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Abstract

Despite recent progress in systematic evalu-001
ation frameworks, benchmarking the uncer-002
tainty of large language models (LLMs) re-003
mains a highly challenging task. Existing004
methods for benchmarking the uncertainty of005
LLMs face three key challenges: the need006
for internal model access, additional training,007
or high computational costs. This is partic-008
ularly unfavorable for closed-source models.009
To this end, we introduce UBENCH, a new010
benchmark for evaluating the uncertainty of011
LLMs. Unlike other benchmarks, UBENCH012
is based on confidence intervals. It encom-013
passes 11,978 multiple-choice questions span-014
ning knowledge, language, understanding, and015
reasoning capabilities. Based on this, we con-016
duct extensive experiments. This includes com-017
parisons with other advanced uncertainty esti-018
mation methods, the assessment of the uncer-019
tainty of 20 LLMs, and an exploration of the020
effects of Chain-of-Thought (COT) prompts,021
role-playing (RP) prompts, and temperature on022
model uncertainty. Our analysis reveals several023
crucial insights: 1) Our confidence interval-024
based methods are highly effective for uncer-025
tainty quantification; 2) Regarding uncertainty,026
outstanding open-source models show compet-027
itive performance versus closed-source mod-028
els; 3) CoT and RP prompts present potential029
ways to improve model reliability, while the030
influence of temperature changes follows no031
universal rule. Our implementation is available032
at https://anonymous.4open.science/r/UBench.033

1 Introduction034

In recent years, significant progress has been035

made in the development of large language mod-036

els (LLMs), including ChatGPT (Wu et al., 2023),037

Llama (Dubey et al., 2024), Qwen (Yang et al.,038

2024; Team, 2024), etc. These advancements have039

not only piqued the intense interest of both the in-040

dustrial and academic sectors (Zhao et al., 2023),041

but have also spurred a wave of exploration and042

What is the best drug of choice for acute heart attacks? 
%3CmxGraphModel%3E%3Croot%3E%3CmxCell%20id%3D%220%22%2F%3E%3CmxCell%20id%3D%221%22%20parent%3D%220%22%2F%3E%3CmxCell%20id%3D%222%22%20value%3D%22%22%20style%3D%22line%3BstrokeWidth%3D2%3Bhtml%3D1%3Bshadow%3D0%3Bsketch%3D1%3BfillColor%3D%234D4D4D%3BgradientColor%3Dnone%3B%22%20vertex%3D%221%22%20parent%3D%221%22%3E%3CmxGeometry%20x%3D%22404.42%22%20y%3D%22230%22%20width%3D%22305.58%22%20height%3D%2210%22%20as%3D%22geometry%22%2F%3E%3C%2FmxCell%3E%3C%2Froot%3E%3C%2FmxGraphModel%3E 

  Candidate Answer: Aspirin (True)
What do you think is the likelihood 

that the answer is correct? 

80% 50%

LLM1 LLM2👍

What is the best drug of choice for acute heart attacks? 
%3CmxGraphModel%3E%3Croot%3E%3CmxCell%20id%3D%220%22%2F%3E%3CmxCell%20id%3D%221%22%20parent%3D%220%22%2F%3E%3CmxCell%20id%3D%222%22%20value%3D%22%22%20style%3D%22line%3BstrokeWidth%3D2%3Bhtml%3D1%3Bshadow%3D0%3Bsketch%3D1%3BfillColor%3D%234D4D4D%3BgradientColor%3Dnone%3B%22%20vertex%3D%221%22%20parent%3D%221%22%3E%3CmxGeometry%20x%3D%22404.42%22%20y%3D%22230%22%20width%3D%22305.58%22%20height%3D%2210%22%20as%3D%22geometry%22%2F%3E%3C%2FmxCell%3E%3C%2Froot%3E%3C%2FmxGraphModel%3E 

  Candidate Answer: Antibiotics (False)
What do you think is the likelihood 

that the answer is correct? 

10% 60%

LLM1 LLM2👍

Figure 1: In the context of different candidate answers
to the same question, LLMs display different levels
of confidence (in other words, uncertainty). Note that
LLMs may exhibit consistent levels of confidence for
either the wrong answer or the right answer, which we
do not want.

research. In this fast-paced development, compre- 043

hensively evaluating LLMs’ capabilities is essen- 044

tial. This evaluation helps us understand LLMs 045

better, improve their performance, and apply them 046

effectively in real-world scenarios, unlocking their 047

potential for innovation across different fields. 048

Much effort has been devoted to establishing ac- 049

curate, authentic, and equitable evaluation systems 050

for LLMs, such as C-Eval (Huang et al., 2023b) 051

and MT-Bench (Zheng et al., 2023b). However, 052

these benchmarks often focus solely on the perfor- 053

mance of models across various tasks, neglecting 054

the credibility of their answers. In some situations, 055

models may not be certain about the confidence 056

level associated with their provided answers, poten- 057

tially leading to misunderstandings or even harm. 058

Specifically, LLMs are prone to generating mis- 059

information without warning, which may mani- 060

fest as hallucinations (Huang et al., 2023a), biases 061

(Felkner et al., 2023), or disinformation (Lucas 062

et al., 2023). In this scenario, we hope to know the 063
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Method Close? Single? Close&Single?

Xiong et al. (2023) ✓ ✗ ✗
Ye et al. (2024) ✓ ✓ ✗
UBENCH (Ours) ✓ ✓ ✓

Table 1: Comparison of different training-free uncer-
tainty estimation methods: “Close?” indicates whether
the method can be applied to closed-source models,

“Single?” indicates whether only a single inference is
needed, and “Close&Single?” indicates whether the
method can be applied to closed-source models with
single-inference requirements.

confidence level of the response to decide whether064

to trust the information or suggestions provided065

by LLMs. Specifically, as shown in Figure 1, two066

LLMs exhibit different confidence levels for vari-067

ous candidate answers to the same question “What068

do you think is the likelihood that the answer is cor-069

rect?”. Clearly, the performance of LLM1 aligns070

more closely with human expectations. Inspired071

by that, some research has initiated a shift towards072

assessing the uncertainty of LLMs (Xiong et al.,073

2023; Ye et al., 2024; Xu et al., 2024).074

However, many existing uncertainty estimation075

methods for LLMs are severely restricted. They076

confront challenges like the need for additional077

training, high computational costs, and access to078

internal model details. This is especially tough079

for closed-source models. These limitations ham-080

per the application of uncertainty estimation, and081

thus, a comprehensive and accurate assessment of082

model reliability and performance. For instance,083

Xu et al. (2024) proposed SaySelf, a two-stage084

training framework that requires extra training, but085

it is difficult to be used for closed-source mod-086

els. Xiong et al. (2023) use prompts to get model087

confidence, but it needs multiple sampling, which088

is costly and not ideal in some cases1. Ye et al.089

(2024)’s logits-based method for uncertainty as-090

sessment needs internal model access, so it only091

works for open-source models. Approximating it092

for closed-source models via multiple sampling,093

like Xiong et al. (2023)’s method, is inefficient and094

resource-consuming.095

To address these challenges, we introduce096

UBENCH, a new benchmark. Distinct from previ-097

ous efforts, it is founded on confidence intervals,098

which not only facilitates automated evaluation but099

also enables more effective quantification of un-100

certainties. Comprising four question categories,101

1Please refer to §G for details.

