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Abstract

We introduce in-context denoising, a task that refines the connection be-
tween attention-based architectures and dense associative memory (DAM)
networks, also known as modern Hopfield networks. Using a Bayesian frame-
work, we show theoretically and empirically that certain restricted denoising
problems can be solved optimally even by a single-layer transformer. We
demonstrate that a trained attention layer processes each denoising prompt
by performing a single gradient descent update on a context-aware DAM
energy landscape, where context tokens serve as associative memories and
the query token acts as an initial state. This one-step update yields bet-
ter solutions than exact retrieval of either a context token or a spurious
local minimum, providing a concrete example of DAM networks extending
beyond the standard retrieval paradigm. Overall, this work solidifies the
link between associative memory and attention mechanisms first identified
by Ramsauer et al., and demonstrates the relevance of associative memory
models in the study of in-context learning.

1 Introduction

The most celebrated model for associative memories in systems neuroscience is the so-called
Hopfield model (Amari, 1972; Nakano, 1972; Little, 1974; Hopfield, 1982). This model has a
capacity to store “memories” (stable fixed points of a recurrent update rule) proportional
to the number of nodes (Hopfield, 1982; Amit et al., 1985). In the last decade, new
energy functions (Krotov & Hopfield, 2016; Demircigil et al., 2017) were proposed for dense
associative associative memories with much higher capacities. These energy functions are
often referred to as modern Hopfield models. Ramsauer et al. (2021) pointed out the similarity
between the one-step update rule of a certain modern Hopfield network (Demircigil et al.,
2017) and a particular one-layer transformer map (Vaswani et al., 2017), generating interest
in the statistical physics and the systems neuroscience community (Krotov & Hopfield, 2021;
Krotov, 2023; Lucibello & Mézard, 2024; Millidge et al., 2022). However, the construction
in Ramsauer et al. (2021) appears to emphasize the specific task of exact retrieval (converging
to a fixed point), while in practice transformers may tackle many other tasks (Devlin et al.,
2019; Brown et al., 2020; Touvron et al., 2023; Dosovitskiy, 2020).

To explore this connection beyond retrieval, we introduce in-context denoising, a task that
bridges the behavior of trained transformers and associative memory networks through the
lens of in-context learning (ICL). While ICL has been extensively studied in supervised
settings (Garg et al., 2022; Zhang et al., 2024; Akyürek et al., 2023; Reddy, 2024), recent work
suggests that transformers may internally emulate gradient descent over a context-specific
loss function during inference (Von Oswald et al., 2023; Dai et al., 2023; Ahn et al., 2023).
This general perspective aligns with our findings.
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2 Problem formulation: In-context denoising

In this section, we describe our general setup. Recurring common notation is described in
Appendix A.1. Each task corresponds to a distribution D over the probability distribution

of data: pX ∼ D. Let X1, · · · , XL+1
iid∼ pX , define the sampling of the tokens. Let the noise

corruption be defined by X̃ ∼ pnoise(·|XL+1). The random sequence E = (X1, X2, ..., XL, X̃)

are given as “context” (input) to a sequence model F (·; θ) which outputs an estimate X̂L+1

of the original (L+ 1)-th token . The task is to minimize the expected loss E[l(X̂L+1, XL+1)]
for some loss function l(·, ·). Namely, our problem is to find

min
θ

EpX∼D,X1:L+1∼pL+1
X ,X̃∼pnoise(·|XL+1)

[l(F (E, θ), XL+1)]. (1)

In practice, we choose X̃ = XL+1 + Z, a pure token corrupted by the addition of isotropic
Gaussian noise Z ∼ N (0, σ2

ZIn), and our objective function to minimize is the mean squared

error (MSE) E[||X̂L+1 −XL+1||2].

The first L tokens in E are “pure samples” from pX that should provide information about
the distribution for our denoising task. Our performance is expected to be no better than that
of the best method, in the case that the token distribution and also the corrupting process are
exactly known. The following proposition formalizes baseline to which we expect to compare

our results as L → ∞. We seek a function f : Rn → Rn such that EX,X̃

[
∥X − f(X̃)∥2

]
is

minimized. As is well-known, the Bayes optimal predictor for l2 loss is the posterior mean.

Proposition 1. For each task, specified by the input distribution pX , and the noise model
pX̃|X ,

EX,X̃

[
∥X − f(X̃)∥2

]
≥ EX̃

[
Tr Cov(X | X̃)

]
. (2)

This lower bound is met when f(X̃) = E[X | X̃].

For completeness, the proof is in Appendix B.1.

(a) (b)

 Case 1:
Linear manifolds

 Case 2:
Nonlinear manifolds

 Case 3:
Gaussian mixtures

Prompt: Pure tokens from a data distribution and a single corrupted example

target
query

Prediction

Target  

Problem formulation

sample context
tokens

Query
(prompts are randomly constructed from a pre-specified task distribution)

corruption of
final token

sample a task from a task distribution

Figure 1: (a) Problem formulation for a general in-context denoising task. (b) The three
denoising tasks considered here include instances of linear and non-linear manifolds as well
as Gaussian mixtures. In each case, the context E(i) consists of a sequence of pure tokens

from the data distribution p
(i)
X ∼ D where D denotes the task distribution, along with a

single query token that has been corrupted by Gaussian noise. The objective is to predict
the target (i.e. denoise the query) given information contained only in the prompt.

We consider three elementary in-context denoising tasks, where the data (vectors in Rn)
comes from:

1. Linear manifolds (d-dimensional subspaces): The data comes from d-dimensional
random linear subspace of Rn. Restricted to that space, pX is an isotropic zero-
centered Gaussian with variance of each component being σ2

0 .

