
Generative Modeling Reinvents Supervised Learning:
Label Repurposing with Predictive Consistency Learning

Yang Li 1 2 Jiale Ma 1 2 Yebin Yang 1 2 Qitian Wu 3 Hongyuan Zha 4 Junchi Yan 1 2

Abstract
Predicting labels directly from data has been the
standard in label learning tasks, e.g., supervised
learning, where models often prioritize feature
compression and extraction from inputs under the
assumption that label information is less com-
plex. However, recent prediction tasks often face
predicting complex labels, exacerbating the chal-
lenge of learning mappings from learned features
to high-fidelity label representations. To this end,
we draw inspiration from the consistency train-
ing concept in generative consistency models and
propose predictive consistency learning (PCL),
a novel learning paradigm that decomposes the
full label information into a progressive learning
procedure, mitigating the label capture challenge.
Besides data inputs, PCL additionally receives
input from noise-perturbed labels as an additional
reference, pursuing predictive consistency across
different noise levels. It simultaneously learns the
relationship between latent features and a spec-
trum of label information, which enables progres-
sive learning for complex predictions and allows
multi-step inference analogous to gradual denois-
ing, thereby enhancing the prediction quality. Ex-
periments on vision, text, and graph tasks show
the superiority of PCL over conventional super-
vised training in complex label prediction tasks.

1. Introduction
Machine learning has long relied on the paradigm of map-
ping input data to corresponding output labels by mini-
mizing prediction error, where supervised learning is a
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prominent example. This direct label prediction paradigm
has been widely applied across various domains, from im-
age classification (Krizhevsky et al., 2012; He et al., 2016;
Simonyan & Zisserman, 2014), natural language process-
ing (Vaswani, 2017; Devlin, 2018; Radford, 2018), to struc-
tured graph learning (Kipf & Welling, 2016; Veličković
et al., 2017; Wu et al., 2022) where it is considered a stan-
dard practice. In such systems, it is very typical to em-
ploy a neural network to directly map the data inputs to
labels, with a particular focus on the expressive capacity
of (deep) models to compress high-dimensional inputs into
latent representations while preserving relevant information
for accurate predictions, viewed from an information the-
ory perspective (Tishby et al., 2000; Tishby & Zaslavsky,
2015). This compression is believed to contribute to the
generalization ability of deep learning models, particularly
in high-dimensional and noisy input scenarios.

This paradigm typically assumes that the labels contain a sig-
nificantly lower dimensionality and less information than the
data inputs, thus guiding model designs toward compressing
and extracting relevant features from the input space for ef-
ficient prediction (Tishby & Zaslavsky, 2015). The assump-
tion further implies that transforming meaningful latent fea-
tures to label outputs is relatively straightforward compared
to the challenge of extracting expressive features. However,
recent advanced scenarios involve much more complex la-
bels, leading to new challenges. Examples include image
prediction extending to dense, pixel-level outputs (Long
et al., 2015; Chen et al., 2017), natural language processing
tasks generating complex sentences (Brown, 2020; Touvron
et al., 2023), and predicting complex structured solutions
based on graph representations (Li et al., 2023b; Satorras
et al., 2021). These challenges expose predictive bottlenecks
due to the inherent complexity of transformations from fea-
tures to labels, in addition to feature extraction. To address
this challenge, one approach involves learning an efficient
representation of the complex labels, facilitating a more
effective transformation within the low-dimensional feature
space. Indeed, this can correspond to methods that leverage
Variational Auto-Encoder (VAE) (Kingma, 2013) to perform
learning tasks within the latent space (Rombach et al., 2022;
Hottung et al., 2021). However, this approach necessitates
that the transformation between labels and latent features
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Figure 1. Illustration of predictive consistency learning (PCL). Unlike traditional approaches that predict labels directly from inputs, PCL
predicts labels using inputs and noise-perturbed label hints and pursues predictive consistency across different noise steps.

be reversible, requiring training additional neural networks.

In this paper, drawing inspiration from the concept of con-
sistency mapping in generative consistency models (Song
et al., 2023; Song & Dhariwal, 2024), we propose an alter-
native approach to better capture complex label information
by introducing a fundamentally different learning paradigm.
This learning scheme aims to decompose the full label in-
formation into a gradual process, where the model begins
by simultaneously capturing partial label details and pro-
gressively approximates the complete label. To schedule
the label information to be learned, we resort to the noising
process of the diffusion and consistency models (Ho et al.,
2020; Song et al., 2020; 2023) and generate noisy labels
as additional input hints, enabling the model to learn the
complementary information alongside the noisy part. The
proposed Predictive Consistency Learning (PCL) frames the
learning process as learning the predictive consistency from
input label hints of various noise levels toward the target
labels. This process can be viewed as a label generation
process conditioned on the input data. However, to align
with prediction scenarios, each training instance is paired
with a reference target label, and the model learns to guide
all denoising trajectories toward this target by enforcing pre-
dictive consistency across different noise timesteps, which
we define as prediction consistency.

Specifically, during training, unlike conventional methods
predicting labels directly from inputs, PCL maps noisy la-
bels at varying noise levels back to the true label conditioned
on the input data and enforces different noise timesteps map-
ping to the same target. By enforcing predictive consistency
across multiple noise levels, it captures a rich spectrum of
label information from entirely noisy to accurate predictions,
fostering a more expressive mapping. During inference, the
inherent multi-step denoising mechanism also facilitates pro-
gressive refinement, resulting in more flexible and accurate
predictions. Intuitively, this process can be seen as learn-
ing to predict with varying degrees of solution hints, which
benefits learning by progressively understanding the label in-

formation, especially when the labels are complex, while the
prediction consistency serves as a mechanism to propagate
prediction accuracy from low-noise to high-noise conditions
and constrains the invariance of the learned representation
across varying noise levels, promoting the information lever-
age from the input data. Fig. 1 illustrates the pipeline.

We demonstrate the effectiveness of our approach across a
range of scenarios involving complex labels from diverse
domains, including vision learning, e.g., semantic segmen-
tation (Long et al., 2015; Chen et al., 2017), graph learning,
e.g., constrained N-body simulation (Satorras et al., 2021),
and natural language processing, e.g., supervised fine-tuning
via next-token prediction in large language models (Brown,
2020; Touvron et al., 2023). The empirical results highlight
the superiority of PCL over traditional supervised learning
across various mainstream network backbones.

2. Related Work
Learning with Deterministic Labels. Learning with deter-
ministic labels, often framed within the supervised learning
(SL) paradigm, focuses on training models using datasets
where input-output pairs are unambiguously annotated. In
SL, the models typically learn the direct mapping from the
data inputs to labels by minimizing the discrepancy between
predicted and ground truth labels. Beyond pure supervi-
sion, hybrid frameworks integrate deterministic labels with
auxiliary learning objectives, e.g., semi-supervised meth-
ods (Zhu & Goldberg, 2009) combine scarce labeled data
with abundant unlabeled samples, and weakly supervised
learning addresses scenarios with incomplete or noisy su-
pervision (Zhou, 2018). For theoretical analysis of these
systems, the Information Bottleneck (IB) principle (Tishby
et al., 2000; Tishby & Zaslavsky, 2015) indicates that mod-
els balance the trade-off between compression and predic-
tion accuracy. In this paper, we mainly focus on classic
supervised learning scenarios to demonstrate and analyze
the effectiveness of the proposed PCL learning paradigm.
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Besides, different label utilization techniques have been
proposed to enhance model generalization and robustness.
Examples include label smoothing that replaces hard la-
bels with soft distributions to prevent overconfidence and
improve calibration (Szegedy et al., 2016; Müller et al.,
2019), mixup that generates virtual training examples by
interpolating both inputs and labels, augmenting data and
smoothing decision boundaries (Zhang et al., 2017), curricu-
lum learning which organizes training samples from easy to
hard, effectively exploiting label difficulty to stabilize and
speed up model convergence (Bengio et al., 2009; Wang
et al., 2021), and focal loss that reweights the contribution of
hard-to-classify examples by modulating label-related loss
terms to address class imbalance (Lin et al., 2017). How-
ever, these methods still rely on using labels solely to align
neural predictions, whereas we attempt to incorporate label
information into the model input as a reference for learning.

