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Abstract

Regression-based approaches dominate the field of 3D human pose estimation,
because of their quick fitting to distribution in a data-driven way. However, in
this work we find the regression-based methods lack robustness under out-of-
distribution, i.e. partial occlusion, due to its heavy dependence on the quality of
prediction of 2D keypoints which are sensitive to partial occlusions. Inspired by the
neural mesh models for object pose estimation, i.e. meshes combined with neural
features, we introduce a human pose optimization approach via render-and-compare
neural features. On the other hand, the volume rendering technical demonstrate
better representation with accurate gradients for reasoning occlusions. In this work,
we develop a volumetric human representation and a robust inference pipeline
via volume rendering with gradient-based optimizations, which synthesize neural
features during inference while gradually updating the human pose via maximizing
the feature similarities. Experiments on 3DPW show ours better robustness to
partial occlusion with competitive performance on unoccluded cases.

1 Introduction

3D human mesh reconstruction via pose estimation from a single RGB image shows remarkable
significance in real-world applications, e.g., VR/AR and robotics. The regression-based approach
can quickly fit the 3D pose parameters of human body models such as SMPL Loper et al. (2015)
in a data-driven way. However, learning directly from large amounts of training data, the approach
is vulnerable to out-of-distribution, i.e. partial occlusion. This lack of robustness can have severe
consequences in real-world applications and therefore is urgently needed to be addressed.

Recent works Kocabas et al. (2021); Wang et al. (2020); Cheng et al. (2019) enhance the robustness
of human pose estimation by following two steps: First, detect dense 2D keypoints of the human
body by deep neural networks. Then, regress towards the feature of predicted non-occluded 2D
keypoints with additional knowledge for robustness. However, Their robustness is limited because it
relies heavily on the quality of predicted 2D keypoints, which are sensitive to partial occlusions. On
the other hand, the direct use of a downsampled mesh model to represent the human body in recent
works leads to a failure of reasoning occlusion. Because the naive mesh lacks human-related insight,
it is particularly unsuitable for representing human arms and legs, which are thin and long in shape.

Given the success of volume rendering on other tasks such as 3D reconstruction Mildenhall et al.
(2020), we exploit insights to apply volume rendering, which demonstrates better representation with
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accurate gradients for reasoning occlusions, on a new task human pose estimation with a volume
neural renderer Wang et al. (2022). On the other hand, recent works have shown the power of neural
analysis-by-synthesis in performing visual recognition tasks such as image classification Kortylewski
et al. (2020) and object pose estimation Wang et al. (2021) with render-and-compare. Therefore,
we want to eliminate the robustness dependence on 2D keypoints by replacing them with rendering
kernels in volume space which make up a volumetric human representation, and for the first time show
the volume rendering with render-and-compare in developing robustness for human pose estimation.

In this paper, we introduce a volumetric neural human for robust pose optimization that is highly
robust to occlusion. Our key idea is to extend SMPL human body model to a volumetric human
representation with a texture map which consists of a learned neural feature to perform model fitting
on the level of neural network features with volume-renderer via render-and-compare. First, we
propose a volumetric human representation designed with human-relevant insight to better represent
the human body, and a corresponding texture map capturing the local information of the body parts.
Then, we introduce a feature extractor with contrastive learning, to learn local pose information
of the human body parts with invariance to instance-specific details (such as the color of clothes),
and a generative model of feature activations at every rendering kernel of the volumetric human, to
capture the remaining variability in the feature activations of humans in the training data. During
model inference, we optimize the human pose by maximizing the likelihood of the target feature
map under our generative model using gradient-based optimization. By render-and-compare, we
predict human pose parameters with high robustness and avoid ambiguity, benefiting from volumetric
human representation and volume rendering. We find that our method can resolve common errors of
regression-based methods under occlusion.

We evaluate our method at human pose estimation on the 3DPW benchmark von Marcard et al.
(2018a) and its occluded versionKocabas et al. (2021). Experiment on 3DPW shows ours better
robustness to partial occlusion than the state-of-the-art regression-based approach. More expressively,
while bringing robustness to deal with the occluded data, our method keeps predicting non-occluded
data accurately without introducing bias commonly brought by optimization towards out-distribution.
In summary, our main contributions are:

1. We reveal the simple mesh model widely used in existing methods without human-relevant
insights does not effectively represent humans, and design a volumetric neural human
representation consisting of 3D Gaussian ellipsoids kernels that characterize and fit each
component of the human body distinctly and adaptively.

