

2 , d−1σ−2
ξ , σ−1

0 , n,m, d) and T ∗
p = min{T ∗, η−1Cmnεσ0µ

−1(∥v∥2 + ∥ξ∥2)−1},
where C = 4 log(T ∗) = Õ(1) and µ = max{1, ∥v∥2, ∥ξ∥2}. Then, with at least probability
1− 1/d, it holds that, for t ≤ T ∗

p :

• 0 ≤ Γ
(t)
j,r, Φ̄

(t)
j,r,i ≤ 4 log(T ∗

p ) for all j ∈ {±1}, r ∈ [m] and i ∈ [n].

• 0 ≥ Φ
(t)
j,r,i ≥ −2maxi,j,r{|⟨w(0)

j,r ,v⟩|, |⟨w
(0)
j,r , ξi⟩|}−16n

√
log(4n2/δ)

d −0.2 ≥ −4 log(T ∗
p )

for all j ∈ {±1}, r ∈ [m] and i ∈ [n].

Compared to standard training Cao et al. (2022); Kou et al. (2023), private learning also ensures
bounded coefficients but imposes stricter limits on the maximum number of training iterations due
to the cumulative effect of private noise.

Lemma 4.4. For any iteration t, with at least probability 1− 1/d, it holds that

|η
t∑

s=1

⟨zs,v⟩| ≤
ηC

√
tT∥v∥22 log(d)
mnε

(1 +
1

SNR
), (5)

|η
t∑

s=1

⟨zs, ξi⟩| ≤
ηC

√
tT∥ξ∥22 log(d)
mnε

(1 + SNR). (6)

Lemma 4.4 characterizes the influence of private noise (zt) on the training process by decompos-
ing its interaction with the feature signal (v) and data noise (ξ). According to Equation (3), the
gradient sensitivity at each step can be bounded by C(∥v∥2+∥ξ∥2)

nm , where C = Õ(1) follows from
Proposition D.3. Here, T denotes the total training iterations, which differs from T ∗

p , the maximum
permissible iterations. Moreover, recall the definition of SNR := ∥v∥2/∥ξ∥2, then the Equation (6)
can be further represented as

|η
t∑

s=1

⟨zs, ξi⟩| ≤
ηC

√
tT∥v∥22 log(1/δ)

mnε
(

1

SNR2 +
1

SNR
).

It indicates that the cumulative influences of private noise on both the feature signal and data noise
are affected by the SNR. Specifically, when the SNR exceeds 1, the effect of private noise on the
data noise becomes less significant.

Our analysis is based on an over-parameterized model, ensuring that the model has the capacity to
learn sufficient feature signals. However, a critical question arises: given the over-parameterization,
the model may also learn substantial data noise. Thus, under what conditions does the model priori-
tize learning feature signals over data noise? To address this, we analyze two scenarios based on the
signal-to-noise ratio.

4.1 FEATURE SIGNAL LEARNING

Next, we first introduce conditions that guarantee the model’s ability to effectively learn feature
signals.

Condition 4.5 (Conditions of Signal Learning). Suppose that:

• Dimension d is sufficiently large, specifically d = Ω̃(m2∨[4/(q−2)]n4∨[(2q−2)/(q−2)]).

• Training sample size n and neural network width m satisfy n,m = Ω(poly log(d)).

• The learning rate η ≤ Õ(min{∥v∥−2
2 , ∥ξ∥−2

2 }).
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• The standard deviation of Gaussian initialization σ0 is appropriately chosen such that
Õ((nε)−

1
q ∥v∥−1

2 ) ≤ σ0 ≤ Õ(min{ε−
1
q ∥ξ∥−1

2 , (n)−
1
2q ∥v∥−1

2 , (nε)
−q−1

q ∥ξ∥−1
2 )}).

The conditions on d,m, n are set to ensure that the learning problem is in a sufficiently over-
parameterized setting, similar to the assumptions adopted in Cao et al. (2022); Frei et al. (2022);
Chatterji & Long (2023); Kou et al. (2023). Additionally, the conditions on initialization σ0 and
step size η are to guarantee that gradient descent can effectively minimize the training loss. In
private deep learning, the privacy budget is typically moderately larger compared to private opti-
mization theory Abadi et al. (2016); Tramer & Boneh (2020); De et al. (2022); Sun et al. (2023);
Bao et al. (2023); Tang et al. (2024b;a). Therefore, we assume that the privacy budget remains larger
than 1/

√
n here.

Theorem 4.6. Under the same conditions as signal learning, if min{SNR ·nε, SNRq ·n} ≥ Ω̃(1),
with at least probability 1− 1/d, there exists T1 = O( log(1/σ0∥v∥2)4

q−1m

ηqσq−2
0 ∥v∥q

2

) such that

• maxr Γ
(T1)
j,r ≥ 2 for j ∈ {±1}.

• |Φ(t)
j,r,i| = O(σ0σξ

√
d) for all j ∈ {±1}, r ∈ [m], i ∈ [n] and 0 ≤ t ≤ T1.

Here, we present one of our formal results. Based on Prop. 4.3 and Theorem 4.6, at the end
of the training stage T1, when min{SNR ·nε, SNRq ·n} ≥ Ω̃(1), the maximum signal learn-
ing, maxr Γ

(T1)
j,r , achieves Θ̃(1). Additionally, as the initialization scale σ0 satisfies σ0 ≤

Õ((nε)−1−1/q∥ξ∥−1
2 ) in Condition 4.5, this indicates the memorization of data noise, |Φ(t)

j,r,i| re-
mains bounded by Õ((nε)−1−1/q) and it is smaller than the feature signal when ε ≥ 1/

√
n. More-

over, compared to non-private learning, the condition SNR ·nε ≥ Ω̃(1) introduces more challenges.
Even when the feature learning conditions (SNRq ·n ≥ Ω̃(1)) for standard non-private learning are
satisfied, private learning may still fail to capture the feature signal if SNR ·nε ≤ Ω̃(1) ≤ SNRq ·n.
It demonstrates stronger feature signals are required in private learning compared to non-private
learning, which aligns the empirical principles in previous work Tramer & Boneh (2020); Sun et al.
(2023); Bao et al. (2023); Tang et al. (2024b).

Moreover, we can further demonstrate that if some stronger assumptions are satisfied, the following
corollary ensures that private learning can achieve training loss comparable to those of non-private
learning.
Corollary 4.7. Let T, T1 be defined as above. Then, under the same conditions as signal learning,
for any t ∈ [T1, T ], it holds that |Φ(t)

j,r,i| ≤ σ0σξ

√
d for all j ∈ {±1}, r ∈ [m] and i ∈ [n] if

(nε)q+1 ≥ m. Moreover, let W∗ denote the collection of CNN parameters with convolution filters
defined as w∗

j,r = w
(0)
j,r + 2qm log(2q/κ) · j · ∥v∥−2

2 · v for a constant κ > 0. Then, with at least
probability 1− 1/d, the following bound holds

t∑
s=T1

LD(W(s)) ≤ ∥W(T1) −W∗∥2F
(2q − 1)η

+
(t− T1 + 1)κ

(2q − 1)︸ ︷︷ ︸
Non-private terms

+(t− T1 + 1) · ηdσ
2
z + Õ(σzm

3/2∥v∥−1
2 )

(2q − 1)︸ ︷︷ ︸
Private terms

(7)

for all t ∈ [T1, T ], where we denote ∥W∥F =
√

∥W+1∥2F + ∥W−1∥2F .

Corollary 4.7 characterizes the empirical risk of private learning under signal learning conditions,
which can be decomposed into two terms. For standard non-private learning, by setting T = T1 +

⌊∥W(T1)−W∗∥2
F

2ηκ ⌋ and dividing t− T1 + 1 into both sides, the non-private term in the empirical loss
can be bounded by 3κ

2q−1 , allowing the empirical loss to converge to κ. However, private learning
introduces two key differences: 1) There are stricter limitations on the total training time, which may
prevent T from being as large as necessary for stable training. 2) In addition to the non-private term,
the empirical risk involves a private term that appears unbounded, posing additional challenges to
achieving convergence. Nonetheless, if we can assume the data satisfies:

T = T ∗
p = O(

mnεσ0

ηµ(∥v∥2 + ∥ξ∥2)
) = T ∗ ≥ κ−1,

7
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(a) ε = 5 (b) ε = 1 (c) ε = 0.2 (d) ε = 0.2

Figure 2: Comparison of Feature Signal and Data Noise in Private and Non-Private Learning. The
figure compares the dynamic of feature learning maxj,r |Γ(t)

j,r| and maxj,r,i |Φ(t)
j,r,i| for varying pri-

vacy budgets ε under higher SNR conditions. Subfigures 2a-2c correspond to SNR = 0.6 with ε
values of 5, 1 and 0.2, respectively, while subfigure 2d corresponds to SNR = 3 with ε = 0.2 .

where we denote µ = max{1, ∥v∥2, ∥ξ∥2}. Recalling the scale of private noise, we can obtain
that σz = σ0/ηµ

√
T . Then, it can be verified that the empirical risk in Equation (7) will be upper

bounded by O(κ), provided there exists a step size η satisfying:

η ≥ max

{
2dσ2

0

µ2Tκ
,
2m2/3∥v∥−1

2 σ0

µ
√
Tκ

}
.

By combining the above results, we derive the following corollary, which states that the private CNN
can achieve a test loss related to privacy budget ε under Condition 4.5.

Corollary 4.8. Under the same conditions as above, suppose SNR ·nε ≥ Ω̃(1) and (nε)1/q+1 ≥
Ω̃(1). Then, with at least probability 1 − 1/d and with LD(W(t)) ≤ O(κ) for any t ≤ T , the test
error satisfies LD(W

(t)) ≤ O(κ+ exp((nε)
−1−1/q

)).

Here, the test error is defined as

LD(W) := P(x,y)∼D[y · (f(W,x))<0].

4.2 DATA NOISE MEMORIZATION

Next, we explore the scenario where the model primarily learns label-independent noise rather than
the feature signal.
Condition 4.9 (Conditions of Data Noise Memorization). Suppose that the initial three conditions
of data noise memorization are the same as Condition 4.5. Additionally, we have

• The standard deviation of σ0 is appropriately chosen such that
Õ(max{ε−1/q∥ξ∥−1

2 , (n/
√
d)∥v∥−1

2 }) ≤ σ0 ≤ Õ(min{(nε)−1/q∥v∥−1
2 , ∥ξ∥−1

2 }).

Similar to feature signal learning, we also establish conditions for data noise memorization, but with
a difference in the initialization setup and requirement on ε ≥ 1.
Theorem 4.10. Under the same conditions as data noise memorization , if
min{SNR−1 ·ε, SNR−q ·n−1} ≥ Ω̃(1), with at least probability 1 − 1/d, there exists

T1 = O(
log(1/(σ0σξ

√
d))mn

0.15q−2ηqσq−2
0 (σ2

ξ

√
d)q

) such that

• maxj,r Φ̄
(T1)
j,r,i ≥ 2 for all i ∈ [n].

• maxj,r Γ
(t)
j,r = Õ(σ0∥v∥2) for all 0 ≤ t ≤ T1.

• maxj,r,i |Φ(t)
j,r,i| = Õ(σ0σξ

√
d) for all 0 ≤ t ≤ T1.

Theorem 4.10 shows that the data noise memorization, maxj,r Φ̄
(T1)
j,r,i , exceeds the feature signal

learning at the end of the first training stage T1, provided that min{SNR−1 ·ε,SNR−q ·n−1} ≥

8
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Figure 3: Comparison of Feature Signal and Data Noise in Private and Non-Private Learning. The
figure compares the dynamic of feature learning maxj,r |Γ(t)

j,r| and maxj,r,i |Φ(t)
j,r,i| under lower

SNR = 0.2 conditions with ε values of 5, 1 and 0.2, respectively.

Ω̃(1). In contrast to Theorem 4.6, here demonstrates that when SNR−1 ·ε ≤ Ω̃(1) ≤ SNR−q ·n−1,
the memorization of data noise does not occur in private learning, even though it may happen in
standard non-private learning. However, it is important to note that this scenario only arises under the
highly restrictive condition ε ≤ n−q , which is an overly stringent condition and unlikely to be met
in practical private deep learning scenarios. In other words, when data noise memorization occurs
in standard non-private learning, it will also occur in private learning as long as ε ≥ SNR1−q n−1.
Moreover, it is noticed that maxj,r,i |Φ(t)

j,r,i| is bounded by Õ(σ0σξ

√
d), while under stricter privacy

budget (smaller ε), this term is much larger than the non-private learning, indicating that private
learning may amplifying the data noise memorization of the other filter.

Since we assume the model is over-parameterized, even if it fails to learn a good feature signal, it
can still fit the data noise well enough for the training loss to converge to a small value, similar to
the case of feature signal learning.

Corollary 4.11. Let T, T1 be defined as above. Then under the same conditions as data noise
memorization, for any t ∈ [T1, T ], it holds that |Γ(t)

j,r,i| ≤ σ0∥v∥2 for all j ∈ {±1} and r ∈ [m]

if n1/qε ≥ m. Moreover, let W∗ be the collection of CNN parameters with convolution filters
w∗

j,r = w
(0)
j,r + 2qm log(2q/κ))[

∑n
i=1 1(j = yi) · ξi

∥ξi∥2
]. Then, with at least probability 1 − 1/d,

the following bound holds

t∑
s=T1

LD(W(s)) ≤ ∥W(T1) −W∗∥2F
(2q − 1)η

+
(t− T1 + 1)κ

(2q − 1)︸ ︷︷ ︸
Non-private terms

+(t− T1 + 1) · ηdσ
2
z + Õ(σzm

2n1/2∥ξ∥−1
2 )

(2q − 1)︸ ︷︷ ︸
Private terms

(8)

for all t ∈ [T1, T ], where we denote ∥W∥F =
√
∥W+1∥2F + ∥W−1∥2F .