2. Nonlinear manifolds (d-spheres): The data is uniformly sampled from from d-
dimensional origin-centered sphere of radius R. The sphere is in a random d + 1-
dimensional linear subspace of Rn. Restricted to that space, pX is an isotropic
zero-centered Gaussian with variance of each component being σ2

0 .
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3. Small noise Gaussian mixtures (clusters): A mixture of isotropic Gaussians, where
the component means have fixed norm and lives on an n− 1 dimensional sphere or
radius R. The variances of each component tend to zero.

The general setup and the three special cases are represented in Fig. 1. The details of the task-
specific distributions pX and the process for sampling tokens {xt} are described in Appendix

B.2. The same corruption process applies to all cases: X̃ = XL+1 + Z,Z ∼ N (0, σ2
ZIn).

3 In-context denoising with one-layer transformers

3.1 Theoretical results

In this section, we provide simple constructions of one-layer transformers that approximate
well the Bayes optimal predictors. To motivate our choice of architecture, let us start by

discussing the linear case. There, we have fopt(X̃) =
σ2
0

σ2
0+σ2

Z
PX̃. Note that, by the strong

law of large numbers, P̂ = 1
σ2
0L

∑L
t=1 XtX

T
t is a random matrix that almost surely converges

component-by-component to the orthogonal projection P as L → ∞, since, for each t, XtX
T
t

has the expectation σ2
0P and that Xt is a Gaussian random variable with zero mean and a

finite covariance matrix.

We now consider a simplified one-layer linear transformer (see Appendices E.1 and E.2 for
more detailed discussions) which still has sufficient expressive power to capture our finite
sample approximation to the Bayes optimal answer. We define

X̂ = FLin(E, θ) :=
1

L
WPV X1:LX

T
1:LWKQX̃ =

1

L

L∑
t=1

WPV Xt⟨Xt,WKQX̃⟩. (3)

taking values in Rn, where X1:L := [X1, . . . , XL] taking values in Rn×L, with learnable
weights WKQ,WPV ∈ Rn×n abbreviated by θ.

Now, our argument could be formalized into the following theorem:

Theorem 3.1. If we have a pX from the linear case, then the function

FLin(({Xt}Lt=1, x̃), θ∗) =
1

L(σ2
0 + σ2

Z)

L∑
t=1

Xt⟨Xt, x̃⟩ (4)

converges almost surely to the Bayes optimal answer fopt(x̃) for all x̃ ∈ Rn, as L → ∞. The
optimal parameter θ∗ refers to WPV = αIn,WKQ = βIn with αβ = 1

σ2
0+σ2

Z
.

Similarly, we could argue that the other two problems, the d-dimensional spheres and the
σ0 → 0 zero limit of the Gaussian mixtures could be addressed by softmax attention

X̂ = F (E, θ) := WPV X1:Lsoftmax(XT
1:LWKQX̃) =

∑L
t=1 WPV Xte

⟨Xt,WKQX̃⟩∑L
t=1 e

⟨Xt,WKQX̃⟩
(5)

taking values in Rn. The function softmax(z) := 1∑n
i=1 ezi (ez1 , . . . , ezn)T ∈ Rn is applied

column-wise.

For both problems, namely the spheres and the σ0 → 0 Gaussian mixtures, we could have
WPV = αIn,WKQ = βIn with α = 1, β = 1/σ2

Z providing Bayes optimal answers as L → ∞.
In fact, we could make a general statement about distributions supported on spheres.

Theorem 3.2. If we have a task distribution D so that the support of each pX is the subset
of some sphere, centered around the origin, with a pX-dependent radius R, then the function

F (({Xt}Lt=1, x̃), θ∗) =

∑L
t=1 Xte

⟨Xt,x̃⟩/σ2
Z∑L

t=1 e
⟨Xt,x̃⟩/σ2

Z

(6)

converges almost surely to the Bayes optimal answer fopt(x̃) for all x̃ ∈ Rn, as L → ∞. The
optimal parameter θ∗ refers to WPV = In,WKQ = 1

σ2
Z
In.
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The proof of the theorem is in Appendix E.3. Note that the condition of pX being supported
on a sphere is not artificial as, in many practical transformers, pre-norm with RMSNorm
gives you inputs on the sphere, up to learned diagonal multipliers.

For the linear case, we use linear attention, but that may not be essential. Informally
speaking, the softmax attention model has the capacity to subsume the linear attention
model. See Appendix F for the details of small WKQ expansion and Appendix F.1 for
Proposition F.2. We therefore could use the softmax model for all three cases.

3.2 Empirical results

Case 1: Linear manifolds Case 2: Nonlinear manifolds Case 3: Gaussian mixtures(a)

(b)
Epoch Epoch Epoch

Initial weights Final weights (≈ diagonal) Initial weights Final weights

train

softmax
test

train

linear
test

Final weights:  linear softmax

Figure 2: (a) Training dynamics for the studied cases using one-layer softmax attention
(circles) as well as linear attention (triangles). Solid lines represent the average loss over
six seeds, with the shaded area indicating the range for cases 2 and 3. For each case, the
grey dashed baseline indicates the 0-predictor, and the pink line indicates the Bayes optimal
predictor. All cases use a context length of L = 500, ambient dimension n = 16, and
are trained with Adam on a dataset of size 800 with batch size 80 and standard weight
initialization wij ∼ U [−1/

√
n, 1/

√
n]. (b) Final attention weights WKQ and WPV are shown.

For each, we indicate the mean of the diagonal elements. Initial weights are displayed for
the second and third case.

Fig. 2 shows the training dynamics for the three cases showing that the qualitative nature
of the trained model agrees with the theory above. The details of the training setup is in
Appendix D. Further discussion of the empirical results are in Appendix F.2.

4 Connection to dense associative memory networks

In each of the denoising problems studied above, we have shown analytically and empirically
that the optimal weights of the one-layer transformer are scaled identity matrices WPV ≈
αI,WKQ ≈ βI. In the softmax case, the trained denoiser can be concisely expressed as

x̂ = g(X1:L, x̃) := αX1:Lsoftmax(βXT
1:Lx̃),

re-written such that X ∈ Rn×L stores pure context tokens.