UBENCH encompasses a total of 11,978 (~12K) 102

multiple-choice questions, including both positive 103

and negative samples. Notably, to improve effi- 104

ciency while maintaining accuracy, some of the 105

negative samples were generated by GPT-42 and 106

subsequently underwent manual review and refine- 107

ment (refer to §F for details). Designed to accu- 108

rately assess the reliability of LLMs, UBENCH is 109

resource-efficient, requiring no extra training, only 110

one inference, and no internal model parameters, 111

filling a key gap in LLM evaluation. A comparison 112

of UBENCH with other training-free benchmark 113

uncertainty methods is presented in Table 13. 114

Based on this, we compare the uncertainty quan- 115

tification method based on confidence intervals 116

with other powerful methods. We also evaluate 117

20 state-of-the-art open-source and closed-source 118

models that cover several series and sizes. In 119

addition, we explore the factors that potentially 120

influence model uncertainty, including Chain-of- 121

Thought (COT) (Wei et al., 2022) prompts, role- 122

playing (RP) (Shao et al., 2023) prompts, and the 123

impact of temperature on model uncertainty. Our 124

main contributions and findings are summarised 125

below: 126

• We propose UBENCH, a new confidence 127

interval-based uncertainty evaluation bench- 128

mark for LLMs. It consists of approxi- 129

mately 12K questions, covering four cate- 130

gories: knowledge, language, understanding, 131

and reasoning. 132

• We conduct a comparison of our confidence 133

interval-based uncertainty estimation method 134

with other LLM uncertainty estimation meth- 135

ods and achieve superior results. 136

• We utilize UBENCH to conduct tests on 20 137

widely-adopted LLMs. In general, excellent 138

open-source and closed-source LLMs display 139

comparable degrees of reliability. 140

• Further exploratory analysis reveals that CoT 141

and RP prompts are potential methods for en- 142

hancing model reliability, while there is no 143

general rule regarding the impact of tempera- 144

ture. We analyze the raw responses of LLMs 145

and offer possible explanations for each ef- 146

fect. This analysis paves the way for broader 147

downstream applications of LLMs. 148

2The version is 1106-preview.
3Please refer to §4.2 for more results.
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Figure 2: Construction process of UBENCH and systematic, automated LLM uncertainty evaluation framework. The
data sources of UBENCH are from multiple types of public datasets, with processed into the uncertainty evaluation
format and carefully controlled quality. Then UBENCH is leveraged to compare the reliability of typical open-source
and closed-source LLMs with 4 evaluation metrics.

2 Related Work149

2.1 Benchmark for LLMs150

Previous benchmarks can generally be categorized151

into two types: generic task benchmarks and task-152

specific benchmarks (Chang et al., 2023). Generic153

task benchmarks are used to evaluate the generic154

capabilities of LLMs for several tasks (e.g., senti-155

ment analysis, natural language inference, machine156

translation, etc.), including GLUE (Wang et al.,157

2018), MMLU (Hendrycks et al., 2020), MT-Bench158

(Zheng et al., 2023b), BIG-bench (Srivastava et al.,159

2022), PromptBench (Zhu et al., 2023), PandaLM160

(Wang et al., 2023), MT-Eval (Kwan et al., 2024)161

and so on. ToMBench (Chen et al., 2024) is used to162

benchmark the Theory of Mind in large language163

models. C-Eval (Huang et al., 2023b) is the first164

benchmark for broadly assessing a model’s Chi-165

nese knowledge and reasoning ability. Zhang et al.166

(2023) present SafetyBench, specifically designed167

to assess the safety capabilities of LLMs.168

2.2 Uncertainty Estimation for LLMs169

Recent research in uncertainty estimation for170

LLMs has explored diverse methodologies, broadly171

categorized into logits-based, verbal-based, and172

training-based approaches. Logits-based methods173

leverage model output and parameters to assess un-174

certainty, though their applicability is constrained. 175

For instance, Kuhn et al. (2022) cluster semanti- 176

cally similar answers to evaluate uncertainty, while 177

Duan et al. (2023) incorporate sentence relevance 178

for uncertainty estimation; however, these methods 179

are unsuitable for closed-source LLMs. Although 180

Ye et al. (2024)’s method can approximate results 181

by repeatedly sampling the closed-source model, it 182

exacerbates resource consumption. Verbal-based 183

confidence assessment methods require models to 184

output confidence scores in natural language, as 185

proposed by Lin et al. (2022a). While Tian et al. 186

(2023) observe better calibration in RLHF-LMs’ 187

confidence scores, Xiong et al. (2023) highlight 188

overconfidence issues and advocate combining ver- 189

balized confidence with consistency. Furthermore, 190

the applicability of these two evaluation methods 191

is still limited to fact-recall tasks or multi-step 192

inference requirements. Training-based methods 193

often require retraining or fine-tuning, limiting 194

scalability. Examples include UaIT (Liu et al., 195

2024), which aligns uncertainty perception with 196

probabilistic outputs, and R-Tuning (Zhang et al., 197

2024) for enhancing refusal capability on uncertain 198

queries. Moreover, Bakman et al. (2024) propose 199

MARS that takes into account the semantic contri- 200

bution of each token to evaluate the correctness of 201

the generated content. Xu et al. (2024) mitigate this 202
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with Sayself, a reinforcement learning framework203

for calibrated confidence generation. For more204

analysis, please refer to §A.205

Unlike all the aforementioned works, our pro-206

posed UBENCH introduces a novel confidence207

interval-based sampling approach that achieves208

three key advantages: requiring only single infer-209

ence, without requiring additional model training,210

and applicability to closed-source models. Further-211

more, while most existing methods have only been212

validated on a limited number of tasks, UBENCH213

serves as a multi-dimensional, multi-task bench-214

mark designed to comprehensively evaluate the215

uncertainty of LLMs.216

3 The BENCH217

The overall construction and evaluation process of218

UBENCH is shown in Figure 2. Overall, UBENCH219

includes 4 categories, including tasks such as read-220

ing comprehension, QA, mathematical reasoning,221

and more. We provide detailed information on222

categories, data construction, and the design of223

prompts.224

3.1 Problem Categories225

We adopt the competency categorization from226

OpenCompass’s LLM assessment framework (Con-227

tributors, 2023), resulting in the following four cat-228

egories:229

Language. This category primarily evaluates230

the reliability of LLMs in dealing with language231

category tasks, encompassing tasks such as syntac-232

tic analysis, semantic matching, word sense disam-233

biguation, and coreference resolution.234

Knowledge. This type of question mainly eval-235

uates the reliability of LLMs when dealing with236

knowledge-based tasks such as common sense and237

facts, covering contents in areas like health, law,238

finance, politics, and history.239

Understanding. The aim is to evaluate LLMs’240

reliability in understanding-related tasks. These241

tasks encompass various aspects, including multi-242

task language understanding, reading comprehen-243

sion, situational awareness, behavioral interpreta-244

tion, dialogue understanding, and so on.245

Reasoning. Unlike other categories, this one246

aims to evaluate LLMs’ reliability in mathematical247

reasoning, logical reasoning, and related areas.248

3.2 Data Construction 249

The data sources of UBENCH originate from var- 250

ious existing datasets and are specially processed 251

into formats suitable for evaluation, with careful 252

quality control. 253

Data Collection. To comprehensively and effi- 254

ciently construct the dataset, we conduct random 255

sampling from 24 open-source datasets4. Each 256

dataset contributes 500 data points, as shown in 257

Figure 3. The datasets sampled for each category 258

are listed in the Appendix D.1. 259

Data Processing. Intuitively, a reliable LLM 260

yields lower uncertainty for correct answers and 261

higher uncertainty for incorrect ones. Therefore, 262

different from previous works, we reformat the 263

collected data into positive and negative samples, 264

respectively. A positive sample indicates that the 265

correct answer is used, and a negative sample in- 266

dicates that an incorrect answer is randomly se- 267

lected as the answer. For datasets without candidate 268

wrong answers, we prompt GPT-4-1106-preview 269

using a one-shot approach to generate incorrect an- 270

swers similar to the correct ones. For details on the 271

prompts, please refer to Appendix §B.1. 272

Quality Control. On one hand, for the gener- 273

ated negative samples, we conduct a comprehen- 274

sive check of all data. Failed data are regenerated 275

until they meet the requirements, ensuring data in- 276

tegrity for subsequent analysis. On the other hand, 277

to ensure dataset quality, a strict review process is 278

implemented. Each sample is first reviewed by two 279

authors. Only when both concur that there are no 280

issues is the sample approved. In case of disagree- 281

ment, a third author joins the review to reach a con- 282

sensus. Through this process, the sample approval 283

rate has reached 99.82%. For more details on the 284

data validation process, refer to Appendix §F. 285

3.3 Prompt Design 286

Like previous studies (Zhang et al., 2023; Zheng 287

et al., 2023b), we evaluate the reliability of LLMs 288

based on prompt engineering. Initially, we design 289

the prompt with a data sample and all its answers, 290

following instructions like choose the correct an- 291

swer and also yield the uncertainty. We call this the 292

standard prompt. However, most LLMs struggle 293

to output a consistent format of uncertainty values, 294

even some of them do not understand the instruc- 295

tions (Kuhn et al., 2023), which makes it hard to 296

4Most of the datasets used in this study are sourced from
HuggingFace.

