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Abstract

We present variational classification (VC), a latent variable generalisation of neural
network softmax classification under cross-entropy loss. Our approach provides
a novel probabilistic interpretation of the highly familiar softmax classification
model, to which it relates comparably to variational vs deterministic autoencoders.
We derive a training objective based on the evidence lower bound (ELBO) that is
non-trivial to optimize, and an adversarial approach to maximise it. We reveal an
inherent inconsistency within softmax classification that VC addresses, while also
allowing flexible choices of distributions in the latent space in place of assumptions
implicit in standard softmax classifiers. Empirical evaluation demonstrates that VC
maintains accuracy while improving properties such as calibration and adversarial
robustness, particularly under distribution shift and low data settings. By explicitly
considering representations learned by supervised methods, we offer the prospect
of the principled merging of supervised learning with other representation learning
methods, e.g. contrastive learning, using a common encoder architecture.

1 Introduction

Classification is a core task in machine learning, from categorising objects (Klasson et al., 2019) and
providing medical diagnoses (Adem et al., 2019; Mirbabaie et al., 2021), to identifying potentially
life-supporting planets (Tiensuu et al., 2019). Classification tasks are commonly tackled by training
domain-specific neural networks with a sigmoid or softmax output layer.1 Data samples x (in a
domain X ) are mapped deterministically by a network fω (with weights ω) to a real vector z=fω(x),
which is transformed in the softmax layer to a point on the simplex ∆|Y|, that parameterises pθ(y|x),
a discrete distribution over class labels y∈Y:

pθ(y|x) =
exp{z⊤wy + by}∑

y′∈Y exp{z⊤wy′ + by′}
. (1)

Although softmax classifiers often perform well, they suffer well-known issues: (i) they are are poorly
understood theoretically and in many respects a “black box” with predictions pθ(y|x) hard to explain;
(ii) predictions can vary significantly for imperceptible changes in the data (adversarial examples);
(iii) predictions may identify a true label as the most probable class but poorly reflect uncertainty in
the prediction (miscalibration); and (iv) they typically require a lot of data to train.

We introduce Variational Classification (VC), which generalises softmax cross-entropy classification
under a latent variable model (figure 2). The VC framework ascribes probabilistic roles to components
of a softmax classifier: (i) the neural network (excluding the softmax layer) transforms a mixture
of unknown distributions in the data space to a mixture of chosen distributions in the latent space;
and (ii) the softmax layer converts the latter to class predictions by Bayes’ rule. We show that,
without tailoring the loss function to mitigate any particular issue with softmax classification, VC

1We refer throughout to the softmax function since it generalises sigmoid to multiple classes.
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Figure 1: Empirical latent distributions: softmax inputs under (l) Softmax CE [“MLE”]; (c) MLE +
Gaussian pθ(z|y) (contours); [“MAP”]; (r) VC objective [“Bayesian”]. Colour denotes MNIST class.

maintains predictive accuracy while the additional latent structure improves calibration, robustness to
adversarial perturbations and domain shift, and performance in low data regimes.

2 Background (Variational Auto-Encoder)

Estimatiing parameters of a latent variable model pθ(x) =
∫
z
pθ(x|z)pθ(z) is typically intractable,

and instead one maximises the evidence lower bound (ELBO):∫
x

p(x) log pθ(x) ≥
∫
x

p(x)

∫
z

qϕ(z|x)
{
log pθ(x|z)− log

qϕ(z|x)
pθ(z)

}
, (2)

The variational auto-encoder (VAE, Kingma & Welling, 2014; Rezende et al., 2014) is an imple-
mentation of the ELBO in which all distributions are assumed Gaussian, with pθ(x|z), qϕ(z|x)
parameterised by neural networks. The VAE probabilistically generalises a deterministic auto-
encoder, allowing for uncertainty or stochasticity in the latent z|x, whose entropy is promoted and is
constrained to a prior by the second (“regularisation”) term.
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Figure 2: VC: qϕ(z|x) stochastically maps data x∈X
to the latent space Z , where empirical qϕ(z|y) are
fitted to anticipated pθ(z|y); the output layer computes
pθ(y|z) by Bayes’ rule for class prediction p(y|x).

