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Detecting out-of-distribution (OOD) samples is crucial for ensuring the safety of machine
learning systems and has shaped the field of OOD detection. Meanwhile, several other
problems are closely related to OOD detection, including anomaly detection (AD), novelty
detection (ND), open set recognition (OSR), and outlier detection (OD). To unify these
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problems, a generalized OOD detection framework was proposed, taxonomically categoriz-
ing these five problems. However, Vision Language Models (VLMs) such as CLIP have
significantly changed the paradigm and blurred the boundaries between these fields, again
confusing researchers. In this survey, we first present a generalized OOD detection v2,
encapsulating the evolution of these fields in the VLM era. Our framework reveals that,
with some field inactivity and integration, the demanding challenges have become OOD
detection and AD. Then, we highlight the significant shift in the definition, problem settings,
and benchmarks; we thus feature a comprehensive review of the methodology for OOD
detection and related tasks to clarify their relationship to OOD detection. Finally, we explore
the advancements in the emerging Large Vision Language Model (LVLM) era, such as
GPT-4V. We conclude with open challenges and future directions. The resource is available
at https://github.com/AtsuMiyai/Awesome-00D-VLM.

1 Introduction

A reliable visual recognition system should not only accurately predict known contexts, but also identify and
reject unknown examples (Amodei et al., 2016; Mohseni et al., 2021; Hendrycks et al., 2021b; Hendrycks
& Mazeika, 2022). In critical applications such as autonomous driving, the system must alert and cede
control to the driver upon encountering unfamiliar scenes or objects not seen during training. However,
most existing machine learning models are trained based on the closed-world assumption (Krizhevsky et al.,
2012; He et al., 2015), where the test data is assumed to be drawn i.i.d. from the same distribution as the
training data, known as in-distribution (ID). Therefore, the development of classifiers capable of detecting
out-of-distribution (OOD) samples is a crucial challenge for real-world applications. This challenge is precisely
the focus of research in the field of OOD detection.

While OOD detection primarily focuses on semantic distribution shift, several other tasks share similar goals
and motivations, including outlier detection (OD) (Aggarwal & Yu, 2001; Hodge & Austin, 2004; Ben-Gal,
2005; Wang et al., 2019a), anomaly detection (AD) (Ruff et al., 2021; Pang et al., 2021; Bulusu et al., 2020;
Chalapathy & Chawla, 2019), novelty detection (ND) (Pimentel et al., 2014; Miljkovié¢, 2010; Markou &
Singh, 2003a;b), and open set recognition (OSR) (Boult et al., 2019; Geng et al., 2020; Mahdavi & Carvalho,
2021). Subtle differences in the specific definitions among these sub-topics have caused confusion in the field,
leading to similar approaches being proposed across them.

To address this issue, the generalized OOD detection framework was introduced (Yang et al., 2024). The
taxonomy of the generalized OOD detection framework is shown in Fig. 1. The generalized OOD detec-
tion framework introduces a taxonomy built upon four criteria: distribution shift type (covariate/semantic
shift), the type of ID data (single/multi-class), necessity of ID classification, and learning setting (transduc-
tive/inductive). According to the above taxonomy, these five problems can be clearly categorized as shown in
Fig. 1: AD is categorized into sensory AD, which deals with covariate shift, and semantic AD, which deals
with semantic shift. ND falls under the same category as semantic AD. In multi-class settings requiring 1D
classification, both OSR and OOD detection are included. OD belongs to a transductive category (i.e., it has
access to all observations). This framework provides clear definitions and fosters a deeper understanding of
each field.

In recent years, the emergence of Vision Language Models (VLMs), represented by CLIP (Radford et al.,
2021), has rapidly accelerated research in the field of computer vision. This has changed the paradigm of the
recognition field, allowing for zero-shot (Radford et al., 2021) or few-shot learning (Zhou et al., 2022¢;b) in
various domains. VLMs have significantly influenced the aforementioned five problems (OD, AD, ND, OSR,
and OOD detection), and the application of VLMSs, particularly CLIP, has become a highly notable research
field (Ming et al., 2022a; Jeong et al., 2023; Miyai et al., 2023b; Zhou et al., 2024a). However, alongside this
remarkable progress, the paradigm shift with the advent of the VLMs has blurred the boundaries between
the five problems. Due to the difficulty of a clear understanding of the distinctions and interrelations between
these tasks, each community within the fields is facing significant challenges in identifying the optimal
direction to pursue in this VLM era.
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Figure 1: Taxonomy of generalized OOD detection framework (Yang et al., 2024), illustrated by classification
tasks. (a) Sensory anomaly detection is categorized as covariate shift detection. (b) Semantic anomaly
detection and novelty detection fall under semantic shift detection. (c¢) Open set recognition and (d) out-of-
distribution detection are classified as multi-class semantic shift detection tasks that require ID classification.
(e) Outlier detection is characterized by having a transductive observation type.

In this survey, we introduce a novel unified framework termed generalized OOD detection v2, which extends
the previous generalized OOD detection framework and summarizes the evolution of these five problems
in the VLM era. To create it, we systematically review the use of VLMs across these five problem areas,
tracing their development from the start to the present, and summarize the evolutionary trajectory of each
problem. Importantly, our framework reveals that a paradigm shift has caused some fields to become inactive
or integrate with others, and the demanding challenges in the VLM era become AD and OOD detection,
which is a remarkable finding for each community. In addition to the inter-field evolution, we elaborate on
the important shifts in the definition of OOD detection as well as the problem settings and benchmarks, with
the contrast of those for related tasks. Then, we conduct a thorough review of the methodology for OOD
detection and related tasks in the VLM era, intending to clarify their similarities and differences and inspire
future research in OOD detection.

Finally, we introduce the early evolution of these problems in the emerging Large Vision Language Model
(LVLM) era, such as GPT-4V (OpenAl et al., 2023) or LLaVA (Liu et al., 2023a; 2024b). We summarize the
definition of each evolving problem, the findings so far, and future challenges.

To summarize, this survey presents four contributions to the research field:

1. Proposing a Generalized OOD Detection v2: We analyze the progression of five related topics
(AD, ND, OSR, OOD detection, and OD) in the VLM era and propose generalized OOD detection v2.
Our framework reveals that the paradigm shift has led to some field inactivity or integration, and
the demanding challenges are AD and OOD detection. We hope that these observations highlight
the demanding challenges in the VLM era and foster collaborative efforts among each community.

2. An Extensive Survey for VLM-based OOD Detection: We provide a comprehensive survey of
VLM-based OOD detection and AD methods. In particular, we examine recent advances in zero-shot
and few-shot settings by categorizing methods according to their training strategies and the use of
additional prompts. Although various surveys on OD, AD, ND, OSR, and OOD detection have been
conducted (Ruff et al., 2021; Pang et al., 2021; Bulusu et al., 2020; Chalapathy & Chawla, 2019; Geng
et al., 2020; Yang et al., 2024; Cao et al., 2024b; Liu et al., 2024c; Xu & Ding, 2025), this work is the
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Table 1: Number of VLM-based papers in the Top Venues from 2021 to April 2025

Task ‘ Top Venue

(a) Sensory AD CVPR2023x1 (Jeong et al., 2023), ICLR2024x1 (Zhou et al.,
2024a), CVPR2024x4 (Li et al., 2024c; Ho et al., 2024; Zhu &
Pang, 2024; Huang et al., 2024), ACMMM x2 (Gu et al., 2024a; Zhu
et al., 2024a), IJCAI2024x 1 (Zuo et al., 2024), ECCV2024x2 (Cao
et al., 2024¢c; Qu et al., 2024), NeurIPS2024x3 (Li et al., 2024f;
Arodi et al., 2024), ICLR2025x2 (Jiang et al., 2025; Yun et al.,
2025), CVPR2025%6 (Sun et al., 2025; Ma et al., 2025; Qu et al.,
2025; Zhang et al., 2025b; Fan et al., 2025; Gu et al., 2025)

(b) Semantic AD/ND | TMLR2022x1 (Liznerski et al., 2022), CVPR2024x1 (Zhu & Pang,
2024), ICLR2025x1 (Yun et al., 2025)

(c) OSR ECCV2024x1 (Miller et al., 2024)

" (d) OOD Detection NeurIPS2021x1 (Fort et al., 2021), AAAI2022x1 (Es-
maeilpour et al., 2022), NeurIPS2022x1 (Ming et al., 2022a),
ICCV2023x1 (Wang et al., 2023a), IJCV2023x1 (Ming & Li,
2024a), NewrIPS2023x4 (Miyai et al., 2023b; Tu et al., 2023; Park
et al., 2023; Liu et al., 2023b), ICLR2024x2 (Nie et al., 2023;
Jiang et al., 2024), CVPR2024x2 (Bai et al., 2024a; Li et al.,
2024b), ICML2024x1 (Cao et al., 2024a), ECCV2024 x4 (Zhang
et al., 2024d; Liu & Christopher, 2024; Zhang et al., 2024f; Lafon
et al., 2024), NeurIPS2024x5 (Li et al., 2024e; Yu et al., 2024;
Chen et al., 2024a; Zhang et al., 2024a; Zhang & Zhang, 2024),
TMLR2024x1 (Adaloglou et al., 2024), IJCV2025x1 (Miyai et al.,
2025b), ICLR2025x 1 (Zeng et al., 2025)

ICML2024x1 (Liang et al., 2024)

(e) OD

first to comprehensively review VLM-based OOD detection methods. By examining the connections
among related tasks, we aim to provide insights that enhance the understanding of OOD detection.

3. An Introduction to the Evolution in the LVLM Era: We further introduce the evolution of
each problem in the LVLM era. Despite the infant stage of these fields, this survey offers an in-depth
introduction to each problem, aiming to facilitate future advancements in this area.

4. Open Challenges and Future Directions: Finally, we discuss open challenges and future research
directions. In particular, by conducting a comparative analysis between the fields of AD and OOD,
we identify key areas that are especially important for advancing VLM-based OOD detection. We
hope that this survey will serve as a valuable reference for future research on OOD detection and
related tasks in the VLM era.

In the VLM era, research on open-vocabulary segmentation (Gu et al., 2022) and referring segmentation (Wang
et al., 2022b) has been related to the discovery of unseen classes. However, these fields mainly focus on
tasks that aim to generalize to examples from unseen classes during training when the class name is already
known. In contrast, OOD detection and related fields deal with entirely new data, where even the class
name is unknown. The goal of OOD detection and related fields is to detect them instead of generalizing to
them. Therefore, due to this fundamental difference in motivation and objective, we put the tasks such as
open-vocabulary segmentation outside the scope of this survey.

The paper content is organized as follows. In Sec. 2, we introduce the new version of generalized OOD
detection by summarizing the evolution of the five related fields in the VLM era. We then overview the
two key problems (OOD detection and AD) that have evolved and remain active in Sec. 3, with a detailed
breakdown of existing methodologies being presented in Sec. 4 (VLM-based OOD detection) and Sec. 5
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Figure 2: Generalized OOD detection framework v2, reflecting the evolution of each problem in the VLM
era. (a) Sensory AD has consistently been an active research field even after the emergence of VLMs. In
terms of benchmarks, in addition to the commonly used MVTec-AD (Bergmann et al., 2019), VisA (Zou
et al., 2022), the largest industrial anomaly detection dataset, has also become a standard benchmark in the
field. (b) Semantic AD/ND has become inactive in the VLM era. (¢) OSR has been integrated into hard
OOD detection. VLM-based hard OOD detection incorporates the benchmark setup of OSR and creates
new benchmarks such as ImageNet-10/ImageNet-20 (Ming et al., 2022a) and ImageNet-protocol (Palechor
et al., 2023; Li et al., 2024b). (d) OOD detection is a highly active research area in the VLM era. (e) OD has
become inactive in the VLM era.