We now demonstrate that such denoising corresponds to one-step gradient descent (with
specific step sizes) of energy models related to dense associative memory networks, also
known as modern Hopfield networks (Ramsauer et al., 2021; Demircigil et al., 2017; Krotov
& Hopfield, 2016).

Consider the energy function:

E(X1:L, s) =
1

2α
∥s∥2 − 1

β
log

(
L∑

t=1

eβX
T
t s

)
, (7)
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which mirrors the Ramsauer et al. (2021) construction but with a Lagrange multiplier
added to the first term. An operation inherent to the associative memory perspective is
the recurrent application of a denoising update. Gradient descent iteration s(t + 1) =
s(t) − γ ∇sE

(
X1:L, s(t)

)
yields

s(t + 1) =
(

1 − γ

α

)
s(t) + γX1:Lsoftmax

(
βXT

1:Ls(t)
)
. (8)

It is now transparent that initializing the state to the query s(0) = x̃ and taking a single
step with size γ = α recovers the behavior of the trained attention model (Fig. 3). On the
other hand, one could consider alternative step sizes and recurrent iteration. However, as
Fig. 3 shows, this has the potential to degrade performance.

Additional details are provided in Appendix H. In particular, the energy model for linear
attention is discussed in Appendix H.1.

context tokens
query target prediction traj

Num. steps: 1 Num. steps: 50

Figure 3: Gradient descent denoising for the nonlinear manifold case (spheres) in n = 2
with d = 1. A context-aware dense associative memory network E(X1:L, s) is constructed
whose gradient corresponds to the Bayes optimal update (trained attention layer). Note that
the density of sampled context tokens sculpts the valleys of the energy landscape. Left: the
attention step of a one-layer transformer trained on the denoising task corresponds to a single
gradient descent step. Right: Iterating the denoising process—as is conventional for Hopfield
networks—can potentially degrade the estimate by causing it to become query-independent
(e.g. converging to a distant minimum). Here R = 1, σ2

Z = 10, L = 20 and α = 1, β = 1/σ2
Z .

5 Discussion

Overall, this work refines the connection between dense associative memories and attention
layers first identified in Ramsauer et al. (2021). While we show that one energy minimization
step of a particular DAM (associated with a trained attention layer) is optimal for the
denoising tasks studied here, it remains an open question whether multilayer architectures
with varying or tied weights could extend these results to more complex tasks by effectively
performing multiple iterative steps. This aligns with recent studies on in-context learning,
which have considered whether transformers with multiple layers emulate gradient descent
updates on a context-specific objective (Von Oswald et al., 2023; Shen et al., 2023; Dai et al.,
2023; Ahn et al., 2023), and may provide a bridge to work on emerging architectures guided by
associative memory principles (Hoover et al., 2023). Investigating when and how multilayer
attention architectures perform such gradient descent iterations in a manner that is both
context-dependent and informed by a large training set represents an exciting direction for
future research at the intersection of transformer mechanisms, associative memory retrieval,
and in-context learning.
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Appendix

A Notation

A.1 Recurring notation

• n – ambient dimension of input tokens.

• xt ∈ Rn – the value of the t-th random input token.

• E = (X1, ..., XL, X̃) – the random variable input to the sequence model. The “tilde”
indicates that the final token has in some way been corrupted. E takes values
(x1, ..., xL, x̃) ∈ Rn×(L+1).

• L – context length = number of uncorrupted tokens.

• d – dimensionality of manifold S that xt are sampled from

• N – number of training pairs

A.2 Bayes posterior notation

• pX(x) is task-dependent (the three scenarios considered here are introduced above).

• pX̃(x̃) where x̃ = x + z. For a sum of independent random variables, Y = X1 + X2,
their pdf is a convolution pY (y) =

∫
pX1(x)pX2(y − x)dx. Thus:

pX̃(x̃) =

∫
pZ(z)pX(x̃− z)dz

= CZ

∫
e−∥z∥2/2σ2

ZpX(x̃− z)dz

where CZ = (2πσ2
Z)−n/2 is a constant.

• pX̃|X(x̃ | x): This is simply

pZ(x̃− x) = CZe
−∥x̃−x∥2/2σ2

Z .

• pX|X̃(x | x̃): By Bayes’ theorem, this is

pX|X̃(x | x̃) =
pX̃|X(x̃ | x)pX(x)

pX̃(x̃)

=
e−∥x̃−x∥2/2σ2

ZpX(x)∫
e−∥x̃−x′∥2/2σ2

ZpX(x′)dx′
.

• Posterior mean:

EX|X̃ [X | X̃] =

∫
x pX|X̃(x | x̃)dx

=
1

pX̃(x̃)

∫
x pX,X̃(x, x̃)dx.
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B Bayes optimal predictors for square loss

B.1 Proof of Proposition 1

Proof. Observe that

E
[
∥X − f(X̃)∥2

]
= EX̃

[
EX|X̃

[
∥X − f(X̃)∥2 | X̃

]]
= EX̃

[
EX|X̃

[
∥X − E[X | X̃]∥2 | X̃

]
+ ∥E[X | X̃] − f(X̃)∥2

]
≥ EX̃

[
EX|X̃

[
∥X − E[X | X̃]∥2 | X̃

]]
= EX̃

[
Tr Cov(X | X̃)

]
.

Note the final line is independent of f . This inequality becomes an equality when f(X̃) =

E[X | X̃].

B.2 Details of the distributions for the three individual tasks

B.2.1 Case 1 - Linear manifolds

A given training prompt consists of pure tokens sampled from a random d-dimensional
subspace S of Rn.