A Latent Variable Model for Classifica-
tion: Data x∈X and labels y∈Y are treated
as samples of random variables x, y jointly
distributed by p(x, y). A softmax classifier is
a deterministic function mapping x, via a se-
quence of intermediate representations, to a
point on the simplex ∆|Y| that parameterises
a categorical label distribution pθ(y|x).
Any intermediate representation z = g(x)
can be considered the realisation of a latent
random variable sampled from a conditional
(delta) distribution: z ∼ p(z|x) = δz−g(x).
Under a (Markov) generative latent variable
model (figure 2, left):

p(x) =

∫
y,z

p(x|z)p(z|y)p(y) , (3)

class labels can be predicted:

pθ(y|x) =
∫
z

pθ(y|z)pθ(z|x) . (4)

A softmax classifier is a special case of Eqn. 4 where: (i) fω , the neural network up to the softmax
layer, parameterises pθ(z|x)=δz−fω(x), a delta distribution; (ii) the softmax layer input is considered
a sample from pθ(z|x); and (iii) pθ(y|z) is defined by the softmax layer (see RHS of Equation 1).
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Training a Classification LVM: Similarly to the latent model for pθ(x) (§2), parameters of eqn 4
cannot generally be learned by directly maximising the likelihood, but rather a lower bound (cf eqn 2):∫

x,y

p(x, y) log pθ(y|x) =

∫
x,y

p(x, y)

∫
z

qϕ(z|x)
{
log pθ(y|z, x)− log

qϕ(z|x)
pθ(z|x) + log

qϕ(z|x)
pθ(z|x,y)

}
≥

∫
x,y

p(x, y)

∫
z

qϕ(z|x) log pθ(z|y)pθ(y)∑
y′ pθ(z|y′)pθ(y′)

.
= ELBOVC (5)

Here, pθ(y|z, x) = pθ(y|z) (figure 2), and the (freely chosen) variational posterior qϕ is assumed
to depend only on x and to equal pθ(z|x) (eliminating the second term).2 Maximising ELBOVC
implicitly encourages z to learn a sufficient statistic for y|x, i.e. qϕ(z|x)→ p(z|x, y). It can also
be shown that ELBOVC generalises Softmax Cross Entropy (SCE), under above assumptions.

Two versions of the same class-conditional latent listributions:
• Anticipated class-conditional latent distributions pθ(z|y) are specified in ELBOVC, encoded in

the softmax layer, and need to be met for correct label predictions p(y|x) to be output;
• Empirical class-conditional latent distributions are defined by qϕ(z|y)

.
=
∫
x
qϕ(z|x)p(x|y), i.e. by

sampling qϕ(z|x) (parameterised by the neural network fω), given class samples x ∼ p(x|y).
In several scenarios that arise in practice, e.g. for finite samples from a continuous data domain X
(e.g. images or sounds), or if classes are mutually exclusive, ELBOVC is maximised if all latent
representations of a class, hence the entire class-conditional distribution qϕ(z|y), “collapse” to
a point, irrespective of any variance in pθ(z|y). Since SCE is a special case of ELBOVC, this suggests
that softmax classifiers may learn over-concentrated latent distributions and so give over-confident
and uncalibrated predictions (subject to the data distribution and model flexibility).