(VLM-based AD). In Sec. 7, we introduce early advancements of OOD detection and AD in the LVLM era.
Sec. 8 features future directions. Finally, we conclude with Sec. 9.

2 Generalized OOD Detection V2

In this section, we introduce a novel unified framework termed generalized OOD detection v2, which summarizes
the evolution of the five related fields in the VLM era. We first revisit the previous generalized OOD detection
framework in Sec. 2.1. Next, in Sec. 2.2, we show the results of the investigation of the research activity in
each field. In Sec. 2.3, we introduce the evolution of each problem. Finally, in Sec. 2.4, we have a discussion
about the future directions.

2.1 Background: Generalized OOD Detection V1

We first briefly revisit a previous generalized OOD detection, which encapsulates five related sub-topics:
anomaly detection (AD), novelty detection (ND), open set recognition (OSR), out-of-distribution (OOD)
detection, and outlier detection (OD). These sub-topics can be similar in the sense that they all define a
certain in-distribution, with the common goal of detecting out-of-distribution samples under the open-world
assumption. Previously, subtle differences existed among the sub-topics in terms of the specific definition and
properties of in-distribution (ID) and OOD data.

To provide a clear definition, a generalized OOD detection framework was proposed (Yang et al., 2024). The
taxonomy for generalized OOD detection is shown in Fig. 1. It is based on the following four bases: (1)
Distribution shift to detect: The task focuses on detecting either covariate shift (e.g., OOD samples from a
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different domain) or semantic shift (e.g., OOD samples from a different semantic). (2) ID data type: The
in-distribution (ID) data contains either a single class or multiple classes. (3) Whether the task requires
ID classification: Some tasks require classification of the ID data, while others do not. (4) Transductive vs.
inductive learning: Transductive tasks require all observations (both ID and OOD), while inductive tasks
follow the common train-test scheme. According to the above taxonomy, these five problems can be clearly
categorized as shown in Fig. 1: Anomaly detection is categorized into sensory anomaly detection, which deals
with covariate shift, and semantic anomaly detection, which deals with semantic shift. Novelty detection
falls under the same category as semantic anomaly detection. When addressing a multi-class scenario that
necessitates ID classification, both open-set recognition and out-of-distribution detection are encompassed
within this category. The main difference between OSR and OOD detection was the benchmark setup (Yang
et al., 2024; Salehi et al., 2022) (Sec. 2.3 (c)). Outlier detection belongs to a different category from the other
tasks, as this problem is transductive (i.e., it has access to all observations).

The more precise definitions of these tasks are as follows:

Anomaly Detection Anomaly detection (AD) focuses on identifying anomalous instances during inference
that deviate from a predefined notion of normality (Chandola et al., 2009). These anomalies can arise from
two distinct types of distributional changes: covariate shift and semantic shift (Ruff et al., 2021). Accordingly,
AD can be categorized into two primary sub-problems: sensory AD and semantic AD. Sensory AD targets
anomalies caused by covariate shift, under the assumption that all normal instances are drawn from the same
distribution. In this setting, no semantic shift is considered. In contrast, semantic AD addresses label shift,
where normalities are assumed to come from a fixed semantic category. The objective in this setting is to
detect test samples that belong to novel, previously unseen classes.

Novelty Detection Novelty detection (ND) aims to identify test samples that do not belong to any of the
categories seen during training. Depending on the number of training classes, ND can be divided into two
settings: One-class novelty detection, where the training set contains only one class, and multi-class novelty
detection, where multiple classes are present in the training data. It is important to note that, even when
multiple ID classes are available, the goal of multi-class novelty detection is solely to distinguish novel samples
from known ones, without requiring classification among the ID classes. Both one-class and multi-class ND
are binary classification tasks.

Open Set Recognition Open set recognition (OSR) requires a multi-class classifier to perform two tasks
at the same time: (1) correctly classify test samples that belong to known classes, and (2) detect test samples
that come from unknown classes. Here, it is common practice to refer to OOD classes as unknown classes
and ID classes as known classes. However, there is no difference in meaning between these terms.

Out-of-Distribution Detection Out-of-distribution (OOD) detection aims to identify test samples that
come from a distribution different from the training distribution. In most machine learning tasks, it typically
refers to the label distribution, meaning that OOD samples should have labels not seen in the training data.
It is also important to note that the training set usually includes multiple classes, and OOD detection should
not degrade the model’s ability to classify ID samples correctly.

Outlier Detection Outlier detection (OD) aims to identify samples that significantly differ from the rest
of the given observation set. These differences may arise from either covariate shift or semantic shift. OD is
often used as a pre-processing step for downstream tasks such as learning from open-set noisy labels (Wang
et al., 2018) and open-set semi-supervised learning (Yu et al., 2020).

2.2 Investigation of Research Activity in Each Field

To investigate the research activity in each field, we comprehensively investigated papers that utilize VLMs
from top venues and summarized them in Table 1. In this context, the term “top venues” refers to leading
conferences characterized by high impact factors and rigorous peer-review standards, including NeurIPS,
AAAI ICLR, CVPR, ICML, ICCV, ECCV, IJCAI, and ACMMM, together with distinguished journals of
comparable impact and recognition, such as TPAMI, IJCV, and TMLR. The authors visited the official pages
of each venue and manually counted the number of VLM-based papers by examining their titles and content.
Since CLIP, the most representative VLMs, was introduced at ICML 2021, we focused our investigation on
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the period from 2021 to April 2025. We define the research activity of a field objectively by the number
of papers published through a rigorous peer-review process in the period starting with the introduction of
VLMs (e.g., CLIP) and continuing to the present.

Our survey reveals that CLIP (Radford et al., 2021) is by far the most widely used VLM for OOD detection,
whereas other models such as Grounding DINO (Liu et al., 2024e) and SAM (Kirillov et al., 2023) have seen
limited adoption in this context. While many existing methods are developed with CLIP, the concept of
OOD detection with CLIP is not limited to this particular model. Therefore, throughout this survey, we
use the term VLM-based OOD detection to refer broadly to OOD detection methods that leverage VLMs,
and we similarly use the prefix VLM-based for other tasks (e.g., VLM-based AD). However, it is important
to note that not all VLMs employ softmax-based scoring mechanisms—for example, SigLIP (Zhai et al.,
2023) uses sigmoid-based classification. As a result, some methods (Ming et al., 2022a; Miyai et al., 2025b),
which rely on softmax outputs, cannot be directly applied to such models. For clarity and consistency, this
survey focuses primarily on CLIP as the representative VLM and investigates VLM-based methods for OOD
detection and related tasks within this scope.

As OOD detection research is primarily focused on the image domain, we conduct a survey of other tasks
within the image domain that are common and have strong connections to OOD detection research. For
instance, our survey does not cover video domain tasks (Du et al., 2024; Zara et al., 2023; Wu et al., 2024b)
due to their limited connection to OOD detection. From the results in Table 1, it is clear that Sensory AD
and OOD detection have a very high number of papers, while the other fields are not as active. In the next
section, we will examine these findings in greater depth and discuss the evolution of each field.

2.3 Generalized OOD Detection v2: Evolution in VLM Era

We propose a generalized OOD detection v2, encapsulating the evolution of each field in the VLM era. The
evolution trajectory of the Generalized OOD detection framework v2 is shown in Fig. 2. The evolution of
each field is as follows:

(a) Sensory AD — VLM-based AD Sensory AD has continued to develop as a common problem setting
for VLM-based AD, inheriting the challenges of traditional sensory AD (Jeong et al., 2023; Deng et al., 2023;
Chen et al., 2023c;b; Tamura, 2023; Chen et al., 2023c; Zhou et al., 2024a; Gu et al., 2024a; Li et al., 2024c;
Zhu & Pang, 2024). As shown in Table 1, the first appearance in a top venue was at CVPR 2023, and since
then, numerous papers have been published in top venues. Therefore, it is evident that Sensory AD has
consistently been an active research field.

(b) Semantic AD/ND — Inactive Research on semantic AD/ND appears to become inactive in the
VLM era. As shown in Table 1, there are three papers, TMLR 2022 (Liznerski et al., 2022), CVPR, 2024 (Zhu
& Pang, 2024), and ICLR 2025 (Yun et al., 2025). However, the CVPR 2024 (Zhu & Pang, 2024) and
ICLR 2025 (Yun et al., 2025) work aims to build a generalist anomaly detector that solves many AD tasks,
including sensory AD and semantic AD, and is not primarily focused on semantic AD. The reasons for the
inactivity include saturation of performance for one-class semantic AD/ND, and incompatibility of CLIP
and multi-class semantic AD/ND settings. As for one-class semantic AD/ND, TMLR, (Liznerski et al., 2022)
exists, but the performances with common CIFAR and ImageNet-30 datasets have already achieved around
99%. As for multi-class semantic AD/ND, a common approach is to treat ID classes as a single class, but
treating ID classes as a single class is less compatible with CLIP’s class-wise discriminative capability.

(c) OSR — VLM-based OOD Detection We consider that OSR has been integrated into VLM-based
hard OOD detection. According to Table 1, there is only one top venue publication (Miller et al., 2024) on
OSR research in the VLM era. Originally, the main difference between OSR and OOD detection was the
benchmark setup (Yang et al., 2024; Salehi et al., 2022). OSR typically divides the classes in the one dataset
into some known (ID) classes and unknown (OOD) classes, as seen in MNIST-4/6 (Deng, 2012) CIFAR-
4/6 (Krizhevsky et al., 2009a), CIFAR-50/50 (Krizhevsky et al., 2009b), and TinyImageNet-20/180 (Torralba
et al., 2008). However, in recent years, some works on VLM-based OOD detection incorporate the benchmark
setup of OSR and create new benchmarks such as ImageNet-10/ImageNet-20 (Ming et al., 2022a) and
ImageNet-protocol (Palechor et al., 2023; Li et al., 2024b) for hard OOD detection. The only work (Miller
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et al., 2024) discusses the OSR problem in the VLM era, but they do not mention the differences from
VLM-based OOD detection, and the definitions of VLM-based OSR are identical to those of VLM-based
OOD detection. Considering the number of papers on VLM-based OOD detection and its identical definitions
with OSR, we consider that the boundary between OOD detection and OSR has effectively disappeared, and
all research in the VLM era has been integrated into OOD detection.

Nevertheless, while pure OSR research is declining, some studies have used the term “open-set” in the context
of domain generalization (Shu et al., 2023). These studies deviate from the original scope of OSR research
and are rather closely aligned with the field of domain generalization (Zhou et al., 2022a). Therefore, within
our generalized OOD detection v2, we do not classify these studies as falling under OSR research.

(d) OOD Detection — VLM-based OOD Detection OOD detection is a highly active research area
in the VLM era. As shown in Table 1, there are many papers in top venues, indicating a high interest from
the community. Additionally, as mentioned above, OSR has been integrated with OOD detection as a field of
hard OOD detection (Ming et al., 2022a; Li et al., 2024b). Therefore, it is expected that OOD detection will
continue to grow and develop further.