• Let P be the orthogonal projection operator to a random d-dim subspace S of Rn,
sampled according to the uniform measure, induced by the Haar measure on the
coset space O(n)/O(n− d) ×O(d), on the Grassmanian G(d, n), the manifold of all
d-dimensional subspaces of Rn.

• Let Y ∼ N (0, σ2
0In) and define X = PY ; we use this process to construct the

starting sequences (X1, ..., XL+1) of L + 1 independent tokens.

We thus have pX = N (0, σ2
0P ), with the Haar distribution of P characterizing the task

ensemble associated with D.

B.2.2 Case 2 - Nonlinear manifolds

We focus on the case of d-dimensional spheres of fixed radius R centered at the origin in Rn.

• Choose a random d + 1-dim subspace V of Rn, sampled according to the uniform
measure, as before, on the Grassmanian G(d + 1, n). The choice of this random
subspace generates the distribution of tasks D.

• Inside V , sample uniformly from the radius R sphere (once more, a Haar induced
measure on a coset space O(d + 1)/O(d)). We use this process to construct input
sequences X1:L+1 = (x1, ..., xL+1) of L + 1 independent tokens.

In practice, we uniformly sample points with fixed norm in Rd and embed them in Rn by
concatenating zeros. We then rotate the points by selecting a random orthogonal matrix
Q ∈ Rn×n.

B.2.3 Case 3 - Gaussian mixtures (Clustering)

Pure tokens are sampled from a weighted mixture of isotropic Gaussians in n-dimensions,
{wa, (µa, σ

2
a)}Ka=1. The density is

pX(x) =

K∑
a=1

waCae
−∥x−µa∥2/2σ2

a ,

9



New Frontiers in Associative Memory workshop at ICLR 2025

where Ca = (2πσ2
a)−n/2 are normalizing constants. The µa are independently chosen from a

uniform distribution on the radius R sphere of dimension n− 1, centered around zero. The
distribution of tasks D, is decided by the choice of {µa}Ka=1.

For our ideal case, we will consider the limit that the variances go to zero. In that case, the
density is simply

pX0(x) =

K∑
a=1

waδ(x− µa).

C Details of Bayes optimal denoising baselines for each case

Linear case. For the linear denoising task, pure samples X are drawn from an isotropic
Gaussian in a restricted subspace. The following result provides the Bayes optimal predictor
in this case, the proof of which is in Appendix C.1.

Proposition 2. For pX corresponding to Subsection B.2.1, the Bayes optimal answer is

fopt(X̃) = E[X|X̃] =
σ2
0

σ2
0 + σ2

Z

PX̃, (A.1)

and the expected loss is

E
[
∥PX̃ −XL+1∥2

]
= dσ2

0σ
2
Z/(σ2

0 + σ2
Z). (A.2)

Projection 

Projection (shrunk)
Figure 4: Baseline estimators for
the case of random linear man-
ifolds with projection operator
P (i).

Manifold case. In the nonlinear manifold denoising problem, we focus on the case of
lower dimensional spheres S (e.g. the circle S1 ⊂ R2). For such manifolds, the Bayes optimal
answer is given by the following proposition.

Proposition 3. For pX defined as in Subsection B.2.2, with P being the orthogonal projection
operator to V , the d + 1 dimensional linear subspace, with R being the radius of sphere S,
the Bayes optimal answer is

fopt(X̃) = E[X | X̃]

=

∫
e⟨x,X̃∥⟩/σ2

Z x dSx∫
e⟨x,X̃∥⟩/σ2

Z dSx

(A.3)

=
I d+1

2

(
R ∥X̃∥∥

σ2
Z

)
I d−1

2

(
R ∥X̃∥∥

σ2
Z

)R X̃∥

∥X̃∥∥
, (A.4)

where X̃∥ = PX̃ and Iν is the modified Bessel function of the first kind.

Clustering case. For clustering with isotropic Gaussian mixtures {wa, (µa, σ
2
a)}pa=1, the

Bayes optimal predictors for some important special cases are as follows. See Appendix C.3
for the general case.

10
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Proposition 4. For general isotropic Gaussian model with σa = σ0, ||µa|| = R for all
a = 1, . . . ,K.

fopt(X̃) = E[X|X̃]

=
σ2
0

σ2
0 + σ2

Z

X̃ +
σ2
Z

σ2
0 + σ2

Z

∑
a wae

⟨µa,X̃⟩/(σ2
0+σ2

Z) µa∑
a wae⟨µa,X̃⟩/(σ2

0+σ2
Z)

. (A.5)

If σ0 → 0,

fopt(X̃) = E[X | X̃] =

∑
a wae

⟨µa,X̃⟩/σ2
Z µa∑

a wae⟨µa,X̃⟩/σ2
Z

. (A.6)

In all three cases, we notice similarities between the form of the Bayes optimal predictor,
and attention operations in transformers, a connection which we explore below.

C.1 The linear case - Proof of Proposition 2

Proof. The linear denoising task is a special case of the result in Proposition 1. Here, X is
an isotropic Gaussian in a restricted subspace,

pX|X̃(x | x̃) = C(x̃)pX(x)e
− ∥x−x̃∥2

2σ2
Z

where C(x̃) is a normalizing factor. The noise can be decomposed into parallel and perpen-
dicular parts using the projection P onto S, i.e.

X̃ = X̃∥ + X̃⊥ = PX̃ + (I − P )X̃,

so that

e
− ∥x−x̃∥2

2σ2
Z = e

− ∥x−x̃∥∥2

2σ2
Z e

− ∥x̃⊥∥2

2σ2
Z .