Corollary 4.11 shares the same empirical loss structure as Corollary 4.7, with the only difference
being the bound on ∥W(T1)−W∗∥F . This results in the term Õ(σzm

2n1/2∥ξ∥−1
2 ) appearing here.

Therefore, under the same data assumptions as Corollary 4.7, the empirical risk in Equation (8) can
also be upper bounded by O(κ), provided there exists a step size η satisfying:

η ≥ max

{
2dσ2

0

µ2Tκ
,
2m2n1/2∥ξ∥−1

2 σ0

µ
√
Tκ

}
.

However, even if the private CNN model achieves a sufficiently small training loss under the data
noise memorization scenario, it still fails to exhibit good generalization ability, as it primarily learns
the label-independent data noise rather than the label-dependent feature signals.

Corollary 4.12. Under the same conditions as data noise memorization, within T iterations, re-
gardless of how the sample size n and privacy budget ε chosen, with at least probability 1 − 1/d,
we can find W(T̃ ) such that LD(W(T̃ )) ≤ O(κ). Additionally, for any 0 ≤ t ≤ T̃ we have that
LD(W

(t)) ≥ 0.1.

9
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5 EXPERIMENT

5.1 SYNTHETIC DATA EXPERIMENT

In this experiment, we aimed to compare the feature signal and data noise in NoisyGD and standard
(non-private) training.

Experimental Setup. We conducted experiments by generating synthetic data defined in Defini-
tion 3.1 with a controlled signal-to-noise ratio (SNR = 0.2, 0.6, 3). The dataset was constructed
using a fixed signal vector v and a data noise component ξ. We implemented a two-layer CNN with
an input dimension of d = 1000,m = 10 filters, and a polynomial ReLU activation function with
a power parameter q = 3. The model weights were initialized randomly from a normal distribution
with a small variance (σ0 = 0.001), and training was performed using gradient descent with a learn-
ing rate of η = 0.01 over 500 epochs. For private learning, we consider the noisy gradient descent
during weight updates, with a privacy budget of ϵ = 0.2, 1, 5 and δ = 10−5. Throughout the training
process, we monitored the maximum inner products between the learned weights and the signal and
data noise components, denoted as maxj,r |Γ(t)

j,r| and maxj,r,i |Φ(t)
j,r,i|, respectively.

Private learning requires stronger feature signal. In Figure 2, we compare the dynamics of fea-
ture signal learning and data noise memorization during the non-private and private training process
under the higher SNR. In subfigures 2a and 2b, it can be observed that when the SNR = 0.6 is
sufficient for non-private training and the privacy budgets ε = 1, 5 are moderately larger, the feature
learning trajectories in private training closely align with those of non-private training. However, in
subfigures 2c, when the SNR = 0.6 is sufficient for non-private training and ε = 0.2 is relatively
smaller, the data noise memorization (represented by the blue dashed line) no longer remains below
the feature signal like the non-private training. This indicates the SNR = 0.6 is insufficient for
private training under stronger privacy constraints. When we increase SNR to 3 in Figure 2d, we
observe that private training regains its ability to perform feature learning, exhibiting trends simi-
lar to non-private training. This demonstrates that as the privacy budget ε decreases (i.e., stronger
privacy guarantees), the requirement for a higher SNR becomes more pronounced.

Private learning may amplify data noise memorization. In Figure 3, we observe that if non-
private training exhibits data noise memorization (the blue line is higher than the orange line),
private training is also prone to this behavior (corresponding to the dashed line). Moreover, as
illustrated in Figure 3d, the green DP line (representing noise memorization under private learning)
shows a noticeable increase, while the corresponding non-DP green line remains unchanged. This
indicates that private training, particularly with smaller privacy budgets, not only fails to suppress
data noise but also amplifies its memorization for other filters, aligning with our theoretical analysis
in Theorem 4.10.

6 CONCLUSION

In this paper, we introduced the first theoretical framework to analyze the dynamics of feature learn-
ing in differentially private learning, focusing on the trade-offs between feature signals and data
noise through a decomposition of these components. Using a two-layer CNN, we demonstrated that
private learning necessitates a higher signal-to-noise ratio (SNR) compared to non-private training to
effectively capture features, particularly under stringent privacy budgets. Additionally, we showed
that data noise memorization, if present in non-private learning, persists in private learning, resulting
in poor generalization even when training losses are minimized. Our findings highlight the critical
role of feature enhancement in private learning, aligning with prior empirical studies and providing
valuable insights for designing effective privacy-preserving learning systems.
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A NOTATIONS TABLE

B ADDITIONAL EXPERIMENTAL DETAILS

Experimental Setup for Appendix B.1. We conducted experiments on the CIFAR-10 dataset
Krizhevsky (2009), training on a version of the dataset corrupted with Gaussian noise applied at
varying scales to control the signal-to-noise ratio Hendrycks & Dietterich (2019). The training data
was corrupted with noise levels corresponding to different SNR values, while the test set remained
clean. A ResNet-20 architecture He et al. (2016) was employed as the baseline model, designed for
CIFAR-10 with an input image size of 32×32 pixels. Training was performed using noisy gradient
descent with an initial learning rate of 0.1. The model was trained for 100 epochs with a batch size
of 1000.
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Table 1: Notation Summary

Symbol Description

x Input data point with multi-patch structure x = [yv, ξ] ∈ (Rd)2

y Binary label (±1)
y · v Label-dependent feature vector (signal component)
ξ Label-independent Gaussian noise ∼ N (0, σ2

ξH)
zt Gaussian privacy noise added at iteration t
SNR Signal-to-noise ratio ∥v∥2/∥ξ∥2
T Total number of training iterations
T ∗
p Maximum number of private training iterations

m Number of convolutional filters per class
d Dimension of feature/noise vectors
n Number of training samples
η Learning rate in noisy gradient descent
σ0 Standard deviation of Gaussian weight initialization
σξ Standard deviation of Gaussian data noise
σz Standard deviation of Gaussian private noise
ε, δ (ε, δ)-differential privacy parameters
Γ
(t)
j,r Signal learning coefficient for filter r in class j at iteration t

Φ
(t)
j,r,i Noise memorization coefficient for sample i and filter r in class j

σ(z) Polynomial ReLU activation: max{0, z}q with q > 2
LD(W) Empirical risk with logistic loss over dataset D
LD(W) Population risk with logistic loss over data distribution D
q Polynomial degree in activation function (q > 2)
H Orthogonal projection matrix I− vv⊤/∥v∥22
κ Convergence threshold for training loss

B.1 REAL-WORLD DATA EXPERIMENT

In this experiment, we explore the impact of SNR in the private learning. Due to the space limitation,
we provide experimental setup and more results in Appendix B.1.

Higher SNR Improves Accuracy Across Various Privacy Budgets. The results, illustrated in
Figure 4, reveal that higher SNR values consistently lead to improved model accuracy under var-
ious privacy budgets, as the cleaner signal allows the model to better learn useful feature signals.
Moreover, as the privacy budget ε decreases (indicating stronger privacy guarantees), the model’s
accuracy degrades, particularly under low SNR conditions. This degradation is attributed to the
combined effects of data noise and the additional noise introduced by private learning.

Figure 5, Figure 6 and Figure 7 depict the Class Activation Maps (CAMs) using GradCAM Selvaraju
et al. (2020) for different classes in the CIFAR-10 dataset under varying SNR. In CAMs, the colors
represent the intensity of activation in specific regions of the input image. These activations indicate
how strongly the model associates different areas of the image with a specific class. CAMs highlight
the most important regions contributing to the model’s prediction.
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Figure 4: Impact of SNR and ε on CIFAR-10 Accuracy.

Figure 5: Class Activation Mappings for CIFAR-10 Across Different SNRs (ϵ = 8).

C SUPPORT LEMMAS

Lemma C.1. Suppose that δx > 0 and n ≥ 8 log(4/δx). Then with probability at least 1− δx,

|{i ∈ [n] : yi = 1}|, |{i ∈ [n] : yi = −1}| ≥ n/4.

Proof of Lemma C.1. We first establish the bound for |{i ∈ [n] : yi = 1}| and the bound for |{i ∈
[n] : yi = −1}| follows identically. Using Hoeffding’s inequality, we know that with probability at
least 1− δ/2, the following holds:

| 1
n

n∑
i=1

1{yi = 1} − 1

2
| ≤

√
log(4/δ)

2n
.
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Figure 6: Class Activation Mappings for CIFAR-10 Across Different SNRs (ϵ = 4).

Figure 7: Class Activation Mappings for CIFAR-10 Across Different SNRs (ϵ = 2).
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Thus, for n ≥ 8 log(4/δ), the size of the subset where yi = 1 satisfies:

|{i ∈ [n] : yi = 1}| =
n∑

i=1

1{yi = 1} ≥ n

2
− n ·

√
log(4/δ)

2n
≥ n

4
.

Lemma C.2. Suppose that δξ > 0 and d = Ω(log(4n/δξ)). Then, for all i, i′ ∈ [n], with probability
at least 1− δξ,

σ2
ξd/2 ≤ ∥ξi∥22 ≤ 3σ2

ξd/2

|⟨ξi, ξi′⟩| ≤ 2σ2
ξ ·

√
d log(4n2/δξ).

Meanwhile, there is δz such that δz > 0 and d = Ω(log(4n/δz)). It holds, with probability at least
1− δz ,

G2σ2
zd/2 ≤ ∥zi∥22 ≤ 3G2σ2

zd/2

|⟨zi, zi′⟩| ≤ 2G2σ2
z ·

√
d log(4n2/δz).

Proof of Lemma C.2. Both ξ and z follow Gaussian distributions; therefore, it suffices to provide the
proof for one case. Using Bernstein’s inequality, we find that with probability at least 1 − δ/(2n),
the following holds:

|∥ξi∥22 − σ2
ξd| = O(σ2

ξ ·
√
d log(4n/δ)).

Thus, when d = Ω(log(4n/δ)), we have:
σ2
ξd

2 ≤ ∥ξi∥22 ≤ 3σ2
ξd

2 . Next, note that ⟨ξi, ξi′⟩ has a mean
of zero for any i ̸= i′. Again, by Bernstein’s inequality, with probability at least 1 − δ/(2n2), the
following bound holds: |⟨ξi, ξi′⟩| ≤ 2σ2

ξ ·
√

d log(4n2/δ). Finally, applying a union bound over all
i and i′ completes the proof.

Lemma C.3. Suppose that d ≥ Ω(log(mn/δ)),m = Ω(log(1/δ)). Then with probability at least
1− δ,

|⟨w(0)
j,r ,v⟩| ≤

√
2 log(8m/δ) · σ0∥v∥2

|⟨w(0)
j,r , ξi⟩| ≤ 2

√
log(8mn/δ) · σ0σξ

√
d

for all r ∈ [m], j ∈ {±1} and i ∈ [n]. Moreover,

σ0∥v∥2/2 ≤ max
r∈[m]

j · ⟨w(0)
j,r ,v⟩ ≤

√
2 log(8m/δ) · σ0∥v∥2,

σ0σξ

√
d/4 ≤ max

r∈[m]
j · ⟨w(0)

j,r , ξi⟩ ≤ 2
√

log(8mn/δ) · σ0σξ

√
d

for all j ∈ {±1} and i ∈ [n].

Proof of Lemma C.3. For each r ∈ [m], the term j · ⟨w(0)
j,r ,v⟩ is a Gaussian random variable

with mean zero and variance σ2
0∥v∥22. Applying the Gaussian tail bound and the union bound, we

conclude that with probability at least 1− δ/4,

j · ⟨w(0)
j,r ,v⟩ ≤ |⟨w(0)

j,r ,v⟩| ≤
√
2 log(8m/δ) · σ0∥v∥2.

Furthermore, the probability P(σ0∥v∥2/2 > j · ⟨w(0)
j,r ,v⟩) is an absolute constant. Thus, under the

given condition on m, we have

P(σ0∥v∥2/2 ≤ max
r∈[m]

j · ⟨w(0)
j,r ,v⟩) = 1− P(σ0∥v∥2/2 > max

r∈[m]
j · ⟨w(0)

j,r ,v⟩)

= 1− P(σ0∥v∥2/2 > j · ⟨w(0)
j,r ,v⟩)

2m

≥ 1− δ/4.

By Lemma C.2, with probability at least 1−δ/4, the inequality σξ

√
d/

√
2 ≤ ∥ξi∥2 ≤

√
3/2. σξ

√
d

holds for all i ∈ [n]. Consequently, the result for ⟨w(0)
j,r , ξi⟩ can be derived using the same argument

as for j · ⟨w(0)
j,r ,v⟩.
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D DECOMPOSITION

Definition D.1. Let w(t)
j,r for j ∈ {±1}, r ∈ [m] be the convolution filters of the CNN at the t-th

iteration of noisy gradient descent. Then there exist unique coefficients Γ(t)
j,r ≥ 0 and Φ

(t)
j,r,i such that

w
(t)
j,r = w

(0)
j,r + j · Γ(t)

j,r · ∥v∥
−2
2 · v +

n∑
i=1

Φ
(t)
j,r,i · ∥ξi∥

−2
2 · ξi − η

t∑
s=1

zs (9)

We further denote Φ̄
(t)
j,r,i := Φ

(t)
j,r,i1(Φ

(t)
j,r,i ≥ 0),Φ

(t)
j,r,i := Φ

(t)
j,r,i1(Φ

(t)
j,r,i ≤ 0). Then we have that

w
(t)
j,r = w

(0)
j,r + j · Γ(t)

j,r · ∥v∥
−2
2 · v +

n∑
i=1

Φ̄
(t)
j,r,i · ∥ξi∥

−2
2 · ξi +

n∑
i=1

Φ
(t)
j,r,i · ∥ξi∥

−2
2 · ξi − η

t∑
s=1

zs.