Diffusion Models and Consistency Models. Generative
models serve widespread applications for their powerful
distribution learning capacity (Cheng et al., 2022; Li et al.,
2022; 2023c;a; Chen et al., 2024; Guo et al., 2024). Diffu-
sion models are characterized by a forward process of noise
injection and a reverse process of learnable denoising, where
neural networks iteratively predict data distributions condi-
tioned on increasingly noisy inputs. Diffusion models have
been verified in continuous space based on the Gaussian
noise (Sohl-Dickstein et al., 2015; Song & Ermon, 2019;
Ho et al., 2020; Song et al., 2020) and extended to discrete
data with noise distributions modeled as binomial or cate-
gorical variables (Sohl-Dickstein et al., 2015; Austin et al.,
2021; Hoogeboom et al., 2021). Building on the advance-
ments of diffusion models, instead of iteratively refining
noisy samples through a reverse diffusion process, consis-
tency models (Song et al., 2023; Song & Dhariwal, 2023)
leverage a self-consistency mechanism across different time
steps, directly learning the mappings from noise to data in
a single step. This approach has shown promise in reduc-
ing computational overhead while maintaining high sample
quality. Recently, diffusion models have shown promise
in more challenging data generation tasks like solving NP
combinatorial problems (Sun & Yang, 2023; Li et al., 2023b;
2024; 2025; Zheng et al., 2024).

3. Preliminary and Background
Supervised learning aims to train the model to extract
compressed features or representations of input data x ∈ X
while retaining the most relevant information about the
target label y ∈ Y (Tishby et al., 2000; Tishby & Zaslavsky,
2015). This is based on the assumption that the data
provides sufficient information about the labels, which
means the data is abundant. From an information-theoretic
perspective, the mutual information I(X;Y ) quantifies

how much information X provides about Y . Typically, X
is a high dimensional variable whereas Y has a significantly
lower dimensionality, which generally means that most of
the entropy of X is not very informative about Y and the
relevant features are difficult to extract (Tishby & Zaslavsky,
2015). In deep learning (LeCun et al., 2015), deep neural
networks create a compressed representation XE of X
through an encoder, which discards irrelevant information
while preserving as much of the mutual information
I(XE ;Y ) as possible. The compression is optimized by
minimizing I(X;XE) while maximizing I(XE ;Y ).

This formulation typically assumes that Y is a low-
dimensional vector (e.g., class labels) where the informa-
tion content is relatively limited. However, many real-world
tasks, especially in structured prediction (e.g., image seg-
mentation, sequence generation), involve predicting high-
dimensional outputs. In these tasks, the mutual information
I(XE ;Y ) can be difficult to maximize because the high-
dimensional labels themselves contain redundancies. More-
over, the space of possible outputs Y could involve complex
correlations that are hard to capture directly. These learning
tasks with complex labels can be characterized by a label
space that exhibits high complexity due to at least one of
the following characteristics: (i) high dimensionality, (ii)
intricate internal structure, or (iii) the presence of significant
dependency patterns among labels.

In contrast to traditional tasks with simple scalar or categor-
ical labels, complex labels encode rich, multi-dimensional,
or structured information. Consequently, these tasks require
models to capture sophisticated relationships and dependen-
cies within the label space, transcending straightforward
mappings from input features. In such cases, the mutual in-
formation I(XE ;Y ) becomes harder to maximize due to the
exponential growth of label entropy H(Y ) with dimension-
ality, which further complicates the balancing between mini-
mizing I(X;XE) and maximizing I(XE ;Y ). One solution
to this challenge is to learn an effective latent representation
YE of the target Y . This concept aligns with existing ap-
proaches (Rombach et al., 2022; Hottung et al., 2021) that
handle high-dimensional outputs in latent spaces. However,
for prediction purposes, these methods rely on the invertibil-
ity of the mapping from Y to its latent representation YE ,
and necessitate learning additional networks to manage la-
tent representations. In the following section, we propose to
enhance the model’s ability to capture I(XE , Y ) directly by
leveraging the mechanism of the learning paradigm itself.

4. Predictive Consistency Learning
4.1. Intuition and Overview

To more effectively capture I(XE , Y ), where Y contains
substantial information, directly maximizing the mutual in-
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formation between XE and Y can be challenging. Rather
than attempting to learn all of Y ’s information at once, we
propose a structured learning process that progressively
captures this information. To break down the label infor-
mation into a more gradual learning process, we introduce
an additional noisy label Yt to regulate the amount of label
information learned at each iteration. Using Yt, the original
mutual information I(XE ;Y ) can be decomposed as:

I(XE ;Y ) = I(XE ;Y |Yt) + I(XE ;Yt)− I(XE ;Yt|Y )
(1)

Since Yt is derived from Y , it does not provide any more
information about XE if Y is given, thus the redundancy
term I(XE ;Yt|Y ) = 0, simplifying to:

I(XE ;Y ) = I(XE ;Y |Yt) + I(XE ;Yt) (2)

The decomposition reveals two key components, where the
first term, I(XE ;Y |Yt), captures the incremental informa-
tion about Y that can be learned given Yt. This term serves
as a lower bound of I(XE ;Y ), and the gap between them
can be controlled by the information content of Yt. By
optimizing XE through maximizing Et[I(XE ;Y |Yt)], the
model learns to progressively capture the full information
content of Y . Specifically, when t → T , Yt provides lit-
tle information, and the model is forced to fully capture
I(XE ;Y ). When t → 0, Yt approximates Y , allowing
the model to focus on refining details of the label. During
training, by sampling a batch of random t values, the model
simultaneously learns to capture different aspects of the
label. Initially, XE is expected to easily capture partial de-
tails of the label, and through iterative training, it gradually
accumulates the full information content of Y .

For implementation, the model is exposed to noisy versions
of Y . The inputs to the model include both X and Yt, where
Yt serve as the condition. While introducing Yt as an aux-
iliary input facilitates learning, the ultimate goal is for the
model to make predictions relying on Yt as little as possible.
Formally, we aim to minimize the noise-conditional depen-
dency Iθ(Y ;Yt|X), which measures the extent to which the
model’s predictions depend on the noisy label Yt. Ideally,
this term should be zero, indicating that the model’s pre-
dictions are independent of Yt given X and the model θ.
Mathematically, it can be measured as:

Iθ(Y ;Yt|X) = EX,Yt [DKL (pθ(Y |X,Yt)∥pθ(Y |X))]
(3)

To achieve this, we introduce the prediction consistency
term, which enforces pθ(Y |X,Yt, t) = pθ(Y |X,Yt′ , t

′) for
all t, t′. This regularization ensures that the model’s predic-
tions are consistent across different noise levels, reducing
the dependency on Yt and encouraging XE to encode all
necessary information for accurate predictions.

The left part of the section outlines the detailed design of
the proposed predictive consistency learning framework.

We start by introducing the noising processes for different
labels and then thoroughly explain the training and inference
scheme in the consistency learning paradigm.

4.2. Noise Scheduling for Labels

This section elucidates the noising processes designed to
gradually incorporate noise across various label spaces.

Diffusion on Categorical Labels. For multi-dim categor-
ical labels in {1, · · · ,K}N where K denotes the category
number and N denotes the dimension, we follow discrete
diffusion models (Sohl-Dickstein et al., 2015; Austin et al.,
2021; Hoogeboom et al., 2021) to model the noising pro-
cess as introducing multinomial noise to the label at each
timestep t. We represent the label as y ∈ {0, 1}N×K , which
is a concatenation of N one-hot vectors. The noise can be
understood as transitioning between different categories for
each of the N dimensions. Starting from the initial point
y0 = y, the noising process is defined as:

q(yt|yt−1) = Cat(yt;p = yt−1Qt), (4)

where Cat(y;p) is categorical distributions over N one-
hot vectors with probabilities given by p, and Qt = (1 −
βt)I+ βt/K11⊤ ∈ RK×K is the transition matrix, which
determines the corruption introduced at timestep t, where
βt is the corruption rate at timestep t. This ensures that
with probability βt, the corresponding label category can
transition to any other category. Over time, as t approaches
the final timestep T , the labels converge towards a uniform
distribution over the K categories. The cumulative effect of
the diffusion process after t steps is:

q(yt|y0) = Cat(yt;p = y0Q̄t), (5)

where Q̄t = Q1Q2 . . .Qt represents the accumulated tran-
sition matrix from y0 to yt.