Only the first factor matters for pX|X̃(x | x̃) since it depends on x. Then, for x ∈ S, the

linear subspace supporting pX , dropping the x independent x̃⊥ contribution,

pX(x)e
− ∥x−x̃∥∥2

2σ2
Z ∝ e

− ∥x∥2

2σ2
0

− ∥x−x̃∥∥2

2σ2
Z

∝ exp

−
∥x− σ2

0

σ2
0+σ2

Z
x̃∥∥2

2
σ2
0σ

2
Z

σ2
0+σ2

Z

 .

Thus, f(X̃) =
σ2
0

σ2
0+σ2

Z
X̃∥ =

σ2
0

σ2
0+σ2

Z
PX̃.

Using X̃ = X + Z, X = PX, and the independence of X and Z

E
[
∥X− σ2

0

σ2
0 + σ2

Z

PX̃∥2
]

= E
[
∥ σ2

Z

σ2
0 + σ2

Z

PX∥2
]
+E
[
∥ σ2

0

σ2
0 + σ2

Z

PZ∥2
]

=
σ4
Zdσ

2
0 + σ4

0dσ
2
Z

(σ2
0 + σ2

Z)2
=

dσ2
0σ

2
Z

σ2
0 + σ2

Z

.

C.2 The manifold case - Proof of Proposition 3

Proof. In the nonlinear manifold denoising problem, we focus on the case of lower dimensional
spheres S (e.g. the circle S1 ⊂ R2). For such manifolds, we have

E[X | X̃] =

∫
e
− ∥x−x̃∥∥2

2σ2
Z x pX(x)dx∫

e
− ∥x−x̃∥∥2

2σ2
Z pX(x)dx

=

∫
e⟨x,x̃∥⟩/σ2

Z x dSx∫
e⟨x,x̃∥⟩/σ2

Z dSx

.
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We have used the fact that ∥x− x̃∥∥2 = ∥x∥2 + ∥x̃∥∥2 − 2⟨x, x̃∥⟩ and that ∥x∥ is fixed on the
sphere.

The integrals can be evaluated directly once the parameters are specified. If S is a d–sphere
of radius R, then the optimal predictor is again a shrunk projection of x̃ onto S,

∫ π

0
eR∥x̃∥∥ cos θ/σ2

Z cos θ sin(d−1) θ dθ∫ π

0
eR∥x̃∥∥ cos θ/σ2

Z sin(d−1) θ dθ
R

x̃∥

∥x̃∥∥

=
I d+1

2

(
R ∥x̃∥∥

σ2
Z

)
I d−1

2

(
R ∥x̃∥∥

σ2
Z

)R x̃∥

∥x̃∥∥
,

where we used identities involving Iν(y), modified Bessel function of the first kind of order ν
(Gradstein et al., 2007). The vector R x̃∥

∥x̃∥∥ is the point on S in the direction of x∥.

C.3 The clustering case - Proof of Proposition 4

Proof. For the clustering case involving isotropic Gaussian mixtures with parameters
{wa, (µa, σ

2
a)}pa=1,

E[X | X̃] =

∫
e
− ∥x−x̃∥2

2σ2
Z

∑
a

(
waCae

− ∥x−µα∥2

2σ2
a

)
x dx

∫
e
− ∥x−x̃∥2

2σ2
Z

∑
a

(
waCae

− ∥x−µa∥2
2σ2

a

)
dx

,

where Ca = (2πσ2
a)−

n
2 .

We can simplify this expression by completing the square in the exponent and using the fact
that the integral of a Gaussian about its mean is zero. This yields

E[X | X̃] =

∑
a waCama

∫
exp(−ga) dx∑

a waCa

∫
exp(−ga) dx

where we have introduced

ga =
1

2

(σ2
Z + σ2

a

σ2
Zσ

2
a

)
∥x−mα∥2 +

1

2(σ2
Z + σ2

a)
∥x̃− µa∥2,

with

ma =
σ2
a x̃ + σ2

Z µa

σ2
a + σ2

Z

.

Doing the integrals and using the expressions for Ca,ma

E[X | X̃] =

∑
a wa

(σ2
Z+σ2

a

σ2
a

)n/2
exp

(
− ∥x̃−µa∥2

2(σ2
Z+σ2

a)

)(σ2
a x̃+σ2

Z µa

σ2
a+σ2

Z

)
∑

a wa

(σ2
Z+σ2

a

σ2
a

)n/2
exp

(
− ∥x̃−µa∥2

2(σ2
Z+σ2

a)

)
In the case that the center norms ∥µa∥ are independent of a and variances σ2

a = σ0, we have

E[X | X̃] =
σ2
0

σ2
0 + σ2

Z

x̃ +
σ2
Z

σ2
0 + σ2

Z

∑
a waµa exp

(
⟨x̃,µa⟩
σ2
Z+σ2

0

)
∑

a wa exp
(

⟨x̃,µa⟩
σ2
Z+σ2

0

) .

12
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Note that in the limit that σ0 → 0 , this becomes expressible by one-layer self-attention,
since one can simply replace the matrix of cluster centers M = [µ1 . . . µp] implicit in the
expression with the context X1:L itself,

E[X | X̃] =

∑
a wae

⟨µα,X̃⟩/σ2
Zµa∑

a wae⟨µα,X̃⟩/σ2
Z

.

D Training setup

Input: Let p
(1)
X , . . . , p

(N)
X

iid∼ D, be distributions sampled for one of the tasks. For each

distribution p
(i)
X , we sample E(i) := (X

(i)
1 , . . . , X

(i)
L , X̃(i)) taking value in Rn×(L+1) be an

input to a sequence model. We also retain the true (L + 1)-th token X
(i)
L+1 for each i.

Objective: Given an input sequence E(i), return the uncorrupted final token X
(i)
L+1. We

consider the mean-squared error loss over a collection of N training pairs, {E(i), X
(i)
L+1}Ni=1,

C(θ) =

N∑
i=1

∥F (E(i), θ) − x
(i)
L+1∥

2, (A.7)

where F (E(i), θ) denotes the parametrized function predicting the target final token based
on input sequence E(i).