4

https://huggingface.co/datasets


The UBENCH

LanguageLanguageLanguage

KnowledgeKnowledgeKnowledge

UnderstandingUnderstandingUnderstanding

ReasoningReasoningReasoning

WIC:WIC: 4.17% 4.17%WIC: 4.17%

WSC:WSC: 4.17% 4.17%WSC: 4.17%

COLA:COLA: 4.17% 4.17%COLA: 4.17%

QQP:QQP: 4.17% 4.17%QQP: 4.17%

CommonSenseQA:CommonSenseQA: 4.17% 4.17%CommonSenseQA: 4.17%

TruthfulQA:TruthfulQA: 4.17% 4.17%TruthfulQA: 4.17%

popqa-parents-lying:popqa-parents-lying: 4.17% 4.17%popqa-parents-lying: 4.17%

NQ:NQ: 4.17% 4.17%NQ: 4.17%

WikiQA:WikiQA: 4.17% 4.17%WikiQA: 4.17%

GSM8K:GSM8K: 4.17% 4.17%GSM8K: 4.17%

AQuA:AQuA: 4.17% 4.17%AQuA: 4.17%

AddSub:AddSub: 4.17% 4.17%AddSub: 4.17%PIQA:PIQA: 4.17% 4.17%PIQA: 4.17%

SingleEQ:SingleEQ: 4.17% 4.17%SingleEQ: 4.17%

SVAMP:SVAMP: 4.17% 4.17%SVAMP: 4.17%

MultiArith:MultiArith: 4.17% 4.17%MultiArith: 4.17%

RACE:RACE: 4.17% 4.17%RACE: 4.17%

MMLU:MMLU: 4.17% 4.17%MMLU: 4.17%

LogiQA:LogiQA: 4.17% 4.17%LogiQA: 4.17%

SWAG:SWAG: 4.17% 4.17%SWAG: 4.17%

Cosmos QA:Cosmos QA: 3.99% 3.99%Cosmos QA: 3.99%

Social IQA:Social IQA: 4.17% 4.17%Social IQA: 4.17%

DialogSum:DialogSum: 4.17% 4.17%DialogSum: 4.17%

CommonGen:CommonGen: 4.17% 4.17%CommonGen: 4.17%

Figure 3: UBENCH covers 4 categories: Language,
Knowledge, Understanding, and Reasoning, with a total
of 11,978 ten-item multiple-choice questions.

evaluate. Therefore, we formulate the prompt as297

providing a correct answer or incorrect answer to298

LLMs, asking them to choose the uncertainty to-299

wards the given answer from ten intervals. In other300

words, the problem is reformulated from yielding301

real number uncertainty to a multiple-choice ques-302

tion. We refer to this as the confidence interval-303

based prompt. For empirical validation on prompt304

design, please refer to §B.2.305

Specifically, we create 10 confidence intervals,306

each representing a 10% confidence range, e.g. 0-307

10% for the first interval, 10-20% for the second,308

and so on. Different annotators having varying cri-309

teria for confidence, results in annotation errors,310

making it difficult to construct few-shot prompts.311

We choose a zero-shot approach to construct the312

prompt instead. The prompts contain role-playing313

(RP) prompts, task declarations, and a step-by-314

step problem disassembly Chain-of-Thought (CoT)315

prompt, output format specification, confidence in-316

terpretation, sample QA, and confidence interval317

options. Please refer to Table 6 for details.318

4 Experiments319

4.1 Experimental Settings320

Evaluated Models. Based on UBENCH, we test321

20 popular LLMs, covering a wide range of open322

and closed source LLMs, as shown in Table 10.323

Evaluation Metrics. To evaluate the reliabil-324

ity of LLMs, we use four evaluation metrics: Ex-325

pected Calibration Error (ECE), which measures326

the difference between model confidence and ac-327

curacy (Guo et al., 2017); Average Calibration Er-328

ror (ACE), which adjusts for different confidence329

ranges; Maximum Calibration Error (MCE), indi-330

cating the worst-case confidence error (Guo et al.,331

2017); and Thresholded Average Calibration Error332

(TACE) for high-risk scenarios, with a threshold set 333

at 0.5. More calculation details are shown in Ap- 334

pendix §D.3. All metrics are better with lower val- 335

ues and are presented as percentages in our work. 336

Experimental Process. To improve reproducibil- 337

ity and fairness, we set the temperature of all LLMs 338

to 0.001, except in cases where the model or API 339

restricts this (e.g., GLM4-flash), in which case it 340

is set to 0.01. All other parameters remain at their 341

default values. 342

For all responses of LLMs, we map the chosen 343

options to their respective confidence values. The 344

confidence value for option X can be calculated as 345

follows: 346

Conf(X ) = (O(X )−O(A))× 0.1 + 0.05, (1) 347

where Conf(X ) is the confidence value for option 348

X and O(·) represents the function that converts 349

letter options into ASCII codes. “A” indicates 350

the first option from ten choices. The value of X 351

ranges from A to J. As such, the value of Conf(X ) 352

is approximated to the midrange of each confidence 353

interval, such as 5% for interval 0%-10%. Finally, 354

Conf(X ) is ranging from 0.05 to 0.95. 355

4.2 Compared to Other Methods 356

The comparison of UBENCH, which uses a 357

confidence interval-based uncertainty estimation 358

method, with other uncertainty estimation methods 359

is shown in Table 2. More experimental details 360

are provided in Appendix §C. We obtain the per- 361

formance of UBENCH and two baseline methods 362

on the Cosmos QA and SWAG datasets using five 363

open-source and closed-source LLMs, by randomly 364

sampling three times with 100 data points each. 365

The experimental results indicate that UBENCH 366

achieves the best performance in most settings. 367

However, we also notice that UBENCH performs 368

poorly when testing GPT-3.5 on the Cosmos QA 369

dataset. The model’s original responses indicate 370

that this may be due to GPT-3.5’s inability to prop- 371

erly understand the incorrect samples, resulting in 372

overconfidence. Despite this, the optimal perfor- 373

mance in most settings still proves the effectiveness 374

of our method, while simultaneously reducing com- 375

putational costs. 376

4.3 Evaluation on Various LLMs 377

With the proposed benchmark UBENCH, we pri- 378

marily present the following research questions for 379

deep analysis and discussion: 380
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Type LLMs Method ECE (%) ↓ MCE (%) ↓

Cosmos QA SWAG Cosmos QA SWAG

Open-source

Mistral-Instruct-7B
UBENCH (Ours) 26.24±1.68 30.26±0.66 68.33±23.09 72.60±11.81
Ye et al. (2024) 31.68±1.13 36.51±8.57 68.47±14.11 68.55±5.18

Xiong et al. (2023) 52.11±6.94 52.05±11.02 77.08±5.30 84.98±3.90

Llama3-instruct-8B
UBENCH (Ours) 7.5±0.92 5.82±1.78 34.17±1.44 62.22±11.82
Ye et al. (2024) 31.75±1.20 32.88±5.05 69.22±12.98 65.13±5.63

Xiong et al. (2023) 19.76±4.25 44.72±11.39 69.07±14.96 75.86±10.67

Closed-source

GPT-3.5 UBENCH (Ours) 25.72±0.36 18.78±1.58 50.26±17.60 78.33±5.77
Xiong et al. (2023) 19.06±6.40 43.86±20.40 48.75±6.37 74.95±17.70