Diffusion on Continuous Labels. For multi-dim contin-
uous labels in RN , where N denotes the dimensionality,
we follow Gaussian diffusion models (Sohl-Dickstein et al.,
2015; Ho et al., 2020; Nichol & Dhariwal, 2021) to model
the diffusion process as introducing Gaussian noise to the
label at each timestep. At each timestep t, Gaussian noise is
applied to corrupt the label, progressively pushing it toward
a noisy distribution. The noising process is defined as:

q(yt|yt−1) = N (yt;
√

1− βtyt−1, βtI), (6)

where N (y;µ,Σ) is a Gaussian distribution with mean µ
and covariance Σ, and βt controls the variance of the added
noise at timestep t. The factor

√
1− βt ensures that the

label retains some of its original value, while the noise is
introduced with variance βt. Over time, as t approaches the
final timestep T , the labels converge towards a Gaussian cen-
tered at zero. The cumulative effect of this diffusion process
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Figure 2. Prediction consistency enforces all trajectories condi-
tioned on x consistently map to the same initial point, i.e. label y.

after t steps is described by the marginal distribution:

q(yt|y0) = N (yt;
√
ᾱty0, (1− ᾱt)I), (7)

where ᾱt =
∏t

i=1(1 − βi) is the accumulated noise scale
from the original label y0 to the noisy label yt. As t in-
creases, ᾱt decreases, leading to increased label corruption.

Diffusion on Embeddings. In scenarios where the label
is too complex to be directly expressed as a categorical
or continuous value, or when the number of categories is
excessively large, we introduce Gaussian noise directly to
the latent embeddings of the labels in a manner consistent
with the noising process used for continuous labels.

4.3. Predictive Consistency Training Scheme

We draw inspiration from the consistency mapping concept
in consistency models (Song et al., 2023; Song & Dhariwal,
2024) and define the predictive consistency mapping for
prediction scenarios as fθ : (x,yt, t) 7→ y. Correspond-
ing to the discussions in Sec. 4.1, we expect the training
scheme to satisfy two properties: 1) fθ can nearly recover
the label y given the inputs x,yt, t, where t informs the
model of the noise level; 2) the prediction consistency that
fθ(x,yt, t) = fθ(x,yt′ , t

′) holds for all t, t′. The key dis-
tinction between the proposed predictive consistency map-
ping and the generative consistency mapping is that in the
former, the diffusion trajectories are conditioned on the data
input x with a reference target label y. PCL aims to recover
the exact y given x, where the target distribution converges
to an exact target point, and the model trades the output
diversity to better capture y. This requires the prediction
to focus on the condition x, with predictive consistency en-
forced across all possible label noising trajectories instead of
satisfying self-consistency (Song et al., 2023) within merely
each generative trajectory. The complete predictive consis-
tency condition can be expressed as follows: conditioned
on data input x, all points along any trajectory map to its

label, i.e., fθ(x,yi
t, t) = fθ(x,y

j
t′ , t

′) = y for distinct tra-
jectories i and j (from independent noising processes) at
distinct steps t and t′, as shown in Fig. 2.

To achieve the consistency to learn f : x 7→ y, given that
the target y is certain and explicit, we do not have to merely
rely on optimizing the expectation of the variation of the
consistency mappings over two noise points yt and yt′ to
propagate the label information across different noise levels
as generative consistency models do (Song et al., 2023).
Instead, we additionally introduce y to optimize the triadic
distance to achieve prediction consistency:

LPCL(θ) =E
[
λ1d

(
fθ(x,yt, t),y

)
+ λ1d

(
fθ(x,yt′ , t

′),y)
)

+ λ2d
(
fθ(x,yt, t), fθ(x,yt′ , t

′)
)]
.

(8)
Here d(·, ·) is a distance metric function and λ1, λ2 are loss
weights. Specifically, to align with the traditional supervised
training paradigm, we retain the original task-defined loss
function for the distance metric d, such as cross-entropy
for classification tasks and mean squared error for regres-
sion tasks. This is because the design of the loss function
is orthogonal to our learning framework, allowing them to
complement each other. The main modification in our ap-
proach lies in that the model predicts y based on both x and
the noise-perturbed versions of y, while ensuring predictive
consistency across different noise levels. In practice, rather
than randomly sampling two timesteps t1 and t2, we explic-
itly control the noise gap between them by setting t2 = αt1.
This ensures that the predictive consistency remains a strong
and informative constraint to learn. We then independently
sample from the noise distribution to obtain yi

t1 and yj
t2

to ensure that the two noisy samples are independent with
respect to both the time steps and the diffusion trajectories.
Then Eq. 8 can be effectively optimized to learn the consis-
tency predictive mapping, and the whole training process is
presented in Alg. 1 and Fig. 1.

4.4. Multistep Inference with Consistency Mappings

With a well-trained fθ(·, ·, ·), we obtain predictions for a
given x by sampling yT from the uniform distribution and
then evaluate y0 = fθ(x,yT , T ). This standard single-step
inference requires only one forward pass through the model,
akin to conventional direct predictions. During training, the
accuracy tends to be higher when t is small, as the label hints
contain a richer amount of information. Our objective is to
progressively transfer this high accuracy to larger values of
t through training, thereby enhancing overall model perfor-
mance. In the ideal case that the consistency loss converges
to zero, optimal results can be achieved in a single step, yet
in practice, gradually decreasing t from T to 0 can lead to
accuracy improvements. To achieve such enhancements, a
multistep inference strategy can be adopted, which itera-
tively alternates between denoising and reintroducing noise.
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Algorithm 1 Predictive Consistency Training

1: Input: Dataset D, model fθ, noise function q(·), learn-
ing rate η, loss weights λ1, λ2, noise gap α

2: repeat
3: Sample (x,y) ∼ D, and t1 ∼ U[1, T ], t2 = αt1
4: Sample yt1 ∼ q(yt1 |y), yt2 ∼ q(yt2 |y)
5: ŷt1

0 ← fθ(x,yt1 , t1)
6: ŷt2

0 ← fθ(x,yt2 , t2)
7: L ← λ1d

(
ŷt1
0 ,y

)
+ λ1d

(
ŷt2
0 ,y

)
+ λ2d

(
ŷt1
0 , ŷt2

0

)
8: θ ← θ − η∇θL
9: until convergence

Algorithm 2 Multistep Prediction

Input: model fθ, data input x, noise function q(·), time
steps τ1 > τ2 > · · · > τNτ−1, preset inference step Ni

Sample random noise yT

ŷ0 ← fθ(x,yT , T )
for n = 1 to Ni − 1 do

Sample yτn ∼ q(yτn |ŷ0)
ŷ0 ← fθ(x,yτn , τn)

end for
Output: Prediction ŷ0

This approach effectively trades off runtime for enhanced
prediction quality, allowing the model to refine its outputs
over multiple inference steps and leverage increasingly rich
information embedded in earlier predictions.

Given a sequence of time points τ1 > τ2 > · · · > τNτ−1, at
each step τn, the current prediction yτn−1 is perturbed by a
noise function to a state yτn . The noise level decreases with
each step, meaning τn < τn−1. The model then denoises
the corrupted label by applying fθ(x,yτn , τn), producing a
refined prediction. This process is repeated over successive
steps, where each newly refined label incorporates progres-
sively more accurate information from the previous step.
This enables the model to gradually recover the whole infor-
mation of y by taking the perhaps approximated prediction
as the label hints and leveraging the incrementally informa-
tive hints for the final prediction.