(e) OD — Inactive OD has become less active in the VLM era. Previously, OD was used for open-set
semi-supervised learning (Yu et al., 2020; Saito et al., 2021; Cao et al., 2022), learning with open-set noisy
labels (Wang et al., 2018), and novelty discovery (Han et al., 2019; Zhao & Han, 2021; Jia et al., 2021; Vaze
et al., 2022b; Joseph et al., 2022). The reason for the inactivity is that the use of CLIP led to a reduction in
training costs and only a small amount of data needs to be collected, eliminating the need for large amounts of
unlabeled data and reducing the need to consider noisy data. However, recently, Liang et al. (2024) proposed
Unsupervised Universal Fine-Tuning, a new problem setting for VLM-based OD in ICML2024. Unsupervised
Universal Fine-Tuning assumes a more realistic problem setting for unsupervised tuning of the downstream
task with CLIP where some OOD samples are included in the unlabeled samples. With this new problem
setting, there is still a possibility that OD will become active in the future. However, as OD is not currently
an active area, we exclude OD from the main discussion of this survey. Unsupervised Universal Fine-Tuning
is deeply related to OOD detection and will be discussed in detail in Sec. 4.3.

2.4 Discussion

Through Sec. 2.3, we found that previously mixed fields have been correctly organized in the VLM era, and
that the focus becomes OOD detection and sensory AD. These fields are still developing, with an increasing
number of methodologies and benchmarks, and are expected to become more active in the future. Note here
that this does not mean that other fields have come to an end. For example, one reason why one-class semantic
AD/ND has not been studied is the saturation of performance (Liznerski et al., 2022). If more fine-grained
and challenging datasets could be constructed, the field could be reactive. We put this in out-of-scope for
this survey paper, but this is an important future challenge.

3 Overview of Each Problem in VLM Era

In addition to the above inter-field evolution, we emphasize that the advent of VLMs has significantly changed
the field of OOD detection itself. In this section, we present an overview of VLM-based OOD detection,
highlighting the key changes in the problem definition, the problem setting, and benchmarks. In addition, we
also present an overview of VLM-based AD in the hope that the understanding of each field will lead to a
deeper understanding of VLM-based OOD detection. We describe the changes in problem definition, problem
setting, and benchmarks in the VLM era. As for the background, applications, and evaluation in each field,
we refer the readers to the original generalized OOD detection paper (Yang et al., 2024).

3.1 VLM-based Out-of-Distribution Detection

Definition The definition of VLM-based OOD detection differs significantly from that of conventional OOD
detection. Conventional OOD detection aims to detect test samples drawn from a distribution that is different
from the training distribution. As another definition, OOD detection is defined as a task to detect test
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samples that the model cannot or does not want to generalize (Yang et al., 2024). However, for VLM-based
OOD detection, CLIP has a vast amount of knowledge, so the OOD sample is completely unrelated to the
distribution of the CLIP’s pretraining data or the CLIP’s own generalization ability. Therefore, traditional
definitions cannot adequately describe the definition of VLM-based OOD detection.

Unlike the previous definition, VLM-based OOD detection is defined as follows (Ming et al., 2022a; Esmaeilpour
et al., 2022): VLM-based OOD detection aims to detect samples that do not belong to any ID class text
provided by the user. Given a pre-trained model, a classification task of interest is defined by a set of class
labels Vip, which we refer to as the ID classes. The semantic distribution is represented by the distribution
P(Yip). VLM-based OOD detection aims to detect test samples that come from the distribution with the
semantic shift from the ID classes, i.e., P(Yip) # P(Yoop). Following the definition of the generalized OOD
detection framework (Yang et al., 2024), ideal OOD detectors should keep the classification performance on
test samples from ID class space Vip, and reject OOD test samples with semantics outside the support of

Vip.

Problem Setting VLM-based OOD detection focuses on solving the image classification task in a
computationally efficient way. Unlike traditional OOD detection settings, which primarily involve training
an ID classifier with whole ID data, VLM-based OOD detection primarily focuses on a zero-shot (Ming
et al., 2022a) (i.e., without utilizing ID images) or few-shot (Miyai et al., 2023b) (i.e., utilizing only a few ID
images) setting. Each detailed definition of both settings is described later in Sec. 4. The field is advancing
towards greater computational efficiency, requiring minimal or no training data.

Benchmark The benchmark has also changed between VLM-based methods and previous approaches.
Earlier works before CLIP often utilized small-scale datasets such as CIFAR, (Krizhevsky et al., 2009a;b)
and MNIST (Deng, 2012). In contrast, most recent works in VLM-based OOD detection use high-resolution
and large-scale datasets such as ImageNet (Ming et al., 2022a; Miyai et al., 2023b; Bai et al., 2024a; Li
et al., 2024b; Cao et al., 2024a). The common ImageNet OOD benchmark uses ImageNet as ID and other
datasets (Van Horn et al., 2018; Zhou et al., 2017; Xiao et al., 2010; Cimpoi et al., 2014) as OOD. However,
in this common benchmark, the semantics between ID and OOD are far, which may allow easy distinction
between the ID and OOD. Therefore, recent works use more challenging OOD benchmarks where they split
ImageNet classes into ID and OOD categories for hard OOD detection (Ming et al., 2022a; Li et al., 2024b;
Jung et al., 2024). The representative datasets are ImageNet-20 (Ming et al., 2022a), ImageNet-10 (Ming
et al., 2022a), and ImageNet-protocol (Palechor et al., 2023) created by dividing into multiple variations of
ID/OOD pairs from ImageNet-1K. This creation strategy initially focused on OSR but has recently been
repurposed for OOD detection. More recently, Noda et al. (2025) proposed ImageNet-X for hard OOD
detection and ImageNet-FS-X and Wilds-FS-X for hard full-spectrum OOD detection, which include more
challenging conditions reflecting real-world scenarios. These changes in the datasets shift OOD detection
closer to the real world and make it a more challenging and practical task.

3.2 VLM-based Anomaly Detection

Definition Unlike OOD detection, the definition of anomaly detection (AD) has not changed between
conventional AD and VLM-based AD. AD is intended for use in specific circumstances (industrial inspection),
where samples that deviate from predefined normality are considered an anomaly (Yang et al., 2024; Ruff
et al., 2021). Whether a model can generalize is irrelevant to the definition of “Anomaly”. Therefore, even
with the emergence of CLIP, the definition has not changed.

Problem Setting VLM-based AD focuses on solving anomaly classification and segmentation in a
computationally efficient way. Anomaly classification is a binary classification task that distinguishes between
normality and abnormality. Anomaly segmentation involves segmenting the location of anomalies. Like
VLM-based OOD detection, VLM-based AD also primarily focuses on a zero-shot (Jeong et al., 2023) (i.e.,
without utilizing images in the target dataset) or few-shot (Jeong et al., 2023) (i.e., using only a few images
in the target dataset) setting. Each detailed definition of zero-shot and few-shot settings is described later in
Sec. 5. As another shift, conventional AD created separate models for each category (Bergmann et al., 2020;
Defard et al., 2021; Li et al., 2021; Liznerski et al., 2021; Yi & Yoon, 2020; Zavrtanik et al., 2021; Thulasidasan
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Figure 3: Timeline for representative methodologies for VLM-based out-of-distribution detection and VLM-
based anomaly detection. We observe that an increasing number of methods have recently been proposed for
both tasks, indicating the growing activity in these fields.

et al., 2021), while VLM-based AD creates a single unified model across multiple categories (Jeong et al.,
2023; Deng et al., 2023; Zhou et al., 2024a; Chen et al., 2023b; Zhu & Pang, 2024), which leads to a more
computationally efficient approach.

One key difference from VLM-based OOD detection is that VLM-based OOD detection does not involve
localization tasks, while these are mainstream in VLM-based AD. This will be discussed in detail in Sec. 5.4.

Benchmark Most works on VLM-based AD tackle industrial inspection (Bergmann et al., 2019; Chu &
Kitani, 2020; Atha & Jahanshahi, 2018). As for the benchmarks, MVTec-AD dataset (Bergmann et al., 2019)
and VisA dataset (Zou et al., 2022) are commonly used. MVTEC-AD includes 15 classes including 5 different
texture categories and 10 different object categories with totally 5,354 high-resolution images. VisA covers 12
objects such as in 3 domain consisting of 10,821 high-resolution color images. The VisA benchmark includes
objects with complex structures such as printed circuit boards and multiple instances with different locations
within a single view, making it one of the most challenging datasets currently available in the open datasets.
As for other datasets, KSDD (Tabernik et al., 2020), BTAD (Mishra et al., 2021), and MPDD (Jezek et al.,
2021) are often used. However, apart from MVTec-AD and VisA, the datasets used vary depending on the
papers (Yang et al., 2025; Cao et al., 2024c; Qu et al., 2024; Li et al., 2024f).

4 VLM-based OOD Detection: Methodology

In this section, we introduce the methodologies for VLM-based out-of-distribution (OOD) detection. Fig. 3
presents the timeline for representative methodologies for VLM-based OOD detection. Table 2 presents
representative methods. We introduce methods for zero-shot OOD detection in Sec. 4.1, few-shot OOD
detection in Sec. 4.2, and other research directions in Sec. 4.3. We categorize each methodology by the
training type and the use of OOD prompts. As for the OOD prompts, the methods that employ additional
OOD prompts and do not use them are shown in Fig. 4 (a) and (b), respectively. As for the training type,
we categorize the methods into training-free, ID training, and auxiliary training (training with other data
than ID training data). The illustration of each training scenario is shown in Fig. 5.

4.1 Zero-shot Out-of-Distribution Detection

Zero-shot OOD detection was proposed in 2021 by Fort et al. (2021). Since then, a growing number of
methods have been proposed year by year.

Definition of Zero-shot OOD Detection In zero-shot OOD detection, the term “Zero-shot” refers to
the non-use of ID images during both training and inference phases. For instance, the method with additional
training with auxiliary datasets (non-use of ID images) can be regarded as a zero-shot method (Wang
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Table 2: Representative paper list for VLM-based out-of-distribution detection and anomaly detection.

Task

ID Image
Availability

Training Type

OOD
Prompts

Methods

§ 4 VLM-based
OOD Detection

§ 4.1 Zero-shot

§ 4.1.1 Training-free

ZeroOE (Fort et al., 2021),
ZOC (Esmaeilpour et al.,
2022), NegLabel (Jiang et al.,
2024), EOE (Cao et al.,
2024a), AdaNeg (Zhang &
Zhang, 2024), CSP (Chen
et al., 2024a)

MCM (Ming et al., 2022a),
GL-MCM (Miyai et al.,
2025b), SeTAR (Li et al.,
2024e), TAG (Liu &
Christopher, 2024),
CoVer (Zhang et al., 2024a)

‘ § 4.1.2 Auxiliary Training

CLIPN (Wang et al., 2023a)

§ 4.2 Few-shot

§ 4.2.1 ID Training

PEFT-MCM (Ming & Li,
2024a), LoCoOp (Miyai et al.,
2023b), GalLoP (Lafon et al.,
2024), SCT (Yu et al., 2024)

LSN (Nie et al., 2023),
NegPrompt (Li et al., 2024b),
ID-like-Prompt (Bai et al.,
2024a), Local-Prompt (Zeng
et al., 2025)

§4.2.2
Training-free

Dual-Adapter (Chen et al.,
2024b), DPM (Zhang et al.,
2024f)

§ 5 VLM-based
Anomaly Detection

§ 5.1 Zero-shot

§ 5.1.1 Training-free

WinCLIP (Jeong et al., 2023),
AnoCLIP (Deng et al., 2023),
SDP (Chen et al., 2023c),
ALFA (Zhu et al., 2024a)

§ 5.1.2 Auxiliary Training

APRIL-GAN
(zero-shot) (Chen et al.,
2023b), RWDA (Tamura,

2023), SDP+ (Chen et al.,
2023c), AnomalyCLIP (Zhou
et al., 2024a), FiLo (Gu et al.,
2024a), AdaCLIP (Cao et al.,
2024c), VCP-CLIP (Qu et al.,

2024), AA-CLIP (Ma et al.,
2025), Bayes-PFL (Qu et al.,

2025),

§ 5.2 Few-shot

§ 5.2.1 Training-free

WinCLIP+ (Jeong et al.,
2023), UniVAD (Gu et al.,
2025)

§ 5.2.2 ID Training

CLIP-FSAC (Zuo et al., 2024),
PromptAD (one-class) (Li
et al., 2024c),
One-to-Normal (Li et al.,
2024f)

§ 5.2.3 Auxiliary Training + ref.