Lemma D.2. The coefficients Γ(t)
j,r, Φ̄

(t)
j,r,i,Φ

(t)
j,r,i in Definition 4.1 satisfy the following equations:

Γ
(0)
j,r , Φ̄

(0)
j,r,i,Φ

(0)
j,r,i = 0

Γ
(t+1)
j,r = Γ

(t)
j,r −

η

nm
·

n∑
i=1

ℓ
′(t)
i · σ′(⟨w(t)

j,r, yi · v⟩) · ∥v∥
2
2

Φ̄
(t+1)
j,r,i = Φ̄

(t)
j,r,i −

η

nm
· ℓ′(t)i · σ′(⟨w(t)

j,r, ξi⟩) · ∥ξi∥
2
2 · 1(yi = j),

Φ
(t+1)
j,r,i = Φ

(t)
j,r,i +

η

nm
· ℓ′(t)i · σ′(⟨w(t)

j,r, ξi⟩) · ∥ξi∥
2
2 · 1(yi = −j)

Proof of Lemma D.2. We prove the statement by induction. For the base case t = 0, it holds that
Γ
(0)
j,r = 0 and Φ

(0)
j,r,i = 0. Now, assume the statement holds for t = k. We proceed to the inductive

step, considering t = k + 1 :

w
(k+1)
j,r = w

(k)
j,r − 1

nm

n∑
i=1

ℓ
′(k)
i · σ′(⟨w(k)

j,r , ξi⟩) · jyiξi +
η

nm

n∑
i=1

ℓ
′(k)
i · σ′(⟨w(k)

j,r , yiv⟩) · jv − ηzk+1

= w
(0)
j,r + j · Γ(k)

j,r · ∥v∥−2
2 · v +

n∑
i=1

Φ
(k)
j,r,i · ∥ξi∥

−2
2 · ξi − η

k∑
s=1

zs

− 1

nm

n∑
i=1

ℓ
′(k)
i · σ′(⟨w(k)

j,r , ξi⟩) · jyiξi −
η

nm

n∑
i=1

ℓ
′(k)
i · σ′(⟨w(k)

j,r , yiv⟩) · jv − ηzk+1

= w
(0)
j,r + j · ∥v∥−2

2 · v(Γ(k)
j,r − η

nm
·

n∑
i=1

ℓ
′(k)
i · σ′(⟨w(k)

j,r , yi · v⟩) · ∥v∥
2
2)

+

n∑
i=1

∥ξi∥−2
2 · ξi · (Φ(k)

j,r,i −
η

nm
· ℓ′(k)i · σ′(⟨w(k)

j,r , ξi⟩) · ∥ξi∥
2
2)−

k+1∑
s=1

zs

= w
(0)
j,r + j · Γ(k+1)

j,r · ∥v∥−2
2 · v +

n∑
i=1

Φ
(k+1)
j,r,i · ∥ξi∥−2

2 · ξi − η

k+1∑
s=1

zs.

The last equality follows directly from the data distribution and it is clear that the vectors involved
are linearly independent. Thus, the decomposition is unique. Then, we have:

Φ
(t)
j,r,i = −

t−1∑
s=0

η

nm
· ℓ′(s)i · σ′(⟨w(s)

j,r , ξi⟩) · ∥ξi∥
2
2 · yi · j.
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Moreover, note that ℓ′(t)i < 0 due to the definition of the cross-entropy loss. Consequently,

Φ̄
(t)
j,r,i = −

t−1∑
s=0

η

nm
· ℓ′(s)i · σ′(⟨w(s)

j,r , ξi⟩) · ∥ξi∥
2
2 · 1(yi = j),

Φ
(t)
j,r,i = −

t−1∑
s=0

η

nm
· ℓ′(s)i · σ′(⟨w(s)

j,r , ξi⟩) · ∥ξi∥
2
2 · 1(yi = −j),

which completes the proof.

Parameters. Let In the following analysis, we demonstrate that for effective private learning, the
learning of feature signals and noise will remain controlled throughout the training process. Let

T ∗
p = η−1 min{(poly(Γ−1, ∥v∥−1

2 , d−1σ−2
n , σ−1

0 , n,m, d)),
mnε log(d)

5Cµ(∥v∥2 + ∥ξ∥2)
,

represent the maximum allowable number of iterations. Denote α = log(T ∗
p ).

η = O(min{nm/(qσ2
ξd), nm/(q2q+2αq−2σ2

ξd),mn/(q2q+2αq−2∥v∥22)}) (10)

d ≥ 1024 log(4n2/δ)α2n2 (11)

Let β = 2maxi,j,r{|⟨w(0)
j,r ,v⟩|, |⟨w

(0)
j,r , ξi|}. By Lemma C.3, with probability at least 1− δ, we can

bound β as follows:β ≤ 4
√

log( 8mn
δ ) · σ0 · max{∥v∥2, σξ

√
d}. Using σ0 (we can add additional

log constrain on the σ0 in the main), and Equation (11), it can be obtained that

4max

β, 8n

√
log( 4n

2

δ )

d
α,

ηCT ∗
p µ log(1/δ)((∥v∥2 + ∥ξ∥2))

mnε
,

 ≤ 1. (12)

Given that the above conditions hold, we claim that the following property is satisfied for 0 ≤ t ≤
T ∗
p .

Proposition D.3. Under Condition 4.2, for 0 ≤ t ≤ T ∗
p , we have that

0 ≤ Γ
(t)
j,r, Φ̄

(t)
j,r,i ≤ α, (13)

0 ≥ Φ
(t)
j,r,i ≥ −β − 16n

√
log(4n2/δ)

d
α− 0.2 ≥ −α. (14)

for all r ∈ [m], j ∈ {±1} and i ∈ [n].

Bounds of coefficients. In the following, we first prove the bounds of coefficients.

Lemma D.4. For any t ≥ 0, it holds that ⟨w(t)
j,r − w

(0)
j,r ,v⟩ = j · Γ(t)

j,r − η
∑t

s=1⟨zs,v⟩ for all
r ∈ [m], j ∈ {±1}.

Proof of Lemma D.4. For any time t ≥ 0, according to the decomposition Equation (9), it holds
that:

⟨w(t)
j,r −w

(0)
j,r ,v⟩ = j · Γ(t)

j,r +

n∑
i′=1

Φ̄
(t)
j,r,i′∥ξi′∥

−2
2 · ⟨ξi′ ,v⟩+

n∑
i′=1

Φ
(t)
j,r,i′∥ξi′∥

−2
2 · ⟨ξi′ ,v⟩ − η

t∑
s=1

⟨zs,v⟩

= j · Γ(t)
j,r − η

t∑
s=1

⟨zs,v⟩.
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Lemma D.5. Under Parameter Choices, suppose Proposition D.3 holds at iteration t. Then, it holds
that

When yi ̸= j: ⟨w(t)
j,r −w

(0)
j,r , ξi⟩{

≤ Φ
(t)
j,r,i + 8n

√
log(4n2/δ)

d α− η
∑t

s=1⟨zs, ξi⟩,

≥ Φ
(t)
j,r,i − 8n

√
log(4n2/δ)

d α− η
∑t

s=1⟨zs, ξi⟩
.

When yi = j: ⟨w(t)
j,r −w

(0)
j,r , ξi⟩{

≤ Φ̄
(t)
j,r,i + 8n

√
log(4n2/δ)

d α− η
∑t

s=1⟨zs, ξi⟩,

≥ Φ̄
(t)
j,r,i − 8n

√
log(4n2/δ)

d α− η
∑t

s=1⟨zs, ξi⟩
.

for all r ∈ [m], j ∈ {±1} and i ∈ [n].

Proof of Lemma D.5. For j ̸= yi, it holds that Φ̄(t)
j,r,i = 0 and

⟨w(t)
j,r −w

(0)
j,r , ξi⟩ =

n∑
i′=1

Φ̄
(t)
j,r,i′∥ξi′∥

−2
2 · ⟨ξi′ , ξi⟩+

n∑
i′=1

Φ
(t)
j,r,i′∥ξi′∥

−2
2 · ⟨ξi′ , ξi⟩ − η

t∑
s=1

⟨zs, ξi⟩

(i)
≤ 4

√
log(4n2/δ)

d

∑
i′ ̸=i

|Φ̄(t)
j,r,i′ |+ 4

√
log(4n2/δ)

d

∑
i′ ̸=i

|Φ(t)
j,r,i′ |+Φ

(t)
j,r,i − η

t∑
s=1

⟨zs, ξi⟩

(ii)
≤ Φ

(t)
j,r,i + 8n

√
log(4n2/δ)

d
α− η

t∑
s=1

⟨zs, ξi⟩.

The second inequality (i) is derived by Lemma C.2 and the last inequality (ii) holds due to Proposi-
tion D.3. Similarly, for yi = j, it holds that Φ(t)

j,r,i = 0 and

⟨w(t)
j,r −w

(0)
j,r , ξi⟩ =

n∑
i′=1

Φ̄
(t)
j,r,i′∥ξi′∥

−2
2 · ⟨ξi′ , ξi⟩+

n∑
i′=1

Φ
(t)
j,r,i′∥ξi′∥

−2
2 · ⟨ξi′ , ξi⟩ − η

t∑
s=1

⟨zs, ξi⟩

(iii)
≤ 4

√
log(4n2/δ)

d

∑
i′ ̸=i

|Φ̄(t)
j,r,i′ |+ 4

√
log(4n2/δ)

d

∑
i′ ̸=i

|Φ(t)
j,r,i′ |+ Φ̄

(t)
j,r,i − η

t∑
s=1

⟨zs, ξi⟩

(iv)
≤ Φ̄

(t)
j,r,i + 8n

√
log(4n2/δ)

d
α− η

t∑
s=1

⟨zs, ξi⟩.

Moreover, it is clear that, according to Lemma C.2, inequalities (i) can also be bounded by:

When yi ̸= j:
(i)′

≥ Φ
(t)
j,r,i − 4

√
log(4n2/δ)

d

∑
i′ ̸=i

|Φ̄(t)
j,r,i′ | − 4

√
log(4n2/δ)

d

∑
i′ ̸=i

|Φ(t)
j,r,i′ | − η

t∑
s=1

⟨zs, ξi⟩

(ii)′

≥ Φ
(t)
j,r,i − 8n

√
log(4n2/δ)

d
α− η

t∑
s=1

⟨zs, ξi⟩,

Similarly, the following also holds for the inequalities (iii):

When yi = j:
(iii)′

≥ Φ
(t)
j,r,i − 4

√
log(4n2/δ)

d

∑
i′ ̸=i

|Φ̄(t)
j,r,i′ | − 4

√
log(4n2/δ)

d

∑
i′ ̸=i

|Φ(t)
j,r,i′ | − η

t∑
s=1

⟨zs, ξi⟩

(iv)′

≥ Φ̄
(t)
j,r,i − 8n

√
log(4n2/δ)

d
α− η

t∑
s=1

⟨zs, ξi⟩,

which completed the proof.

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Lemma D.6. Under Parameter Choices, suppose Proposition D.3 holds at iteration t. Then, it holds
that

⟨w(t)
j,r, yiv⟩ ≤ ⟨w(t)

j,r, yiv⟩ − η

t∑
s=1

⟨zs, yiv⟩,

⟨w(t)
j,r, ξi⟩ ≤ ⟨w(t)

j,r, ξi⟩ − η

t∑
s=1

⟨zs, ξi⟩+ 8n
log(4n2/δ)

d
α,

Fj(W
(t)
j ,xi) ≤ 1

for all r ∈ [m] and j ̸= yi.

Proof of Lemma D.6. According to Lemma D.2, it is clear that Γ(t)
j,r is increasing and Γ

(t)
j,r ≥ 0

holds. For yi ̸= j, it holds that

⟨w(t)
j,r, yiv⟩ = ⟨w(0)

j,r , yiv⟩+ yi · j · Γ(t)
j,r − η

t∑
s=1

⟨zs, yiv⟩ ≤ ⟨w(0)
j,r , yiv⟩ − η

t∑
s=1

⟨zs, yiv⟩.

Moreover, according to Lemma D.5, we have

⟨w(t)
j,r, ξi⟩ ≤ ⟨w(0)

j,r , ξi⟩+Φ
(t)
j,r,i+8n

√
log(4n2/δ)

d
α−η

t∑
s=1

⟨zs, ξi⟩ ≤ ⟨w(0)
j,r , ξi⟩+8n

√
log(4n2/δ)

d
α−η

t∑
s=1

⟨zs, ξi⟩,

where the last inequality is due to Φ
(t)
j,r,i ≤ 0. Therefore, we can further obtain

Fj(W
(t)
j ,xi) =

1

m

m∑
r=1

[σ(⟨w(t)
j,r,−j · v⟩) + σ(⟨w(t)

j,r, ξi⟩)]

≤ 2q+1 max
j,r,i

{|⟨w(0)
j,r ,v⟩|, |⟨w

(0)
j,r , ξi⟩|, 8n

√
log(4n2/δ)

d
α,

ηCT ∗
p µ log(1/δ)(∥v∥2 + ∥ξ∥2)

mnε
}q

≤ 1.