In practice, we observe that as the number of inference steps
increases, the model’s prediction error initially continues
decreasing, but may then rise for a period, as shown in
Fig. 3. This phenomenon may result from the fact that
during training, the model is only exposed to the noise-
perturbed versions of ground truth labels as inputs. However,
during inference, the intermediate predictions of the model
may contain errors, which can accumulate over multiple
steps of inference. Consequently, there exists a tradeoff
between gradually capturing finer prediction details and
accumulating prediction errors. To address this, we set the

total number of time steps to 10 and use the validation set to
identify the step that best balances this tradeoff and achieves
the highest prediction accuracy. During testing, we perform
early stopping at this identified inference step. The specific
multistep prediction procedure is in Alg. 2.

5. Experiments
Since PCL is proposed as a novel training paradigm, the
major baseline for comparison is conventional supervised
learning. The comparisons are conducted across various
classic and representative model backbones for different
modalities to showcase the general applicability of PCL. We
test the proposed PCL framework on tasks involving com-
plex labels from diverse domains, including semantic seg-
mentation (high-dimensional categorical outputs in vision
learning), N-body simulation (high-dimensional continuous
outputs in graph learning), and next-token prediction (high-
dimensional sequential outputs in language modeling).

Experiments for constrained n-body simulation are con-
ducted on a single GPU of NVIDIA RTX 4090. For se-
mantic segmentation, a single NVIDIA H100 GPU was
employed, and experiments for next-token prediction are
performed on 8 GPUs of NVIDIA H800.

5.1. Constrained N-body Simulation

The constrained N-body simulation (Huang et al., 2022) task
involves predicting the future positions of a set of interacting
particles over time based on initial conditions such as their
positions, velocities, and their interactions from constraints
like sticks and hinges indicating connection relations, as
well as the inherent physical forces. The evolution of par-
ticle positions and velocities follows physical laws. We
incorporate tasks with varying complexities by controlling
the number of isolated particles p, the number of sticks s
and the number of hinges h. The configuration is abbre-
viated as (p, s, h) and we follow (Huang et al., 2022) to
incorporate five tasks corresponding to configurations of
(1, 2, 0), (2, 0, 1), (3, 2, 1), (0, 10, 0), and (5, 3, 3).

Dataset. We collect 5000 trajectories for training, 2000
for validation, and 2000 for testing for each configuration.
Each trajectory spans 1000 timesteps. For each trajec-
tory, the initial conditions include the particle positions
p(0) ∈ Rp×3, the initial velocities v(0) ∈ Rp×3, and the re-
spective charges c ∈ {−1, 1}p. There exist stick and hinge
connections among the particles. The task is to predict the
positions of the five particles after 1000 timesteps.

Metrics. We evaluate the prediction error by Mean Square
Error (MSE), i.e., the average of the squares of the errors
between the predicted values and the true values.

Model Design. We consider the state-of-the-art graph mod-
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Figure 3. The influence variation of inference steps across the training process.

Table 1. Prediction error (×10−2) of SL and PCL on top of graph models on various types of N-body simulation systems. The header of
each column “p, s, h” denotes the scenario with p isolated particles, s sticks and h hinges.

Backbone Model Training 1, 2, 0 2, 0, 1 3, 2, 1 0, 10, 0 5, 3, 3

GCN SL 2.865±0.021 2.534±0.061 3.479±0.110 4.705±0.046 4.303±0.002

PCL 2.436±0.040 2.268±0.012 2.795±0.061 3.162±0.251 3.228±0.221

GAT SL 2.921±0.198 2.707±0.024 3.351±0.111 3.478±0.342 3.407±0.180

PCL 2.771±0.208 2.581±0.026 2.802±0.216 2.481±0.059 2.534±0.011

GGNN SL 3.013±0.022 2.716±0.068 3.293±0.023 4.426±0.044 4.148±0.035

PCL 2.614±0.031 2.297±0.033 2.974±0.011 3.191±0.290 3.457±0.213

Table 2. Ablation study on loss construction on top of different
backbones reflected by prediction error (×10−2).

GCN GAT GGNN

Traditional SL 3.479±0.110 3.351±0.111 3.293±0.023
w/o λ1-term, w/ λ2-term 6.784±0.862 4.234±0.170 3.731±0.915
w/ λ1-term, w/o λ2-term 2.881±0.110 3.001±0.074 3.045±0.090
w/ λ1-term, w/ λ2-term 2.795±0.061 2.802±0.216 2.974±0.011

eling solution for this task, and the model is optimized by
minimizing the averaged MSE between the predicted posi-
tions and the ground truth positions. We input the concate-
nation of the initial positions and the velocities as the node
features. The edge feature is provided by a concatenation of
the product of charges cicj and an edge type indicator Iij ,
where Iij is valued as 0 if node i and j are disconnected,
1 if connected by a stick, and 2 if connected by a hinge.
We take the model outputs as the estimated positions. To
introduce PCL, we adopt two linear layers to encode the
input attributes and the noised label, respectively, and then
concatenate them to form the input hidden feature to the sub-
sequent graph neural layers. We adopt 4 graph neural layers,
and for each layer’s output, we integrate the timestep em-
bedding extracted by the sinusoidal position embedding and
a linear layer through addition. In this task, y ∈ Rp×3 and
we adopt the Gaussian noising process to produce noised
labels as shown in Eq. 7.

Results. For graph modality, we compare PCL and the
conventional supervised learning on top of classic graph
neural networks, including Graph Convolutional Networks
(GCN) (Kipf & Welling, 2016), Graph Attention Network

(GAT) (Veličković et al., 2017), and Gated Graph Neural
Networks (GGNN) (Li et al., 2015). Table 1 shows the
superiority of PCL on quantitative results with significantly
lower estimation error across five tasks with different com-
plexity. As can be discovered, the performance gains are
more pronounced on more complex datasets.

Table 2 provides ablation on the effects of the λ1-term
and λ2-term in Eq. 8. λ2-term corresponds to the design
from the generative consistency models that enforce the
self-consistency loss, which is less suitable for this scenario.
Compared to merely adopting the λ1-term, λ2-term can
serve as a regularization term to more directly enforce pre-
dictive consistency, resulting in certain performance gains.

Fig. 3 illustrates the testing performance across different
inference steps in a 10-step prediction process. In the early
stages, increasing the number of inference steps clearly re-
duces prediction error. However, as training progresses, the
trend becomes more variable, first decreasing, then increas-
ing, and finally decreasing again. This behavior may stem
from the trade-off between capturing finer details and the
accumulation of errors as discussed in Sec. 4.4.

5.2. Semantic Segmentation

Semantic segmentation is a classic dense vision task that
involves classifying each pixel of an image into a prede-
fined category (Long et al., 2015; Zhao et al., 2017). Unlike
classification tasks that categorize entire images, semantic
segmentation analyzes the finer granularity of images to
identify the boundaries and relationships between objects.
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Figure 4. Predictions across varying timesteps based on the last step’s predictions in the multistep inference procedure. In each step, the
model receives the input and label hint and predicts the output.
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Figure 5. The visualization of the prediction improvements with different t controlling the prediction granularity.

It plays a critical role in various applications, such as au-
tonomous driving (Badrinarayanan et al., 2017), medical
imaging (Ronneberger et al., 2015), and scene understand-
ing (Long et al., 2015).

Dataset. We utilize the ADE20K dataset (Zhou et al., 2019),
which is a commonly used large-scale scene parsing dataset
that contains over 20K images with pixel-level annotations.
The dataset is annotated with 150 different object classes,
and we make the unannotated pixels as -1, which are ignored
during training and testing. Following Zhou et al. (2017;
2019), we resize the original images during training while
maintaining a constant aspect ratio, randomly scaling the
shorter side to one of the sizes: 300, 375, 450, 525, or 600.

Metrics. Following Zhou et al. (2017; 2019), we adopt
three evaluation metrics to measure model performance: 1)
Pixel Accuracy: the proportion of correctly classified pixels.
2) Mean IoU (mIoU): the intersection-over-union between
the predicted and ground-truth pixels, averaged over all the
classes. 3) Score: the average value of Pixel Accuracy and
Mean IoU. During the testing phase, we use Multi-Scale
Test: evaluate at multiple sizes and then take the average.