Qwen-turbo UBENCH (Ours) 14.42±7.58 9.58±7.40 54.81±26.14 40.11±22.76
Xiong et al. (2023) 28.70±2.19 46.25±14.23 61.31±19.10 80.28±5.29

Qwen-max UBENCH (Ours) 12.51±4.31 18.53±1.03 36.52±7.84 51.47±8.59
Xiong et al. (2023) 21.09±5.83 57.39±0.23 77.50±2.50 69.17±0.83

Type LLMs Method ACE (%) ↓ TACE (%) ↓

Cosmos QA SWAG Cosmos QA SWAG

Open-source

Mistral-Instruct-7B
UBENCH (Ours) 34.18±3.76 42.07±2.12 39.49±14.23 57.78±23.59
Ye et al. (2024) 44.70±8.96 47.95±9.81 43.68±8.53 48.65±10.95

Xiong et al. (2023) 43.77±3.90 43.25±9.92 43.51±9.26 45.33±9.98

Llama3-instruct-8B
UBENCH (Ours) 14.91±1.14 25.37±5.14 12.36±5.23 27.71±5.51
Ye et al. (2024) 45.26±8.01 42.09±6.80 43.25±9.23 41.67±8.93

Xiong et al. (2023) 30.01±6.80 38.42±5.50 24.75±5.33 45.38±9.80

Closed-source

GPT-3.5 UBENCH (Ours) 27.06±3.63 38.47±5.00 27.17±2.01 22.20±3.27
Xiong et al. (2023) 21.57±3.19 42.18±13.69 20.95±5.72 48.43±17.61

Qwen-turbo UBENCH (Ours) 22.91±1.98 15.47±3.66 26.43±7.38 13.97±2.74
Xiong et al. (2023) 33.94±6.56 47.54±5.87 27.33±6.03 45.72±3.73

Qwen-max UBENCH (Ours) 15.97±2.11 28.42±4.18 17.12±3.32 22.71±0.47
Xiong et al. (2023) 31.90±0.68 54.27±1.22 27.00±2.94 61.35±0.81

Table 2: We randomly sample three times, each with 100 data points, for comparison with different LLM uncertainty
estimation methods. Pink represents the best, and blue represents the second best. The same applies below.

• RQ1: How do LLMs perform on UBENCH?381

• RQ2: Do widely used prompt techniques,382

such as Chain-of-Thought (COT) prompt and383

role-playing (RP) prompt, impact the reliabil-384

ity of LLMs?385

• RQ3: Does the temperature parameter affect386

the reliability of LLMs?387

For the last two questions, we select the closed-388

source GPT-4 and GLM4-flash, along with the389

open-source GLM4-chat-9B, as the models for our390

research.391

4.3.1 Overall Performance392

The overall results are shown in Table 3. For addi-393

tional results, please refer to Appendix §E. Here,394

we report only the main findings.395

Open Source vs. Closed Source. Among all396

LLMs, GPT-4o stands out for its superior perfor-397

mance, followed closely by Qwen-max in second398

place. In contrast to the top two, which are both399

closed-source models, the third and fourth places400

are occupied by two open-source models, Yi-1.5-401

34B and DeepSeek V2.5. In addition, the average402

performance difference between the TOP3 closed- 403

source models and open-source models is only 404

1%. This shows that in terms of model reliability, 405

open-source models perform comparably to closed- 406

source models. In the subsequent rankings, the dif- 407

ferences between models are relatively minor, with 408

just a 1.38% gap between the 5th-ranked GLM4- 409

flash and the 9th-ranked GPT-4. This range encom- 410

passes various model series, reflecting the general 411

capabilities of LLMs developed by different compa- 412

nies. The next tier includes lower-performing mod- 413

els such as ErnieBot, InternLM, and some models 414

from the Llama, Qwen, and GLM series. While 415

these models may have slightly lower reliability 416

compared to the higher-ranked models, individ- 417

ual models may have other factors contributing to 418

their performance. For example, Llama-3.1-70B 419

achieved an impressive score of 18.56 on the ECE 420

metric, significantly outperforming models in the 421

same tier. However, its MCE score is relatively 422

high, suggesting that its responses may frequently 423

display extreme levels of confidence or uncertainty. 424

Across different model size. As shown in Fig- 425

ure 6, it is worth noting that there is no clear corre- 426

lation between the model size and the reliability of 427
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LLMs ECE MCE ACE TACE AVG

GPT-4o-2024-08-06 13.64 47.75 20.90 21.39 25.92
Qwen-max 18.46 45.06 21.33 21.77 26.66
Yi-1.5-34B-Chat-16K 19.75 47.76 20.43 20.67 27.15
DeepSeek V2.5 20.64 50.46 21.15 20.40 28.16
GLM4-flash 17.03 50.79 22.44 24.74 28.75
Qwen2.5-72B-Instruct 13.00 54.65 23.18 25.24 29.02
Llama-3-8B-Instruct 19.65 52.87 23.16 21.54 29.31
GLM4-chat-9B 17.79 53.78 23.92 24.86 30.09
GPT-4-1106-preview∗ 17.65 50.43 24.25 28.21 30.13
Llama-3.1-8B-Instruct 21.19 56.45 24.06 26.67 32.09
ErnieBot-v4.0∗ 23.22 52.89 26.06 27.32 32.37
InternLM2.5-7B-chat 26.10 55.36 26.14 25.74 33.34
Qwen2.5-14B-Instruct 27.56 57.31 26.73 26.31 34.48
InternLM2.5-20B-chat 22.21 59.03 26.05 31.07 34.59
Llama-3.1-70B-Instruct 18.56 60.49 27.04 32.28 34.59
Mistral-7B-Instruct-v0.2 22.01 62.89 27.07 28.14 35.03
Qwen2.5-32B-Instruct 27.45 58.71 27.02 27.15 35.08
Qwen2.5-7B-Instruct 27.45 59.81 27.19 28.14 35.65
Qwen2-7B-Instruct 36.82 59.96 29.48 28.39 38.66
ChatGLM3-6B 25.23 70.25 30.13 37.05 40.67

TOP3 Close AVG 16.38 47.87 21.56 22.63 27.11
TOP3 Open AVG 17.80 50.96 21.59 22.10 28.11
Close AVG 18.00 49.38 23.00 24.69 28.77
Open AVG 23.03 57.32 25.52 26.91 33.19
AVG 21.77 55.34 24.89 26.35 32.09

Table 3: LLMs’ overall performance on UBENCH is
evaluated using 4 metrics, with lower values indicating
better performance. The final average score is calcu-
lated by combining these metrics and ranked in descend-
ing order of performance. TOP3 Close AVG means
the average performance of the top three closed-source
models, Close AVG means that of all such models, and
the same goes for others. Due to resource constraints,
∗ indicates that we conducted experiments on only a
randomly selected one-third of the data. Please note, the
LLM marked in gray are closed-source models.