The first inequality derives from the previous two conclusions and the second inequality is by Equa-
tion (12).

Lemma D.7. Under Parameter Choices, suppose Proposition D.3 holds at iteration t. Then, it holds
that

⟨w(t)
j,r, yiv⟩ = ⟨w(0)

j,r , yiv⟩+ Γ
(t)
j,r − η

t∑
s=1

⟨zs, yiv⟩,

⟨w(t)
j,r, ξi⟩ ≤ ⟨w(0)

j,r , ξi⟩+ Φ̄
(t)
j,r,i + 8n

√
log(4n2/δ)

d
α− η

t∑
s=1

⟨zs, ξi⟩,

for all r ∈ [m] and j ∈ {±1} and i ∈ [n]. If max{Φ̄(t)
j,r,i,Γ

(t)
j,r} = O(1), we further have

Fj(W
(t)
j ,xi) = O(1).

Proof of Lemma D.7. According to Lemma D.2, it is clear that, for yi = j, we have

⟨w(t)
j,r, yiv⟩ = ⟨w(0)

j,r , yiv⟩+ Γ
(t)
j,r − η

t∑
s=1

⟨zs, yiv⟩.

Moreover, according to Lemma D.5, we have

⟨w(t)
j,r, ξi⟩ ≤ ⟨w(0)

j,r , ξi⟩+ Φ̄
(t)
j,r,i + 8n

√
log(4n2/δ)

d
α− η

t∑
s=1

⟨zs, ξi⟩.
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If max{Φ̄(t)
j,r,i,Γ

(t)
j,r} = O(1), we have

Fj(W
(t)
j ,xi) =

1

m

m∑
r=1

[σ(⟨w(t)
j,r,−j · v⟩) + σ(⟨w(t)

j,r, ξi⟩)]

≤ 2 ∗ 5q max
j,r,i

{|⟨w(0)
j,r ,v⟩|, |⟨w

(0)
j,r , ξi⟩|, 8n

√
log(4n2/δ)

d
α,

ηCT ∗
p µ log(1/δ)(∥v∥2 + ∥ξ∥2)

mnε
}q

= O(1).

The first inequality derives from the previous two conclusions and the second inequality is by Equa-
tion (12).

Lemma D.8. For any iteration t, with probability 1− δ, it holds that

|η
t∑

s=1

⟨zs,v⟩| ≤
ηC

√
tT∥v∥22 log(1/δ)

mnε
(1 +

1

SNR
), |η

t∑
s=1

⟨zs, ξi⟩| ≤
ηC

√
tT∥ξ∥22 log(1/δ)

mnε
(1 + SNR).

(15)

Proof of Lemma D.8. According to Proposition D.3 and the update of w(t)
j,r in Equation (4), it is

clear that the sensitivity can be bounded by C
mn (∥v∥2 + ∥ξ∥2) with C = Õ(1). Therefore, with

probability 1− δ, we have:

|η
t∑

s=1

⟨zs,v⟩| ≤
ηC

√
tT∥v∥22 log(1/δ)

mnε
(1 +

1

SNR
), |η

t∑
s=1

⟨zs, ξi⟩| ≤
ηC

√
tT∥ξ∥22 log(1/δ)

mnε
(1 + SNR).

where we use Hoeffding’s inequality and the definition of SNR = ∥v∥2/∥ξ∥2.

Now we are ready to provide the proof of Proposition D.3.

Proof of Proposition D.3. We prove Proposition D.3 using an induction process. It is clear that the
claim holds for t = 0 since the coefficients are zero in this case. Suppose there exists s ≤ T ∗

p such
that Proposition D.3 holds for all t ≤ s− 1. Our goal is to prove that the claim also holds for t = s.

We first consider when Φ
(t)
j,r,i ≤ −0.5β − 8n

√
log(4n2/δ)

d α − 0.1. Notice that for any j = yi, we

have Φ(t)
j,r,i = 0. Thus, we only need to focus on j ̸= yi. Additionally, according to Lemma D.5 and

Lemma D.8, it holds that

⟨w(t)
j,r, ξi⟩ ≤ Φ

(t)
j,r,i + ⟨w(0)

j,r , ξi⟩+ 8n

√
log(4n2/δ)

d
α− η

t∑
s=1

⟨zs, ξi⟩ ≤ 0.

Therefore, for t+ 1, we have

Φ
(t+1)
j,r,i = Φ

(t)
j,r,i +

η

nm
· ℓ′(t)i · σ′(⟨w(t)

j,r, ξi⟩) · 1(yi = −j)∥ξi∥22

= Φ
(t)
j,r,i

≥ −β − 16n

√
log(4n2/δ)

d
α− 0.2.

When considering Φ
(t)
j,r,i ≥ −0.5β − 8n

√
log(4n2/δ)

d α− 0.1, it holds that

Φ
(t+1)
j,r,i = Φ

(t)
j,r,i +

η

nm
· ℓ′(t)i · σ′(⟨w(T−1)

j,r , ξi⟩) · 1(yi = −j)∥ξi∥22
(i)

≥ −0.5β − 8n

√
log(4n2/δ)

d
α− 0.1−O(

ησ2
ξd

nm
)σ′(0.5β + 8n

√
log(4n2/δ)

d
α+ 0.1)

(ii)

≥ −0.5β − 8n

√
log(4n2/δ)

d
α− 0.1−O(

ηqσ2
ξd

nm
)(0.5β + 8n

√
log(4n2/δ)

d
α+ 0.1)

(iii)

≥ −β − 16n

√
log(4n2/δ)

d
α− 0.2,
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where (i) holds due to ℓ
′(t)
i ≤ 1 and ∥ξi∥2 = O(σ2

ξd); (ii) holds because of 0.5β +

8n
√

log(4n2/δ)
d α+ 0.1 ≤ 1; (iii) derives from η = O(nm/(qσ2

ξd)).

Now, we proceed to prove Equation (13). Recall the update rule for Φ(t+1)
j,r,i and denote tj,r,i as the

first time such that Φ(t)
j,r,i ≥ 0.5α, then we can decompose the following

Φ̄
(t+1)
j,r,i = Φ̄

(t)
j,r,i −

η

nm
· ℓ′(t)i · σ′(⟨w(t)

j,r, ξi⟩) · 1(yi = j)∥ξi∥22

= Φ̄
(tj,r,i)
j,r,i − η

nm
· ℓ′(tj,r,i)i · σ′(⟨w(t)

j,r, ξi⟩) · 1(yi = j)∥ξi∥22︸ ︷︷ ︸
Term 1

−
t∑

p=tj,r,i+1

η

nm
ℓ
′(p)
i · σ′(⟨w(p)

j,r , ξi⟩) · 1(yi = j)∥ξi∥22︸ ︷︷ ︸
Term 2

.

(16)

Then, we need to bound Term 1 and Term 2, respectively. For Term 1, we have

|Term 1| = η

nm
· ℓ′(tj,r,i)i · σ′(⟨w(t)

j,r, ξi⟩) · 1(yi = j)∥ξi∥22
(i)

≤ 2qn−1m−1η(yiΓ
(tj,r)
j,r + ⟨w(0)

j,r , ξi⟩+ 0.2)q−1∥ξi∥22
(ii)

≤ 2qn−1m−1ηαq−1∥ξi∥22
(iii)

≤ 0.25α.

Here, (i) holds due to Lemma D.4, Lemma C.3, Lemma D.8 and the parameter choices of T ∗
p ;

(ii) derives from the parameter choices of σ0 and induction hypothesis; (iii) holds by η ≤
O(nm/(q2q+2αq−2∥ξ∥22)).
For Term 2 and yi = j, we have

⟨w(t+1)
j,r , ξi⟩ =⟨w(0)

j,r , ξi⟩+ Φ̄
(t)
j,r,i − 8n

√
log(4n2/δ)

d
α− η

t∑
s=1

⟨zs, ·ξi⟩

(i)

≥ − 0.5β + 0.5α− 0.2 ≥ 0.25α.

Here, (i) holds due to the definition of tj,r,i and Lemma C.3. Similarly, we can also upper bound
⟨w(t+1)

j,r , ξi⟩ as follows:

⟨w(t+1)
j,r , ξi⟩ =⟨w(0)

j,r , ξi⟩+ Φ̄
(t)
j,r,i + 8n

√
log(4n2/δ)

d
α− η ·

t∑
s=1

⟨zs, ξi⟩

≤0.5β + α+ 0.2 ≤ 2α.

Combining the above upper and lower bounds of ⟨w(t+1)
j,r , ξi⟩ into Term 2, it holds that

|Term 2| = |
t∑

p=tj,r,i+1

η

nm
· ℓ′(p)i · σ′(⟨w(p)

j,r , ξi⟩) · 1(yi = j)∥ξi∥22|

(i)

≤
t∑

p=tj,r+1

η

nm
· exp(−σ(⟨w(t)

j,r, ξi⟩) + 1) · σ′(⟨w(t)
j,r, ξi⟩) · ∥ξi∥

2
2

(ii)

≤ eq2qηT ∗
p exp(−αq/4q)αq−1∥ξi∥22

(i)

≤ 0.25T ∗
p exp(−αq/4q)α

(iii)

≤ 0.25T ∗
p exp(− log(T ∗

p )
q)α

(iv)

≤ 0.25α.
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Here, (ii) follows from Lemma C.2; (ii) is derived from the parameter choice of η; (iii) and (iv)
holds due to the choice α = 4 log(T ∗

p ) and the fact logq(T ∗
p ) ≥ log(T ∗

p ). Additionally, (i) is
established as follows:

|ℓ′(t)i | = 1

1 + exp{yi · [F+1(W
(t)
+1,xi)− F−1(W

(t)
−1,xi)]}

≤ exp{−yi · [F+1(W
(t)
+1,xi)− F−1(W

(t)
−1,xi)]}

≤ exp{−Fyi
(W(t)

yi
,xi) + 1},

where the last inequality follows from Lemma D.6. Combining the bounds for Term 1 and Term 2
into Equation (16), we complete the proof of Equation (13). The same procedure applies to prove
Γ ≤ α, with parameter choice η = O(nm/(q2q+2αq−2∥v∥22)).

Lemma D.9. Under parameter choices, for 0 ≤ t ≤ T ∗
p , with probability 1− δ, the following result

holds.
∥∇LD(W(t))∥2F ≤ O(max{∥v∥22, σ2

ξd})LD(W(t)) +O(σ2
zd log(1/δ)).

Proof of Lemma D.9. According to the triangle inequality and the definition of noisy gradient, we
have

∥∇LS(W
(t))∥2F ≤ 2[

1

n

n∑
i=1

ℓ′(yif(W
(t),xi))∥∇f(W(t),xi)∥F ]2 + 2∥zt∥2F . (17)

The first term is bounded using Lemma C.7 in Cao et al. (2022), as it shares the same properties,
while the second term is bounded by Lemma C.2. This concludes the proof.

E SIGNAL LEARNING

E.1 FIRST STAGE

Lemma E.1 (Restatement of Theorem 4.6). Under the same conditions as signal learning, in par-
ticular, if we choose

SNR ·nε ≥ 4q log(16/e1/2σ0∥v∥2)
C1q

, n · SNRq ≥ C1 log(6/σ0∥v∥2)22q+6[4 log(8mn/δ)](q−1)/2

(18)
where C1 = O(1) is a positive constant, there exists T1 = log(16/σ0∥v∥2)4

q−1m

C1ηqσ
q−2
0 ∥v∥q

2

such that

• maxr Γ
(T1)
j,r = Ω(1) for j ∈ {±1}.

• |Φ(t)
j,r,i| = O(σ0σξ

√
d) for all j ∈ {±1}, r ∈ [m], i ∈ [n] and 0 ≤ t ≤ T1.

Proof of Lemma E.1. First, when t ≤ T+
1 = min{ nmη−1σ2−q

0 σ−q
ξ d−q/2

2q+4q[4 log(8mn/δ)](q−1)/2 ,
σ0mnε

η∥ξ∥2(∥v∥2+∥ξ∥2)
, σ0mnε
η(∥v∥2+∥ξ∥2)

},

it can be noticed that the noise remains well controlled. To proceed, define Ψ(t) =

maxj,r,i |Φ(t)
j,r,i| = maxj,r,i{Φ̄(t)

j,r,i,−Φ
(t)
j,r,i}. and assume Ψ(t) ≤ σ0σξ

√
d

2 for all 0 ≤ t ≤ T+
1 . Then,

we aim to prove that the same holds for t + 1 using an induction process. Recall the update of Φ̄
and Φ as follows:

Φ̄
(t)
j,r,i = −

t−1∑
s=0

η

nm
· ℓ′(s)i · σ′(⟨w(s)

j,r , ξi⟩) · ∥ξi∥
2
2 · 1(yi = j),

Φ
(t)
j,r,i = −

t−1∑ η

nm
· ℓ′(s)i · σ′(⟨w(s)

j,r , ξi⟩) · ∥ξi∥
2
2 · 1(yi = −j).