Model Design. We adopt an encoder-decoder framework.
The encoder compresses the input by extracting high-level
features using a CNN backbone, reducing the spatial res-
olution while capturing important semantic information.
The decoder then progressively upsamples the compressed
features to recover the original resolution. To introduce
PCL, we first downsample the noised labels processed by
the embedding layer using the timestep embeddings ex-
tracted through sinusoidal position embedding. These down-

Table 3. Results on Semantic Segmentation.

Backbone Model Training Pixel Acc.↑ mIoU↑ Score↑

MobileNetV2dilated SL 75.53 33.13 54.33

PCL 76.42 35.27 55.85

ResNet50dilated+PPM SL 78.98 41.49 60.24

PCL 82.33 48.56 65.45

sampled labels are then fused with the image features ex-
tracted by the encoder. Finally, the fused image features
are fed into the decoder for further processing. In this task,
y ∈ {−1, ..., 149}H×W where each entry will be converted
into a one-hot vector of length 151, indicating the classifica-
tion of pixels. We adopt the categorical noising process in
Eq. 5 using transition matrices of Qt ∈ [0, 1]151×151.

Results. For the encoder, we choose ResNet50dilated (He
et al., 2016) and MobileNetV2dilated (Sandler et al., 2018).
For the decoder, we sequentially selected PPM (Pyramid
Pooling Module) (Zhao et al., 2017) with DeepSup (deep
supervision trick) and C1 (one convolution module) with
DeepSup. Table 3 shows PCL’s superiority over SL. Fig. 4
visually demonstrates how increasing inference steps fur-
ther improves predictions, particularly for large background
areas. Fig. 5 shows the prediction improvements on top of
the last-step prediction with varying t. Compared to the
previous step’s prediction ŷ0 with its noised version yt′ as
the label hint, for the prediction fθ(x,yt′ , t), setting a larger
t tends to encourage the model to improve broader structural
relationships, while setting a smaller t encourages the model
to focus on finer details, such as object boundaries.
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5.3. Supervised Next-token Prediction Fine-tuning

The next-token prediction task is a cornerstone in natural lan-
guage processing, forming the foundation for transformer-
based large language models (LLMs) such as GPT (Radford,
2018), LLaMA (Touvron et al., 2023). The objective of the
task is to predict the next token in a sequence, given the
preceding context. The task’s outputs retain similar dimen-
sionality and sequence complexity as the inputs. Models
trained on next-token prediction tasks have proven to be
highly effective at capturing both short-term and long-range
dependencies in language, enabling them to generate coher-
ent, contextually appropriate text. This section investigates
the effectiveness of PCL in the full fine-tuning task on the
pre-trained LLaMa-2-7B (Touvron et al., 2023) models.

Dataset and Metrics. The Alpaca (Taori et al., 2023)
dataset is based on the self-instruct method (Wang et al.,
2022), utilizing the OpenAI text-davinci-003 engine to gen-
erate a collection of instructions and demonstrations. These
instruction data can be employed for fine-tuning language
models. By filtering out low-quality data, such as hallucina-
tions, incorrect answers, and unclear instructions, we obtain
the Alpaca-cleaned dataset, which serves as the sole training
data for all models discussed in this paper.

To evaluate the performance of models, we employ IN-
STRUCTEVAL (Chia et al., 2023), a comprehensive evalua-
tion suite designed specifically for instruction-tuned models.
INSTRUCTEVAL aims to assess models across dimensions
such as problem-solving ability, writing proficiency, and
alignment with human values. Following INSTRUCTE-
VAL, the evaluation of large language model performance
in this paper includes benchmarks:

• MMLU (Hendrycks et al., 2020) assesses models’
world knowledge and reasoning abilities across 57
academic disciplines. Questions range in difficulty,
presented in a multiple-choice format. The evaluation
primarily uses few-shot settings to test the generaliza-
tion capabilities. A 5-shot direct prompting is utilized
for evaluation.

• BBH (Srivastava et al., 2022) is a subset of 23 chal-
lenging tasks from the BIG-Bench benchmark. It eval-
uates the ability to handle challenging reasoning and
problem-solving tasks that go beyond simple language
understanding. We apply 0-shot direct prompting to
measure the model’s capability in dealing with unseen
questions without additional contextual examples.

• CRASS (Frohberg & Binder, 2022) evaluates models’
ability to handle complex relational reasoning tasks,
specifically in the context of causal structures and re-
lationships. It includes a variety of problems that test
how well the model understands and predicts causal

Table 4. Evaluation on LLM fine-tuning. Relative performance
improvements compared to the raw model are marked in brackets.

Backbone Training MMLU CRASS BBH

Raw Model – 41.90 37.59 32.93

Full FT SL 46.22 58.29 33.38

PCL 47.10 59.48 34.75

relationships between different entities or events. We
use 3-shot direct prompting to assess model reasoning.

Model Design. Our modified LLaMA2-7B retains the orig-
inal embedding and decoder layers but introduces a novel
mechanism to predict the next token. Instead of the standard
approach where hidden states directly generate token proba-
bilities, we inject Gaussian noise into token embeddings in
training to enhance robustness. This noise is combined with
the tokens hidden state to form an augmented vector, which
is passed via an MLP and classification head for predic-
tion. Additionally, we enforce consistency by minimizing
the mean squared error between logits at randomly selected
time steps. In the generation phase, noise is iteratively re-
duced across steps to generate tokens sequentially. More
detailed descriptions can be found in Appendix B.3.1.

Results. We compare methods for fine-tuning LLMs on
the next-token prediction task. The baselines include the
pre-trained LLaMA2-7B model and the LLaMA2-7B model
fine-tuned using traditional full-parameter supervised learn-
ing (Taori et al., 2023). In contrast, our method also tunes
the full parameters of the model but operates under the pre-
dictive consistency learning paradigm. Table 4 shows the
superiority of PCL on quantitative results across MMLU,
GRASS and BBH.

6. Conclusion and Future Work
This paper has proposed a novel predictive consistency learn-
ing framework beyond previous methods with direct predic-
tion, aiming to explore the full potential of label information
for supervision during the learning process. It has shown
superiority in experiments on various tasks across vision,
text, and graph modalities with complex labels. It resembles,
to a certain degree, the residual learning scheme by treating
the noisy label as the input, which serves as a counterpart to
the raw signal of the input data. Future work will explore
the potential of applying label diffusion to other fundamen-
tal deep learning paradigms, such as semi-supervised and
weakly supervised learning. It will also explore more effec-
tive label granularity, e.g., treating entire sentences as label
hints rather than individual tokens, and design more natural
label noising mechanisms to enhance learning.
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Impact Statement
This work introduces a novel training paradigm that funda-
mentally rethinks the traditional direct mapping approach
in supervised learning and beyond. Specifically designed to
address the growing challenge of capturing complex, high-
dimensional labels in modern prediction tasks, the method
decomposes full label information into a progressive learn-
ing procedure and leverages noise-perturbed labels as ad-
ditional references. As a generalizable framework, PCL
has the potential to fundamentally improve a wide range
of applications in a way that is orthogonal to network ar-
chitectures and loss function designs. Beyond its practical
impact, this work also serves as an exploration to answer a
fundamental question: When labels contain rich informa-
tion, can they be leveraged to facilitate learning rather than
simply being treated as prediction targets? By demonstrat-
ing the effectiveness of incorporating label information into
model input for reference, this study opens new avenues for
rethinking how labels are utilized in machine learning.
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Veličković, P., Cucurull, G., Casanova, A., Romero, A.,
Lio, P., and Bengio, Y. Graph attention networks. arXiv
preprint arXiv:1710.10903, 2017.

Wang, X., Chen, Y., and Zhu, W. A survey on curriculum
learning. IEEE transactions on pattern analysis and
machine intelligence, 44(9):4555–4576, 2021.

Wang, Y., Kordi, Y., Mishra, S., Liu, A., Smith, N. A.,
Khashabi, D., and Hajishirzi, H. Self-instruct: Aligning
language models with self-generated instructions. arXiv
preprint arXiv:2212.10560, 2022.

Wu, Q., Zhao, W., Li, Z., Wipf, D., and Yan, J. Nodeformer:
A scalable graph structure learning transformer for node
classification. In Advances in Neural Information Pro-
cessing Systems, 2022.