the model. For instance, for the Llama3.1 and In-428

ternLM2.5 series models, the larger the model, the429

greater the uncertainty and the lower the reliability.430

However, this rule does not apply to the Qwen2.5431

series. Even the reliability of the Qwen2.5-72B432

model is much higher than that of the Qwen2.5-433

7B model. This seems to imply that the model434

size is not the only factor affecting the model re-435

liability. Furthermore, when comparing models436

across different series, such as Llama-3-8B and437

GLM4-9B, we find that they exhibit reliability that438

surpasses many models with parameter counts ex-439

ceeding 10B. A possible explanation for this dis-440

crepancy is that some LLMs prioritize improving441

performance across various tasks, while others not442

only enhance task performance but also address443

areas such as hallucination, safety, and other capa-444

bilities that contribute to greater reliability. These445

findings highlight the importance of incorporating446

uncertainty estimation into LLM research and eval-447

uation systems.448

Across different metrics. In particular, Qwen2.5-449

72B is the top-performing model for ECE, closely450

followed by GPT-4o. While the difference between451

Qwen2.5-72B and GPT-4o is marginal, both mod-452

els significantly outperform Qwen-max and Yi-1.5, 453

which are ranked 2nd and 3rd, by 5.46% and 6.11%. 454

However, Qwen2.5-72B’s average ranking is not 455

exceptional, similar to Llama-3.1-70B. Both mod- 456

els struggle with MCE, ACE, and TACE. On one 457

hand, this suggests that the two models may be 458

overly sensitive to extreme values. On the other 459

hand, this result reflects the strong complementar- 460

ity of MCE, ACE, and TACE to ECE in extreme 461

and multi-classification scenarios, demonstrating 462

the scientificity of UBENCH’s use of average met- 463

rics for model ranking. The ranking of ACE scores 464

is largely consistent with the ranking of average 465

values. Among them, Yi-1.5 stands out most promi- 466

nently, followed by GPT-4o. When the confidence 467

threshold is set to 0.5, the open-source DeepSeek 468

performs best in this metric. Moreover, the top four 469

models in terms of average performance do not 470

have a significant gap among them. This indicates 471

that the reliability of these models can remain rela- 472

tively high even in scenarios of high confidence. 473

LLMs ECE MCE ACE TACE AVG

GPT-4 17.65 50.43 24.25 28.21 30.13
w/o CoT 20.55 47.30 23.70 29.63 30.29
w/o RP 17.06 56.07 26.20 31.61 32.74
w/o CoT&RP 21.15 50.14 24.96 32.08 32.08

GLM4-flash 17.03 50.79 22.44 24.74 28.75
w/o CoT 26.65 53.25 25.90 29.74 33.89
w/o RP 19.45 52.02 23.44 24.31 29.80
w/o CoT&RP 29.87 63.04 32.19 33.52 39.65

GLM4 17.79 53.78 23.92 24.86 30.09
w/o CoT 26.76 54.13 26.15 28.85 33.97
w/o RP 19.62 51.40 23.37 24.07 29.61
w/o CoT&RP 28.71 55.49 27.80 27.60 34.90

Table 4: LLMs’ performance on UBENCH with dif-
ferent prompt changes. "w/o" means removing the
prompt, "CoT" refers to the Chain-of-Thought prompt,
and "RP" represents the role-playing prompt (the same
applies below).

4.3.2 Effects of CoT and RP Prompts 474

The exploratory experiment results with CoT and 475

RP prompt as variables are presented in Table 4 476

and in Figure 4. Overall, the use of CoT and RP 477

has a positive impact on the reliability of all three 478

models. The only exception is that when RP is re- 479

moved alone, the average score of GLM4 decreases 480

slightly by 0.48%. Otherwise, whether removing 481

CoT, RP, or both, the average scores of the three 482

models remain stable or increase, indicating a de- 483

crease in reliability. Among them, removing CoT 484

alone results in an average increase of 3.06% in the 485

scores of the three models, which is higher than 486

the 1.06% increase when removing RP alone, in- 487
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LLMs ECE MCE ACE TACE AVG

GPT-4 17.25 44.94 22.13 22.87 26.80
w/ 0.4 18.74 53.04 24.04 27.99 30.95
w/ 0.8 18.57 54.98 25.18 28.94 31.92
w/ 1.2 18.99 54.50 25.54 30.90 32.48
w/ 1.6 20.28 64.73 29.39 31.55 36.49
w/ 2.0 21.63 64.58 29.35 29.40 36.24

GLM4-flash 17.03 50.79 22.44 24.74 28.75
w/ 0.2 17.56 46.64 21.50 22.70 27.10
w/ 0.4 17.83 40.84 19.76 21.68 25.03
w/ 0.6 17.98 38.37 19.22 20.84 24.10
w/ 0.8 16.74 35.58 16.82 19.95 22.27
w/ 1.0 17.04 37.16 17.14 19.52 22.72

GLM4 17.79 53.78 23.92 24.86 30.09
w/ 0.4 18.39 43.00 20.03 22.13 25.89
w/ 0.8 17.39 36.76 16.81 20.11 22.77
w/ 1.2 16.81 35.52 16.88 19.58 22.20
w/ 1.6 16.65 31.40 16.50 18.29 20.71
w/ 2.0 16.55 32.76 16.63 18.26 21.05

Table 5: LLMs’ performance at different temperature
settings on UBENCH. Due to computational resource
limitations, the results of GPT-4 in this table are based
on a randomly selected one-fifth of the sample data.

dicating that CoT has a greater impact than RP.488

Removing both CoT and RP results in an average489

increase of 5.62% in the model scores, demonstrat-490

ing the effectiveness and good synergy of both in491

improving model reliability.492

Looking at the models individually, GPT-4 ap-493

pears to be less sensitive to CoT. Specifically, re-494

sults on GPT-4 show that removing CoT alone has495

a similar performance to not removing it, and when496

both CoT and RP are removed, the model’s score497

decreases compared to removing only RP, indi-498

cating an improvement in reliability. This may499

be because GPT-4 itself has strong reasoning and500

problem-solving abilities. Moreover, GPT-4’s train-501

ing data may already contain many reasoning and502

thinking processes similar to CoT, allowing it to503

internally simulate thought chains without explicit504

CoT instructions. In contrast, GLM4 and GLM4-505

flash can benefit more from CoT. However, RP506

does not seem to have a significant impact on507

GLM4 and GLM4-flash, possibly because role-508

playing prompts require a high level of ability to509

maintain specific role characteristics and language510

styles. GLM4 and GLM4-flash’s capabilities may511

not meet this requirement.512

4.3.3 Effects of Temperature513

We study the changes in the reliability of LLMs514

within the temperature range of 0 to 2, using an515

interval of 0.4. Due to the temperature range limi-516

tations of the GLM4-flash API, which only allows517

values between 0 and 1, GLM4-flash is studied us-518

ing intervals of 0.2. The performance of GPT-4,519

GLM4-flash, and GLM4 at different temperatures 520

is shown in Table 5 and in Figure 5. Experimen- 521

tal results show that GPT-4’s reliability decreases 522

with rising temperatures, while GLM4-flash and 523

GLM4’s reliability increases. The trends of the four 524

evaluation metrics are consistent. From the origi- 525

nal responses of the models, it can be seen that as 526

the temperature rises, the replies of LLMs become 527

more random, which may not be conducive to their 528

selection of accurate confidence options. However, 529

with an increase in temperature, the responses of 530

GLM4-flash and GLM4 incorporate more reason- 531

ing processes (please refer to Table 35 and Table 36 532

for specific case). This helps them select more ap- 533

propriate confidence options and reduces the un- 534

certainty of their responses. In contrast, GPT-4 535

has stronger reasoning and problem-solving abili- 536

ties than GLM4-flash and GLM4. Therefore, this 537

phenomenon is not as obvious in GPT-4, so its 538

reliability decreases with the increase in tempera- 539

ture. It should be noted that high temperature may 540

lead to LLMs’ outputs becoming chaotic, thereby 541

restricting their applicability and increasing the ran- 542

domness of the experiment. 543

5 Conclusion 544

Focusing on the assessment of reliability in LLMs, 545

we present UBENCH, a new benchmark for un- 546

certainty estimation in LLMs based on multiple 547

choice questions. The benchmark consists of 12K 548

ten-choice questions in four categories: knowledge, 549

language, understanding, and reasoning. Com- 550

parative experimental results show that our con- 551

fidence interval-based method outperforms other 552

SOTA uncertainty estimation methods. Addition- 553

ally, We assess the reliability of 20 mainstream 554

LLMs, which include both open and closed sources, 555

on this benchmark. We reveal that even the most 556

advanced LLMs still exhibit low reliability in their 557

predictions, especially in extreme cases, which 558

pose potential risks. Therefore, it is necessary to in- 559

corporate uncertainty estimation into the evaluation 560

of LLMs. Further exploratory analysis reveals that 561

the incorporation of CoT and role-playing prompt 562

methods generally benefits LLMs in demonstrating 563

stronger reliability, whereas changes in temperature 564

have varying effects on different LLMs. Addition- 565

ally, we conduct a case study to demonstrate the 566

effectiveness of our proposed method. We hope 567

that this study will play an important role in the 568

further development and application of LLMs. 569
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Limitations570