Moreover, according to Definition 4.1, we have

w
(t)
j,r = w

(0)
j,r + j · Γ(t)

j,r ·
v

∥v∥22
+

n∑
i=1

Φ
(t)
j,r,i ·

ξi
∥ξi∥22

− η

t∑
s=1

zs.
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Substituting this expression into the updates for Φ̄ and Φ, it follows that:

Φ̄
(t+1)
j,r,i = Φ̄

(t)
j,r,i −

η

nm
· ℓ′(t)i σ′(⟨w(0)

j,r , ξi⟩+
n∑

i′=1

Φ̄
(t)
j,r,i′

⟨ξi′ , ξi⟩
∥ξi′∥22

+

n∑
i′=1

Φ
(t)
j,r,i′

⟨ξi′ , ξi⟩
∥ξi′∥22

− η

t∑
s=1

⟨zs, ξi⟩) · ∥ξi∥22,

Φ
(t+1)
j,r,i = Φ

(t)
j,r,i +

η

nm
· ℓ′(t)i σ′(⟨w(0)

j,r , ξi⟩+
n∑

i′=1

Φ̄
(t)
j,r,i′

⟨ξi′ , ξi⟩
∥ξi′∥22

+

n∑
i′=1

Φ
(t)
j,r,i′

⟨ξi′ , ξi⟩
∥ξi′∥22

− η

t∑
s=1

⟨zs, ξi⟩) · ∥ξi∥22.

Therefore, it holds that

Ψ(t+1) ≤ Ψ(t) +max
j,r,i

{ η

nm
· |ℓ′(t)i | · σ′(⟨w(0)

j,r , ξi⟩+
n∑

i′=1

Ψ(t) · |⟨ξi
′ , ξi⟩|

∥ξi′∥22
+

n∑
i′=1

Ψ(t) · |⟨ξi
′ , ξi⟩|

∥ξi′∥22
− η

t∑
s=1

⟨zs, ξi⟩) · ∥ξi∥22}

(i)

≤ Ψ(t) +max
j,r,i

{ η

nm
· σ′(⟨w(0)

j,r , ξi⟩+ 2 ·
n∑

i′=1

Ψ(t) · |⟨ξi
′ , ξi⟩|

∥ξi′∥22
− η

t∑
s=1

⟨zs, ξi⟩) · ∥ξi∥22}

(ii)
= Ψ(t) +max

j,r,i
{ η

nm
· σ′(⟨w(0)

j,r , ξi⟩+ 2Ψ(t) + 2 ·
n∑

i′ ̸=i

Ψ(t) · |⟨ξi
′ , ξi⟩|

∥ξi′∥22
− η

t∑
s=1

⟨zs, ξi⟩) · ∥ξi∥22}

(iii)

≤ Ψ(t) +
ηq

nm
· [2 ·

√
log(8mn/δ) · σ0σξ

√
d+ (2 +

4nσ2
ξ ·

√
d log(4n2/δ)

σ2
ξd/2

) ·Ψ(t) − η

t∑
s=1

⟨zs, ξi⟩]q−1 · 2σ2
ξd

(iv)

≤ Ψ(t) +
ηq

nm
· (2 ·

√
log(8mn/δ) · σ0σξ

√
d+ 4Ψ(t) − η

t∑
s=1

⟨zs, ξi⟩)q−1 · 2σ2
ξd

(v)

≤ Ψ(t) +
ηq

nm
· (4 ·

√
log(8mn/δ) · σ0σξ

√
d)q−1 · 2σ2

ξd.

Here, the inequality (i) holds due to the fact |ℓ′(t)i | ≤ 1; the equality (ii) is the decomposition of
index i; the inequality (iii) comes from Lemma C.2; (iv) is derived from the condition of d ≥
16n2 log(4n2/δ); (v) follows from the induction hypothesis, Lemma D.8 and T+

1 . By applying a
telescoping sum over t, we obtain the following result:

Ψ(t+1) ≤ (t+ 1) · ηq

nm
· (4 ·

√
log(8mn/δ) · σ0σξ

√
d)q−1 · 2σ2

ξd

≤ T+
1 · ηq

nm
· (4 ·

√
log(8mn/δ) · σ0σξ

√
d)q−1 · 2σ2

ξd

≤ σ0σξ

√
d

2
,

where the second inequality follows from the induction hypothesis, while the last inequality is due
to the range of T+

1 .

Now, we move forward to the proof of Γ. Without loss of generality, we first consider j = 1.
Let T1,1 be the first time such that maxr Γ

(t)
1,r ≤ 2 in the period of [0, T+

1 ], then it also holds that

maxj,r,i{|Φ(t)
j,r,i|} = O(σ0σξ

√
d) = O(1).

According to Lemma D.4 and Lemma D.5, it holds that F−1(W
(t)
−1,xi), F+1(W

(t)
+1,xi) = O(1) for

all i with yi = 1 with the conditions that maxr Γ
(t)
1,r,maxj,i,r |Φ(t)

j,r,i| are bounded. Moreover, we

know that |ℓ′(t)i | = 1

1+exp{yi·[F+1(W
(t)
+1,xi)−F−1(W

(t)
−1,xi)]}

, which implies the existence of a positive

constant C1 such that −ℓ
′(t)
i ≥ C1 for all i with yi = 1.

Thus, with the update of Γ in Definition D.1, we have

Γ
(t+1)
1,r = Γ

(t)
1,r −

η

nm
·

n∑
i=1

ℓ
′(t)
i · σ′(yi · ⟨w(0)

1,r,v⟩+ yi · Γ(t)
1,r −−η

t∑
s=1

⟨zs, yiv⟩) · ∥v∥22

≥ Γ
(t)
1,r +

C1η

nm
·
∑
w=1

σ′(⟨w(0)
1,r,v⟩+ Γ

(t)
1,r − η

t∑
s=1

⟨zs,v⟩) · ∥v∥22.
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It is noticed that T+
1 ≤ σ0mnε

4η(∥v∥2+∥ξ∥2)
and maxr⟨w(0)

1,r,v⟩ ≥ σ0∥v∥2/2 due to Lemma C.3, then

it holds that maxr⟨w(0)
1,r,v⟩ − η

∑t
s=1⟨zs,v⟩ ≥ σ0∥v∥2/4. Denote Γ̂

(t)
1,r = Γ

(t)
1,r + ⟨w(0)

1,r,v⟩ −
η
∑t

s=1⟨zs,v⟩ and let A(t) = max Γ̂
(t)
1,r, then it follows that

A(t+1) ≥ A(t) +
C1η

nm
·
∑
yi=1

σ′(A(t)) · ∥v∥22 − η⟨zt+1,v⟩

(i)

≥ A(t) +
C1ηq∥v∥22

4m
[A(t)]q−1 − η⟨zt+1,v⟩

(ii)

≥ (1 +
C1ηq∥v∥22

4m
[A(0)]q−2)A(t) − η⟨zt+1,v⟩

(iii)

≥ (1 +
C1ηqσ

q−2
0 ∥v∥q2

4q−1m
)A(t) − η⟨zt+1,v⟩

Let qΓ = (1 +
C1ηqσ

q−2
0 ∥v∥q2

4q−1m
), then

(iv)
= qtΓA

(0) − (
qtΓ − 1

qΓ − 1
)η⟨zt+1,v⟩.

Here, (i) holds due to the lower bound on the number of positive data in Lemma C.1; (ii) and (iii)

follow from that the facts A(t) is increasing and maxr⟨w(0)
1,r,v⟩−η

∑t
s=1⟨zs,v⟩ ≥ σ0∥v∥2/4; (iv)

is the summation of geometric series. In addition, we know that 1 + z ≥ exp(z/2) for z ≤ 2 and
1 + z ≤ exp(z) for z ≥ 0, then the following inequality holds

A(t) ≥ (1 +
C1ηqσ

q−2
0 ∥v∥q2

4q−1m
)tA(0) − 4q−1m

C1qσ
q−2
0 ∥v∥q2

(qtΓ − 1) · ∥v∥2(∥v∥2 + ∥ξ∥2)
mnε

≥ exp(
C1ηqσ

q−2
0 ∥v∥q2

4q−1 ∗ 2m
t)
σ0∥v∥2

2
− 4q−1m

C1qσ
q−2
0 ∥v∥q2

· exp(C1ηqσ
q−2
0 ∥v∥q2

4q−1m
t) · ∥v∥2(∥v∥2 + ∥ξ∥2)

mnε

= (
e1/2σ0∥v∥2

2
− 4q−1(∥v∥2 + ∥ξ∥2)

C1qσ
q−2
0 ∥v∥q−1

2 nε
) · exp(C1ηqσ

q−2
0 ∥v∥q2

4q−1m
t)

≥ e1/2σ0∥v∥2
4

· exp(C1ηqσ
q−2
0 ∥v∥q2

4q−1m
t),

where the last inequality holds due to the choice of σ0 ≥ O(∥v∥−1
2 (nε)−1/q−1). Therefore, it

is clear that A(t) will reach 4 within T1 = log(16/σ0∥v∥2)4
q−1m

C1ηqσ
q−2
0 ∥v∥q

2

iterations, which indicates that

maxr Γ
(t)
1,r will reach 2 within T1 iterations. Moreover, we can verify that

T1 =
log(16/σ0∥v∥2)4q−1m

C1ηqσ
q−2
0 ∥v∥q2

≤ η−1σ0mnε(∥v∥2 + ∥ξ∥2)−1 ≤ T+
1 ,

The inequality follows from the SNR condition in Equation (18) and the choice of σ0. Moreover,
since we also have σ0 ≤ O(∥ξ∥−1

2 ε−1/q), it holds that

T1 =
log(16/σ0∥v∥2)4q−1m

C1ηqσ
q−2
0 ∥v∥q2

≤
nmη−1σ2−q

0 σ−q
ξ d−q/2

2q+4q[4 log(8mn/δ)](q−1)/2
≤ T+

1 .

Hence, by the definition of T1,1, T1,1 ≤ T1 ≤ T+
1 /2 holds. A similar proof applies for j = −1,

where we can prove that maxr Γ
(T1,−1)
−1,r ≥ 2 with T1,−1 ≤ T1 ≤ T+

1 /2, thereby completing the
proof.

E.2 SECOND STAGE

It is clear that we have the following results at the end of the first stage:

w
(T1)
j,r = w

(0)
j,r + j · Γ(T1)

j,r · v

∥v∥22
+

n∑
i=1

Φ̄
(T1)
j,r,i ·

ξi
∥ξi∥22

+

n∑
i=1

Φ
(T1)
j,r,i ·

ξi
∥ξi∥22

− η

T1∑
s=1

zs

Meanwhile, at the beginning of the second stage, we have the following results:
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• maxr Γ
(T1)
j,r ≥ 2,∀j ∈ {±1}.

• maxj,r,i |Φ(T1)
j,r,i | ≤ β̂ where β̂ = σ0σξ

√
d/2.

Based on Lemma 4.2 and Lemma 4.4, we conclude that signal learning does not deteriorate over
time. Specifically, for any T1 ≤ t ≤ T ∗

p , it holds that Γ(t+1)
j,r ≥ Γ

(t)
j,r, which implies maxr Γ

(t)
j,r ≥ 2.

If we consider w∗
j,r = w

(0)
j,r + 2qm log(2q/κ) · j · v

∥v∥2
2

, then we can derived:

Lemma E.2. Under the same conditions as signal learning, we have that ∥W(T1) − W∗∥F ≤
Õ(m3/2∥v∥−1

2 ).

Proof of Lemma E.2. According to triangle inequality, we have

∥W(T1) −W∗∥F ≤ ∥W(T1) −W(0)∥F + ∥W(0) −W∗∥F
(i)

≤
∑
j,r

Γ
(T1)
j,r

∥v∥2
+
∑
j,r,i

|Φ̄(T1)
j,r,r|

∥ξi∥2
+

∑
j,r,i

|Φ(T1)
j,r,i |

∥ξi∥2
+

∑
j,r

|η
T1∑
s=1

zs|+O(m3/2 log(1/κ))∥v∥−1
2

(ii)

≤ Õ(m∥v∥−1) +O(nmσ0) +O(mσ0) +O(m3/2 log(1/κ))∥v∥−1
2

(iii)

≤ Õ(m3/2∥v∥−1
2 ) +O(nmσ0)

(iv)

≤ Õ(m3/2∥v∥−1
2 ).

Here, (i) holds due to the decomposition of w in Definition 4.1 and the definition of W∗; (ii)
follows from Proposition D.3, Lemma E.1 and Lemma D.8; (iii) comes from the conditions of σ0

in signal learning; (iv) holds due to the choice of σ0.

Lemma E.3. Under the same conditions as signal learning, we have that yi⟨∇f(W(t),xi),W
∗⟩ ≥

q log(2q/κ) for all i ∈ [n] and T1 ≤ t ≤ T ∗.

Proof of Lemma E.3. We know that

f(W(t),xi) = (1/m)
∑
j,r

j · [σ(⟨wj,r, yi · v⟩) + σ(⟨wj,r, ξi⟩)].

Therefore, it holds that

yi⟨∇f(W(t),xi),W
∗⟩ = 1

m

∑
j,r

σ′(⟨w(t)
j,r, yiv⟩)⟨v, jw

∗
j,r⟩+

1

m

∑
j,r

σ′(⟨w(t)
j,r, ξi⟩)⟨yiξi, jw

∗
j,r⟩

(i)
=

1

m

∑
j,r

σ′(⟨w(t)
j,r, yiv⟩)2qm log(2q/κ) +

1

m

∑
j,r

σ′(⟨w(t)
j,r, yiv⟩)⟨v, jw

(0)
j,r ⟩

+
1

m

∑
j,r

σ′(⟨w(t)
j,r, ξi⟩)⟨yiξi, jw

(0)
j,r ⟩

(ii)

≥ 1

m

∑
j,r

σ′(⟨w(t)
j,r, yiv⟩)2qm log(2q/κ)− 1

m

∑
j,r

σ′(⟨w(t)
j,r, yiv⟩)Õ(σ0∥v∥2)

− 1

m

∑
j,r

σ′(⟨w(t)
j,r, ξi⟩)Õ(σ0σξ

√
d),

where (i) holds due to the definition of w∗ and (ii) follows from Lemma C.3. Moreover, according
to Lemma D.4, we have that for j = yi:

max
r

{⟨w(t)
j,r, yiv⟩} = max

r
{Γ(t)

j,r + ⟨w(0)
j,r , yiv⟩ − η

t∑
s=1

⟨zs, yiv⟩}
(i)

≥ 2− Õ(σ0∥v∥2)
(ii)

≥ 1.
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Here, (i) holds due to the analysis in Lemma E.1 and (ii) comes from σ0 ≤ Õ(n−1/2∥v∥2). Addi-
tionally, we can also have

|⟨w(t)
j,r,v⟩|

(i)

≤ |⟨w(0)
j,r ,v⟩|+ |Γ(t)

j,r|+ |η
t∑

s=1

⟨zs,v⟩ |
(ii)

≤ Õ(1)

|⟨w(t)
j,r, ξi⟩|

(iii)

≤ |⟨w(0)
j,r , ξi⟩|+ |Φ(t)

j,r,i|+ |Φ̄(t)
j,r,i|+ 8n

√
log(4n2/δ)

d
α+ |η

t∑
s=1

⟨zs, ξi⟩ |
(iv)

≤ Õ(1).