Zhang, H., Cisse, M., Dauphin, Y. N., and Lopez-Paz,
D. mixup: Beyond empirical risk minimization. arXiv
preprint arXiv:1710.09412, 2017.

Zhao, H., Shi, J., Qi, X., Wang, X., and Jia, J. Pyramid scene
parsing network. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pp. 2881–
2890, 2017.

Zheng, X., Li, Y., Fan, C., Wu, H., Song, X., and Yan, J.
Learning plaintext-ciphertext cryptographic problems via
anf-based sat instance representation. Advances in Neural
Information Processing Systems, 2024.

Zhou, B., Zhao, H., Puig, X., Fidler, S., Barriuso, A., and
Torralba, A. Scene parsing through ade20k dataset. In
Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 633–641, 2017.

Zhou, B., Zhao, H., Puig, X., Xiao, T., Fidler, S., Barriuso,
A., and Torralba, A. Semantic understanding of scenes
through the ade20k dataset. International Journal of
Computer Vision, 127:302–321, 2019.

Zhou, Z.-H. A brief introduction to weakly supervised
learning. National science review, 5(1):44–53, 2018.

Zhu, X. and Goldberg, A. Introduction to semi-supervised
learning. Morgan & Claypool Publishers, 2009.

12

https://openreview.net/forum?id=JV8Ff0lgVV
https://openreview.net/forum?id=JV8Ff0lgVV


Predictive Consistency Learning

Appendix

A. More Discussions
A.1. Computational Overhead in Training and Inference

For training, since the loss calculation requires two inference predictions with different noise levels during training, it
requires twice the training cost of the traditional supervised learning paradigm. Moreover, it typically takes less than twice
the iterations for the model to converge.

For inference, PCL can produce much superior predictions with merely a single forward pass as SL does. Meanwhile, PCL
can achieve better performance with more forward passes. As shown in Fig. 3 using a GCN backbone on the 3,2,1 dataset,
even single-step PCL inference achieves superior performance (prediction error 0.02835) compared to SL (0.03478), while
additional inference steps (e.g., 5-step) can further refine results (0.02795).

A.2. Comparison to Curriculum Learning Strategies that Gradually Increase Label Complexity

The key differences between predictive consistency learning (PCL) and curriculum learning (CL) can be summarized as
follows:

• Learning Target Consistency. CL predefines staged learning targets (e.g., coarse-to-fine labels), where each stage learns
an approximation of the true label. This risks error accumulation, i.e., biased features from early stages may propagate
to later stages. In contrast, the objective of PCL remains stable: always predicting the true label, with complexity
dynamically adjusted by the input noise level.

• Progressive vs. Simultaneous Learning. CL follows a fixed, sequential progression (e.g., easyhard labels). PCL,
however, randomly samples time steps during training, enabling the model to learn various label information levels
(from partial to complete) simultaneously, where the time step t acts as a controller for label granularity.

• Controllable Prediction. PCLs noise-conditioned framework allows explicit control over prediction granularity via time
step t. As evidenced in Fig. 5, setting a larger t tends to encourage the model to improve broader structural relationships,
while setting a smaller t encourages the model to focus on finer details. Further, PCL supports multi-step inference
(Sec. 4.4), where predictions are iteratively refined (analogous to diffusion denoising), boosting final accuracy.

• Leveraging Partial Labels as Input. One of the motivations of PCL is to treat labels not just as targets but as learning
facilitators. By feeding partially noised labels (e.g., ”hints”) during training, the model learns to exploit intermediate
information (similar to how humans use reference solutions to help solve problems).

B. Experiment Details
B.1. Experimental Details for N-body Simulation

B.1.1. NOISING PROCESS

At timestep t = 0, the label y ∈ R5×3 represents the original 3-dimensional coordinates of the 5-body system. We introduce
Gaussian noise that gradually transforms the coordinates to points from the standard Gaussian distributions. The noising
process simply follows Eq. 6 and Eq. 7.

B.1.2. MODEL ARCHITECTURE

We follow the implementation of (Satorras et al., 2021) to generally implement 4-layer GNNs. With its learnable edge
operation function ϕe and node operation function ϕh, the graph convolutional layer follows:

mij = ϕe(h
l
i,h

l
j , aij) (9)

mi =
∑

j∈N (i)

mij (10)

hl+1
i = ϕh(h

l
i,mi) (11)
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Where hl
i ∈ Rnf is the nf-dimensional embedding of node vi at layer l. aij are the edge attributes. N (i) represents the set of

neighbors of node vi. Here, ϕe and ϕh are approximated by 2-layer Multilayer Perceptrons (MLPs).

The initial position p0 and velocity v0 from the particles are passed through a linear layer to obtain the input feature.
The label hint is passed through another linear layer, and the obtained feature is concatenated with the input feature and
inputted into the GNN first layer h0. The particle’s charges are inputted as edge attributes aij = cicj . The time step t is first
embedded through the sinusoidal position embedding

t̃ = concat

(
sin

t

T
0
d

, cos
t

T
0
d

, sin
t

T
2
d

, cos
t

T
2
d

, . . . , sin
t

T
d
d

, cos
t

T
d
d

)
(12)

and then processed through linear layers and activation functions. Here d is the embedding dimension, T is a large number
(usually selected as 10000), concat(·) denotes concatenation. Then we aggregate the timestep feature with the node
convolutional feature and reformulate the update for node features, i.e., Eq. 11 as:

hl+1
i = ϕh(h

l
i,mi) + ϕt(t̃) (13)

where ϕh is a linear layer model. The output of the GNN hL is passed through a two layers MLP that maps it to the
estimated position.

B.2. Experimental Details for Semantic Segmentation

Given image information x extracted through the encoder, hint label y, and time step t, PCL first embeds the latter two and
then down-sample the the embedded hint label ỹwith the time step embeddings t̃ to accommodate the dimensions of x.
Then PCL merges the image features and the noise labels containing time step information into a new image information x̃.

B.2.1. EMBEDDINGS OF HINT LABEL AND TIME STEP

The hint label for semantic segmentation is generated by adding categorical noise to the ground truth labels. Given the hint
y, it is first passed through an embedding layer that maps each class y ∈ {0, 1, . . . , C} (where C is the number of classes)
to a higher-dimensional vector ỹ. ỹ is then processed through linear layers.

Time step t is first embedded through the sinusoidal position embedding and then processed through linear layers and
activation function as below, where d is the embedding dimension, T is a large number (usually selected as 10000).

t̃ = concat

(
sin
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0
d

, cos
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T
0
d
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, cos
t
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2
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, . . . , sin
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T
d
d

, cos
t

T
d
d

)
(14)

B.2.2. DOWN-SAMPLE

To perform down-sampling of the hint label ỹ using the time step embedding in the provided code, we first process them
through two residual blocks as below. Then the hint label is then down-sampled using a convolution with a stride of 2.

ỹ = Conv2D
(
Conv2D

(
SiLU(GN(ỹ))

)
+ Linear

(
SiLU(t̃)

))
(15)

, where GN(·) denotes group normalization, SiLU(·)is the sigmoid-weighted linear unit activation function, Conv2D(·)
represents a 2D convolution operation, and Linear(·) is a fully connected layer that transforms the time step embedding.

B.3. Experimental Details for Next-token Prediction

B.3.1. MODEL DESIGN

In our approach, we adopt the LLaMA2-7B model as the backbone, preserving the structure of the embedding and decoder
layers. However, we modify the prediction mechanism for the next token using the hidden states. In a conventional
decoder-only language model (LLM), the prediction of the next token y is achieved by leveraging the preceding context,
encoded in a high-dimensional hidden state h. This hidden state h is then passed through a linear layer, typically referred to
as the language modeling head (lm head) or unembedding layer, to yield the probability distribution P (y) over the next
token.
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In contrast, our model introduces a noise injection mechanism to perturb the token embeddings, aiming to enhance robustness
and generalization.