Aligning anticipated and empirical latent distributions: We align pθ(z|y) and qϕ(z|y), or encour-
age pθ(y|z) and qϕ(z|y) to be consistent under Bayes’ rule (cf pθ(x|z) and qϕ(z|x) in the ELBO, §2)
by minimising DKL[ qϕ(z|y)∥ pθ(z|y)], ∀y∈Y , (weighted by β>0) giving the full VC objective:

LVC =

∫
x,y

p(x, y)
{∫

z

qϕ(z|x) log pθ(z|y)pπ(y)∑
y′ pθ(z|y′)pπ(y′) − β

∫
z

qϕ(z|y) log qϕ(z|y)
pθ(z|y) + log pπ(y)

}
. (6)

Taken incrementally, qϕ–terms of LVC can be interpreted w.r.t. latent variable z as follows (see Fig. 1):
(i) maximising

∫
z
qϕ(z|x) log pθ(y|z) may overfit qϕ(z|y) to δz−zy for finite samples; [MLE]

(ii) adding class priors
∫
z
qϕ(z|y) log pθ(z|y) constrains the MLE point estimates zy [MAP]

(iii) adding entropy −
∫
z
qϕ(z|y) log qϕ(z|y) encourages qϕ(z|y) to “fill out” pθ(z|y). [Bayesian]

VC abstracts a typical neural network classifier, giving interpretability to its components:
• the neural network up to the last layer (fω) transforms a mixture of unknown class-conditional

data distributions p(x|y) to a mixture of analytically defined latent distributions pθ(z|y);
• assuming latent variables follow the anticipated class distributions pθ(z|y), the output layer applies

Bayes’ rule to give pθ(y|z) (see figure 2) and thus the class prediction p(y|x) (by eqn 4).

3.1 Optimising the VC Objective

The second term of LVC is not readily computable since qϕ(z|y) is implicit and cannot be evaluated
only sampled from, as z∼qϕ(z|x) (parameterised by fω) for class samples x∼p(x|y). We therefore
approximate log ratios log

qϕ(z|y)
pθ(z|y) for each class y by training a binary classifier to distinguish

z∼qϕ(z|y) from z∼pθ(z|y) under an auxiliary objective Laux with parameters ψ:

Laux =

∫
y

p(y)
{∫

z

qϕ(z|y) log σ(T yψ(z)) +
∫
z

pθ(z|y) log(1−σ(T yψ(z))
}

(7)

where σ(x)=(1 + e−x)−1 is the logistic sigmoid, T yψ(z)=w
⊤
y z + by and ψ={wy, by}y∈Y . This

approach is adversarial: LVC is maximised when log ratios give a minimal KL divergence (0),
i.e. qϕ(z|y) = pθ(z|y) and z ∼ qϕ(z|y) are indistinguishable from z ∼ pθ(z|y); whereas Laux is
maximised if the ratio is maximal and the distributions are optimally discriminated. See Algorithm 1
for a summary.

2We use notation “qϕ” by analogy to the VAE and later to distinguish qϕ(z|y), derived from qϕ(z|x), from
pθ(z|y).
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4 Empirical Validation

We evaluate VC on tasks in the visual and text domains, to validate whether VC improves: (H1)
uncertainty estimation and calibration; (H2) robustness to distribution shift; (H3) robustness to
adversarial perturbations; and (H4) sample efficiency. We train under LVC with qϕ(z|x) = δz−fω(x)

where fω is a neural network; and pθ(z|y) are multi-variate Gaussians with learned mean and diagonal
covariance. We compare classifiers trained under three objectives: standard softmax CE (MLE form,
§3, (i)); GM, which adds class priors (MAP form, §3, (ii)) (cf Wan et al., 2018); and VC, which
adds entropy H(qϕ(z|y)) (Bayesian form, §3, (iii)). Further results are in Appendix E.

Accuracy and Calibration: We compare classification accuracy and calibration (Expected Cali-
bration Error, ECE, see Appendix D) across CIFAR-10, CIFAR-100, and TINY-IMAGENET on
two ResNet architectures (WideResNet-28-10 (WRN) and ResNet-50 (RNET)) (He et al., 2016;
Zagoruyko & Komodakis, 2016).