Here, (i) holds due to Lemma D.4 and Lemma D.8; (ii) is given by Lemma D.5; (ii) and
(iv) follows from Proposition D.3 and Lemma D.8. Combining these results, we return to
yi⟨∇f(W(t),xi),W

∗⟩, which gives:

yi⟨∇f(W(t),xi),W
∗⟩ ≥ 2q log(2q/κ)− Õ(σ0∥v∥2)− Õ(σ0σξ

√
d) ≥ q log(2q/κ),

where the last inequality is driven by the conditions of σ0 as signal learning.

Lemma E.4. Under the same conditions as signal learning, it holds that

∥W(t)−W∗∥2F−∥W(t+1)−W∗∥2F ≥ (2q−1)ηLD(W(t))−ηκ−η2Õ(dσ2
z)−ηÕ(σzm

3/2∥v∥−1
2 )

for all T1 ≤ t ≤ T ∗.

Proof of Lemma E.4. According to the optimization properties, we know the first equality holds:

∥W(t) −W∗∥2F − ∥W(t+1) −W∗∥2F
= 2η⟨∇LS(W

(t)),W(t) −W∗⟩ − η2∥∇LS(W
(t))∥2F

(i)
=

2η

n

n∑
i=1

ℓ
′(t)
i [qyif(W

(t),xi)− ⟨∇f(W(t),xi),W
∗⟩] + η⟨zt,W(t) −W∗⟩

− η2(O(max{∥v∥22, σ2
ξd})LD(W(t)) +O(σ2

zd log(1/δ)))

(ii)

≥ 2η

n

n∑
i=1

ℓ
′(t)
i [qyif(W

(t),xi)− q log(2q/κ)]

+ η⟨zt,W(t) −W∗⟩ − η2(O(max{∥v∥22, σ2
ξd})LD(W(t)) +O(σ2

zd log(1/δ)))

(iii)

≥ 2qη

n

n∑
i=1

[ℓ(yif(W
(t),xi))− κ/(2q)]

− ηÕ(σzm
3/2∥v∥−1

2 )− η2(O(max{∥v∥22, σ2
ξd})LD(W(t)) +O(σ2

zd log(1/δ)))

(iv)

≥ (2q − 1)ηLD(W(t))− ηκ− η2Õ(dσ2
z)− ηÕ(σzm

3/2∥v∥−1
2 ).

(19)

Here, (i) holds due to the definition of noisy gradient, the neural network is q homogeneous, and
Lemma D.9; (ii) is driven from Lemma E.3; (iii) is due to the convexity of the cross entropy
function; (iv) comes from definition of LD.

Lemma E.5 (Restatement of Corollary 4.7). Let T, T1 be defined in respectively. Then under the
same conditions as signal learning, for any t ∈ [T1, T ], it holds that |Γ(t)

j,r| ≤ σ0∥v∥2 for all
j ∈ {±1} and r ∈ [m]. Moreover, let W∗ be the collection of CNN parameters with convolution
filters w∗

j,r = w
(0)
j,r + 2qm log(2q/κ) · j · ∥v∥−2

2 · v. Then the following bound holds

1

t− T1 + 1

t∑
s=T1

LD(W(s)) ≤ ∥W(T1) −W∗∥2F
(2q − 1)η(t− T1 + 1)

+
κ

(2q − 1)
+

ηdσ2
z + Õ(σzm

3/2∥v∥−1
2 )

(2q − 1)︸ ︷︷ ︸
Private terms

for all t ∈ [T1, T ], where we denote ∥W∥F =
√
∥W+1∥2F + ∥W−1∥2F .
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Proof of Lemma E.5. According to Lemma E.4, we have, for any t ≤ T :

∥W(t)−W∗∥2F−∥W(t+1)−W∗∥2F ≥ (2q−1)ηLD(W(t))−ηκ−η2Õ(dσ2
z)−ηÕ(σzm

3/2∥v∥−1
2 ).

By summing over all terms and dividing t− T1 − 1 on both sides, we obtain:

1

t− T1 + 1

t∑
s=T1

LD(W(s)) ≤ ∥W(T1) −W∗∥2F
(2q − 1)η(t− T1 + 1)

+
κ

(2q − 1)
+

ηdσ2
z + Õ(σzm

3/2∥v∥−1
2 )

(2q − 1)
.

If we have T = T1 + ⌊∥W(T1)−W∗∥2
E

2ηκ ⌋ = Cmnε
ηµ(∥v∥2+∥ξ∥2)

≥ κ−1, then it holds that

∥W(T1) −W∗∥2F
(2q − 1)η(T − T1 + 1)

+
κ

2q − 1
≤ 3κ

2q − 1
,

and with σz = 1
ηµ

√
T

:

ηdσ2
z + Õ(σzm

3/2∥v∥−1
2 )

(2q − 1)
≤ d

ηµ2T (2q − 1)
+

m3/2∥v∥−1
2

ηµ
√
T (2q − 1)

(i)

≤ κ

(2q − 1)
,

where (i) comes from the assumption of η. Therefore, combining above results, we conclude that

1

t− T1 + 1

t∑
s=T1

LD(W(s)) ≤ κ.

Next, we will use induction to prove that Ψt = maxi,j,t |Φt
i,j,r| ≤ 2σ0∥ξ∥2 holds for all t ∈ [T1, T ].

According to Lemma E.1, we know it holds for T1. Now, assume it holds for some t ∈ [T1, T ), and
we will show that it also holds for t+ 1.

Ψ(t+1)
(i)

≤ Ψ(t) +max
j,r,i

{ η

nm
· |ℓ(t)i | · σ′(⟨w(0)

j,r , ξi⟩+ 2

n∑
i′=1

Ψ(t) · |⟨ξi
′ , ξi⟩|

∥ξi′∥22
− η

t∑
s=1

⟨zs, ξi⟩) · ∥ξi′∥22}

(i)
=Ψ(t) +max

j,r,i
{ η

nm
· |ℓ′(t)i | · σ′(⟨w(0)

j,r , ξi⟩+ 2Ψ(t) + 2

n∑
i′ ̸=i

Ψ(t) · |⟨ξi
′ , ξi⟩|

∥ξi′∥22
− η

t∑
s=1

⟨zs, ξi⟩) · ∥ξi′∥22,

(ii)

≤Ψ(t) +
ηq

nm
·max

i
|ℓ(t)i | · [4 ·

√
log(8mn/δ) · σ0σξ

√
d+ (2 +

4nσ2
ξ ·

√
d log(4n2/δ)

σ2
ξd/2

) ·Ψ(t)]q−1 · 2σ2
ξd

(iii)

≤ Ψ(t) +
ηq

nm
·max

i
|ℓ(t)i | · (4 ·

√
log(8mn/δ) · σ0σξ

√
d+ 4 ·Ψ(t))q−1 · 2σ2

ξd.

Here, (i) holds due to Definition D.1; (ii) comes from Lemma C.3, Lemma C.2 and the choice of
T . (iii) is due to the condition of d. By summing the above over t , we have:

Ψ(t)
(i)

≤ Ψ(T1) +
ηq

nm

t−1∑
s=T1

max
i

|ℓ(s)i |Õ(σ2
ξd)(σ0∥ξ∥2)q−1

(ii)

≤ Ψ(T1) +
ηq

nm
Õ(σ2

ξd)(σ0∥ξ∥2)q−1
t−1∑
s=T1

max
i

ℓ
(s)
i

(iii)

≤ Ψ(T1) + Õ(ηm−1σ2
ξd)(σ0∥ξ∥2)q−1

t−1∑
s=T1

LS(W
(s))

(iv)

≤ Ψ(T1) + Õ(m2 SNR−2)(σ0∥ξ∥2)q−1

(v)

≤ (σ0∥ξ∥2) + Õ(m2(nε)2(nε)−q−3−2/q)(σ0∥ξ∥2)
(vi)

≤ 2(σ0∥ξ∥2).

Here, (i) holds due to induction hypothesis; (ii) is by |ℓ′| ≤ ℓ, (iii) comes from maxi ℓ
(s)
i ≤∑

i ℓ
(s)
i = nLD(W(s)); (iv) is due to

∑t−1
s=T1

LD(W(s)) ≤
∑T

s=T1
LD(W(s)) = Õ(η−1m3∥v∥22)

from the choice of T ; (v) is by the conditions of σ0 and SNR; (vi) is due to (nε)q+1 ≥ m.
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Now we consider the generalization performance of the privately trained model. Given a new data
point (x, y) drawn from the distribution defined in Definition 3.1, we assume x = [yv, ξ] without
loss of generality.

Lemma E.6. Under the same conditions as signal learning, we have that maxj,r |⟨w(t)
j,r, ξi⟩| ≤ 1/2

for all 0 ≤ t ≤ T .

Proof of Lemma E.6. According to the signal-noise decomposition, the private model satisfies:

w
(t)
j,r = w

(0)
j,r + j · Γ(t)

j,r · ∥v∥
−2
2 · v +

n∑
i=1

Φ̄
(t)
j,r,i · ∥ξi∥

−2
2 · ξi +

n∑
i=1

Φ
(t)
j,r,i · ∥ξi∥

−2
2 · ξi − η

t∑
s=1

zs.

Then, we have

|⟨w(t)
j,r, ξi⟩|

(i)

≤ |⟨w(0)
j,r , ξi⟩|+ |Φ(t)

j,r,i|+ |Φ̄(t)
j,r,i|+ 8n

√
log(4n2/δ)

d
α+ 0.1

(ii)

≤ 2
√
log(8mn/δ) · σ0σξ

√
d+ σ0σξ

√
d+ 8n

√
log(4n2/δ)

d
α+ 0.1

(iii)

≤ 1/2.

Here, (i) holds due to Lemma D.8 and the assumption of training iterations; (ii) comes from
Lemma F.6; (iii) is driven from the condition of σ0 and the assumptions of nε, d.

Lemma E.7. Under the same assumptions as Theorem 4.3, with probability at least 1 −
4mT exp(−C−1

1 σ−2
0 σ−2

ξ d−1), we have maxj,r |⟨w(t)
j,r, ξ⟩| ≤ 1/2 for all 0 ≤ t ≤ T , where C1 =

Õ(1).

Proof of Lemma E.7. Define w̃
(t)
j,r = w

(t)
j,r − j · Γ(t)

j,r · v
∥v∥2

2
. It follows that ⟨w̃(t)

j,r, ξ⟩ = ⟨w(t)
j,r, ξ⟩.

Additionally, we have:

∥w̃(t)
j,r∥2 ≤ Õ(σ0

√
d+ nσ0 + σ0σξ

√
d) = Õ(σ0

√
d),

where the equality holds due to the condition d ≥ Ω̃(m2n4) and the analysis in Theorem 4.6.
Thus, we know that maxj,r ∥w̃(t)

j,r∥2 ≤ C1σ0

√
d, where C1 = Õ(1). Since ⟨w̃(t)

j,r, ξ⟩ follows a
Gaussian distribution with mean zero and standard deviation bounded by C1σ0σξ

√
d, the probability

of deviation can be bounded as:

P(|⟨w̃(t)
j,r, ξ⟩| ≥ 1/2) ≤ 2 exp(− 1

8C2
1σ

2
0σ

2
ξd

)

By applying a union bound over all indices j, r, and t, the proof is complete.

Lemma E.8 (Restatement of Corollary 4.8). Under the same conditions as above, for any t ≤ T
with LD(W(t)) ≤ κ, with at least probability 1− 1/d, it holds that LD(W

(t)) ≤ 6κ+exp(ε−2/q).

Proof of Corollary 4.8. Let K represent the event where Lemma E.7 holds. We can partition
LD(W

(t)) into two components:

E[ℓ(yf(W(t),x))] = E[1(K)ℓ(yf(W(t),x))]︸ ︷︷ ︸
I1

+E[1(Kc)ℓ(yf(W(t),x))]︸ ︷︷ ︸
I2

We will now bound I1 and I2 separately. The term I1 can be bounded by 6LD(Wt) ≤ κ according
to Lemma D.8 in Cao et al. (2022). Next, we bound the second term I2. We select an arbitrary
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training data point ( xi′ , yi′ ) such that yi′ = y. Then, we have:

ℓ(yf(W(t),x)) ≤ log(1 + exp(F−y(W
(t),x)))

(i)

≤ 1 + F−y(W
(t),x)

(ii)
= 1 +

1

m

∑
j=−y,r∈[m]

σ(⟨w(t)
j,r, yv⟩) +

1

m

∑
j=−y,r∈[m]

σ(⟨w(t)
j,r, ξ⟩)

(iii)

≤ 1 + F−yi′ (W−yi′ ,xi′) +
1

m

∑
j=−y,r∈[m]

σ(⟨w(t)
j,r, ξ⟩)

(v)

≤ 2 +
1

m

∑
j=−y,r∈[m]

σ(⟨w(t)
j,r, ξ⟩)

(iv)

≤ 2 + Õ((σ0

√
d)q)∥ξ∥q.