E Notes on attention and softmax expansion

E.1 Standard self-attention

Given a sequence of Lseq input tokens xi ∈ Rn represented as a matrix X ∈ Rn×Lseq , standard
self-attention defines query, key, and value matrices

K = WKX,Q = WQX,V = WV X (A.8)

where WK ,WQ ∈ Rnattn×n and WV ∈ Rnout×n. The softmax self-attention map (Vaswani
et al., 2017) is then

Attn(X,WV ,W
T
KWQ) := V softmax(KTQ) ∈ Rnout×Lseq . (A.9)

On merging WK , WQ into WKQ = WT
KWQ: The simplification WKQ = WT

KWQ (made here
and elsewhere) is general only when nattn ≥ n; in that case, the product WKQ can have
rank n and thus it is reasonable to work with the combined matrix. On the other hand, if
nattn < n, then the rank of their product is at most nattn and thus there are matrices in
Rn×n that cannot be expressed as WT

KWQ. A similar point can be made about WPV . We
note that while nattn < n may be used in practical settings, one often also uses multiple
heads which when concatenated could be (roughly) viewed as a single higher-rank head.

We will also use the simplest version of linear attention Katharopoulos et al. (2020),

AttnLin(X,WV ,W
T
KWQ) :=

1

Lseq
V (KTQ) ∈ Rnout×Lseq . (A.10)

E.2 Minimal transformer architecture for denoising

We now consider a simplified one-layer linear transformer in term of our variable E =
(X1:L, X̃) taking values in Rn×(L+1) and start with the linear transformer which still has

13
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sufficient expressive power to capture our finite sample approximation to the Bayes optimal
answer in the linear case. Inspired by Zhang et al. (2024), we define

AttnLin(E,WPV ,WKQ) :=
1

L
WPV EMLinE

TWKQE (A.11)

taking values in Rn×(L+1). The additional aspect compared to the last subsection is the
masking matrix MLin ∈ R(L+1)×(L+1) which is of the form

MLin =

[
IL 0L×1

01×L 0

]
, (A.12)

preventing WPV X̃ from being added to the output.

Note that this more detailed expression is equivalent to the form used in the main text.

X̂ = FLin(E, θ) :=
1

L
WPV X1:LX

T
1:LWKQX̃

With learnable weights WKQ,WPV ∈ Rn×n abbreviated by θ, we define

F (E, θ) := [AttnLin(E,WPV ,WKQ)]:,L+1. (A.13)

Note that, when WPV = αIn,WKQ = βIn, and αβ = 1
σ2
0+σ2

Z
, F (E, θ) should approximate

the Bayes optimal answer fopt(X̃) as L → ∞.

Similarly, we could argue that the second two problems, the d-dimesional spheres and the
σ0 → 0 zero limit of the Gaussian mixtures could be addressed by the full softmax attention

Attn(E,WPV ,WKQ) = WPV Esoftmax(ETWKQE + M) (A.14)

taking values in Rn×(L+1) where M ∈ R̄(L+1)×(L+1) is a masking matrix of the form

M =

[
0L×(L+1)

(−∞)11×L+1

]
, (A.15)

once more, preventing the contribution of X̃ value to the output. The function softmax(z) :=
1∑n

i=1 ezi (ez1 , . . . , ezn)T ∈ Rn is applied column-wise.

We then define
F (E, θ) := [Attn(E,WPV ,WKQ)]:,L+1, (A.16)

which is equivalent to the simplified form used in the main text:

X̂ = F (E, θ) := WPV X1:Lsoftmax(XT
1:LWKQX̃).

E.3 Proof of Theorem 3.2

Proof. Let the support of pX be a subset of a sphere, centered around the origin, of radius
R. Then the function

g({Xt}Lt=1, x̃) =

∑L
t=1 Xte

⟨Xt,x̃⟩/σ2
Z∑L

t=1 e
⟨Xt,x̃⟩/σ2

Z

=
1
L

∑L
t=1 Xte

⟨Xt,x̃⟩/σ2
Z

1
L

∑L
t=1 e

⟨Xt,x̃⟩/σ2
Z

. (A.17)

Both the numerator 1
L

∑L
t=1 Xte

⟨Xt,x̃⟩/σ2
Z and the denominator 1

L

∑L
t=1 e

⟨Xt,x̃⟩/σ2
Z are aver-

ages of independent and identically distributed bounded random variables. By the strong
law of large numbers, as L → ∞, the average vector in the numerator converges to almost

surely to
∫
e⟨x,x̃∥⟩/σ2

Z x dpX(x) for each component, while the average in the denominator

almost surely converges
∫
e⟨x,x̃∥⟩/σ2

Z dpX(x), which is positive. So, as L → ∞, the ratio in
Eq. A.17 converges almost surely to∫

e⟨x,x̃∥⟩/σ2
Z x dpX(x)∫

e⟨x,x̃∥⟩/σ2
Z dpX(x)

which is the Bayes optimal answer fopt(x̃) for all x̃ ∈ Rn.
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F Limiting behaviors of the softmax function and attention

For small argument

A Taylor expansion of the softmax function at zero gives

softmax(βv) =
1

Z

(
1 + βv + O(β2)

)
,

where Z =
∑

i

(
1 + βvi + O(β2))

)
= L(1 + βv̄ + O(β2)) is a normalizing factor, with

v̄ = 1
L

∑
i vi. The notation 1 stands for a column vector of ones with the same dimension as

v.

Thus, we have

Lemma F.1 (Small argument expansion of softmax). As β → 0,

softmax(βv) =
1

L (1 + βv̄ + O(β2))

(
1 + βv + O(β2)

)
=

1

L

(
1 + β(v − v̄1) + O(β2)

)
.