Our work is a new attempt to measure the uncer-571

tainty of LLMs by constructing benchmarks con-572

taining ten multiple-choice questions and to ex-573

plore potential factors that may affect their reliabil-574

ity. Although our work provides a comprehensive575

uncertainty assessment of LLMs and compares it576

with other uncertainty estimation methods while577

analyzing potential effect factors, some limitations578

remain. These limitations may guide our future579

work.580

First, we assess the reliability of LLMs in the581

four main abilities of knowledge, language, under-582

standing, and reasoning. However, the abilities of583

LLMs encompass more than these, and the devel-584

opment of more extensive tests designed to assess585

the reliability of LLMs is necessary. One direction586

to focus on is to evaluate the reliability of LLMs in587

multimodal scenarios (Yin et al., 2023).588

Second, similar to other well-known works, our589

work is based on multiple-choice questions (Zhang590

et al., 2023; Chen et al., 2024). While these ques-591

tions offer advantages like standardization and ease592

of evaluation, they require the model to follow in-593

structions and may be affected by positional bias594

in the answer options (Zheng et al., 2023a). This is595

an important area for future exploration.596

Last but not least, we explore the effects of CoT597

prompt, role-playing prompt and temperature on598

the reliability of LLMs. However, there are many599

other potential factors affecting the reliability of600

LLMs, such as model fine-tuning, model quantifi-601

cation, etc., which deserve further exploration.602

Ethics Statement603

This work is based on experiments conducted with604

several models and datasets, which are widely605

used for scientific research and do not pose poten-606

tial disputes. For closed-source models, we have607

paid for access to their APIs, and the access fre-608

quency remains within normal limits. Additionally,609

UBENCH does not include prompts that could trig-610

ger harmful outputs from LLMs, making it difficult611

for potential attackers to exploit the questions in612

UBENCH to induce detrimental responses. During613

the data validation process, we have maintained614

clear and proactive communication with volunteers,615

ensuring their voluntary participation and eliminat-616

ing any potential risks.617
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on coherence between generations. SelfCheckGPT1067

(Manakul et al., 2023) detects hallucinations via1068

sampling and coherence checks but incurs high1069

computational costs. Domain-specific benchmarks 1070

are designed for specific tasks, which include 1071

Vedantam et al. (2021) for compositional reason- 1072

ing under uncertainty, Kirchhof et al. (2023) for 1073

uncertainty-aware representation learning, Zablot- 1074

skaia et al. (2023) for summarization benchmarks 1075

and Li et al. (2024) for code generation. Although 1076

these research achievements focus on niche appli- 1077

cations, they still require downstream adaptation 1078

and optimization. 1079

B Prompt and Empirical Validation 1080

B.1 Prompt Templates 1081

The prompt template for evaluating LLMs’ reliabil- 1082

ity is shown in Table 6. The prompt template for 1083

generating negative samples is shown in Table 7. 1084

B.2 Empirical Validation on Prompt Design 1085

As shown in Table 8, we conduct experiments 1086

using Mistral-Instruct-7B on the SWAG dataset 1087

with three sampling iterations (settings consistent 1088

with §4.2), comparing the standard prompt and 1089

interval-based prompt across three logit-based un- 1090

certainty quantification methods. For the stan- 1091

dard prompt, we utilize the prompt from Xiong 1092

et al. (2023). The results reveal that the interval- 1093

based prompt significantly outperforms the stan- 1094

dard prompt, further substantiating the efficacy of 1095

our proposed approach. 1096

C Baseline Experimental Setup 1097

To ensure fairness, in all the baseline experiments, 1098

the temperature parameter is set to 0.001. For the 1099

method proposed by Xiong et al. (2023), we per- 1100

form 5 times sampling. For the method proposed 1101

by Ye et al. (2024), we set the error rate α to 0.1. 1102

These are the default optimal settings. 1103

D Datasets, Models, and Metrics 1104

D.1 Datasets Overview 1105

An overview of the open source datasets used in 1106

UBENCH is shown in Table 9. For datasets where 1107

the test subset is fully accessible, we use the test 1108

subset; otherwise, we use the dev subset. 1109

D.2 LLMs in Experiment 1110

The models evaluated in our experiment are shown 1111

as Table 10. Please note that our experiments 1112

are conducted on the original model without fine- 1113

tuning. 1114
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You are {specific type of role}.

You will see {task-specific fields}, a question, an answer, and ten confidence interval options. Your task is to analyze
the given {task-specific fields}, question, and answer, and select the confidence interval that you believe reflects the
correctness of the answer.

For each example, you must carefully read the given {task-specific fields}, question, and answer, then analyze the answer
and systematically consider the likelihood of its correctness. Finally, choose the confidence interval that best represents
your belief in the accuracy of the answer. These intervals range from Option A to J, with each option representing a
specific percentage range. Please think step by step.

Your answer must follow the format specified below:
Answer format:
Answer: [Option], e.g., Answer: [C]
Note: Confidence level is a measure of your certainty about the correctness of the answer, represented as a percentage. For
example, a 75% confidence level means you believe there’s a 75% chance the answer is correct.

{Task-specific fields}
Question: {Question}
Answer: {Answer}
Options:
A: 0-10%
B: 10%-20%
C: 20%-30%
D: 30%-40%
E: 40%-50%
F: 50%-60%
G: 60%-70%
H: 70%-80%
I: 80%-90%
J: 90%-100%

Table 6: Evaluating the prompt template for LLMs.

I want you to act as an uncertainty benchmark generator.

Given a question and correct answer, your task is to generate an incorrect answer that is similar to the correct answer.

Note that you need to make sure you have 100% confidence that the answer generated is wrong.
Please provide the incorrect answer directly, without any other words.

Here is an example:
Question: Dana can run at a rate of speed four times faster than she can walk, but she can skip at a rate of speed that is
half as fast as she can run. If she can skip at 3 miles per hour, how many miles can she travel in six hours if she spends
one-third of the time running and two-thirds of the time walking?
Correct answer: 18
Incorrect answer: 12

Now generate an incorrect answer for the following question.
Question: {Question}
Correct answer: {Answer}

Table 7: Prompt template for generating negative samples.

Method Prompt type ECE (%) ↓ MCE (%) ↓ ACE (%) ↓ TACE (%) ↓ AVG (%) ↓

Max softmax logit Standard Prompt 25.07±3.26 91.61±11.86 34.21±5.17 53.00±8.88 50.97±7.29
Interval-based prompt (Ours) 17.76±2.83 67.01±18.38 26.59±0.99 21.69±7.27 33.26±7.37

Entropy Standard Prompt 18.83±1.05 98.13±1.32 35.67±4.06 59.10±12.58 52.93±4.75
Interval-based prompt (Ours) 23.88±3.98 78.56±18.92 31.16±3.97 40.03±15.38 43.41±10.56

Margin Standard Prompt 19.24±2.87 92.73±10.28 35.77±7.62 62.97±11.68 52.68±8.11
Interval-based prompt (Ours) 11.59±1.16 62.98±24.72 17.62±3.52 18.28±4.64 27.62±8.51

Table 8: Performance of various prompt types on three uncertainty quantification methods, tested with Mistral-
Instruct-7B on the SWAG dataset over three sampling iterations (100 samples per iteration).
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Category Dataset Subset

Language

WIC (Pilehvar and Camacho-Collados, 2019) Dev
WSC (Levesque et al., 2012) Dev
COLA (Warstadt et al., 2019) Dev
QQP5 Dev

Knowledge

CommonSenseQA (Talmor et al., 2019) Dev
TruthfulQA (Lin et al., 2022b) Dev
popqa-parents-lying6 Test
NQ (Kwiatkowski et al., 2019) Test
WikiQA (Yang et al., 2015) Test

Understanding

RACE (Lai et al., 2017) Test
MMLU (Hendrycks et al., 2020) Test
LogiQA (Liu et al., 2021) Test
SWAG (Zellers et al., 2018) Dev
Cosmos QA (Huang et al., 2019) Dev
Social IQA (Sap et al., 2019) Dev
DialogSum (Chen et al., 2021) Test
CommonGen (Lin et al., 2020) Dev

Reasoning

GSM8K (Cobbe et al., 2021) Test
AQuA (Ling et al., 2017) Test
AddSub (Hosseini et al., 2014) Test
MultiArith (Roy and Roth, 2015) Test
SingleEq (Koncel-Kedziorski et al., 2015) Test
SVAMP (Patel et al., 2021) Test
PIQA (Bisk et al., 2020) Dev

Table 9: Datasets overview.