APRIL-GAN (few-shot) (Chen
et al., 2023b), InCTRL (Zhu &
Pang, 2024)
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Figure 5: Illustration of the OOD detection methods for each training type in both zero-shot and few-shot
settings.

et al., 2023a). The method with the pre-processing of the ID class texts can also be regarded as a zero-shot
method (Fort et al., 2021; Esmaeilpour et al., 2022; Jiang et al., 2024; Cao et al., 2024a).

4.1.1 Training-free Methods

a. With OOD Prompts VLM-based OOD detection started in this setting. The earliest work is
ZeroOE (Fort et al., 2021). ZeroOE feeds the potential OOD labels to the textual encoder of CLIP. However,
the method of using known OOD labels is infeasible for real-world applications. To solve this problem,
ZOC (Esmaeilpour et al., 2022) proposed to train an OOD label generator based on the visual encoder of
CLIP and use the generated pseudo-OOD labels for OOD detection. However, when dealing with large-scale
datasets encompassing a multitude of ID classes, the label generator may not generate effective candidate
OOD labels, resulting in poor performance. Building on these early works (Fort et al., 2021; Esmaeilpour
et al., 2022), recent works focus on how to obtain high-quality OOD labels through either (i) OOD label
retrieval (Jiang et al., 2024; Ding & Pang, 2024) or (2) OOD label generation (Cao et al., 2024a). (i) A
representative retrieval-based method is NegLabel (Jiang et al., 2024). NegLabel selects high-quality OOD
labels from extensive corpus databases by calculating the distance between an extracted OOD label and ID
label. AdaNeg (Zhang & Zhang, 2024) extends NegLabel by incorporating adaptive negative proxies, which
are dynamically generated during inference by leveraging actual OOD images. This adaptation ensures a
closer alignment with the test-time OOD label space, thereby enhancing the effectiveness of negative proxy
guidance. Chen et al. (2024a) proposed Conjugated Semantic Pool (CSP), which enhances OOD detection
by expanding the semantic space with modified superclass names. (ii) A representative generation-based
method is EOE (Cao et al., 2024a). EOE utilizes Large Language Models (LLMs) to produce high-quality
OOD labels. By modifying the prompts given to the LLM, EOE can be generalized to a variety of tasks,
including far and near OOD detection.

12
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b. Without OOD Prompts In zero-shot OOD detection, many methods utilize OOD labels, but the
difficulty and cost of creating these labels pose challenges. To address these issues, Ming et al. (2022a)
proposed MCM, which uses only ID labels to detect OOD. MCM is a simple approach that devises softmax
scaling to align visual features with textual concepts for OOD detection. Despite its simplicity, MCM has
high effectiveness and scalability, and it serves as a crucial baseline in VLM-based OOD detection. Building
on the concept of MCM, Miyai et al. (2025b) proposed GL-MCM, which extends MCM by just adding a local
MCM score to enhance the fine-grained detection capability in local regions. Based on MCM and GL-MCM
SeTAR (Li et al., 2024e) enhances them by changing the model’s weight matrices using a simple greedy search
algorithm. As for another direction, some works adopt data-centric approaches (Liu & Christopher, 2024;
Zhang et al., 2024a). Liu & Christopher (2024) proposed TAG, which applies simple augmentations to the
ID text prompts. Zhang et al. (2024a) proposed CoVer, which enhances separability by averaging confidence
scores across corrupted inputs, leveraging the greater confidence drop in OOD samples under corruptions.

We consider these methods to be post-hoc methods for VLM-based OOD detection in that they directly
employ an ID classifier for OOD detection. Due to their simplicity and high scalability, these post-hoc
methods can bring fundamental performance improvements for many subsequent methods (Miyai et al.,
2023b; Nie et al., 2023; Li et al., 2024b). Therefore, we expect that this field should be developed further
in the future, reflecting the trajectory of the field before CLIP emerged (Hendrycks & Gimpel, 2017; Liang
et al., 2018; Lee et al., 2018; Liu et al., 2020; Sastry & Oore, 2020; Wang et al., 2021; Zhang et al., 2023; Sun
& Li, 2022; Sun et al., 2022; Lin et al., 2021; Sastry & Oore, 2019).

4.1.2 Auxiliary Training-based Methods

CLIPN (Wang et al., 2023a) is the only auxiliary training-based method for zero-shot OOD detection. CLIPN
aims to empower the logic of saying “no” within CLIP, and it designs a novel learnable “no” prompt and
an additional “no” text encoder to capture negation semantics within images. To create an additional text
encoder, CLIPN needs to be pre-trained on the CC-3M dataset (Sharma et al., 2018). While the extensive
pre-training of CLIPN may indeed lead to intensive computations and lower scalability, once pre-trained, it
performs zero-shot OOD detection across a wide range of domains with comparable performance to few-shot
OOD detection methods (Miyai et al., 2023b; Nie et al., 2023).

4.2 Few-shot Out-of-Distribution Detection

Few-shot OOD detection was concurrently proposed by Miyai et al. (2023b) and Ming & Li (2024a) in June
2023. Since then, it has become an active research area in VLM-based OOD detection.

Definition of Few-shot OOD Detection VLM-based few-shot OOD detection aims to detect OOD
images using only a few labeled ID images. In few-shot OOD detection, the term “Few-shot” refers to the use
of a few ID images during training or inference phases. For instance, the method with additional training
with a few ID images can be regarded as a few-shot method (Li et al., 2024¢). Even without training, if a
method uses a few ID images as a reference, it is treated as a few-shot method (Jeong et al., 2023). Regarding
the number of shots, it is common to experiment with 1-shot to 16-shot (Miyai et al., 2023b; Chen et al.,
2024b), following the closed-set setting (Zhou et al., 2022¢).

4.2.1 ID Training-based Methods

a. Without OOD Prompts Few-shot OOD detection began in this setting. Ming & Li (2024a)
proposed PEFT-MCM for VLM-based OOD detection, which demonstrates the effectiveness of combining
parameter-efficient tuning methods (e.g., prompt learning (Zhou et al., 2022c) or adapter (Zhang et al.,
2022)) and MCM (Ming et al., 2022a). Concurrently, Miyai et al. (2023b) proposed LoCoOp, a pioneer
prompt learning approach for few-shot OOD detection. LoCoOp enhances CoOp’s (Zhou et al., 2022c¢)
OOD detection capabilities by performing OOD regularization with local OOD features. LoCoOp is the
simplest prompt learning method and serves as a crucial baseline in few-shot OOD detection. To improve
the performance of LoCoOp, Self-Calibrated Tuning (SCT) (Yu et al., 2024) dynamically adjusts the weight
of OOD regularization based on prediction uncertainty to prevent unreliable OOD features from degrading
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the model’s performance. Unlike LoCoOp, which utilizes non-ID local regions for OOD regularization,
GalLoP (Lafon et al., 2024) proposes an approach that utilizes local ID regions to enable a more fine-grained
distinction between ID and OOD samples. GalLoP learns a diverse set of prompts by utilizing both global
and local visual representations, thereby enhancing detection capabilities.

b. With OOD Prompts Similar to zero-shot OOD detection, recent works in few-shot OOD detection
utilize additional OOD prompts (Nie et al., 2023; Bai et al., 2024a; Li et al., 2024b). As representative
methods, LSN (Nie et al., 2023) and NegPrompt (Li et al., 2024b) were proposed concurrently. They state
that the simple negative prompts added “not” (e.g., “not a photo of a [cls]”) fail to capture the dissimilarity
for identifying OOD samples. Therefore, by preparing negative prompts and training with them, LSN
and NegPrompt can learn suitable negative prompts, enabling more accurate detection of OOD samples.
The difference between LSN and NegPrompt lies in their approach to the use of negative prompts. LSN
prepares unique negative prompts for each class and learns suitable negative prompts for each class. In
contrast, NegPrompt prepares multiple negative prompts common to all ID classes and trains them to learn
generic templates representing the negative semantics of any given class labels. Additionally, NegPrompt
tested the performances in the hard OOD detection setting with ImageNet-protocol (Palechor et al., 2023),
outperforming LoCoOp and CoOp. Alternatively, ID-like-Prompt (Bai et al., 2024a) takes a different approach
by introducing ID-like prompts, which are designed for capturing OOD features that are close to the ID
features. It extracts ID-like OOD regions from ID training images and trains ID-like prompts using these
extracted OOD data, enabling the model to capture more subtle differences within images. In a unique
direction, LAPT (Zhang et al., 2024d) proposes an automatic sample collection strategy that retrieves or
generates training ID images only with ID class names, which achieves high performance without image
collection and annotation costs. LAPT then performs distribution-aware prompt learning, which distinguishes
between ID class and OOD class tokens. LAPT is positioned within the context of more efficient few-shot
OOD detection in this survey paper since it requires generating or retrieving “ID images” for the data
collection.

In the context of few-shot OOD detection, recently, Li et al. (2024b) proposed a new problem setting called
open-vocabulary OOD (OV-OOD) detection. While common few-shot OOD detection involves training on
images from all ID classes during training, OV-OOD detection involves training on images from just a small
subset of ID classes and performing OOD detection using all ID classes at inference time. Formally, we define
a subset of semantic labels Vip sub C Vip, where Vip represents all ID labels. Based on this subset of labels,
we define a corresponding subset dataset D%, C Di5*'®. During training, only Difih, is used. Then, at
inference time, all ID classes Vp are used, and the goal is to detect OOD from a combination of all ID test
data DiS** with Yip and OOD test data DESY with Yoop. For this setting, existing few-shot OOD detection
methods (Miyai et al., 2023b; Li et al., 2024b) can be easily applied by simply combining the rest of the ID
classes. In particular, NegPrompt (Li et al., 2024b) learns general negative prompts that are not specific to
the training ID classes, so it achieves high performance in OV-OOD detection.