CIFAR-10 CIFAR-100 TINY-IMAGENET
CE GM⋄ VC VMF⋆ CE GM ⋄ VC VMF⋆ CE GM⋄ VC

Acc. (%, ↑)
WRN 96.2 ± 0.1 95.0 ± 0.2 96.3 ± 0.2 - 80.3 ± 0.1 79.8 ± 0.2 80.3 ± 0.1 - - - -
RNET 93.7 ± 0.1 93.0 ± 0.1 93.2 ± 0.1 94.0 ± 0.1 73.2 ± 0.1 74.2 ± 0.1 73.4 ± 0.1 69.94 ± 0.2 59.7 ± 0.2 59.3 ± 0.1 59.3 ± 0.1

ECE (%, ↓)
WRN 3.1 ± 0.2 3.5 ± 0.3 2.1 ± 0.2 - 11.1 ± 0.7 19.6 ± 0.4 4.8 ± 0.3 - - - -
RNET 3.8 ± 0.3 4.1 ± 0.2 3.2 ± 0.2 5.9 ± 0.2 8.7 ± 0.2 10.5 ± 0.2 5.1 ± 0.2 7.9 ± 0.3 12.3 ± 0.4 8.75 ± 0.2 7.4 ± 0.5

Table 1: Classification Accuracy holds across models / data sets; Expected Calibration Error notably
improves for VC (mean, std., 5 runs). ⋆ from (Scott et al., 2021), ⋄ re-implements (Wan et al., 2018)

Generalization under distribution shift: Models may encounter distribution shift relative to the
training data and it may be important to know if a model’s output is reliable, requiring out-of-
distribution (OOD) calibration. We test on robustness benchmarks, CIFAR-10-C, CIFAR-100-
C and TINY-IMAGENET-C (Hendrycks & Dietterich, 2019), which simulate distribution shift by
synthetic corruptions of varying intensity.
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Figure 3: Calibration under distribution shift: boxes = quartiles, whiskers = min/max over 16 shift
types. (left) CIFAR-10-C, (middle) CIFAR-100-C, (right) TINY-IMAGENET-C. Lower is better.

5 Conclusion

We present Variational Classification (VC), a latent variable model that generalises softmax cross-
entropy classification, mirroring the relationship between the variational auto-encoder and the de-
terministic auto-encoder (§3). We show that softmax classification is a special case of VC under
specific assumptions that are effectively “baked in” to a typical softmax layer. The latent VC model
allows probabilistic interpretation of the roles played by the softmax layer and the layers beneath, and
exposes an inconsistency that can arise between the latent distribution expected by the softmax layer
and that delivered by the layers beneath. These distributions are not necessarily aligned in softmax
classification, which is addressed by the VC objective. Experiments on image and text datasets show
that, with marginal computational overhead and without increased hyper-parameters tuning, VC
maintains prediction accuracy while significantly improving performance in terms of calibration,
robustness to distribution shift and adversarial examples, and in low data regimes (Appendix E).

The VC framework provides novel theoretical insight into the highly familiar softmax classifier. We
do, however, focus specifically on the last layer of a classifier, treating layers beneath as a “black-box”.
This leaves open questions as to how, and how well, the underlying network is able to perform its
role in transforming a mixture of unknown (data) distributions to a mixture of specified (latent)
distributions, or how that might be improved.
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A Proofs

A.1 Optimising the ELBOVC w.r.t q

Rearranging Equation 5, the ELBOVC is optimised by

argmax
qϕ(z|x)

∫
x

∑
y

p(x, y)

∫
z

qϕ(z|x) log pθ(y|z)

= argmax
qϕ(z|x)

∫
x

p(x)

∫
z

qϕ(z|x)
∑
y

p(y|x) log pθ(y|z)

The integral over z is a qϕ(z|x)-weighted sum of
∑
y p(y|x) log pθ(y|z) terms. Since qϕ(z|x)

is a probability distribution, the integral is upper bounded by maxz
∑
y p(y|x) log pθ(y|z). This

maximum is attained iff support of qϕ(z|x) is restricted to z∗ = argmaxz
∑
y p(y|x) log pθ(y|z)

(which may not be unique). □

A.2 Optimising the VC objective w.r.t. q

Setting β = 1 in Equation 6 to simplify and adding a lagrangian term to constrain qϕ(z|x) to a
probability distribution, we aim to find

argmax
qϕ(z|x)

∫
x

∑
y

p(x, y)
{∫

z

qϕ(z|x) log pθ(y|z)

−
∫
z

qϕ(z|y) log
qϕ(z|y)
pθ(z|y)

+ log pπ(y)
}
+ λ(1−

∫
z

qϕ(z|x)) .