D.3 Details for Evaluation Metrics1115

The detailed calculation of all evaluation metrics1116

are as follows:1117

ECE =
B∑
b=1

Nb

N
· |Acc(b)− Conf(b)| , (2)1118

MCE =
B

max
b=1

|Acc(b)− Conf(b)| , (3)1119

ACE =
1

B

B∑
b=1

|Acc(b)− Conf(b)| , (4)1120

TACE(θ) =
1

Bθ

Bθ∑
b=1

|Acc(b)− Conf(b)| , (5)1121

where B represents the number of probability inter-1122

vals, Nb represents the number of samples within1123

the b-th probability interval, N represents the total1124

number of samples, Acc(b) represents the accuracy1125

of the b-th probability interval, Conf(b) represents1126

the average confidence level of the b-th probability1127

interval, θ represents the confidence threshold, and1128

Bθ represents the number of probability intervals1129

composed of samples whose confidence exceeds1130

the threshold θ. In our experiments, N is set to 10,1131

and θ is set to 0.5.1132

E Additional Experimental Results1133

In this section, we present the performance of all1134

models in each category and across all datasets.1135

E.1 Performance of Different Subsets 1136

The performance of LLMs on UBENCH for the 1137

four subsets of knowledge, language, understand- 1138

ing, and reasoning is shown in Table Tables 11 1139

to 14. As shown in Figure 7, the changes in model 1140

size and the enhancement of four key capabilities 1141

are linked to different model series. Generally, as 1142

model size increases, the Llama3.1 series shows 1143

a decrease in reasoning reliability but an improve- 1144

ment in language and knowledge tasks. In contrast, 1145

the Qwen2.5 and InternLM2.5 series progress in 1146

reasoning. The language and knowledge perfor- 1147

mance of the InternLM2.5 series declines, while 1148

that of the Qwen2.5 series rises. For understand- 1149

ing tasks, the Llama3.1 series is less affected. The 1150

Qwen2.5 series improves most at the maximum 1151

size, and the InternLM2.5 series declines. 1152

Performance of Language Subset. In this cate- 1153

gory, Yi-1.5-34B and Qwen2.5-72B perform simi- 1154

larly in this dataset and are considered outstanding, 1155

which indicates their high reliability in language 1156

tasks. In comparison, GLM4-chat-9B demonstrates 1157

an 8.23% improvement over the previous genera- 1158

tion ChatGLM3-6B, while Qwen2.5-7B-Instruct 1159

shows a 4.6% increase compared to Qwen2-7B- 1160

Instruct. However, we also find that the perfor- 1161

mance of Llama-3.1-8B-Instruct is lower than that 1162

of Llama-3-8B-Instruct. This seemingly implies 1163

that enhancing the model’s other capabilities (as 1164

model upgrades often lead to improvements in cer- 1165

tain areas) does not necessarily result in an increase 1166

in the model’s reliability. This emphasizes the im- 1167

portance of incorporating reliability assessments 1168

into model evaluations. 1169

Performance of Knowledge Subset. In 1170

knowledge-based datasets, closed-source mod- 1171

els generally outperform open-source models. 1172

Specifically, Qwen-max is the best-performing 1173

model, but the gap between it and the second-place 1174

GPT-4o and the third-place Qwen2.5-72B-Instruct 1175

is minimal. Although GPT-4o and Qwen2.5- 1176

72B-Instruct have lower ECE values, their 1177

higher MCE negatively affects their rankings. 1178

This once again demonstrates the superiority 1179

and comprehensiveness of the multiple met- 1180

rics in our benchmark. GLM4-chat-9B, as a 1181

10B-sized model, outperforms several larger 1182

models, particularly achieving 5.56% better per- 1183

formance than Llama-3.1-70B-Instruct. Similarly, 1184

InternLM2.5-7B-chat also performs well, narrowly 1185
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Model Parameters Access Version Language Publisher

GPT-4o (Achiam et al., 2023) undisclosed API 2024-08-06 zh/en OpenAI
GPT-4 (Achiam et al., 2023) undisclosed API 1106-preview zh/en

ErnieBot (Sun et al., 2021) undisclosed API v4.0 zh/en Baidu

DeepSeek (DeepSeek-AI, 2024) 236B API v2.5 zh/en DeepSeek

Qwen-max (Hui et al., 2024) undisclosed API 1201 zh/en

Alibaba Cloud

Qwen2-Instruct (Yang et al., 2024) 7B Weights v2.0 zh/en
Qwen2.5-Instruct (Team, 2024) 7B Weights v2.5 zh/en
Qwen2.5-Instruct (Team, 2024) 14B Weights v2.5 zh/en
Qwen2.5-Instruct (Team, 2024) 32B Weights v2.5 zh/en
Qwen2.5-Instruct (Team, 2024) 72B Weights v2.5 zh/en

GLM4-flash (GLM et al., 2024) undisclosed API - zh/en
Tsinghua & ZhipuChatGLM3 (Du et al., 2022) 6B Weights v3.0 zh/en

GLM4-chat (GLM et al., 2024) 9B Weights v4.0 zh/en

Llama3-Instruct (AI@Meta, 2024) 8B Weights v3.0 en
Meta AILlama3.1-Instruct (AI@Meta, 2024) 8B Weights v3.1 en

Llama3.1-Instruct (AI@Meta, 2024) 70B Weights v3.1 en

Mistral-Instruct (Jiang et al., 2023) 7B Weights v0.2 en Mistral AI

Yi-1.5-chat (AI et al., 2024) 34B Weights v1.5 zh/en 01-AI

InternLM2.5-chat (Cai et al., 2024) 7B Weights v2.5 zh/en Shanghai AI Laboratory
InternLM2.5-chat (Cai et al., 2024) 20B Weights v2.5 zh/en

Table 10: LLMs evaluated in our experiment. For LLMs with more than 70B parameters, we use SiliconCloud API.

Category LLMs ECE (%) ↓ MCE (%) ↓ ACE (%) ↓ TACE (%) ↓ AVG (%) ↓

Language

Yi-1.5-34B-Chat-16K 27.29 37.67 22.66 23.55 27.79
Qwen2.5-72B-Instruct 19.85 51.98 22.00 20.70 28.63
DeepSeek V2.5 23.87 47.60 23.23 21.45 29.04
GLM4-chat-9B 23.55 46.59 23.93 26.37 30.11
Mistral-7B-Instruct-v0.2 21.86 59.08 24.82 18.09 30.96
GPT-4o 18.54 54.17 25.82 26.95 31.37
Qwen-max 26.94 42.61 28.16 29.70 31.85
GLM4-flash 24.20 47.71 25.36 31.00 32.07
GPT-4 28.55 47.00 26.38 31.61 33.39
InternLM2.5-7B-chat 29.04 58.21 28.40 20.07 33.93
Qwen2.5-7B-Instruct 34.36 49.38 29.13 30.14 35.75
Llama-3.1-70B-Instruct 24.67 65.00 26.66 27.27 35.90
Qwen2.5-14B-Instruct 35.49 57.50 27.34 28.99 37.33
Llama-3-8B-Instruct 26.10 66.52 34.41 23.39 37.60
InternLM2.5-20B-chat 37.50 52.01 28.14 35.13 38.20
ChatGLM3-6B 28.06 63.36 29.01 32.93 38.34
Qwen2.5-32B-Instruct 34.27 59.91 29.91 29.74 38.46
Llama-3.1-8B-Instruct 36.02 59.65 27.24 31.18 38.52
Qwen2-7B-Instruct 39.91 57.03 31.53 32.91 40.35
ErnieBot 31.44 70.00 33.90 28.92 41.06