2. We propose a generative model and contrastive learning framework with better occlusion
reasoning and low ambiguity, to achieve a robust human pose optimization by fitting at the
feature level via analysis-by-synthesis with volume rendering.

3. We conduct experiments on a popular 3D pose estimation benchmark featuring occluded
bodies and outperform prior arts with better robustness, for the first time showing an
impressive potential of volume rendering in improving robustness for human pose estimation.

2 Method

In the following, we introduce our model by first describing the volumetric neural human representa-
tion, and then our full neural human body fitting framework for robust human pose optimization.

2.1 Volumetric Neural Human

A straightforward way of extending an analysis-by-synthesis generative model to 3D human pose
estimation, is to replace the mesh with a parametric human body model M(θ, β), such as the SMPL
model Loper et al. (2015). It takes as input the pose parameters θ ∈ R24×3 and the shape parameters
β ∈ R10 to produce the body mesh M ∈ RN×3, where N = 6890. Due to the limited resolution
of feature maps, prior works directly use downsampled mesh as a representation without a human-
relevant strategy, as was done in the object pose estimation task, leading to a loss of information.
Inspired by the human intuition to judge body pose from global to local and the fact that the rotation
of body components is always joint-centered, our insight is to place Gaussian ellipsoids kernels,
which adaptively adjust their shape according to the belonging body part, on the human skeleton
and joints in volume space. It takes into account detailed body components not covered by the mesh
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representation, and brings potential information at the part-level by treating vertices belonging to the
same part equally. During rendering, the human volume ρ are reconstructed with a sum of kernels,
and the observed color C(r) along a ray r(t) = (x(t), y(t), z(t)) are computed with a volume
rendererWang et al. (2022). Please refer to Appendix.A for more details of design and rendering.
Based on that, given the volumetric neural human Ny = {V,Φ} consists of a set of Gaussian
ellipsoids kernels V ∈ RN×3 with feature vectors Φ = {ϕr ∈ RD}, human pose estimation with
better occlusion reasoning are done by comparing the rendered feature map obtained via ray-tracing
with the feature map extracted directly from images, which will be introduced in detail next.

2.2 Generative Model of Volumetric Neural Human Textures

Following and extending Neural Mesh Models (NMMs)Wang et al. (2021) via analysis-by-synthesis,
we define a probabilistic generative model p(F |Ny) of the real-valued feature activations F of an
object class y. The Feature map can be rendered from the volumetric neural human N = {V,Φ}
using a differentiable volume renderer Wang et al. (2022), i.e. F̄ (Π) = R(N,Π) ∈ RH×W×D,
where Π are the camera parameters. Then, following related work on robust inference with generative
models Egger et al. (2018), the model likelihood can be made with robustness to occlusion:

p(F |N,Π, B, zi) =
∏

i∈FG
[p(fi|N)p(zi=1)]

zi [p(fi|B)p(zi=0)]
(1−zi)

∏
i′∈BG

p(fi′ |B), (1)

where zi ∈ {0, 1} is a binary variable and p(zi=1) and p(zi=0) are the prior probabilities of the
respective values. The variable zi allows the background model p(fi|B) to explain those locations in
the feature map F that is in the foreground region FG but which the foreground model (fi|N) cannot
explain well, presumably due to partial occlusion. To reduce clutter in the remaining paper, we will
omit the occlusion variable in the coming equations, but note that we are using a robust likelihood
during inference. Our model pipeline and derivation of the formula are introduced in Appendix.A.
MLE Training. We train the parameters Φ of the generative probabilistic model through maximum
likelihood estimation (MLE) by minimizing the negative log-likelihood of the feature representations
over the whole training set, where the correspondence between feature vectors fi and kernels r is
computed using the ground-truth pose and camera parameters. After deriving and simplifying the
negative log-likelihood loss function, we use below mean squared error between the volume kernel
features and the target feature map as the loss function:

LNLL(F,N,Π, B) =
1

2

∑
i∈FG

∥fi − ϕr∥2 +
1

2

∑
i′∈BG

∥fi′ − b∥2 + C, (2)

where C is a constant scalar. This loss function can be optimized via gradient descent using a
differentiable volume renderer, e.g. Wang et al. (2022); Keselman & Hebert (2022) by ray tracing.
Contrastive Learning of the UNet Feature Extractor. To avoid local optima in the reconstruction
loss, we train our feature extractor by contrastive learning to learn features and hence become aware
of the local 3D pose of the limbs. We achieve this by optimizing a contrastive loss with three terms:

LKernel(F,FG) = −
∑
i∈FG

∑
i′∈FG\{i}

∥fi − fi′∥2 (3)

LBG(F,FG,BG) = −
∑
i∈FG

∑
j∈BG

∥fi − fj∥2 (4)

where LKernel encourages features of different kernels to be distinct from each other. LBG encour-
ages features on the human to be distinct from those in the background. We optimize those losses
jointly Lcontrast = LKernel + LBG in a contrastive learning framework. Our full model is trained
by optimizing the overall training loss Ltrain = LNLL + Lcontrast, where we need to optimize the
parameters of the UNet feature extractor ζ and the parameters of the generative model Φ jointly.
Optimization with Multi-task Integration. Once the generative model is trained with a general
ability to represent humans wisely, we perform 3D human pose estimation for each instance by
minimizing Equation 2, which is also used for training. However, this is non-convex optimization that
can easily converge to local minima if the initialization is not good enough. Motivated by existing
optimization-based methods Pavlakos et al. (2019); Bogo et al. (2016), we introduce auxiliary losses
to guide the optimization process:

Lreproj(V̂2D,N,Π) =
∑
i

∥V̂ i
2D −Π(WiM)∥2 +

∑
r

or∥v̂r −Π(Vr)∥2 (5)
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where V̂2D is the kernel locations detected by an off-the-shelf detector Cao et al. (2017) and Wi ∈
R1×N is a pretrained linear regressor. Vi′ ∈ M denotes a kernel of which the visibility is or and
the maximum-likelihood detection of the 2D location is v̂r = argmax(h,w)∥fh,w − ϕr∥2. We also
involve part segmentation loss Lpartseg and prior loss Lprior ensuring the 3D pose is valid in our
inference. The final objective at inference time is:

Linference(Fj ,N,Π, B) =LNLL(Fj ,N,Π, B) + Lreproj(V̂2D,N,Π) (6)

+ Lpartseg(P̂ ,N,Π) + Lprior(N).

where P̂ is the observation of part segmentation, please refer to Appendix.A for more details.

3 Experiments

3.1 Training Setup and Datasets

Training. We train all on COCO Lin et al. (2014) datasets for 175K iterations at the same setting.
Evaluation. For evaluation, we use the in-the-wild dataset 3DPW von Marcard et al. (2018b) to
measure the robustness and generalization of our method. As the main evaluation metrics, mean per
joint position error (MPJPE), Procrustes-aligned mean per joint position error (PA-MPJPE).
Adversarial Occlusion Robustness Evaluation. Instead of using a gray occlusion patch, we use
textured patches generated by randomly cropping texture maps which is more challenging. Two
different patch sizes are used: 40× 40 and 80× 80 for a 224× 224 image, denoted as Occ@40 and
Occ@80 respectively. More details about the setup and implementation are expanded in Appendix.A.

3.2 Performance Evaluation

Comparison to State-of-the-art. We evaluate the occlusion robustness of three SoTA regression-
based methods on 3DPW-AdvOcc. As shown in Table 1, our volumetric neural human is more robust
to occlusion than the state-of-the-art robust method Kocabas et al. (2021). While in the non-occluded
setting, our method achieves comparable or better performance. We also use 2D Percentage of
Correct Keypoints with head length threshold (PCKh) as our metric to show much more robustness to
predict 2D keypoints, which existing methods for robustness heavily rely on. Note that we compared
with the state-of-the-art works that have essential improvements, so some most recent works such as
Li et al. (2022) which introduces performance improvements at the data level are excluded.