Recalling that qϕ(z|y) =
∫
x
qϕ(z|x)p(x|y) and using calculus of variations, we set the derivative of

this functional w.r.t. qϕ(z|x) to zero∑
y

p(x, y)
{
log pθ(y|z)− (log

qϕ(z|y)
pθ(z|y)

+ 1)
}
− λ = 0

Rearranging and diving through by p(x) gives

Ep(y|x)[log qϕ(z|y)] = Ep(y|x)[log pθ(y|z)pθ(z|y)] + c ,

where c = −(1+ λ
p(x) ). Further, if each label y occurs once with each x, due to sampling or otherwise,

then this simplifies to

qϕ(z|y∗)ec = pθ(y
∗|z)pθ(z|y∗) ,

which holds for all classes y∈Y . Integrating over z shows ec =
∫
z
pθ(y|z)pθ(z|y) to give

qϕ(z|y) = pθ(y|z)pθ(z|y)∫
z pθ(y|z)pθ(z|y)

= pθ(z|y) pθ(y|z)
Epθ(z|y)[pθ(y|z)]

. □

We note, it is straightforward to include β to show

qϕ(z|y) = pθ(z|y) pθ(y|z)1/β
Epθ(z|y)[pθ(y|z)1/β ]

.
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B Justifying the Latent Prior in Variational Classification

Choosing Gaussian class priors in Variational classification can be interpreted in two ways:

Well-specified generative model: Assume data x ∈X is generated from the hierarchical model:
y→ z→ x, where p(y) is categorical; p(z|y) are analytically known distributions, e.g. N (z;µy,Σy);
the dimensionality of z is not large; and x=h(z) for an arbitrary invertible function h : Z → X (if
X is of higher dimension than Z , assume h maps one-to-one to a manifold in X ). Accordingly, p(x)
is a mixture of unknown distributions. If {pθ(z|y)}θ includes the true distribution p(z|y), variational
classification effectively aims to invert h and learn the parameters of the true generative model. In
practice, the model parameters and h−1 may only be identifiable up to some equivalence, but by
reflecting the true latent variables, the learned latent variables should be semantically meaningful.

Miss-specified model: Assume data is generated as above, but with z having a large, potentially
uncountable, dimension with complex dependencies, e.g. details of every blade of grass or strand of
hair in an image. In general, it is impossible to learn all such latent variables with a lower dimensional
model. The latent variables of a VC might learn a complex function of multiple true latent variables.

The first scenario is ideal since the model might learn disentangled, semantically meaningful features
of the data. However, it requires distributions to be well-specified and a low number of true latent
variables. For natural data with many latent variables, the second case seems more plausible but
choosing pθ(z|y) to be Gaussian may nevertheless be justifiable by the Central Limit Theorem.

C Variational Classification Algorithm

Algorithm 1 Variational Classification (VC)

1: Input pθ(z|y), qϕ(z|x), pπ(y), Tψ(z); learning rate schedule {ηtθ, ηtϕ, ηtπ, ηtψ}t
2: Initialise θ, ϕ, π, ψ; t← 0
3: while not converged do
4: {xi, yi}mi=1 ∼ D [sample batch from data distribution p(x, y)]
5: for z = {1 ... m} do
6: zi ∼ qϕ(z|xi), z′i ∼ pθ(z|yi) [e.g. qϕ(z|xi)

.
=δz−fω(xi), ϕ

.
=ω ⇒ zi=fω(xi)]

7: pθ(yi|zi) = pθ(zi|yi)pπ(yi)∑
y pθ(zi|y)pπ(y)

8: end for
9: gθ ← 1

m

∑m
i=1∇θ [log pθ(yi|zi) + pθ(zi|yi)]