Here, (i) is due to Fy(W
(t),x) ≥ 0; (ii) follows from the property of the logarithmic function;

(iii) holds due to

1

m

∑
j=−y,r∈[m]

σ(⟨w(t)
j,r, yv⟩) ≤ F−y(W−y,xi′) = F−yi′ (W−yi′ ,xi′);

(v) is by Lemma D.6; (iv) comes from Lemma E.7 that ∥w̃(t)
j,r∥2 ≤ Õ(σ0

√
d). Therefore, we can

bound term 2 as follows:

I2
(i)

≤
√
E[1(Kc)] ·

√
E[ℓ(yf(W(t),x))2]

(ii)

≤
√

P(Kc) ·
√
4 + Õ((σ0

√
d)2q)E[∥ξ∥2q2 ]

(iii)

≤ exp[−Ω̃(σ−2
0 σ−2

ξ d−1) + poly log(d)]

(v)

≤ exp((nε)
−1−1/q

).

Here, (i) holds due to Cauchy-Schwartz inequality; (ii) and (iii) come from the fact√
4 + Õ((σ0

√
d)2q)E[∥ξ∥2q2 ] = O(poly(d)) and Lemma E.7; (v) is by the condition of σ0 ≤

(nε)−1−1/q∥ξ∥−1
2 . This completes the proof.

F NOISE MEMORIZATION

Lemma F.1. Under the same conditions as noise memorization, then it holds that β̄ ≥ σ0σξ

√
d/4 ≥

20n
√

log(4n2/δ)
d α, if we have σ0 ≥ 80n

√
log(4n2/δ)

d α ·min{(σξ

√
d)−1, ∥v∥−1

2 }.

Proof of Lemma F.1. Given the SNR condition in noise memorization σq
ξ(
√
d)q ≥ Ω̃(n∥v∥q2), it

follows that: σξ

√
d ≥ ∥v∥2. Thus, we have:

β̄ ≥ σ0σξ

√
d

4
=

σ0

4
·max{σξ

√
d, ∥v∥2} ≥ 20n

√
log(4n2/δ)

d
α.

where the first inequality follows from and the last inequality is a result of the lower bound condition
on σ0 stated in noise memorization.
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F.1 FIRST STAGE

Lemma F.2 (Restatement of Theorem 4.10). Under the same conditions as noise memorization, in
particular, if we choose

n−1 SNR−q ≥
C2q+2 log(20/(σ0σξ

√
d))(

√
2 log(8m/δ))q−2

0.15q−2
,

ε

(1 + SNR)
≥ C log(10/σ0σξ

√
d)

0.15q−2q
(20)

where C = O(1) is a positive constant, then there exist

T1 =
C log(10/(σ0σξ

√
d))4mn

0.15q−2ηqσq−2
0 (σ2

ξ

√
d)q

such that

• maxj,r Φ̄
(T1)
j,r,i ≥ 2 for all i ∈ [n].

• maxj,r Γ
(t)
j,r = Õ(σ0∥v∥2) for all 0 ≤ t ≤ T1.

• maxj,r,i |Φ(t)
j,r,i| = Õ(σ0σξ

√
d) for all 0 ≤ t ≤ T1.

Proof of Lemma F.2. First, let T+
1 = min{ m

ηq2q−1(
√

2 log(8m/δ))q−2σq−2
0 ∥v∥q

2

, σ0mnε
η(∥v∥2+∥ξ∥2)

}. Ac-

cording to the proof of Proposition D.3, it follows that Φ(t)
j,r,i ≥ −β − 16n

√
log(4n2/δ)

d α − 0.2.
Notably, the constant 0.2 here is chosen for simplicity in the proof and can be replaced with any

value. For example, if we take Φ
(t)
j,r,i ≥ −β − 16n

√
log(4n2/δ)

d α − Õ(σ0σξ

√
d), the proof of

Proposition D.3 still holds, provided that T ≤ σ0mnε
η(∥v∥2+∥ξ∥2)

. Moreover, we have Φ
(t)
j,r,i ≤ 0 and

β̄ ≤ β = Õ(σ0σξ

√
d). Therefore, maxj,r,i |Φ(t)

j,r,i| = Õ(σ0σξ

√
d).

Now, we proceed to prove the dynamics of Γ(t+1)
j,r . Similar to the signal learning, we define A(t) =

maxj,r{Γ(t)
j,r + |⟨w(0)

j,r ,v⟩| − yiη
∑t

s=1⟨zs,v⟩}, then it holds that

Γ
(t+1)
j,r = Γ

(t)
j,r −

η

nm
·

n∑
i=1

ℓ
′(t)
i · σ′(⟨w(t)

j,r, yi · v⟩)∥v∥
2
2

≤ Γ
(t)
j,r +

η

nm
·

n∑
i=1

σ′(|⟨w(0)
j,r ,v⟩|+ Γ

(t)
j,r − ηyi

t∑
s=1

⟨zs,v⟩)∥v∥22

A(t+1) ≤ A(t) +
ηq∥v∥22

m
[A(t)]q−1 + ηyi⟨zt+1,v⟩.

(21)

Next, we will prove A(0) ≤ 3A(0) for t ≤ T+
1 by induction. First, A(0) ≤ 3A(0) holds at t = 0 due

to the definition and we assume it holds for t. Now suppose that there exists some t ≤ T+
1 such that

A(s) ≤ 2A(0) holds 0 ≤ s ≤ t− 1. Applying a telescoping sum to Equation (21) yields:

At ≤ A(0) +

t∑
s=0

ηq∥v∥22
m

[A(s)]q−1 +

t∑
s=0

ηyi⟨zs+1,v⟩

(i)

≤ A(0) +
ηq∥v∥22T+

1 3q−1

m
[A(0)]q−1 + Õ(σ0∥v∥2)

(ii)

≤ A(0) +
ηq∥v∥22T+

1 3q−1

m
[
√

2 log(8m/δ) · σ0∥v∥2]q−2A(0) +A(0)

(ii)

≤ 3A(0).

Here, (i) holds due to the induction hypothesis and T+
1 ≤ σ0mnε

η(∥v∥2+∥ξ∥2)
; (ii) follows Lemma C.3

and (iii) is derived from T+
1 . Moreover, we have maxj,r Γ

(t)
j,r ≤ A(t) + maxj,r{|⟨w(0)

j,r ,v⟩| +
yiη

∑t
s=1⟨zs,v⟩} ≤ 5A(0) = Õ(σ0∥v∥2).
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Now, we consider proving that the maximum of noise memorization is larger than 2. For yi = j,
according to Lemma D.5, we have:

⟨w(t)
j,r, ξi⟩ ≥ ⟨w(0)

j,r , ξi⟩+ Φ̄
(t)
j,r,i − 8n

√
log(4n2/δ)

d
α−

t∑
s=1

⟨zs, ξi⟩

≥ Φ̄
(t)
j,r,i + ⟨w(0)

j,r , ξi⟩ − 0.4β̄ −
t∑

s=1

⟨zs, ξi⟩.

Similar to the proof of signal learning, let B
(t)
i = maxj=yi,r{Φ̄

(t)
j,r,i + ⟨w(0)

j,r , ξi⟩ − 0.4β̄ −∑t
s=1⟨zs, ξi⟩}. For each i, let T (i)

1 denote the first time in the period [0, T+
1 ]such that Φ̄(t)

j,r,i ≥ 2.

For t ≤ T
(i)
1 , it holds that maxj,r{|Φ̄(t)

j,r,i|, |Φ
(t)
j,r,i|} = O(1) and maxj,r Γ

(t)
j,r ≤ 4A(0) = O(1).

Therefore, by Lemma D.7 and Lemma D.6, we have F−1(W
(t),xi), F+1(W

(t),xi) = O(1). As a
result, there exists a positive constant C1 such that −ℓ

′(t)
i ≥ C1 for all 0 ≤ t ≤ T

(i)
1 . Additionally,

it is clear that B(0)
i ≥ 0.6β̄ ≥ 0.15σ0σξ

√
d. We can then analyze the dynamics of B(t)

i .

B
(t+1)
i ≥B

(t)
i +

C1ηq∥ξ∥22
2mn

[B
(t)
i ]q−1 − η⟨zt+1, ξ⟩

(i)

≥ (1 +
C1ηq∥ξ∥22

2mn
[B

(0)
i ]q−2)B

(t)
i − η⟨zt+1, ξ⟩

(ii)

≥ (1 +
C10.15

q−2ηqσq−2
0 ∥ξ∥q2

mn
)B

(t)
i − η⟨zt+1, ξ⟩

Let qΦ = (1 +
C10.15

q−2ηqσq−2
0 ∥ξ∥q2

mn
), then

(iii)
= qtΦB

(0)
i − (

qtΦ − 1

qΦ − 1
)η⟨zt+1, ξ⟩.

Here, (i) and (ii) follow from that the facts A(t) is increasing and maxr⟨w(0)
1,r, ξ⟩−η

∑t
s=1⟨zs, ξ⟩ ≥

0; (iii) is the summation of geometric series. Additionally, we know that 1 + z ≥ exp(z/2) for
z ≤ 2 and 1 + z ≤ exp(z) for z ≥ 0, then the following inequality holds

B
(t)
i ≥ (1 +

C1ηq0.15
q−2σq−2

0 ∥ξ∥q2
4mn

)tB
(0)
i − 4mn

C10.15q−2qσq−2
0 ∥ξ∥q2

(qtΦ − 1) · ∥ξ∥2(∥v∥2 + ∥ξ∥2)
mnε

≥ exp(
C1ηqσ

q−2
0 0.15q−2∥ξ∥q2

4mn
t) · 0.15σ0∥ξ∥2 −

4mn

C1q0.15q−2σq−2
0 ∥ξ∥q2

· exp(C1ηqσ
q−2
0 0.15q−2∥ξ∥q2

4mn
t) · ∥ξ∥2(∥v∥2 + ∥ξ∥2)

mnε

= (0.15σ0∥ξ∥2 −
4(∥v∥2 + ∥ξ∥2)
C1qσ

q−2
0 ∥ξ∥q−1

2 ε
) · exp(C1ηq0.15

q−2σq−2
0 ∥ξ∥q2

4mn
t)

≥ 0.1σ0∥ξ∥2 · exp(
C1ηq0.15

q−2σq−2
0 ∥ξ∥q2

4mn
t),

where the last inequality holds due to the choice of σ0. Therefore, it is clear that B(t)
i will reach

3 within T1 =
C log(10/(σ0σξ

√
d))4mn

0.15q−2ηqσq−2
0 (σ2

ξ

√
d)q

iterations, which indicates that maxj=yi,r Φ̄
(t)
j,r,i will reach 2

within T
(
1i) iterations. Moreover, we can verify that

T1 =
C log(10/(σ0σξ

√
d))4mn

0.15q−2ηqσq−2
0 (σ2

ξ

√
d)q

≤ η−1σ0mnε(∥v∥2 + ∥ξ∥2)−1 = T+
1 ,

The inequality follows from the SNR condition in Equation (20). Hence, by the definition of T (i)
1 ,

T
(i)
1 ≤ T1 ≤ T+

1 /2 holds.
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F.2 SECOND STAGE

It is clear that we have the following results at the end of the first stage:

w
(T1)
j,r = w

(0)
j,r + j · Γ(T1)

j,r · v

∥v∥22
+

n∑
i=1

Φ̄
(T1)
j,r,i ·

ξi
∥ξi∥22

+

n∑
i=1

Φ
(T1)
j,r,i ·

ξi
∥ξi∥22

− η

T1∑
s=1

zs

Meanwhile, at the beginning of the second stage, we have the following results:

• maxj,r Φ̄
(T1)
j,r,i ≥ 2 for all i ∈ [n].

• maxj,r Γ
(t)
j,r = Õ(σ0∥v∥2) for all 0 ≤ t ≤ T1.

• maxj,r,i |Φ(t)
j,r,i| = Õ(σ0σξ

√
d) for all 0 ≤ t ≤ T1.

Based on Lemma 4.2 and Lemma 4.4, we conclude that noise memorization Φ̄
(T1)
j,r,i does not dete-

riorate over time. Specifically, for any T1 ≤ t ≤ T ∗
p , it holds that Φ̄(t+1)

j,r,i ≥ Φ̄
(t)
j,r,i, which implies

maxj,r Φ̄
(t)
j,r,i ≥ 2. If we consider w∗

j,r = w
(0)
j,r +2qm log(2q/κ))[

∑n
i=1 1(j = yi) · ξi

∥ξi∥2
], then we

can derived:
Lemma F.3. Under the same conditions as noise memorization, we have that ∥W(T1) −W∗∥F ≤
Õ(m2n1/2σ−1

ξ d−1/2) +O(nmσ0).

Proof of Lemma F.3. According to triangle inequality, we have

∥W(T1) −W∗∥F ≤ ∥W(T1) −W(0)∥F + ∥W(0) −W∗∥F
(i)

≤
∑
j,r

Γ
(T1)
j,r

∥v∥2
+
∑
j,r,i

|Φ̄(T1)
j,r,r|

∥ξi∥2
+

∑
j,r,i

|Φ(T1)
j,r,i |

∥ξi∥2
+

∑
j,r

|η
T1∑
s=1

zs|+O(m3/2 log(1/κ))∥v∥−1
2

(ii)

≤ Õ(m∥v∥−1) + Õ(n
√
mσ−1

ξ d−1/2) +O(mσ0) +O(m3/2n1/2 log(1/κ)σ−1
ξ d−1/2)

(iii)

≤ Õ(m2n1/2σ−1
ξ d−1/2).