Table 1: Performance on 3DPW and 3DPW-AdvOcc. Ours outperforms state-of-the-art regression-
based methods on 3DPW-AdvOcc while being on par or better on 3DPW. Evaluation metrics reported:
MPJPE (mm, ↓ the better), PA-MPJPE (mm, ↓ the better), and PCKh (%, ↑ the better).

Method 3DPW 3DPW-AdvOcc@40 3DPW-AdvOcc@80
MPJPE PAMPJPE PCKh MPJPE PAMPJPE PCKh MPJPE PAMPJPE PCKh

SPIN Kolotouros et al. (2019) 95.08 57.40 91.84 113.89 69.36 85.84 155.98 89.20 71.92
HMR-EFT Joo et al. (2021) 89.88 53.51 92.55 108.27 66.15 87.35 142.74 82.62 78.81
PARE Kocabas et al. (2021) 81.44 50.92 92.48 93.18 61.31 89.15 117.67 72.90 84.27
Ours 81.43 51.05 94.28 91.92 58.42 91.76 114.74 68.70 86.85

Ablation Studies. We verify the usefulness of the volumetric human representation described in
Sec. 2.1 and loss functions for inference with results shown in Table 2. 2D keypoint reprojection
loss contributes a lot because directly optimizing the NLL loss does not generate good results as the
initialization can be very far away from the global optima when the subject is under heavy occlusion.
Conversely, only fitting the 2D losses gives inferior results either because of lacking 3D awareness.

Table 2: Ablation Studies on 3DPW and 3DPW-AdvOcc. Ours outperforms state-of-the-art
regression-based methods on 3DPW-AdvOcc while being on par or better on 3DPW. Evaluation
metrics reported: MPJPE (mm, ↓ the better), PA-MPJPE (mm, ↓ the better).

Method 3DPW 3DPW-AdvOcc@40 3DPW-AdvOcc@80
MPJPE PA-MPJPE MPJPE PA-MPJPE MPJPE PA-MPJPE

Ours w/o VolHuman & Keyp. 2D & NLL 99.47 65.39 104.68 72.13 133.94 73.83
Ours w/o VolHuman & Keyp. 2D 89.91 59.10 99.87 66.08 125.81 71.39
Ours w/o VolHuman 83.66 52.35 93.32 59.92 118.78 69.87
Ours 81.43 51.05 91.92 58.42 114.74 68.70
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4 Conclusion and Future Work

In this work, we introduce volumetric neural human, an optimization system for human pose
estimation that is accurate and highly robust to occlusion. First, we design a volumetric human
representation consisting of 3D Gaussian ellipsoids kernels that fit each component of the human
body adaptively, with a corresponding neural texture map to capture pose information. By proposing
a generative model and contrastive learning framework with better occlusion reasoning, we achieve
robust human pose optimization via analysis-by-synthesis with volume rendering. Experiments on
a challenging benchmark dataset show our optimization has better robustness to partial occlusion
and still be accurate on unoccluded cases. We also verify the usefulness of each component and
the potential of volume rendering in human pose estimation. In the future, we will further improve
volumetric neural humans by involving more human-relevant insight, such as view-point information,
to overcome ambiguity, and apply volume rendering on more tasks to develop their robustness.
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A Appendix

A.1 Overview of our System

In this work, we propose the volumetric neural human for robust pose optimization via analysis-
by-synthesis. Given the designed volumetric neural human representation N = {V,Φ} consists
of a set of Gaussian ellipsoids kernels V ∈ RN×3 on human body M(θ, β) with feature vectors
Φ = {ϕr ∈ RD}, we conduct training and inference for robust human pose estimation. During
training, we train the parameters Φ through maximum likelihood estimation (MLE) with a volume
renderer to make the generative model better recognize the volumetric human. On the other hand, we
train the feature extractor U-Net through contrastive learning to extract features distinctly to avoid
local optima. After that, we conduct human pose optimization through the trained model with better
occlusion reasoning in the differentiable pipeline with the aid of optimization loss.

Figure 1: Overview of our system. we perform robust human pose optimization by fitting a generative
model of deep feature vectors to the feature map F extracted by a U-Net. Our model consists of a
parametric volumetric neural human body M(θ, β) with neural texture map Φ which stores a set of
features for each rendering kernel. After rendering the volumetric neural human to F̄ with volume
renderer, feature distributions for foreground pixels are modeled by a Gaussian model and background
pixels are modeled by a background model. With the likelihood of F from training, robust pose
estimation is done by optimizing the negative log-likelihood loss w.r.t. the pose parameters and the
camera parameters.