Proposition F.2. As ϵ → 0,

F
(
E,
(1

ϵ
WPV , ϵWKQ

))
=

1

ϵ
WPV X̄ +

1

L
WPV

L∑
t=1

Xt(Xt − X̄)TWKQX̃ + O(ϵ), (A.18)

where X̄ = 1
L

∑L
t=1 Xt is the empirical mean.

See Appendix F for the details of small WKQ expansion and Appendix F.1 for the proof of
Proposition F.2.

For case 1, note that E[Xt] = 0 and covariance of Xt is finite, E[X̄] = 0, and E[||X̄||2] = O( 1
L ),

allowing us to drop X̄ as L → ∞. If, in addition, ϵ is small, only the second term survives.
Thus, F

(
E, ( 1

ϵWPV , ϵWKQ)
)

starts to approximate FLin

(
E, (WPV ,WKQ)

)
when L is large

and ϵ is small, with ϵ
√
L large.

F.1 Proof of Proposition F.2

Proof.

F
(
E,
(1

ϵ
WPV , ϵWKQ

))
:=

1

ϵ
WPV X1:Lsoftmax(ϵXT

1:LWKQX̃).

Using Lemma F.1, as ϵ → 0,

F
(
E,
(1

ϵ
WPV , ϵWKQ

))
=

1

ϵ
WPV X1:L

[
1

L

(
1L + ϵ

(
XT

1:LWKQX̃ − (
1

L

∑
t

XT
t WKQX̃)1L

)
+ O(ϵ2)

)]

=
1

ϵ
WPV X̄ +

1

L
WPV

L∑
t=1

Xt(Xt − X̄)TWKQX̃ + O(ϵ), (A.19)

where X̄ = 1
L

∑L
t=1 Xt is the empirical mean and the notation 1L emphasizes that it is a

column vector of ones with dimension L.

For large argument

As β → ∞, the softmax function simply selects the maximum over its inputs (as long as the
the maximum is unique):

softmax(βv) ≈
{

1 if i = arg maxj vj ,

0 otherwise.

In this case, all attention weight is given to a single element, and the others are effectively
ignored.
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Figure 5: (a) Trained linear attention network converges to Bayes optimal estimator as
context length increases (n = 16, d = 8, σ2

0 = 2, σ2
z = 1). (b) A network trained to denoise

subspaces of dimension d = 8 can accurately denoise subspaces of different dimensions
presented at inference time, given sufficient context.

F.2 Details of the empirical results

F.3 Case 1 - Linear manifolds

The Bayes optimal predictor for the linear denoising task from Section ?? suggests that
the linear attention weights should be scaled identity matrices with their product satisfying
αβ = 1

σ2
0+σ2

Z
. Fig. 2 shows that a one-layer network of size n = 16 trained on tasks with

σ2
Z = 1, σ2

0 = 2, d = 8, L = 500 indeed achieves this bound, training to nearly diagonal

weights with the appropriate scale ⟨w(ii)
KQ⟩⟨w

(ii)
PV ⟩ = 0.327 ≈ 1/3 (similar weights are learned

for each seed, up to a sign flip).

Fig. 5(a) displays how this bound is approached as the context length L of training samples
is increased. In Fig. 5(b) we study how the performance of a model trained to denoise
random subspaces of dimension d = 8 is affected by shifts in the subspace dimension at
inference time. We find that when provided sufficient context, such models can adapt with
mild performance loss to solve more challenging tasks not present in the training set.

It is evident from Fig. 2(a) that the softmax network performs similarly to the linear
one for this task. We can understand this through the small argument expansion of the
softmax function mentioned above. The learned weights displayed in Fig. 2(b) indicate that
βsoftmax ≈ 0.194 becomes small (note it decreases by a factor ϵ ≈ 0.344 relative to βlinear),
while the value scale αsoftmax ≈ 1.607 becomes larger by a similar factor ∼ 1/ϵ to compensate.
Thus, although the optimal denoiser for this case is intuitively expressed through linear
self-attention, it can also be achieved with softmax self-attention in the appropriate limit.

F.4 Case 2 - Nonlinear manifolds

Fig. 2 (case 2) shows networks of size n = 16 trained to denoise subspheres of dimension
d = 8 and radius R = 1, with corruption σ2

Z = 0.1 and context length L = 500. Once again,
the network trains to have scaled identity weights.

We note that although the network nearly achieves the optimal MSE on the test set,
the weights appear at first glance to deviate slightly from the Bayes optimal predictor of
Subsection 3.1, which indicated WPV = αI, WKQ = βI with α = 1, β = 1/σ2

Z . To better
understand this, we consider a coarse-grained MSE loss landscape by scanning over α and β.
See Fig. 6(a) in Appendix G. We find that the 2D loss landscape has roughly hyperbolic
level sets which is suggestive of the linear attention limit, where the weight scales become
constrained by their product αβ. Reflecting the symmetry of the problem, we also note
mirrored negative solutions (i.e. one could also identify α = −1, β = −1/σ2

Z from the
analysis in Subection 3.1). Importantly, the plot shows that the trained network lies in the
same valley of the loss landscape as the optimal predictor, in agreement with Fig. 2.
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F.5 Case 3 - Gaussian mixtures

Figure 2 (case 3) shows networks of size n = 16 trained to denoise balanced Gaussian
mixtures with p = 8 components that have isotropic variance σ2

0 = 0.02 and centers randomly
placed on the unit sphere in Rn. The corruption magnitude is σ2

Z = 0.1 and context length
is L = 500. The baselines show the zero predictor (dashed grey line) as well as the optimum
from Proposition (4) (pink) and its σ2

0 → 0 approximation Eq. (A.6) (grey).