10: gϕ ← 1
m

∑m
i=1∇ϕ [log pθ(yi|zi)− Tψ(zi)] [e.g. using “reparameterisation trick”]

11: gπ ← 1
m

∑m
i=1∇π log pπ(yi)

12: gψ ← 1
m

∑m
i=1∇ψ [log σ(Tψ(zi)) + log(1−σ(Tψ(z′i))]

13: θ ← θ + ηtθ gθ, ϕ← ϕ+ ηtϕ gϕ, π ← π + ηtπ gπ, ψ ← ψ + ηtψ gψ , t← t+ 1
14: end while

D Calibration Metrics

One way to measure if a model is calibrated is to compute the expected difference between the
confidence and expected accuracy of a model.

EP (ŷ|x)

[
P(ŷ = y|P (ŷ|x) = p)− p

]
(8)

This is known as expected calibration error (ECE) (Naeini et al., 2015). Practically, ECE is estimated
by sorting the predictions by their confidence scores, partitioning the predictions in M equally spaced
bins (B1 . . . BM ) and taking the weighted average of the difference between the average accuracy
and average confidence of the bins. In our experiments we use 20 equally spaced bins.

ECE =

M∑
m=1

|Bm|
n
|acc(Bm)− conf(Bm)| (9)

8



E Further Results

E.1 Distribution Shift (continued)

When deployed in the wild, natural distributional shifts may occur in the data due to subtle changes in
the data generation process, e.g. a change of camera. We test resilience to natural distributional shifts
on two tasks: Natural Language Inference (NLI) and detecting whether cells are cancerous from
microscopic images. NLI requires verifying if a hypothesis logically follows from a premise. Models
are trained on the SNLI dataset (Bowman et al., 2015) and tested on the MNLI dataset (Williams
et al., 2018) taken from more diverse sources. Cancer detection uses the CAMELYON17 dataset
(Bandi et al., 2018) from the WILDs datasets (Koh et al., 2021), where the train and eval sets
contain images from different hospitals.

Accuracy (↑) Calibration (↓)
CE VC CE VC

NLI 71.2 ± 0.1 71.2 ± 0.1 7.3 ± 0.2 3.4 ± 0.2

CAM 79.2 ± 2.8 84.5 ± 4.0 8.4 ± 2.5 1.8 ± 1.3

Table 2: Accuracy and Calibration (ECE) under distribu-
tional shift (mean, std. err., 5 runs)

Table 2 shows that the VC model
achieves better calibration under these
natural distributional shifts (H2). The
CAMELYON17 (CAM) dataset has a rel-
atively small number (1000) of train-
ing samples (hence wide error bars are
expected), which combines distribution
shift with a low data setting (H4) and
shows that the VC model achieves higher (average) accuracy in this more challenging real-world
setting.

We also test the ability to detect OOD examples. We compute the AUROC when a model is
trained on CIFAR-10 and evaluated on the CIFAR-10 validation set mixed (in turn) with SVHN,
CIFAR-100, and CELEBA (Goodfellow et al., 2013; Liu et al., 2015). We compare the VC and CE
models using the probability of the predicted class argmaxy pθ(y|x) as a means of identifying OOD
samples.

Model SVHN C-100 CelebA
PCE(y|x) 0.92 0.88 0.90
PVC(y|z) 0.93 0.86 0.89

Table 3: AUROC for the OOD detection task.
Models are trained on CIFAR-10 and evalu-
ated on in and out-of-distribution samples.

Table 3 shows that the VC model performs compa-
rably to the CE model. We also consider p(z) as a
metric to detect OOD samples and achieve compa-
rable results, which is broadly consistent with the
findings of (Grathwohl et al., 2019). Although the
VC model learns to map the data to a more structured
latent space and, from the results above, makes more
calibrated predictions for OOD data, it does not ap-
pear to be better able to distinguish OOD data than a
standard softmax classifier (CE) using the metrics tested (we note that “OOD” is a loosely defined
term).