A.2 Optimization Loss

Here we develop more details of loss functions for inference. Besides 2D reprojection loss of detected
kernels, We consider a part segmentation loss to introduce more information for occlusion reasoning.
It makes the part segmentation Pi of each kernel i optimized towards ground truth P̂i:

Lpartseg(P̂ ,N,Π) =
∑
i

CrossEntropy(P̂i, Pi) (7)

where the observation of part segmentation P̂ is obtained using Kocabas et al. (2021). We also use a
3D pose prior Pavlakos et al. (2019) to ensure the 3D pose is valid:

Lprior(N) = N (0, I)(Evae(θ)) (8)

where Evae is the encoder of a pretrained variational autoencoder (VAE) which encodes the pose
parameter to a 32-dimensional latent variable that is normally distributed.
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A.3 Volumetric Neural Humans

As we mentioned before, the downsampled mesh, which is widely used to represent objects, now
is directly used for human pose estimation by many works, leading to bad robustness reasoning.
Specifically, this simple representation can not represent the human body well, especially for the
limbs of humans, where the vertice of mesh distribution is the most unevenly as shown in Fig 4.
Besides, each vertex of mesh representation is considered equal in weight because of their lacking
characters in size. This shortage of human-relevant insight representation leaves the rendering process
without critical information and out of control.

Figure 2: Unevenly distribution of vertices of mesh representation. With a shortage of human-relevant
insight, this representation is especially not suitable for representing thin-shaped human limbs.

Instead, the volumetric neural human representation not only avoids the dependence on 2D keypoints
with volume rendering, but also involves more knowledge for occlusions reasoning by representing
instinct information from vertex level to parts level of the body model. In this section, we will
develop more details of our volumetric representation designed for human, including geometry
design, quantitative comparisons and rendering process.

A.3.1 Geometry Design

The geometric design of volumetric human representation refers to the arrangement of rendering
kernels that take into account the shape of the human body, like the vertices in the mesh representation.
It includes location, size and number of rendering kernels.
Concretely, the volumetric neural human representation consists of K ellipsoids gaussian kernels
with different sizes and shapes controlled by a parameter Σ, whose formula will be given in the
following subsection A.3.3. As shown in Fig 3, by easily changing the scale and lineage of Σ based
on the shape of the human part to which it belongs in our implementation, K rendering kernels can
adaptively fit every shape of humans.

(a) Increasing scale of Σ (b) Increasing lineage of Σ

Figure 3: Adjustment of the parameters Σ of the kernel to fit the shape of the human body. Each
rendering kernel automatically adjust the scale and lineage of Σ to achieve the best way to represent
the human body in the volumetric level.

Based on rending kernels adaptively fitting to the body part it locate at, inspired by the principle of
human structure, they are placed uniformly on the human skeleton in the number of N , as well as on
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Table 3: Comparisions of two representations’ kernel

Representation Location Amounts

Downsampled mesh Vertice 858
volumetric human Midpoints of skeleton 439

the J joints in the SMPL model. Fig 4 shows their arrangement in a human body. In this way, the
human representation in volume space not only takes into account those detailed body components
that cannot be covered by the mesh representation, but also brings more potential information, such
as a part-level segmentation obtained by treating vertices belonging to the same part equally. In our
implementation, L = 18, N = 23, J = 25, K = 439.

Figure 4: Layout position of kernels to render in a human body. They are placed uniformly on the
human skeleton and the joints in the SMPL model.

A.3.2 Comparisons of Two Representations

Here we give comparisons of rendering differences between volumetric representation and downsam-
pled mesh representation. In Table 3 we show the difference of kernels to render in two representations.
For the downsampled mesh, rendering kernels are put on each vertex of downsampled mesh with neu-
ral features to represent the human body. It needs more than 800 vertices to validly cover the human
body. For a volumetric human, rendering kernels are mainly put on the midpoints of the skeleton so
that only half the number of vertices used by the mesh one is needed to effectively represent humans
at the volumetric level. Based on that, we give comparisons of training memory(Mbytes/GPU) and
speed(images/s/GPU) during the rendering of two representations, as shown in Fig 5(a). Rendering in
volumetric space with volumetric human representation a 30% reduction in computational memory
and a 36% increase in speed.
We demonstrate the visualization of kernels for volumetric neural humans from different views with
a reference to the mesh model. To simplify here we set N = 1, i.e. each body part is represented by
one kernel. The qualitative results is shown in Fig 6.