4.2.2 Training-free Methods

Recently, training-free few-shot OOD detection methods, which use ID images solely as references during
inference, have gained attention. Dual-Adapter (Chen et al., 2024b) adopts a prior-based method Tip-
Adapter (Zhang et al., 2022), which leverages both textual and visual features with a cache model and
enhances performance without training. To adapt this to few-shot OOD detection, Dual-Adapter employs the
concept of dual cache modeling and constructs Positive-Adapter and Negative-Adapter, and identifies OOD
samples with the prediction difference with both adapters. Dual-Pattern Matching (DPM) (Zhang et al.,
2024f) enhances CLIP for OOD detection by utilizing both textual and visual ID patterns. DPM stores ID
class-wise text features as the textual pattern and the aggregated ID visual information as the visual pattern.
During inference, it evaluates the similarity of inputs to both patterns to identify OOD samples.
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4.3 Other Directions
4.3.1 VLM-based Full-spectrum OOD Detection

VLM-based full-spectrum OOD (FS-OOD) detection is a crucial challenge (Lu et al., 2023). FS-OOD detection
was proposed by Yang et al. (2023) as an important setting that considers both the detection of semantic
shift and the ability to recognize covariate-shifted data (Hendrycks & Dietterich, 2019; Hendrycks et al.,
2021a). Unlike standard OOD detection, which only focuses on semantic shifts between training and test
distributions, FS-OOD detection further considers non-semantic covariate shift by including covariate-shifted
ID images. As for the benchmarks, OpenOOD v1.5 (Zhang et al., 2024b) provides two large-scale benchmarks
based on ImageNet-200 and ImageNet-1K, incorporating ImageNet-C (Hendrycks & Dietterich, 2019) with
image corruptions, ImageNet-R (Hendrycks et al., 2021a) with style changes, and ImageNet-V2 (Recht et al.,
2019) with resampling bias as ID. As for VLM-based methods, LSA (Lu et al., 2023) uses a bidirectional
prompt customization mechanism, which adjusts discriminative ID and OOD boundary. The latest work,
Noda et al. (2025) introduces ImageNet-FS-X and Wilds-FS-X as new benchmarks. ImageNet-FS-X utilizes
the hierarchical structure of ImageNet labels to define a more challenging ID/OOD split while also evaluating
robustness to covariate shifts in ImageNet variants. To further align these benchmarks with real-world
testbeds, Wilds-FS-X extends Wilds (Koh et al., 2021) for FS-OOD evaluation. These benchmarks present
substantial room for further improvements.

4.3.2 Other Tasks with VLM-based OOD Detection

Unsupervised Universal Fine-Tuning VLM-based OOD detection is useful for a new task called
Unsupervised Universal Fine-Tuning (UUFT) (Liang et al., 2024). UUFT is a problem of unsupervised
learning for outlier detection (OD). Existing studies for unsupervised learning assumed that all unlabeled
images belong to one of the ID classes (Huang et al., 2022; Shu et al., 2022; Tanwisuth et al., 2023), but they
require prior knowledge of exact class names linked to ground truth labels, which restricts their usefulness in
various real-world situations. For a more realistic setting, UUFT assumes that OOD images are included in
the unlabeled images. To detect OOD images during training, they developed MCM (Ming et al., 2022a) and
proposed UEO, which leverages sample-level confidence to approximately minimize the conditional entropy of
confident instances and maximize the marginal entropy of less confident instances.

Open-world Prompt Tuning VLM-based OOD detection is useful for a new task called Open-world
Prompt Tuning (Zhou et al., 2024b). Open-world Prompt Tuning is a task that evaluates the classification
accuracy on a mix of known and novel ID classes while training the model with known classes. To solve
this problem, Zhou et al. (2024b) proposed DeCoOp which incorporates OOD detection into the inference
pipelines and improves the base-to-new separability, preventing performance degradation on new classes.

5 VLM-based AD: Methodology

In this section, we introduce methodologies for VLM-based anomaly detection (AD) in the hope that the
contrast with OOD detection clarifies the similarities and differences between each task and facilitates a
deeper understanding of VLM-based OOD detection.

Common Findings in All Settings In VLM-based AD, all representative methods utilize anomaly
prompts (e.g., “anomalous [class]”) to detect anomalies. This hypothesis is supported by several ob-
servations from existing work (Jeong et al., 2023). Firstly, the concepts of normality and anomalies are
context-dependent states (Isola et al., 2015) of an object, with language playing a crucial role in defining
these states. Secondly, language provides additional insights that help differentiate defects from acceptable
variations in normality.

5.1 Zero-shot Anomaly Detection

VLM-based zero-shot AD was proposed in 2023 by Jeong et al. (2023). Although it started about two years
later than OOD detection, many methods have been proposed up to the present.
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Definition of Zero-shot AD The meaning of the term “Zero-shot” for zero-shot AD is similar to that for
zero-shot OOD detection. In zero-shot AD, the term “Zero-shot” refers to the non-use of the images in the
target domain during both training and inference phases. For instance, the method with additional training
with auxiliary datasets can be regarded as a zero-shot method (Chen et al., 2023b; Tamura, 2023; Chen et al.,
2023c; Zhou et al., 2024a; Gu et al., 2024a). The method with the pre-processing of the target class texts can
also be regarded as a zero-shot method (Jeong et al., 2023; Deng et al., 2023; Chen et al., 2023c).

5.1.1 Training-free Methods

The simplest zero-shot AD methods are (i) to perform anomaly classification with CLIP using text prompts for
normality and anomalies as classes (i.e., “normal [class]” vs. “anomalous [class]”) and (ii) to calculate
the similarity to the normal prompt (i.e., “normal [class]”) as the score. These methods are called
CLIP-AC (Jeong et al., 2023). Jeong et al. (2023) reported that CLIP-AC with both normal and anomaly
prompts outperforms that with only normal text prompts, which indicates the importance of the use of
anomaly prompts. However, the performances for this naive method are not yet satisfactory due to the
wide range of variations of anomalies. To solve this issue, Jeong et al. (2023) proposed WinCLIP. WinCLIP
performs a compositional ensemble on a large number of pre-defined normal and anomaly templates and
efficient extraction and aggregation of window/patch/image-level features aligned with the text. WinCLIP
outperforms CLIP-AC by a large margin. Because of its simplicity and pioneering work, WinCLIP has
become an important baseline for VLM-based AD. AnoCLIP (Deng et al., 2023) follows WinCLIP’s approach
of using a large number of pre-defined normal and anomaly templates but modifies the templates to be
domain-aware (e.g., industrial photo) and contrastive state for normal and anomaly (e.g., perfect and
imperfect). However, it is noteworthy that the performance of the ensemble strategies of previous methods
heavily depends on the text descriptions (Jeong et al., 2023; Deng et al., 2023). Also, it is observed that more
descriptions are not always better (Chen et al., 2023c), which makes the previous approaches (Jeong et al.,
2023; Deng et al., 2023) using a naive ensemble of large templates somewhat uncontrollable and random
in their applications. Therefore, SDP (Chen et al., 2023c) proposes RVS, a representative vector selection
paradigm, which makes the mechanism of extracting representative vectors from large templates controllable,
allowing for a more diverse selection of representative vectors. As a more recent work, ALFA is a zero-shot
anomaly detection framework that leverages LLMs to generate adaptive anomaly descriptions at runtime and
optimizes the image-text alignment of CLIP at both global and local levels, enhancing detection accuracy
and interpretability (Zhu et al., 2024a).

5.1.2 Auxiliary Training-based Methods

Existing methods with auxiliary training perform training on the test set of one dataset and perform zero-shot
testing on the other dataset (Chen et al., 2023b; Zhou et al., 2024a; Gu et al., 2024a) (e.g., training with
MVTec-AD and evaluation with VisA.) In recent years, the development of auxiliary training-based methods
has received more attention than training-free zero-shot methods. There are two main reasons why training
is necessary for AD: (i) The first is the domain gap between semantics and anomalies. CLIP is pre-trained to
understand the semantics of images, so when applied in a zero-shot manner, it captures the semantics of
the image. However, actual anomalies are not semantics, but rather represent the state of an object and
appear only in local areas of the image. Therefore, without training, this domain gap between semantics and
anomalies cannot be bridged. (ii) The second reason is that there are limitations to relying on a large set of
manually crafted anomaly prompts. This incurs prompt creation costs and also makes it difficult to respond
to unknown anomalies.

To address the above issue (i), APRIL-GAN (also known as VAND) (Chen et al., 2023b) was proposed.
APRIL-GAN tackles the domain gap between semantics and anomaly by adding additional linear layers in
vision encoders. These linear layers project image features at each scale into the text space, creating and
aggregating anomaly maps at each stage. Similarly, SDP+ (Chen et al., 2024b) also incorporates additional
linear layers into SDP (Chen et al., 2024b) to effectively project image features into the text feature space,
addressing the misalignment between image and text. To solve both the issue (i) and (ii), AnomalyCLIP (Zhou
et al., 2024a) was proposed. AnomalyCLIP is a textual prompt learning-based method similar to CoOp.
By replacing anomaly prompts with learnable parameters, it eliminates the need to prepare a large number
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of manually pre-defined prompts such as those in WinCLIP (Jeong et al., 2023). Furthermore, unlike
CoOp (Zhou et al., 2022¢) which learns object semantics, AnomalyCLIP learns object-agnostic text prompts
that capture generic normality and abnormality in an image regardless of its semantics. To achieve this,
AnomalyCLIP introduces object-agnostic text prompt templates for both normal and anomaly and performs
global and local context optimization. FiLo (Gu et al., 2024a) leverages Large Language Models (LLMs) to
generate fine-grained anomaly descriptions for each object category. This method replaces generic abnormal
descriptions with LLM-generated specific anomaly content for each sample. By adding learnable prompts
before the generated anomaly prompts, Filo performs global and local context optimization, enhancing the
ability to detect anomalies. As a more recent method, AdaCLIP (Cao et al., 2024¢) employs static and
dynamic learnable prompts in both the image and text encoders. Static prompts provide a general adaptation
for zero-shot detection, while dynamic prompts are generated per test image for adaptive refinement. Their
combination, termed hybrid prompts, enhances zero-shot performance.

As a unique direction from these methods, RWDA (Tamura, 2023) proposes a data augmentation approach
by utilizing CLIP’s text embeddings as training data. RWDA adds randomly generated words into normal
and anomaly prompts to generate a diverse set of normal and anomaly training samples and trains a regular
feed-forward neural network with diverse text embeddings. VCP-CLIP (Qu et al., 2024) proposes to leverage
visual context prompting (VCP) to enhance CLIP’s ability to detect and segment anomalies without requiring
product-specific text prompts. VCP eliminates reliance on predefined textual descriptions and improves
generalization across unseen product categories.

5.2 Few-shot Anomaly Detection

VLM-based few-shot AD was proposed in 2023 by Jeong et al. (2023), concurrently with the development of
zero-shot AD (Jeong et al., 2023).

Definition of Few-shot AD VLM-based few-shot AD aims to detect anomaly images using only a
few images in the target domain. The meaning of the term “Few-shot” is similar to that of few-shot OOD
detection. In few-shot AD, the term “Few-shot” refers to the use of a few images in the target domain during
training or inference phases. For instance, the method with additional training with a few images in the
target domain can be regarded as a few-shot method (Li et al., 2024c). Even without training, if a method
uses a few images in the target domain as a reference, it is regarded as a few-shot method (Jeong et al., 2023).

5.2.1 Training-free Methods

The earliest approach in VLM-based few-shot AD is WinCLIP+ (Jeong et al., 2023), an improved method of
WinCLIP. WinCLIP, a base zero-shot AD method, cannot identify certain defects that can only be defined
visually rather than textually. For example, the “Metal-nut” category in MVTecAD has an anomaly type
labeled “flipped upside down,” which can only be identified relative to a normal image. To address this,
WinCLIP+ incorporates a few normal reference images into a memory bank (Roth et al., 2022) and calculates
the anomaly score with the cosine similarity between the query image and its most similar image in the
memory bank.