Training Phase. During the training phase, when the model obtains the last hidden states for each token, instead of directly
passing them through the lm head to generate logits and compute the cross-entropy loss with the ground truth labels ŷ,
we transform these labels back into its corresponding embedding yemb. Then add Gaussian noise ϵ ∼ N (0, σ2) to yemb,
resulting in a perturbed embedding:

ynoisy
t = ᾱty

emb + β̄tϵ. (16)

To inform the model of the noise magnitude, we also perturb the time step t, obtaining a corresponding time embedding
temb. The noisy token embedding ynoisy

t is combined with temb to form a new noisy information vector,

hnoisy
t = ynoisy

t + temb. (17)

This noisy information is concatenated with the hidden state h, resulting in the augmented vector

haug
t = [h;hnoisy

t ]. (18)

Finally, haug is passed through a multi-layer perceptron (MLP) and a new classification head to generate the probability
distribution for the next token:

p(y | haug
t ) = softmax(LM HEAD((MLP(haug))). (19)

It is worth noting that for each batch, In addition to aligning p(y | haug
t ) with the next token ground truth by minimizing the

cross-entropy loss, we randomly generate two time steps, t1 and t2, and obtain logits logits(y | haug
t1 ) and logits(y | haug

t2 ).
We then minimize the mean squared error (MSE) loss between them to ensure as much consistency as possible.

Generation Phase Now we describe the generation process. After the input passes through the decoder layers and obtains
the last hidden states, we encounter a challenge during the inference phase since the next token ŷ is unknown. To address
this, we input a complete Gaussian noise vector hnoisy

1000(i.e. ϵ), which is denoised by model to generate the next token y1.
This process is then iterated, with y1 serving as ŷ for the subsequent iteration. Following the steps outlined in Eq. 16, 17,
18, and 19, we generate y2, and so on, iteratively.

The noise addition time step for each iteration is predetermined as a hyperparameter. In our experiments, we employ a
linearly decreasing schedule for the time steps. For instance, with a maximum noise step of 1000 and 5 iterations, the time
steps t are set as [1000, 800, 600, 400, 200], ensuring a gradual reduction of noise over the course of iterations.

C. Supplementary Experimental Results
C.1. Supplementary Comparison to Label Smoothing

We conducted experiments on the N-body simulation task (3 isolated particles, 2 sticks, and 1 hinge) using GCN as the
backbone model. For label smoothing with continuous outputs, we implemented Gaussian noise injection via reparame-
terization: ŷ = y + N (0;βI) where β controls the noise intensity and we use ŷ to calculate loss. This optimization is
verified to induce better representations [1]. Then, we further fine-tune the trained model on exact labels to ensure precise
regression. The Prediction error (×10−2) results of SL, PCL, and SL label smoothing with various β are shown in Table 5.
Experimental results demonstrate that while label smoothing achieves moderate improvements (best β = 0.3, 3.256 error)
over standard supervised learning (SL, 3.453), PCL (2.795 error) maintains a significant performance advantage over even
the optimal label smoothing configuration.
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Table 5. Prediction error (×10−2) of GCN model on N-body simulation task with 3 isolated particles, 2 sticks and 1 hinges. The
comparison includes SL, PCL, and SL with label smoothing with varying β values for smoothing intensity.

Method SL PCL β = 0.01 β = 0.03 β = 0.05 β = 0.1 β = 0.3 β = 0.5 β = 1.0

Prediction Error 3.453 2.795 3.460 3.461 3.428 3.418 3.256 3.258 3.368

C.2. Supplementary Comparison to Ensemble Methods

Given that PCL requires multiple forward passes for inference, we supplement the comparison to ensemble methods. We
conducted experiments on the N-body simulation task (3 isolated particles, 2 sticks, and 1 hinge) using GCN as the backbone
model, comparing PCL against a bagging ensemble approach where n independent models were trained on the full dataset
and their predictions averaged. The prediction error (×10−2) results under matched inference passes (1-5) are presented in
Table 6.

Table 6. Prediction error (×10−2) of GCN model on N-body simulation task with 3 isolated particles, 2 sticks and 1 hinges. The
comparison includes PCL and SL with the bagging technique under varying numbers of inference model passes.

# Inference Passes 1 2 3 4 5

PCL 2.834 2.818 2.808 2.796 2.786
SL Bagging 3.453 3.210 3.132 3.084 3.065

C.3. Unconstrained N-body Simulation

The N-body simulation task involves predicting the future positions of a set of interacting particles over time based on initial
conditions such as their positions, velocities, and the inherent physical forces governing their interactions (Satorras et al.,
2021). The task’s outputs retain the same dimensionality and complexity as the inputs. The evolution of particle positions
and velocities follows fundamental physical laws such as gravitational or electrostatic interactions. We follow (Satorras
et al., 2021) to solve the 5-charged-particle system in 3-dimensional space. The system consists of five particles, each with
either a positive or negative charge, and each particle has an associated position and velocity.

Dataset. We collected 3000 trajectories for training, 2000 for validation, and 2000 for testing. Each trajectory spans 1000
timesteps. For each trajectory, the initial conditions include the particle positions p(0) = {p1(0), . . . , p5(0)} ∈ R5×3, the
initial velocities v(0) = {v1(0), . . . , v5(0)} ∈ R5×3, and the respective charges c = {c1, . . . , c5} ∈ {−1, 1}5. The task is
to predict the positions of the five particles after 1000 timesteps. The model is optimized by minimizing the averaged Mean
Squared Error (MSE) between the predicted positions and the ground truth positions.

Metrics. We adopt two evaluation metrics to evaluate the regression quality for test data: 1) Mean Square Error (MSE): the
average of the squares of the errors between the predicted values and the true values; 2) Mean Absolute Error (MAE): the
average of the absolute differences.

Model Design. We consider the state-of-the-art graph modeling solution for this task, where we input the concatenation of
the initial positions and the velocities as the node features. The charges are input as edge attributes aij = cicj . We take the

Table 7. Comparison of traditional supervised learning and PCL for MSE.

Method MSE↓ MAE↓
GCN (Kipf & Welling, 2016) 0.01064±0.00014 0.04322±0.00082
GCN-PCL (Ours) 0.00927±0.00020 0.03783±0.00018

GAT (Veličković et al., 2017) 0.00969±0.00040 0.03996±0.00198
GAT-PCL (Ours) 0.00910±0.00038 0.03726±0.00068

GGNN (Li et al., 2015) 0.01220±0.00020 0.04614±0.00146
GGNN-PCL (Ours) 0.01143±0.00042 0.04336±0.00127
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Figure 6. MSE curves on test data.

Table 8. Ablation study on loss construction.

Method MSE↓ MAE↓
Traditional SL 0.01064 0.04322
w/o λ1-term, w/ λ2-term 4.34559 1.62437
w/ λ1-term, w/o λ2-term 0.00956 0.03895
w/ λ1-term, w/ λ2-term 0.00927 0.03783

model outputs as the estimated positions. To introduce PCL, we adopt two linear layers to encode the input attributes and the
noised label, respectively, and then concatenate them to form the input hidden feature to the subsequent graph neural layers.
We adopt 4 graph neural layers, and for each layer’s output, we integrate the timestep embedding extracted by the sinusoidal
position embedding and a linear layer through addition. In this task, y ∈ R5×3 and we adopt the Gaussian noising process
to produce noised labels as shown in Eq. 7.

Results. We compare the model with the classic graph neural networks, including Graph Convolutional Networks
(GCN) (Kipf & Welling, 2016), Graph Attention Network (GAT) (Veličković et al., 2017), and Gated Graph Neural
Networks (GGNN) (Li et al., 2015). For each model, we compare the performance with the models trained by the classic SL
and our proposed PCL. Table 7 shows the superiority of PCL on quantitative results with lower estimation errors on both
MSE and MAE under same settings, and Fig. 6 shows performance gain on the test MSE curves within the training process.
Table 8 provides ablation studies on the effects of the λ1-term and λ2-term and verifies the effectiveness of every loss term
in Eq. 8.

C.4. Supplementary Results for Semantic Segmentation

For semantic segmentation, to vividly illustrate the effects of PCL, we present a comparison of the Intersection over
Union (IoU) metrics for all three models across the ADE20K dataset’s 150 categories in Table 9. The results indicate that
MobileNetV2dilated, ResNet50dilated, and HRNetV2 have achieved advantages in IoU on 70.00%, 58.67%, and 64.67% of
the categories respectively after using PCL.