A.3.3 Rendering Process

Here we give the core part of the rendering process for our volumetric human representation with a
volume renderer. For volume rendering, as Mildenhall et al. (2020) introduce, objects are represented
using continuous volume density functions ρ(x, y, z) with emitted color c(x, y, z) = (r, g, b). The
observed color C(r) along a ray r(t) = (x(t), y(t), z(t)) are computed by:

C(r) =

∫ tf

tn

T (t)ρ(r(t))c(r(t))dt, where T (t) = exp

(
−γ

∫ t

tn

ρ(r(s))ds
)

(9)
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(a) The comparison of training memory (Mbytes/GPU) (b) The comparison of training speed (image/s/GPU)

Figure 5: The Comparisons of training memory and speed during rendering of downsampled mesh
and volumetric human. Rendering in volume space, the volume neural human achieves better
computational speed and less memory usage.

Figure 6: Visualization of kernels for volumetric neural human from different views with a reference
to the mesh model. Each body part is represented by one gaussian ellipsoids kernel.

where γ is a coefficient that determines the rate of absorption, tn and tf donate the near and far bound
along the ray.
Specifically, given volumetric human representation consists of K rendering kernels, the human
volume ρ is reconstructed with a sum of these ellipsoidal Gaussians by the volume renderer:

ρ(X) =

K∑
k=1

1√
2π · ∥

∑
k∥2

e
−
1

2
(X−Mk)

T ·
∑−1

k ·(X−Mk)
(10)

where K is the total number of Gaussian kernels of volumetric humans, X = (x, y, z) is an arbitrary
location in the 3D space. The Mk, a 3×1 vector, is the center of k-th ellipsoidal Gaussians kernel
located on the human skeleton. The Σ is a 3×3 spatial variance matrix. Specifically, by changing its
scale and lineage, the direction, size and shape of k-th kernel can be fitted to the shape of the human
body, as we show in A.3.1.
With the core parameter ρ calculated from the volumetric human representation, the rendered feature
maps F can be interpolated from the attribute of each reconstruction kernel via ray tracing, following
the volume neural renderer Wang et al. (2022).
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A.4 Complete Derivations of the Formula

Here we develop derivations of the formula used in our analysis-by-synthesis pipeline for reasoning
occlusion.

A.4.1 Derivation of Equation 1

Following Wang et al. (2021), we define a probabilistic generative models p(F |Ny). Specifically, the
likelihood of a target feature map F ∈ RH×W×D is defined such that:

p(F |N,Π, B) =
∏

i∈FG
p(fi|N)

∏
i′∈BG

p(fi′ |B), (11)

where the foreground FG is the set of all positions on the 2D lattice P of the feature map F that is
covered by the rendered neural mesh model. The background BG contains those pixels respectively
that are not covered by the mesh. The foreground likelihood p(fi|N) is defined as a Gaussian
distribution N (ϕr, σ

2
rI) with the mean vector ϕr and standard deviation σr. The correspondence

between the image feature fi and the vertex feature ϕr is determined through the rendering process.
Background features are modeled using a simple background model p(fi′ |B) that is defined by a
Gaussian distribution N (b, σ2I) with B = {b, σ}, which can be estimated with maximum likelihood
from the background features.
To reason robustness, following related work on robust inference with generative models Egger et al.
(2018), the model likelihood can be made robust to occlusion, as introduced in Section 2.2:

p(F |N,Π, B, zi) =
∏

i∈FG
[p(fi|N)p(zi=1)]

zi [p(fi|B)p(zi=0)]
(1−zi)

∏
i′∈BG

p(fi′ |B), (12)

where zi ∈ {0, 1} is a binary variable and p(zi=1) and p(zi=0) are the prior probabilities of the
respective values. The variable zi allows the background model p(fi|B) to explain those locations
in the feature map F that is in the foreground region FG, but which the foreground model (fi|N)
cannot explain well, presumably due to partial occlusion.