5.2.2 ID Training-based Methods

Training-based methods for VLM-based AD are generally categorized as auxiliary training (in Sec. 5.1.2),
but some approaches use data from the same domain as the test data for training. CLIP-FSAC (Zuo
et al., 2024) enhances few-shot anomaly classification by introducing a two-stage fine-tuning framework with
modality-specific adapters, where the image adapter is trained first using text features, followed by the text
adapter while freezing the image adapter. To address data scarcity, it employs synthetic anomaly generation
using random perturbation and Poisson-based editing to create diverse training samples. PromptAD (Li
et al., 2024c) proposes a prompt learning method for one-class AD (where the normal class consists of one
class). In one-class AD, traditional prompt learning methods for multi-class classification (e.g., CoOp (Zhou
et al., 2022c)) do not work well. To address this, PromptAD creates a large number of anomaly prompts by
adding a learnable anomaly suffix to the normal prompt. It then learns to bring the visual features closer
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to the normal prompt and further away from the anomaly prompts. As a different direction, Kwak et al.
(2024) proposed ADP, which learns anomaly-aware prompts using the personalization capabilities of diffusion
models. Also, Li et al. (2024f) has proposed a novel anomaly personalization approach, which applies a
one-to-normal transformation to query images using a customized anomaly-free generation model, ensuring
alignment with the normal data manifold. This method leverages a triplet contrastive anomaly inference
strategy, incorporating comparisons between the query image, a generated anomaly-free data pool, and
textual prompts to enhance prediction stability and robustness.

5.2.3 Auxiliary Training- and Reference-based Methods

We explore the methods trained on auxiliary datasets and utilize the normal images in the target domain
as references during inference. An early work in this category is APRIL-GAN (few-shot) (Chen et al.,
2023b), which uses a linear layer trained with auxiliary datasets. Similar to WinCLIP+ (Jeong et al., 2023),
APRIL-GAN (few-shot) utilizes a few ID reference images with a memory bank-based approach (Roth et al.,
2022). More recently, Zhu & Pang (2024) proposed an in-context-learning-based method called InCTRL.
InCTRL trains a model to discriminate anomalies from normal samples by learning to identify residuals or
discrepancies between query images and a set of few-shot normal images (in-context sample prompts) from
auxiliary data. During inference, InCTRL identifies anomalies by measuring the discrepancy between the
features of the query image and a few in-context normal samples from the target dataset.

5.3 Other Research Direction
5.3.1 Anomaly Detection with Localization Models

Some works (Cao et al., 2023a; Li et al., 2024a) tackle AD using foundation models for localization, such as
SAM (Kirillov et al., 2023) or GroundingDINO (Liu et al., 2024e). SAA (Cao et al., 2023a) is a pioneering
approach that integrates SAM into anomaly segmentation tasks. It first employs prompt-driven object
detection techniques such as GroundingDINO (Liu et al., 2024¢) to generate box-level regions conditioned
on prompts, highlighting the target anomaly areas. These generated boxes serve as prompts for SAM,
which then produces the final anomaly segmentation results. Building on this, SAA+ (Cao et al., 2023a)
introduces hybrid prompts that blend domain-specific knowledge with contextual image information, helping
to reduce ambiguities inherent in language-based prompts. In contrast, CLIPSAM (Li et al., 2025) replaces
GroundingDINO with CLIP, leveraging its superior localization capability to provide more precise prompts
for SAM. To bridge the domain gap from natural images, Yang et al. (2025) propose a promptable anomaly
segmentation model with SAM, incorporating a novel Self-Perception Tuning (SPT) method. They first
design a Self-Draft Tuning strategy, in which SAM initially generates a coarse draft of the anomaly mask,
followed by a mask refinement process. Furthermore, they introduce a Visual-Relation-Aware Adapter to
enhance the internal perception knowledge of discriminative relation information during decoding.

Given that AD necessitates localization, it is expected that the number of works employing localization
foundation models such as SAM will continue to increase.

5.3.2 Medical Anomaly Detection

While most works on VLM-based AD focus on industrial AD, recent studies have begun to challenge medical
anomaly detection (medical AD) (Chen et al., 2023c; Zhu & Pang, 2024; Huang et al., 2024; Hua et al.,
2024; Zhang et al., 2024c; Cao et al., 2024c). VLM-based medical AD is a challenging area as well as
industrial AD due to the larger gap between different data modalities. A representative work on medical
AD is MVFA (Huang et al., 2024). MVFA is a method specifically tailored for medical AD. It incorporates
multiple residual adapters into the CLIP’s visual encoder to reduce the domain gap, enabling a stepwise
enhancement of visual features across different levels. The future progression of medical AD and industrial
AD offers an intriguing perspective, exploring whether these fields will develop independently or influence
each other. However, when considering practical applications, it should be noted that medical AD faces the
challenge that anomalies are not always describable in the language. Therefore, the development of medical
AD methods that do not use CLIP is also important.
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5.3.3 Video Anomaly Detection

Compared to OOD detection, one important point is that anomaly detection has been actively studied not
only in image domains but also in video domains (Zhu et al., 2024b). Video Anomaly Detection (VAD)
aims to automatically detect unusual events in videos, and it has many applications such as surveillance and
monitoring (Wang et al., 2019b). VAD has several challenges. First, there is no clear and unified definition
of anomalies, because what is normal or abnormal (for example, walking on a sidewalk vs. on a highway)
depends on the context. Second, anomalies happen rarely and unpredictably, so it is difficult to collect
high-quality datasets. This makes it hard to learn such patterns effectively. Because of these challenges and
interests, VAD has become an active field, and many survey papers have been published (Suarez & Naval Jr,
2020; Abbas & Al-Ani, 2022; Jiao et al., 2023; Zhu et al., 2024b; Abdalla et al., 2024).

Before the VLM era, most VAD research focused on building task-specific models using unsupervised learning,
one-class learning, or weakly supervised learning, because there was a lack of labeled anomaly data (Wu et al.,
2024a). After the introduction of VLMs, the research direction changed a lot. Using powerful features from
pre-trained VLMs, a lot of work tried zero-shot and few-shot VAD with much less task-specific data (Zanella
et al., 2024b). Furthermore, the language understanding capabilities of VLMs have enabled new task settings,
such as the integration of textual information (Zanella et al., 2024a;b) and the generation of natural language
explanations for detected anomalies (Ye et al., 2025; Zhang et al., 2025a).

These recent trends show that the research direction of VAD has changed a lot with VLMs. On the other
hand, OOD detection in video domains is still not widely studied. In this survey, our main goal is to
better understand OOD detection itself, while referring to related areas such as AD only as supplementary
information. Therefore, we do not give a full review of VAD in this survey, and instead refer readers to
existing VAD survey papers (Suarez & Naval Jr, 2020; Abbas & Al-Ani, 2022; Jiao et al., 2023; Zhu et al.,
2024b; Abdalla et al., 2024).

5.4 Discussion

We discuss the similarities and differences between VLM-based OOD detection and VLM-based AD to deepen
our understanding of VLM-based OOD detection.

5.4.1 Difference between Each Methodology

Differing Scopes of OOD OOD detection and AD differ significantly in the scope of OOD (anomaly)
they cover, which leads to differences in methodologies, particularly in the use of OOD prompts. As explained
in Sec. 3, sensory AD is intended for specific use cases like industrial inspection, where samples deviating
from predefined normality (e.g., defective products) are considered anomalies (Yang et al., 2024; Ruff et al.,
2021). In other words, in sensory AD, the anomaly space is limited to damaged objects with shared semantics,
and anomalies like images of dogs are not expected. This limited anomaly space allows even simple prompts
to achieve decent performance. Therefore, as shown in Table 2, all AD methods utilize anomaly prompts.
Conversely, in OOD detection, as explained in Sec. 3.1, anything semantically different from the ID class is
considered OOD. Thus, utilizing naive manual OOD prompts is forbidden (even if it improves benchmark
performance). This vastness of the OOD space is the key factor differentiating the methodologies between
the two fields.

Difficulty of Localization Task VLM-based OOD detection and VLM-based AD differ significantly in
the difficulty of OOD (anomaly) localization tasks. In VLM-based AD, anomaly segmentation is a mainstream
task, performed alongside classification in many papers. However, in VLM-based OOD detection, there has
been no research on object-level OOD detection/segmentation. Object-level OOD detection aims to detect
OOD objects (Du et al., 2022¢;b;a). The inactivity is related to the size of the OOD space, and the too-vast
space of OOD makes it difficult to identify OOD objects with prompts effectively. To pave the way for future
development, the foundation models for localization such as SAM (Kirillov et al., 2023), which can segment
individual objects, have the potential to address object-level OOD detection/segmentation. Object-level OOD
detection/segmentation using SAM is a promising future research direction.
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5.4.2 Similarity between Each Methodology

Each Problem Setting The existing problem settings for VLM-based AD and VLM-based OOD detection
are similar. Both primarily focus on zero-shot and few-shot settings and can be categorized into training-free,
auxiliary training-based, and ID training-based methods. Examining each problem more closely provides
valuable insights into future directions for both fields.

History of Approaches The history of the progress of methods for VLM-based AD and VLM-based
OOD detection is similar. For instance, both problems initially started with naive methods with manual
OOD prompts (ZeroOE (Fort et al., 2021) for OOD detection, WinCLIP (Jeong et al., 2023) for AD). To
address the issues with these initial approaches, subsequent methods emerged that replaced OOD prompts
with learnable parameters (LSN (Nie et al., 2023) and NegPrompt (Li et al., 2024b) for OOD detection, and
AnomalyCLIP (Zhou et al., 2024a) for AD). Therefore, by carefully examining each other’s fields, there is
potential for mutual enhancement and interaction in the future

6 Benchmarks and Experiments

In this section, we compare several representative VLM-based OOD detection methods.

6.1 Benchmarks and Evaluation Metrics

In OOD detection, it is common to consider an entire dataset as ID and to use several other datasets that are
semantically disjoint from any ID classes as OOD datasets. However, as described in Sec.3.1, recent advances
in hard OOD detection focus on constructing benchmarks where both ID and OOD samples are derived from
the same large-scale dataset such as ImageNet. This setup is inspired by the benchmark design of OSR.

Following prior work (Zhang et al., 2024b; Ming et al., 2022a), we adopt the following terminology: among
OOD samples drawn from datasets different from the ID dataset, those that are semantically similar to the
ID classes are referred to as near OOD, while those that are semantically distant are referred to as far OOD.
When both ID and OOD samples are derived from the same dataset, as in OSR, we refer to this setting as
hard OOD.

In this section, we report results on the widely used ImageNet OOD benchmark (Huang & Li, 2021) and two
ImageNet-based hard OOD benchmark.

ImageNet Far OOD Benchmark In the ImageNet OOD benchmark, ImageNet is used as the ID dataset,
while datasets such as iNaturalist (Van Horn et al., 2018) serve as OOD datasets. Among these, the most
commonly used benchmark involves using the ImageNet validation set as the ID data and the following four
datasets as OOD data: iNaturalist (Van Horn et al., 2018), SUN (Xiao et al., 2010), Places (Zhou et al.,
2017), and TEXTURE (Cimpoi et al., 2014). iNaturalist contains approximately 859,000 images of plants
and animals across over 5,000 species. For OOD detection evaluation, 10,000 images are randomly sampled
from 110 classes that are disjoint from ImageNet-1K. SUN consists of over 130,000 scene images spanning
397 categories. For OOD evaluation, 10,000 images are randomly sampled from 50 categories that do not
overlap with ImageNet. Places is another scene-centric dataset with a similar concept space to SUN. For
OOD detection, 10,000 images are randomly sampled from 50 non-overlapping classes with ImageNet-1K.
TEXTURE comprises 5,640 real-world texture images from 47 categories. The entire dataset is used for OOD
evaluation. When training is required, the training set of ImageNet is used for model training.