Fig. 7 illustrates the differences in predicting semantic segmentation maps among various models and training methods,
visually reflecting the performance differences between the models as outlined in Table 3.
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Table 9. Comparison of Intersection over Union (IoU) for classic supervised learning (SL) versus the proposed predictive consistency
learning (PCL) in semantic segmentation across various neural backbones. Bold indicates better performance in that category. MoibleNet:
MobileNetV2dilated, ResNet50: ResNet50dilated. Order: Ranked from top to bottom based on the probability of each category in the
ADE20K dataset

Object MobileNet ResNet50 Object MobileNet ResNet50 Object MobileNet ResNet50
SL PCL SL PCL SL PCL SL PCL SL PCL SL PCL

wall 69.01 67.29 73.21 77.57 building 75.72 77.00 80.89 85.21 building 92.78 93.14 93.50 93.36
floor 71.95 71.85 77.43 79.61 tree 68.86 69.99 70.12 72.07 tree 77.41 78.59 80.22 84.16
road 75.96 75.48 80.24 80.98 bed 80.13 80.04 84.53 86.09 bed 53.45 53.41 57.96 64.24
grass 64.91 67.28 66.54 75.82 cabinet 49.12 50.57 56.45 59.47 cabinet 54.10 54.77 60.93 63.53
person 70.96 70.75 75.13 72.22 earth 30.30 31.84 32.37 44.69 earth 32.27 32.86 39.90 52.50
table 45.08 46.04 52.93 57.66 mount 48.37 52.20 54.45 55.61 mount 45.41 47.46 45.40 55.84
curtain 61.68 63.74 65.41 71.90 chair 45.15 46.72 53.01 55.42 chair 76.57 75.96 81.05 79.83
water 49.54 51.51 52.56 60.90 picture 63.22 64.17 66.01 70.79 picture 55.32 56.09 59.25 67.82
shelf 34.45 35.85 40.74 48.58 house 26.73 37.92 54.76 59.03 house 51.19 55.54 54.69 17.62
mirror 42.59 43.43 54.74 59.80 rug 40.69 44.73 53.59 61.40 rug 20.00 23.24 24.74 46.71
armchair 33.24 33.23 38.42 49.39 seat 37.37 42.45 52.93 50.21 seat 27.98 29.42 31.38 48.18
desk 28.57 29.67 47.64 41.48 rock 31.21 33.04 35.79 50.45 rock 35.10 38.37 39.80 45.83
lamp 49.66 49.48 58.79 63.01 bath 60.63 64.66 69.45 70.42 bath 27.08 29.41 32.58 37.84
cushion 38.03 39.14 47.27 43.30 base 10.83 13.20 26.47 35.80 base 13.79 15.00 15.39 20.79
column 32.52 33.72 40.73 49.83 signboard 26.02 26.75 30.75 38.02 signboard 34.45 36.27 37.04 54.18
counter 17.63 21.31 24.55 51.29 sand 17.37 22.90 35.48 45.76 sand 50.58 50.17 65.30 59.64
skyscraper 41.18 45.66 53.45 67.52 hearth 63.57 63.18 62.90 70.00 hearth 51.17 52.91 68.53 70.14
grandstand 37.60 47.05 39.08 33.67 path 15.70 14.58 19.93 23.39 path 26.81 28.95 18.78 44.63
runway 49.63 50.55 57.36 60.86 case 34.37 39.37 44.64 54.33 case 88.14 88.33 89.86 85.98
pillow 42.76 41.31 46.58 37.59 screen door 45.60 48.47 58.18 63.30 screen door 28.34 29.06 19.93 48.86
river 12.43 12.92 11.70 27.58 bridge 32.22 36.03 55.18 37.89 bridge 29.15 31.21 37.23 39.30
blind 13.24 26.42 39.79 54.50 coffee table 48.14 43.74 57.95 63.86 coffee table 73.80 74.33 84.20 77.64
flower 26.52 30.22 33.88 42.41 book 36.39 39.23 41.95 44.01 book 5.31 5.82 5.35 27.00
bench 35.06 36.14 38.70 42.32 countertop 35.03 38.29 49.59 48.98 countertop 55.27 55.90 76.17 65.01
palm 36.59 38.48 47.14 45.50 kitchen island 25.78 27.30 36.10 23.53 kitchen island 47.56 48.16 53.04 46.73
swivel chair 35.47 33.70 47.66 41.91 boat 26.55 29.40 53.28 59.06 boat 21.39 29.08 23.88 47.72
arcade machine 22.63 32.14 47.78 47.26 hovel 25.65 26.17 12.55 15.46 hovel 57.20 62.79 76.84 70.25
towel 31.85 34.53 53.05 52.35 light 32.29 34.86 43.61 45.28 light 3.52 5.69 23.40 24.88
tower 26.91 25.90 38.69 51.83 chandelier 57.94 59.60 59.92 62.95 chandelier 8.82 5.80 21.74 42.11
streetlight 7.74 7.19 22.78 22.20 booth 26.28 32.90 41.30 57.26 booth 45.35 49.25 63.16 68.86
airplane 39.72 39.50 50.81 54.55 dirt track 11.28 10.38 6.97 22.89 dirt track 24.60 23.67 28.22 39.82
pole 12.51 12.20 13.94 16.40 land 0.94 0.69 0.46 18.23 land 1.44 2.17 9.50 24.90
escalator 5.27 7.88 21.89 42.77 ottoman 28.07 26.99 38.95 38.36 ottoman 8.29 13.26 34.92 10.97
buffet 33.48 33.36 37.03 49.54 poster 10.05 7.30 20.61 37.01 poster 9.03 9.04 5.45 24.44
van 25.37 23.07 41.20 45.06 ship 1.72 26.34 24.27 83.96 ship 7.06 15.23 16.68 71.20
conveyor 46.77 46.93 38.53 44.23 canopy 9.79 14.49 15.35 29.41 canopy 53.79 59.10 59.56 76.23
plaything 7.95 13.39 20.22 16.25 natatorium 22.26 25.75 24.61 21.81 natatorium 26.78 27.75 37.90 36.75
barrel 6.54 6.47 23.75 22.49 basket 15.64 16.77 27.50 27.00 basket 35.83 38.82 49.53 35.14
tent 76.36 82.72 77.62 84.89 bag 1.93 4.91 9.18 16.85 bag 35.53 35.81 49.52 40.93
cradle 66.27 64.05 74.45 65.07 oven 33.26 30.10 35.46 44.45 oven 29.42 30.76 30.93 32.86
food 33.55 45.09 43.66 40.65 step 1.58 3.30 0.14 17.22 step 12.07 27.30 22.64 44.84
brand 18.18 20.85 20.95 32.78 microwave 33.01 32.82 34.16 27.20 microwave 26.52 28.90 39.99 51.19
animal 42.52 43.54 54.43 56.01 bicycle 31.74 31.13 47.76 39.18 bicycle 3.41 12.23 37.02 1.47
dishwasher 44.65 45.73 66.85 44.28 screen 56.52 57.84 61.08 68.69 screen 0.30 1.74 5.77 29.02
sculpture 2.79 9.56 18.52 29.25 hood 31.01 35.97 49.64 34.65 hood 22.72 21.80 38.07 36.85
vase 18.52 16.69 36.89 32.72 stoplight 5.44 1.98 26.40 18.00 stoplight 0.83 0.93 3.42 6.23
ashcan 20.05 25.89 39.94 35.85 fan 39.64 33.16 52.23 56.63 fan 23.69 28.73 31.10 17.93
crt screen 0.75 1.15 0.70 17.78 plate 33.26 31.50 42.14 41.12 plate 5.91 21.66 1.96 58.89
notice board 18.69 23.73 37.39 23.26 shower 0.00 0.01 0.00 0.20 shower 26.37 28.49 47.29 60.18
glass 2.08 3.87 10.87 8.51 clock 4.92 5.91 25.50 21.65 clock 9.82 10.00 21.03 41.11
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Figure 7. Comparison of classic supervised learning and PCL on semantic segmentation across different neural backbones.
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