A.4.2 Derivation of Equation 2

Due to the correspondences between the feature vectors and the vertices are known, the training of
the generative model parameters {Π, B} and the feature extractor can be done by a simple maximum
likelihood estimation (MLE) from the training data in our work. Also, during inference the human
pose can be estimated by minimizing the negative log-likelihood of the model w.r.t. the camera
parameters Π:

LNLL(F,N,Π, B) = − ln p(F |N,Π, B) (13)

= −
∑
i∈FG

(
ln

(
1

σr

√
2π

)
− 1

2σ2
r

∥fi − ϕr∥2
)

−
∑

i′∈BG

(
ln

(
1

σ
√
2π

)
− 1

2σ2
∥fi′ − b∥2

)
Assuming unit variances Wang et al. (2021), i.e. σ2 = σr = 1, we reduce it to the mean squared
error between the vertex features and the target feature map to use, as introduced in Section 2.2.

LNLL(F,N,Π, B) =
1

2

∑
i∈FG

∥fi − ϕr∥2 +
1

2

∑
i′∈BG

∥fi′ − b∥2 + C, (14)

A.5 Implementation Details

Here we develop more implementation details, including experimental setting and implementation.
Training and Evaluation. As a common practice, we train our volumetric neural human on
COCO Lin et al. (2014) datasets for 175K iterations, i.e. 300 epochs. Since training requires the
correspondence between image pixels and mesh vertices, ground truth SMPL parameters are needed.
Since COCO is an in-the-wild dataset with only 2D annotations, we use pseudo-ground truth SMPL
parameters generated by EFT Joo et al. (2021). We only use the training set of these datasets following
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prior arts Kolotouros et al. (2019); Kocabas et al. (2021); Joo et al. (2021). Note that for all methods
compared in the evaluation, we use the model trained with the same data as ours for fairness.
The test set 3DPW von Marcard et al. (2018b) is used for which we sample the videos every 30
frames. Here, different from common practice, we also report the 2D Percentage of Correct Keypoints
with head length threshold (PCKh) to measure how well the prediction aligns with the 2D image.
Note that all methods are not trained on this dataset.
Adversarial Occlusion Robustness Evaluation. Inspired by the occlusion sensitivity analysis in
Kocabas et al. (2021), we design an adversarial protocol 3DPW-AdvOcc to evaluate the robust-
ness of state-of-the-art (SotA) regression-based methods and how much our model can improve
it. Specifically, we slide an occlusion patch over the input image to find the worst prediction the
regressors make. This is done by comparing the relative performance degradation on the visible
joints. We argue that evaluating the performance of occluded joints is sometimes ambiguous since
the location of occluded joints is not always predictable even for a human. Therefore, for a more
stable and meaningful evaluation, we only calculate the metrics on the joints that are not masked by
the occlusion patch. Instead of using a gray occlusion patch, we use textured patches generated by
randomly cropping texture maps from the Describable Textures Dataset (DTD) Cimpoi et al. (2014),
which is more challenging. Two different patch sizes are used: 40× 40 and 80× 80 for a 224× 224
image, denoted as Occ@40 and Occ@80 respectively.
Experimental Implementation. For training, We use a U-Net Ronneberger et al. (2015) style
network as the feature extractor which consists of a ResNet-50 He et al. (2016) backbone and 3
upsampling blocks. The input image is a 224× 224 crop centered around the human. The feature
map has a resolution of 56 × 56 and the feature dimension is 128. The Adam optimizer with a
learning rate of 5 × 10−5 and batch size of 64 is used for training the feature extractor. Standard
data augmentation techniques are used including random flipping, scaling and rotation. Note that
unlike many regression-based methods Sárándi et al. (2018); Georgakis et al. (2020); Kocabas et al.
(2021), we do not use occlusion augmentation. For inference, we use Adam as the optimizer with a
learning rate of 0.02 and run a maximum of 80 steps. Different regressors are used as initialization.
We check the negative log-likelihood LNLL of the initial pose and its 180◦-rotated version around
the y-axis and use the better one to initialize our model. We use the VoGE Wang et al. (2022) as our
differentiable volume renderer.
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