ImageNet Near OOD Benchmark In previous studies, two datasets, SSB-Hard (Vaze et al., 2022a) and
NINCO (Bitterwolf et al., 2023), have been proposed as OOD datasets that are more semantically similar
to ImageNet. SSB-Hard contains 49,000 images from 980 categories, which are selected from ImageNet-
21K (Ridnik et al., 2021). NINCO is a dataset with 5,879 manually collected images (Bitterwolf et al., 2023),
which is constructed to be semantically close to ImageNet-1K, but without any overlapping classes.

ImageNet-20 OOD Benchmark The ImageNet-20 OOD Benchmark is one of the earliest benchmarks
proposed for hard OOD detection (Ming et al., 2022a). In this setting, ImageNet-20 is used as the ID dataset,
and ImageNet-10, which has no overlapping categories, is used as the OOD dataset. The direction can also
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Table 3: Comparison of OOD detection methods across ImageNet, ImageNet-20, and ImageNet-X. We use
AUROC for the evaluation of OOD detection.

Train O0OD

Method Type Prompts ImageNet ImageNet-20 ImageNet-X
Far-OOD Near-OOD ID Acc. | Hard-OOD 1D Acc. | Hard-OOD 1D Acc.

Zero-shot

MCM Free X 90.66 68.91 66.73 97.38 91.30 74.30 75.97

GL-MCM Free X 91.47 71.21 66.73 98.49 91.30 75.53 75.97

NegLabel Free v 94.15 73.33 66.73 97.47 91.30 72.15 75.97

EOE Free v 92.95 70.22 66.73 98.16 91.30 77.07 75.97

CLIPN-A Auxiliary v 94.11 80.94 66.73 97.16 91.30 77.08 75.97

Few-shot

CoOp 1D X 91.16 76.46 T1L.77 97.78 94.80 75.23 80.38

LoCoOp 1D X 93.02 69.11 71.61 99.04 94.67 75.17 80.42

ID-like-Prompt 1D v 92.46 67.18 68.43 92.90 89.80 66.01 77.18

be reversed. These subsets are selected with reference to CIFAR-10 (Krizhevsky et al., 2009a) classes, making
the semantic distance between ImageNet-20 and ImageNet-10 relatively small. ImageNet-20 contains 1,000
images, while ImageNet-10 contains 500 images.

ImageNet-X OOD Benchmark ImageNet-X is a recently proposed benchmark for hard OOD detec-
tion (Noda et al., 2025). It leverages the semantic hierarchy of ImageNet and creates ID and OOD splits
within the same superclass. Both ID and OOD sets consist of 500 classes each. The ID and OOD subsets of
ImageNet-X contain 25,000 images respectively.

6.2 Metrics

We use the ID accuracy and AUROC scores. AUROC scores measure the area under the Receiver Operating
Characteristic (ROC) curve.

6.3 Experimental Setup

We compare commonly used eight OOD detection methods in zero-shot and few-shot settings.

Zero-shot Methods For the zero-shot setting, we use five methods: MCM (Ming et al., 2022a), GL-
MCM (Miyai et al., 2025b), NegLabel (Jiang et al., 2024), EOE (Cao et al., 2024a), and CLIPN (Wang et al.,
2023a). As shown in Table 2, MCM and GL-MCM are categorized as methods without training and without
OOD prompts. NegLabel and EOE are categorized as methods without training but with OOD prompts.
CLIPN is categorized as a method with training and with OOD prompts.

Few-shot Methods For the few-shot settings, we use CoOp (Zhou et al., 2022c; Ming & Li, 2024a),
LoCoOp (Miyai et al., 2023b), and ID-like-Prompt (IDPrompt) (Bai et al., 2024a). CoOp and LoCoOp use
MCM as the detection method during inference. For CoOp and LoCoOp, we follow the hyperparameter
settings from previous studies and train with 16 shots. On the other hand, since IDPrompt requires higher
training costs, we follow the original implementation (Bai et al., 2024a) and conduct training with only 1
shot.

6.4 Experimental Results

The experimental results are summarized in Table 3. Below, we highlight several key findings.
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Figure 6: Overview of the evolution of each problem in the Large Vision Language Model (LVLM) era. (i)
Sensory AD has consistently been an active research field in the LVLM era (Cao et al., 2023b). (ii) Notably,
OOD detection is evolving into a new task called Unsolvable Problem Detection (Miyai et al., 2025a) in the
LVLM era. Figure adapted partially from (Cao et al., 2023b) and from (Miyai et al., 2025a).

Performance Rankings Vary Across Datasets From Table 3, we observe that the ranking of methods
differs significantly depending on the dataset. For example, LoCoOp outperforms CoOp on the standard
ImageNet far OOD benchmark, but underperforms on the near OOD benchmarks. This suggests that
LoCoOp’s OOD regularization strategy, which uses background OOD images during training, is especially
effective for detecting semantically distant classes such as in far OOD settings, but not effective for near
OOD settings. These results indicate the importance of evaluating OOD detection methods across multiple
benchmarks, rather than relying on a single one.

ImageNet-20 May Already Be Saturated On ImageNet-20, most methods achieve over 97% accuracy,
making it difficult to distinguish performance differences among methods. Therefore, future research on OOD
detection is likely to shift toward benchmarks with more diverse and larger numbers of classes.

Room for Improvement Remains in Near and Hard-OOD Detection The results on ImageNet
near OOD and ImageNet-X show that the methods with the highest score reach only around 80% accuracy.
This indicates significant room for further improvement. We believe that future research in OOD detection
will increasingly focus on these challenging benchmarks.

7 Evolution in LVLM Era

In this section, we introduce the early advances in OOD detection and AD in the Large Vision Language
Models (LVLM) era. While previous sections focused on VLMs such as CLIP, this section shifts our focus
to the more emerging topic of “Large” VLMs. Recent advancements in computer vision have led to the
emergence of LVLMs such as GPT-4V (OpenAl et al., 2023) and LLaVA (Liu et al., 2024b). Although these
fields are still in their early stages with limited papers, this survey provides a deep introduction to each
problem in the hope that our detailed review can help foster further advancements in this area.

7.1 Change of Each Problem

i. Sensory AD — Sensory AD Sensory AD has continued to develop in the LVLM era (Gu et al.,
2024b; Cao et al., 2023b; Li et al., 2023b). The use of LVLMs has made AD applicable in many domains and
modalities (Cao et al., 2023b).

ii. OOD Detection — Unsolvable Problem Detection In the LVLM era, OOD detection has evolved
into a new task termed Unsolvable Problem Detection (UPD) (Miyai et al., 2025a). UPD evaluates the
LVLMs’ ability to recognize and abstain from answering unexpected or unsolvable input questions, effectively
expanding the scope of OOD detection into the context of Visual Question Answering (VQA) tasks. This
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shift to the VQA task has significantly broadened the concept of OOD detection to a wider range of Al tasks
involving LVLMs.

7.2 Unsolvable Problem Detection
7.2.1 Summary of Problem

Background Following the recent revolutionary development of LLMs (Chiang et al., 2023; Touvron
et al., 2023; Wei et al., 2023; Zhao et al., 2023), LVLMs (Awadalla et al., 2023; Dai et al., 2023; Liu et al.,
2024b; Wang et al., 2023b; Ye et al., 2023; Li et al., 2023a; Lin et al., 2024) have demonstrated remarkable
capabilities in diverse applications (Liu et al., 2024a;f; Yue et al., 2024). However, a significant concern has
arisen regarding the reliability of these models, specifically their ability to generate accurate and trustworthy
information. These models frequently produce incorrect or misleading information, a phenomenon referred
to as “hallucination” (Bai et al., 2024b). Among the various hallucination issues (Bai et al., 2024b), the
challenge of identifying out-of-place questions is crucial for deploying LVLMs in safety-critical applications.
This challenge extends the concept of OOD detection to the VQA tasks for LVLMs and represents a specific
aspect of LVLMs’ trustworthiness.

Definition  Unsolvable Problem Detection (UPD) is a task to measure the trustworthiness of LVLMs,
which is designed to evaluate models’ capacity to withhold answers when faced with unsolvable problems.
The UPD task can be categorized into three distinct problem types: Absent Answer Detection (AAD),
Incompatible Answer Set Detection (IASD), and Incompatible Visual Question Detection (IVQD). Examples
in each setting are shown in the right of Fig. 6. AAD evaluates the model’s capacity to determine when
the correct answer is absent from the provided options. TASD assesses the model’s ability to discern answer
choices that are completely irrelevant to the given question and image. IVQD evaluates the model’s capacity
to discern whether a question and image are unrelated or mismatched.

Benchmark Miyai et al. (2025a) created MM-UPD Bench for the UPD challenge. MM-UPD encompasses
MM-AAD, MM-TASD, and MM-IVQD benchmarks for each UPD problem. Each benchmarks are created on
the top of MMBench (dev) (Liu et al., 2024f), which is a systematically designed objective benchmark for
evaluating various abilities of LVLMs. Following the definition of each ability in MMBench (e.g., “Coarse
Perception: Image Scene” and “Logic Reasoning: Future Prediction”), MM-UPD evaluates the trustworthiness
of LVLMs from various abilities.

Although MM-UPD is the main benchmark, the adaptation cost of creating UPD problems is not high,
making it highly applicable to other benchmarks. For instance, the recently proposed MuirBench (Wang
et al., 2025), a benchmark for multi-image understanding, has incorporated the concept of UPD by adding
unsolvable problems.

Application UPD has a wide range of applications, from everyday use of LVLMs to robot manipulation.
Especially when incorporating LVLMs into safety-critical domains such as robot manipulation (Liu et al.,
2024d) and autonomous driving (Li et al., 2024d), there is a risk of significant problems if the LVLM fails to
identify erroneous user questions and makes incorrect predictions. UPD serves as a task to ensure safety in
such safety-critical scenarios.

Evaluation UPD employs three evaluation metrics: Standard Accuracy, which measures performance
on solvable problems; UPD Accuracy, which assesses accuracy on unsolvable problems; and Dual Accuracy,
which considers both aspects. Dual Accuracy considers a response correct only if the model successfully
answers both the solvable and unsolvable problems within each paired set. The rationale is that ideal LVLMs
should not only give correct answers for the solvable problems but need to withhold answering for unsolvable
problems.

7.2.2 Findings

In the following, we briefly summarized the findings of the UPD challenge (Miyai et al., 2025a).
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1. Most LVLMs Hardly Hesitate to Answer. Most LVLMs, especially open-source LVLMs, have
significantly low UPD accuracies, which indicates the difficulty of the UPD challenge. For example, LLaVA-
1.5 (Liu et al., 2024b) and CogVLM (Wang et al., 2023b), which are state-of-the-art LVLMs, completely fail
to withhold answering. GPT-4V achieves higher performances than other LVLMs due to its safety training
process (OpenAl, 2023). However, there is still a performance gap from the upper bound scores.