The trained weights qualitatively approach the optimal estimator for the zero-variance limit
but with a slightly different scaling: while the scale of WPV is α ≈ 1, the WKQ scale is
β ≈ 5.127 < 1/σ2

Z . To study this, we provide a corresponding plot of the 2D loss landscape
in Fig. 6(a) in Appendix G. While the symmetry of the previous case has been broken (the
context cluster centers {µa} will not satisfy ⟨µ⟩ = 0), we again find that the trained network
lies in the anticipated global valley of the MSE loss landscape.

G MSE Loss landscape for scaled identity weights

heuristic_KQ
heuristic_PV
trained model
heuristic (theory)
2D scan min

MSE loss landscape for Fig. 3 (Case 2) MSE loss landscape for Fig. 3 (Case 3)(a) (b)

Figure 6: Loss landscape corresponding to case 2 and case 3 of Fig. 2. The MSE
is numerically evaluated by assuming scaled identity weights WKQ = βIn (x-axis) and
WPV = αIn (y-axis) and scanning over a 50 × 50 grid. The green point corresponds to the
heuristic minimizer identified from the posterior mean. In case 2 it is exact, while in case 3
it is an approximation that neglects the residual term (see Proposition 4). The orange point
corresponds to the learned weights displayed in Fig. 2(b), while the white point corresponds
to the numerically identified minimum from this 2D scan. These can fluctuate due to the
finite context (L = 500) and sampling (N = 800 here). In both panels, it is apparent that
the trained weights and the heuristic estimator co-occur in a broad valley (contour) of the
loss landscape.

H Additional comments on the mapping from attention to
associative memory models

H.1 Linear attention and traditional Hopfield model

We have considered a trained network with linear attention, relating the query X̃ and the
estimate of the target X̂, of the form

X̂ = f(X̃) :=
γ

L

L∑
t=1

Xt⟨Xt, X̃⟩ (A.20)

with γ = 1
σ2
0+σ2

Z
.
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With

E(X1:L, s) :=
1

2γ
∥s∥2 − 1

2L
sT (

L∑
t=1

XtX
T
t )s (A.21)

gradient descent iteration s(t + 1) = s(t) − γ ∇sE
(
X1:L, s(t)

)
gives us

s(t + 1) =
γ

L

∑
t

Xt⟨Xt, s(t)⟩

making the one-step iteration our denoising operation.

We will call this energy function the Naive Spherical Hopfield model for the following reason.
For random memory patterns X1:L, and the query denoting Ising spins s ∈ {−1, 1}n, the
so-called Hopfield energy is

EHopfield(X1:L, s) := − 1

2L
sT (

L∑
t=1

XtX
T
t )s. (A.22)

We could relax the Ising nature of the spins by letting s ∈ Rn, with a constraint ||s||2 = n.
This is the spherical model (Fischer & Hertz, 1993) since the spin vector s lives on a sphere.
If we minimize this energy the optimal s would be aligned with the dominant eigenvector of

the matrix 1
L (
∑L

t=1 XtX
T
t ) (Fischer & Hertz, 1993), and the model will not have a retrieval

phase (see Bollé et al. (2003) for a similar model that does). A soft-constrained variant can
also be found in Section 3.3, Model C of Krotov & Hopfield (2021).

We could reformulate the optimization problem of minimizing the Hopfield energy, subject
to ||s||2 = R2, as

arg min
s∈Rn

[
max
λ

{
− 1

2L
sT (

L∑
t=1

XtX
T
t )s + λ(sT s−R2)

}]
.

The s-dependent part of the Lagrangian, with λ replaced by 1
2γ gives us the energy function

in Eq. A.21 which we have called the Naive Spherical Hopfield model.

E(X1:L, s) :=
1

2γ
∥s∥2 − 1

2L
sT (

L∑
t=1

XtX
T
t )s =

1

2
sT
[
(σ2

0 + σ2
Z)In − 1

L
(

L∑
t=1

XtX
T
t )
]
s. (A.23)

For L much larger than n, 1
L

∑L
t=1 XtX

T
t ≈ σ2

0P , so its eigenvalues are either 0 or are very

close to σ2
0 . Hence, for large L and σZ > 0, this quadratic function is very likely to be positive

definite. One-step gradient descent brings s down to the d-dimensional linear subspace S
spanned by the patterns, but repeated gradient descent steps would take s towards zero.

H.2 Remarks on the softmax attention case (mapping to dense associative
memory networks)

Regarding the mapping discussed in the main text, we note that there is a symmetry condition
on the weights WKQ,WPV that is necessary for the softmax update to be interpreted as a
gradient descent (i.e. a conservative flow). In general, a flow ds/dt = f(s) is conservative if
it can be written as the gradient of a potential, i.e. f(s) = ∇sV (s) for some V . For this to
hold, the Jacobian of the dynamics Jf (s) = ∇sf must be symmetric.

Let z(s) = XTWKQ s and g(s) = softmax(z(s)). Then the Jacobian of the softmax layer
presented in the main text is

J(s) = WPV X
∂g

∂s
= WPV X

(
diag(g) − ggT

)
XTWKQ. (A.24)

Observe that Y = X
(
diag(g) − ggT

)
XT is symmetric (keeping in mind that g(s) depends

on WKQ). The Jacobian symmetry requirement J = JT therefore places a type of adjoint
constraint on feasible WKQ,WPV :

WPV Y WT
KQ = WKQ Y WT

PV . (A.25)
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It is clear that this condition holds for the scaled identity attention weights discussed in
the main text. Potentially, it could allow for more general weights that might arise from
non-isotropic denoising tasks to be cast as gradient descent updates.

The mapping discussed in the main text involves discrete gradient descent steps, Eq. (8). In
general, this update rule retains a “residual” term in s(t) if we choose a different descent step
size γ ̸= α. Thus, taking K recurrent updates could be viewed as the depthwise propagation
of query updates through a K-layer architecture if one were to use tied weights. Analogous
residual streams are commonly utilized in more elaborate transformer architectures to help
propagate information to downstream attention heads.
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