E.2 Adversarial Robustness
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Figure 4: Prediction accuracy as FGSM adversarial attacks
increase (l) MNIST; (r) CIFAR-10

We test model robustness by measur-
ing performance on adversarially gen-
erated images using the common Fast
Gradient Sign Method (FGSM) of adver-
sarial attack (Goodfellow et al., 2014).
Perturbations are generated as P =
ϵ×sign (L(x, y)), where L(x, y) is the
model loss for data sample x and cor-
rect class y; and ϵ is the magnitude of
the attack. We compare all models trained on MNIST and CIFAR-10 against FGSM attacks of
different magnitudes.

Results in Figure 4 show that the VC model is consistently more adversarially robust relative to the
standard CE model, across attack magnitudes on both datasets (H3).

E.3 Low Data Regime
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CE GM VC
MNIST 93.1 ± 0.2 94.4 ± 0.1 94.2 ± 0.2

CIFAR-10 52.7 ± 0.5 54.2 ± 0.6 56.3 ± 0.6

AGNEWS 56.3 ± 5.3 61.5± 2.9 66.3 ± 4.6

Table 4: Accuracy in low data regime (mean,
std.err., 5 runs)

In many real-world settings, datasets may have rela-
tively few data samples and it may be prohibitive or
impossible to acquire more, e.g. historic data or rare
medical cases. We investigate model performance
when data is scarce on the hypothesis that a prior
over the latent space enables the model to better gen-
eralise from fewer samples. Models are trained on
500 samples from MNIST, 1000 samples from CIFAR-10 and 50 samples from AGNEWS.

Results in Table 4 show that introducing the prior (GM) improves performance in a low data regime
and that the additional entropy term in the VC model maintains or further improves accuracy (H4),
particularly on the more complex datasets.
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Figure 5: Accuracy increase of VC over CE on MedM-
NIST datasets of varying training set size (mean, std.err.,
3 runs)

We further probe the relative benefit of the
VC model over the CE baseline as the train-
ing sample size varies (H4) on MedMNIST,
a collection of real-world medical datasets
of varying sizes.

Figure 5 shows the increase in classifica-
tion accuracy for the VC model relative to
the CE model against number of training
samples (log scale). The results show a
clear trend that the benefit of the additional
latent structure imposed in the VC model increases exponentially as the number of training samples
decreases. Together with the results in Table 4, this suggests that the VC model offers most significant
benefit for small, complex datasets.

E.4 Classification under Domain Shift

A comparison of accuracy between the VC and CE models under 16 different synthetic domain shifts.
We find that VC performs comparably well as CE.
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Figure 6: Classification accuracy under distributional shift: (left) CIFAR-10-C (middle) CIFAR-
100-C (right) TINY-IMAGENET-C

E.5 OOD Detection

Figure 7: t-SNE plots of the feature space for a classifier trained on CIFAR-10. (l) Trained using CE.
(r) Trained using VC. We posit that similar to CE, VC model is unable to meaningfully represent
data from an entirely different distribution.
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F Semantics of the latent space

To try to understand the semantics captured in the latent space, we use a pre-trained MNIST model
on the Ambiguous MNIST dataset (Mukhoti et al., 2021). We interpolate between ambiguous 7’s that
are mapped close to the Gaussian clusters of classes of “1” and “2”. It can be observed that traversing
from the mean of the “7” Gaussian to that on the “1” class, the ambiguous 7’s begin to look more like
“1”s.

Figure 8: Interpolating in the latent space: Ambiguous MNIST when mapped on the latent space. (l)
VC, (r) CE

11


	Introduction
	Background (Variational Auto-Encoder)
	Variational Classification
	Optimising the VC Objective

	Empirical Validation
	Conclusion
	Proofs
	Optimising the ELBOVC w.r.t q
	Optimising the VC objective w.r.t. q

	Justifying the Latent Prior in Variational Classification
	Variational Classification Algorithm
	Calibration Metrics
	Further Results
	Distribution Shift (continued)
	Adversarial Robustness
	Low Data Regime
	Classification under Domain Shift
	OOD Detection

	Semantics of the latent space