2. Performance Tendency Differs a lot by Each Ability in the Benchmark. The performance of
LVLMs differs in each ability in the MM-UPD Bench. For instance, GPT-4V has its limitation in attribute
comparison and LLaVA-NeXT-34B has its limitation in object localization.

3. Effective Prompt Strategies Vary Across Different LVLMs Effective prompt strategies vary
across different LVLMs. In the original paper, they experimented with an option-based prompt approach
that adds an option of “None of the above” and an instruction-based approach that adds an instruction “If
all options are incorrect, answer None of the above”. As a result, the effectiveness of each approach differs
significantly depending on the type of LVLMs. This highlights the difficulty of finding an effective prompt
strategy for all LVLMs.

7.3 Anomaly Detection in LVLM Era

7.3.1 Summary of Problem

Background Anomaly detection is a crucial task in a variety of domains and data types. However, existing
anomaly detection models are often designed for specific domains or modalities (Cao et al., 2023b). Also,
current AD methods only provide an anomaly score for the test sample and require a manual threshold
to distinguish between normal and anomalous instances for each sample (Gu et al., 2024b). To facilitate
real-world applications, developing a system capable of expressing anomalies in natural language across
various modalities and domains is crucial for ensuring accessibility to a wider range of users.

Definition  The definition of AD remains consistent with conventional and VLM-based AD, aiming to
identify samples that deviate from predefined normality. The key difference lies in the output format.
Traditional methods generate an anomaly score as a numerical value, requiring a manual threshold to
determine whether a sample is anomalous. In contrast, AD with LVLMs aims to recognize and describe
anomalies using text, removing the need for manual thresholds and improving human interpretability.

Benchmark Since the field of AD with LVLMs is in its infant stage, there are still no unified benchmarks.
AnomalyGPT (Gu et al., 2024b) focuses on industrial image anomaly detection/localization and uses the
standard benchmarks MVTec-AD (Bergmann et al., 2019) and VisA (Zou et al., 2022). More recently, Cao
et al. (2023b) extend the domain and modality and demonstrate the applications in industrial image anomaly
detection/localization (e.g., MVTec-AD (Bergmann et al., 2019)), point cloud anomaly detection (MVTec
3D (Bergmann et al., 2022b)), medical image anomaly detection/localization (e.g., Chest X-ray (Kermany
et al., 2018), Head CT (Felipe, 2018)), logical anomaly detection (e.g., MVTec LOCO (Bergmann et al.,
2022a)), pedestrian anomaly detection (e.g., UCF-Crime Dataset (Sultani et al., 2018)), traffic anomaly
detection (e.g., Kaggle Accident Detection (Kay, 2018)), and time series anomaly detection (e.g., Outlier
Detection Dataset (User, 2021)).

Evaluation Evaluation in anomaly detection with LVLMs is an open challenge. AnomalyGPT (Gu et al.,
2024b) asks LVLMs the question “Is there an anomaly in this image?” and determines anomaly or normal
based on the simple rule-based approach of whether the response contains a “yes” or “no”. However, this
rule-based approach is not robust, as a response is considered correct even if the explanation following “yes”
is completely incorrect. On the other hand, Cao et al. (2023b) conducted only qualitative evaluations and
left quantitative evaluations as an open challenge. Therefore, the evaluation of anomaly detection by LVLM
is a future challenge.

7.3.2 Findings

Cao et al. (2023b) described the observations of GPT-4V in the paper, so we briefly summarized them here.
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1. GPT-4V Excels in Zero/One-shot Settings across Various Modalities and Fields. GPT-4V
shows proficiency in identifying anomalies in multi-modality (e.g., images, point clouds, X-rays) and multi-
field (e.g., industrial, medical, pedestrian, traffic, and time series anomaly detection). In addition, GPT-4V
demonstrates strong performance in both zero-shot and one-shot settings.

2. GPT-4V can Understand Both Global and Fine-grained Anomalies. @ GPT-4V can recognize
both global and local abnormal patterns or behaviors, which indicates the ability to understand global and
fine-grained semantics.

3. GPT-4V can be Enhanced with Increasing Prompts. By giving more context and information,
the model significantly improves its ability to detect anomalies accurately.

8 Future Directions

In this section, we discuss the future directions of OOD detection. We explore not only OOD detection for
VLMs but also single-modal OOD detection, with a specific focus on emerging challenges as VLMs evolve.
For a discussion of the long-standing challenges in OOD detection, we can refer the readers to the previous
generalized OOD detection paper (Yang et al., 2024).

8.1 0OOD Detection for Vision Language Models

a. Hard OOD Detection Hard OOD detection will become increasingly important in the future due
to its high practicality and the challenging nature of the problem. Hard OOD detection utilizes the OSR
benchmark setup, where some classes within a single dataset are designated as ID and others as OOD. In this
field, not only small datasets such as ImageNet-10 and ImageNet-20 (Ming et al., 2022a) but also datasets
with a larger number of classes such as ImageNet-protocol (Palechor et al., 2023) and ImageNet-X (Noda
et al., 2025) have been recently proposed. Many existing studies, such as LoCoOp (Miyai et al., 2023b) and
LSN (Nie et al., 2023), primarily use the common ImageNet OOD benchmark, so hard OOD detection has
not yet been well studied. This field will develop further in the future.

b. Post-hoc Methods To propose post-hoc methods is important for the fundamental performance
improvement of VLM-based OOD detection. The methods of directly employing an ID classifier such as
MCM (Ming et al., 2022a) are called post-hoc methods. Prior to CLIP, various approaches were proposed
(Hendrycks & Gimpel, 2017; Liang et al., 2018; Lee et al., 2018; Liu et al., 2020; Sastry & Oore, 2020; Sun & Li,
2022; Sun et al., 2022; Sastry & Oore, 2019). Nevertheless, VLM-based post-hoc methods often underperform
methods with additional OOD prompts, so they are not extensively researched in zero-shot OOD detection.
However, we should focus on the scalability of post-hoc methods. The post-hoc methods (Ming et al., 2022a;
Miyai et al., 2025b) can be easily applied to many subsequent methods (Miyai et al., 2023b; Ming et al., 2022b;
Nie et al., 2023; Li et al., 2024b), bringing fundamental performance improvements even for the few-shot
setting. Furthermore, recently, post-hoc methods specifically tailored for prompt learning methods have also
emerged (Jung et al., 2024). Therefore, proposing post-hoc methods and demonstrating the improvements
not only in zero-shot but also in subsequent few-shot settings (Miyai et al., 2023b; Ming et al., 2022b) is
crucial. This field should continue evolving, mirroring its growth before the advent of CLIP.

c. Bridging the Gap with Closed-set Classifiers. OOD detection ensures the safety of ID classifiers, so
it is crucial to bridge the gap between the advancements in existing closed-set classifiers and OOD detection.
Currently, the representative method for few-shot OOD detection is LoCoOp (Miyai et al., 2023b), a text
prompt learning method based on CoOp. However, in closed-set settings, VLM-based few-shot learning
methods have been proposed other than CoOp (Chen et al., 2023a; Bulat & Tzimiropoulos, 2023; Lu et al.,
2022). Therefore, adopting recent methods for OOD detection is essential for bridging the gap with closed-set
ID classifiers.

d. Training-free Few-shot OOD Detection The research direction of training-free few-shot OOD
detection is still in its infant stage (Chen et al., 2024b; Zhang et al., 2024f). Considering the advancements of
training-free methods in VLM-based AD, we anticipate a similar trajectory for VLM-based OOD detection.
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Future directions include refining adapter-based methods or leveraging external knowledge such as retrieval
augmentation (Udandarao et al., 2023; Ming & Li, 2024b). Addressing training-free few-shot OOD detection
is a pivotal step towards realizing more computationally efficient OOD detection in the future.

e. Full-spectrum OOD Detection VLM-based full-spectrum OOD (FS-OOD) detection is a promising
research area (Lu et al., 2023; Yang et al., 2023). In practical applications, there is a strong motivation to
create models that can not only detect semantically shifted OOD inputs but also generalize to covariate-shifted
data (Yang et al., 2023; Bai et al., 2023). Within VLM-based methods, OOD detection and generalization
are often discussed in separate contexts (Miyai et al., 2023b; Khattak et al., 2023), resulting in a trade-off
between detection and generalization performance (Lafon et al., 2024). Therefore, we need to discuss both
aspects together to mitigate the trade-off.

f. Open-vocabulary OOD Detection Open-vocabulary OOD (OV-OOD) detection has a high practical
potential, but it is still in its infant stages (Li et al., 2024b). The open-vocabulary setting has been actively
explored in AD ( 5.1) and has the potential to become increasingly important in the field of OOD detection
as well.

g. Object-level OOD Detection Object-level OOD detection remains an unexplored area in VLM-based
OOD detection. As discussed in Sec. 5.4, this is due to the vastness of the OOD space, which makes it
difficult to identify OOD objects using texts. To pave the way for future advancements in object-level
OOD detection/segmentation, foundation models for localization, such as SAM (Kirillov et al., 2023), offer
a promising solution. By integrating these models with methods such as MCM (Ming et al., 2022a), we
can potentially achieve object-level OOD detection and segmentation, opening up a new frontier in OOD
detection research.

8.2 Single-modal OOD Detection

a. Leveraging Large Pre-trained Models Leveraging large pre-trained models is important for single-
modal OOD detection. Numerous methods for OOD detection conduct experiments using backbones trained
from scratch and do not utilize pre-trained models (Yang et al., 2024; Zhang et al., 2024b; Hendrycks &
Gimpel, 2017; Leys et al., 2018; Liu et al., 2020; Wang et al., 2022a; Sun & Li, 2022; Sun et al., 2022). In a
recent study, Miyai et al. (2023a) systematically investigated the impact of pre-training on OOD detection
from both the perspectives of the types of OOD data and pre-training algorithms (Chen et al., 2020; Caron
et al., 2021). Dong et al. (2023) explored parameter-efficient learning for single-modal OOD detection and
proposed DSGF, which leverages both fine-tuned features and original pre-trained features. While leveraging
large pre-trained models (Dosovitskiy et al., 2021) with lightweight tuning is an active area of research in
single-modal closed-set classification (Hu et al., 2022; Zhang et al., 2024e¢), there have been limited studies for
single-modal OOD detection, which presents a promising avenue for future research.

b. Real-world Benchmarks and Evaluations Considering the future development of VLM-based OOD
detection, there should be increasing focus on expanding the scope of benchmarks to encompass real-world
scenarios where CLIP is less applicable. For instance, recently, Baek et al. (2024) introduced ImageNet-ES,
consisting of variations in environmental and camera sensor factors. Besides, utilizing datasets such as
WILDS (Koh et al., 2021; Cultrera et al., 2023), which consider real-world data shifts, or datasets for medical
OOD detection (Hong et al., 2024), can provide valuable insights, especially in safety-critical applications
such as autonomous driving and medical image analysis.

9 Conclusion

In this survey, we comprehensively review the evolution of the five problems including AD, ND, OSR, OOD
detection, and OD in the VLM era, and propose a framework of generalized OOD detection v2. Our framework
identifies OOD detection and AD as the primary challenges in the VLM era. By articulating the shifts in the
definitions, problem settings, benchmarks and methodologies, we encourage subsequent works to accurately
understand their evolving target problems in the VLM era. By shedding light on recent studies in the
LVLM era, we hope that researchers within each community can identify promising research directions in this
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emerging era. By providing future directions, we hope that our survey will clarify the tasks to be tackled by
future works in the VLM era, facilitating future advances in the right direction.
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