Here, (i) holds due to the decomposition of w in Definition 4.1 and the definition of W∗; (ii)
follows from Proposition D.3, Lemma F.2 and Lemma D.8; (iii) comes from the conditions of σ0

in noise memorization.

Lemma F.4. Under the same conditions as noise memorization, we have that
yi⟨∇f(W(t),xi),W

∗⟩ ≥ q log(2q/κ) for all i ∈ [n] and T1 ≤ t ≤ T ∗.

Proof of Lemma F.4. We know that
f(W(t),xi) = (1/m)

∑
j,r

j · [σ(⟨wj,r, yi · v⟩) + σ(⟨wj,r, ξi⟩)].

Therefore, it holds that

yi⟨∇f(W(t),xi),W
∗⟩ = 1

m

∑
j,r

σ′(⟨w(t)
j,r, yiv⟩)⟨v, jw

∗
j,r⟩+

1

m

∑
j,r

σ′(⟨w(t)
j,r, ξi⟩)⟨yiξi, jw

∗
j,r⟩

(i)
=

1

m

∑
j,r

n∑
i′=1

σ′(⟨w(t)
j,r, ξi⟩)2qm log(2q/κ)1(j = yi′) ·

⟨ξi′ , ξi⟩
∥ξi′∥2

+
1

m

∑
j,r

σ′(⟨w(t)
j,r, yiv⟩)⟨v, jw

(0)
j,r ⟩+

1

m

∑
j,r

σ′(⟨w(t)
j,r, ξi⟩)⟨yiξi, jw

(0)
j,r ⟩

(ii)

≥ 1

m

∑
j,r

σ′(⟨w(t)
j,r, yiv⟩)2qm log(2q/κ)− 1

m

∑
j,r

σ′(⟨w(t)
j,r, yiv⟩)Õ(σ0∥v∥2)

− 1

m

∑
j,r

σ′(⟨w(t)
j,r, ξi⟩)Õ(σ0σξ

√
d)− 1

m

∑
j,r

σ′(⟨w(t)
j,r, ξi⟩)Õ(mnd−1/2),
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where (i) holds due to the definition of w∗ and (ii) follows from Lemma C.2. Moreover, according
to Lemma D.4, we have that for j = yi:

max
r

{⟨w(t)
j,r, ξi⟩} = max

r
{Φ̄(t)

j,r + ⟨w(0)
j,r , ξi⟩ − 8n

√
log(4n2/δ)

d
α− η

t∑
s=1

⟨zs, yiv⟩}
(i)

≥ 1.

Here, (i) holds due to the analysis in Lemma F.2. Additionally, we can also have

|⟨w(t)
j,r,v⟩|

(i)

≤ |⟨w(0)
j,r ,v⟩|+ |Γ(t)

j,r|+ |η
t∑

s=1

⟨zs,v⟩ |
(ii)

≤ Õ(1)

|⟨w(t)
j,r, ξi⟩|

(iii)

≤ |⟨w(0)
j,r , ξi⟩|+ |Φ(t)

j,r,i|+ |Φ̄(t)
j,r,i|+ 8n

√
log(4n2/δ)

d
α+ |η

t∑
s=1

⟨zs, ξi⟩ |
(iv)

≤ Õ(1).

Here, (i) holds due to Lemma D.4 and Lemma D.8; (ii) is given by Lemma D.5; (ii) and
(iv) follows from Proposition D.3 and Lemma D.8. Combining these results, we return to
yi⟨∇f(W(t),xi),W

∗⟩, which gives:

yi⟨∇f(W(t),xi),W
∗⟩ ≥ 2q log(2q/κ)−Õ(σ0∥v∥2)−Õ(σ0σξ

√
d)−Õ(mnd−1/2) ≥ q log(2q/κ),

where the last inequality is driven by the conditions as noise memorization that ε ≥ 1/q log(2q/κ).

Lemma F.5. Under the same conditions as noise memorization, it holds that
∥W(t)−W∗∥2F−∥W(t+1)−W∗∥2F ≥ (2q−1)ηLD(W(t))−ηκ−η2Õ(dσ2

z)−ηÕ(σzm
2n1/2σ−1

ξ d−1/2)−O(σznmσ0)

for all T1 ≤ t ≤ T ∗.

Proof of Lemma F.5. According to the optimization properties, we know the first equality holds:

∥W(t) −W∗∥2F − ∥W(t+1) −W∗∥2F
= 2η⟨∇LS(W

(t)),W(t) −W∗⟩ − η2∥∇LS(W
(t))∥2F

(i)
=

2η

n

n∑
i=1

ℓ
′(t)
i [qyif(W

(t),xi)− ⟨∇f(W(t),xi),W
∗⟩] + η⟨zt,W(t) −W∗⟩

− η2(O(max{∥v∥22, σ2
ξd})LD(W(t)) +O(σ2

zd log(1/δ)))

(ii)

≥ 2η

n

n∑
i=1

ℓ
′(t)
i [qyif(W

(t),xi)− q log(2q/κ)]

+ η⟨zt,W(t) −W∗⟩ − η2(O(max{∥v∥22, σ2
ξd})LD(W(t)) +O(σ2

zd log(1/δ)))

(iii)

≥ 2qη

n

n∑
i=1

[ℓ(yif(W
(t),xi))− κ/(2q)]

ηÕ(σzm
2n1/2σ−1

ξ d−1/2)− η2(O(max{∥v∥22, σ2
ξd})LD(W(t)) +O(σ2

zd log(1/δ)))

(iv)

≥ (2q − 1)ηLD(W(t))− ηκ− η2Õ(dσ2
z)− ηÕ(σzm

2n1/2σ−1
ξ d−1/2).

(22)

Here, (i) holds due to the definition of noisy gradient, the neural network is q homogeneous, and
Lemma D.9; (ii) is driven from Lemma F.4; (iii) is due to the convexity of the cross entropy
function; (iv) comes from definition of LD.

Lemma F.6 (Restatement of Corollary 4.11). Let T, T1 be defined in respectively. Then under the
same conditions as signal learning, for any t ∈ [T1, T ], it holds that |Γ(t)

j,r| ≤ σ0∥v∥2 for all
j ∈ {±1} and r ∈ [m]. Moreover, let W∗ be the collection of CNN parameters with convolution
filters w∗

j,r = w
(0)
j,r + 2qm log(2q/κ))[

∑n
i=1 1(j = yi) · ξi

∥ξi∥2
]. Then the following bound holds

1

t− T1 + 1

t∑
s=T1

LD(W(s)) ≤ ∥W(T1) −W∗∥2F
(2q − 1)η(t− T1 + 1)

+
κ

(2q − 1)
+

ηdσ2
z + Õ(σzm

2n1/2σ−1
ξ d−1/2)

(2q − 1)︸ ︷︷ ︸
Private terms

for all t ∈ [T1, T ], where we denote ∥W∥F =
√
∥W+1∥2F + ∥W−1∥2F .
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Proof of Lemma F.6. According to Lemma E.4, we have, for any t ≤ T :

∥W(t)−W∗∥2F−∥W(t+1)−W∗∥2F ≥ (2q−1)ηLD(W(t))−ηκ−η2Õ(dσ2
z)−ηÕ(σzm

3/2∥v∥−1
2 ).

By summing over all terms and dividing t− T1 − 1 on both sides, we obtain:

1

t− T1 + 1

t∑
s=T1

LD(W(s)) ≤ ∥W(T1) −W∗∥2F
(2q − 1)η(t− T1 + 1)

+
κ

(2q − 1)
+

ηdσ2
z + Õ(σzm

2n1/2σ−1
ξ d−1/2)

(2q − 1)
.

If we have T = T1 + ⌊∥W(T1)−W∗∥2
E

2ηκ ⌋ = Cmnε
ηµ(∥v∥2+∥ξ∥2)

≥ κ−1, then it holds that

∥W(T1) −W∗∥2F
(2q − 1)η(T − T1 + 1)

+
κ

2q − 1
≤ 3κ

2q − 1
,

and with σz = 1
ηµ

√
T

:

ηdσ2
z + Õ(σzm

2n1/2σ−1
ξ d−1/2)

(2q − 1)
≤ d

ηµ2T (2q − 1)
+

m2n1/2∥ξ∥−1
2 ∥v∥−1

2

ηµ
√
T (2q − 1)

(i)

≤ κ

(2q − 1)
,

where (i) comes from the assumption of η. Therefore, combining above results, we conclude that

1

t− T1 + 1

t∑
s=T1

LD(W(s)) ≤ κ.

Moreover, we will use induction to prove that maxj,t |Γt
j,r| ≤ 2σ0∥v∥2 holds for all t ∈ [T1, T ].

According to Lemma E.1, we know it holds for T1. Now, assume it holds for some t ∈ [T1, T ), and
we will show that it also holds for t+ 1.

Γ
(t)
j,r = Γ

(T1)
j,r − η

nm

t−1∑
s=T1

n∑
i=1

ℓ
(t)
i · σ′(⟨w(0)

j,r , yi · v⟩+ Γs
j,r − ⟨zs,v⟩)∥v∥22,

(i)

≤ Γ
(T1)
j,r +

q5q−1η

nm
∥v∥22(σ0∥v∥2)q−1

t−1∑
s=T1

n∑
i=1

|ℓ(t)i |

(ii)

≤ Γ
(T1)
j,r + q5q−1ηm−1∥v∥22(σ0∥v∥2)q−1

t−1∑
s=T1

LS(W
(s))

(iii)

≤ Γ
(T1)
j,r + (σ0∥v∥2)q−1Õ(m2n SNR2)

(iv)

≤ Γ
(T1)
j,r + (σ0∥v∥2)(nε)−(q−2)/qÕ(m2n1−2/q)

(v)

≤ 2β̂′.

Here, (i) is due to induction hypothesis and the choice of T ; (ii) holds by |ℓ′| ≤ ℓ; (iii) comes from
Lemma F.3 and the choice of T ; (iv) is driven from σ0 ≤ (nε)−1/q∥v∥−1

2 and SNR; (v) holds due
to n1/qε ≥ m.

Lemma F.7 (Restatement of Corollary 4.12). Under the same conditions as data noise memoriza-
tion, within T iterations, regardless of how the sample size n and privacy budget ε chosen, with
at least probability 1 − 1/d, we can find W(T̃ ) such that LD(W(T̃ )) ≤ κ. Additionally, for any
0 ≤ t ≤ T̃ we have that LD(W

(t)) ≥ 0.1.

Proof of Lemma F.7. Consider a new sample (x, y) drawn from Definition 3.1, we have:

∥w(t)
j,r∥2 = ∥w(0)

j,r + j · Γ(t)
j,r ·

v

∥v∥22
+

n∑
i=1

Φ̄
(t)
j,r,i ·

ξi
∥ξi∥22

+

n∑
i=1

Φ
(t)
j,r,i ·

ξi
∥ξi∥22

− η

t∑
s=1

zs∥2

(i)

≤ ∥w(0)
j,r ∥2 +

Γ
(t)
j,r

∥v∥2
+

n∑
i=1

Φ̄
(t)
j,r,i

∥ξi∥2
+

n∑
i=1

|Φ(t)
j,r,i|

∥ξi∥2
+ ∥η

t∑
s=1

zs∥2

(ii)

≤ O(σ0

√
d) + Õ(nσ−1

ξ d−1/2) +O(η
√
tdσz)
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Here, (i) is due to triangle inequality; (ii) holds by Lemma F.2 and Proposition D.3. Addition-
ally, we know that ⟨w(t)

j,r, ξ⟩ ∼ N (0, σ2
ξ∥w

(t)
j,r∥22), it holds that with probability at least 1 − 1/4,

|⟨w(t)
j,r, ξ⟩| ≤ Õ(σ0σξ

√
d + nd−1/2 +

√
dσξσ0

µ ) due to σz = σ0/(η
√
Tµ). Moreover, accord-

ing to Lemma F.6, we have maxj,r Γ
(t)
j,r ≤ Õ(σ0∥v∥2), which also indicates that |⟨w(t)

j,r,v⟩| ≤
Õ(σ0∥v∥2).
Then, by the union bound, with probability at least 1− 1/2, we have

Fj(W
(t)
j ,x) =

1

m

m∑
r=1

σ(⟨w(t)
j,r, yv⟩) +

1

m

m∑
r=1

σ(⟨w(t)
j,r, ξ⟩)

≤max
r

|⟨w(t)
j,r,v⟩|

q +max
r

|⟨w(t)
j,r, ξ⟩|

q

≤Õ(σq
0σ

q
ξd

q/2 + nqd−q/2 + σq
0∥v∥

q
2 +

σq
0∥ξ∥

q
2

µq
)

(i)

≤ Õ(
1

εq
+ nqd−q/2 +

1

nε
+

1

εqµq
)

(ii)

≤ 1.

Here, (i) and (ii) holds due to we restrict σ0 = Õ(ε−1∥ξ∥2) and εq ≥ Õ(1). Notice that here 1 can
be any number, and we use 1 without loss of generality. Therefore, with probability at least 1− 1/2,
we have ℓ(y · f(W(t),x)) ≥ log(1 + e−1), which indicates that LD(W

(t)) ≥ log(1 + e−1) · 0.5 ≥
0.1.
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