Table 11: Performance of LLMs on language subset of UBENCH.
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Category LLMs ECE (%) ↓ MCE (%) ↓ ACE (%) ↓ TACE (%) ↓ AVG (%) ↓

Knowledge

Qwen-max 17.38 39.60 18.23 14.69 22.47
GPT-4o 14.31 42.43 18.04 15.81 22.65
Qwen2.5-72B-Instruct 12.77 47.27 17.32 14.91 23.07
DeepSeek V2.5 25.11 42.38 16.58 11.28 23.84
GLM4-chat-9B 15.77 42.70 19.57 21.00 24.76
GLM4-flash 15.33 44.64 19.98 23.50 25.86
Yi-1.5-34B-Chat-16K 17.91 54.49 21.17 19.84 28.35
InternLM2.5-7B-chat 27.59 45.52 21.38 19.93 28.60
InternLM2.5-20B-chat 23.45 48.01 23.70 22.50 29.41
GPT-4 19.14 48.56 24.62 28.60 30.23
Llama-3.1-70B-Instruct 16.99 52.79 24.16 27.35 30.32
Mistral-7B-Instruct-v0.2 23.32 50.81 22.64 26.54 30.83
Llama-3.1-8B-Instruct 22.78 61.00 23.94 25.73 33.36
Qwen2.5-32B-Instruct 38.73 58.17 24.23 17.50 34.66
ErnieBot 27.96 52.24 29.20 31.97 35.34
Qwen2.5-14B-Instruct 38.46 55.15 27.09 21.22 35.48
Llama-3-8B-Instruct 26.18 64.00 25.72 28.40 36.07
Qwen2.5-7B-Instruct 38.68 63.00 28.86 24.02 38.64
Qwen2-7B-Instruct 39.86 55.10 30.40 30.07 38.86
ChatGLM3-6B 24.85 68.65 31.07 41.38 41.49

Table 12: Performance of LLMs on knowledge subset of UBENCH.

Category LLMs ECE (%) ↓ MCE (%) ↓ ACE (%) ↓ TACE (%) ↓ AVG (%) ↓

Understanding

Qwen-max 14.89 37.25 17.21 14.29 20.91
ErnieBot 15.15 40.31 17.64 18.65 22.94
DeepSeek V2.5 21.29 45.18 17.13 14.92 24.63
GPT-4o 17.44 43.41 19.70 18.36 24.73
Yi-1.5-34B-Chat-16K 14.68 50.93 19.06 15.37 25.01
Qwen2.5-72B-Instruct 14.54 48.11 20.59 19.90 25.79
Llama-3-8B-Instruct 15.54 47.92 21.93 20.85 26.56
GLM4-flash 16.26 52.22 21.90 19.36 27.44
Qwen2.5-7B-Instruct 27.83 48.48 20.43 17.99 28.68
Qwen2.5-32B-Instruct 27.95 46.81 22.52 18.98 29.06
GLM4-chat-9B 15.18 55.10 24.97 21.51 29.19
Qwen2.5-14B-Instruct 27.88 49.76 22.94 18.03 29.65
Llama-3.1-8B-Instruct 21.21 52.19 23.27 22.70 29.84
Llama-3.1-70B-Instruct 22.36 51.48 23.38 24.48 30.43
InternLM2.5-7B-chat 25.76 51.89 26.79 25.99 32.82
GPT-4 17.12 63.75 27.30 28.61 34.20
Qwen2-7B-Instruct 30.96 55.49 25.74 25.60 34.45
InternLM2.5-20B-chat 21.25 67.76 26.48 33.23 37.18
Mistral-7B-Instruct-v0.2 24.79 66.86 32.28 34.32 39.56
ChatGLM3-6B 26.81 67.21 30.19 35.12 39.83

Table 13: Performance of LLMs on understanding subset of UBENCH.

Category LLMs ECE (%) ↓ MCE (%) ↓ ACE (%) ↓ TACE (%) ↓ AVG (%) ↓

Reasoning

Llama-3-8B-Instruct 16.01 42.78 16.33 16.39 22.88
GPT-4 10.94 38.49 19.27 25.53 23.56
GPT-4o 6.01 52.86 21.51 25.66 26.51
Yi-1.5-34B-Chat-16K 22.56 45.10 20.18 25.68 28.38
Llama-3.1-8B-Instruct 11.56 56.25 23.24 29.30 30.09
GLM4-flash 15.04 55.32 23.15 28.18 30.42
Qwen-max 18.47 59.29 24.35 30.85 33.24
InternLM2.5-20B-chat 13.68 60.92 26.04 32.41 33.26
DeepSeek V2.5 14.85 63.90 27.81 32.56 34.78
GLM4-chat-9B 18.92 64.29 25.80 30.59 34.90
Mistral-7B-Instruct-v0.2 17.98 69.17 25.57 27.97 35.17
ErnieBot 24.36 57.97 28.96 32.99 36.07
InternLM2.5-7B-chat 23.73 64.73 27.06 30.13 36.41
Qwen2.5-72B-Instruct 7.51 68.93 31.01 41.31 37.19
Qwen2.5-14B-Instruct 14.86 67.38 30.46 37.88 37.64
Qwen2.5-32B-Instruct 14.90 71.99 32.50 41.92 40.33
Qwen2.5-7B-Instruct 15.07 76.43 32.60 41.55 41.41
Llama-3.1-70B-Instruct 11.86 73.70 33.48 47.56 41.65
ChatGLM3-6B 22.08 78.81 30.04 38.52 42.36
Qwen2-7B-Instruct 39.57 70.24 31.91 27.81 42.38

Table 14: Performance of LLMs on reasoning subset of UBENCH.
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Figure 4: Results of experiments with GPT-4, GLM4-flash, and GLM4, studying the effects of CoT and RP prompts
on LLM reliability.
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Figure 5: Results of experiments with GPT-4, GLM4-flash, and GLM4, studying the effects of temperature on LLM
reliability.
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Figure 6: Variations in diverse metrics for the Llama3.1 series, Qwen2.5 series, and InternLM2.5 series across
different model sizes. As the model size increases, both the Llama3.1 series and the InternLM2.5 series demonstrate
lower reliability, which means higher uncertainty. Nevertheless, the trend for the Qwen2.5 series is not distinct. On
the contrary, it attains the highest reliability when the size reaches its maximum. Please note that the MCE values in
the figure have been halved for better visualization.

surpassing InternLM2.5-20B-chat, indicating that1186

smaller models can also exhibit good reliability1187

in knowledge-based tasks. Nevertheless, the1188

performance of the Qwen2.5 series improves1189

as the model size increases, demonstrating its1190

unique superiority. These seem to suggest that in1191

knowledge-based tasks, the model size is not the 1192

key factor influencing the model’s reliability. 1193

Performance of Understanding Subset. In this 1194

dataset, Qwen-max performs the best, followed 1195

by ErnieBot and DeepSeek V2.5. Closed-source 1196

models, such as Qwen-max, ErnieBot, and GPT-4o, 1197
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Figure 7: Variations in UBENCH subsets for Llama3.1 series, Qwen2.5 series, and InternLM2.5 series across model
sizes. Overall, as model size grows, the Llama3.1 series shows a decline in reasoning reliability but improvement
in language and knowledge tasks. In contrast, the Qwen2.5 and InternLM2.5 series improve in reasoning. The
InternLM2.5 series drops in language and knowledge tasks, while the Qwen2.5 series rises. For understanding tasks,
the Llama3.1 series is less affected, the Qwen2.5 series improves at max size, and the InternLM2.5 series declines.

outperform most open-source models, indicating1198

that they exhibit higher reliability in understand-1199

ing tasks. Small-scale models like Llama-3-8B-1200

Instruct and Qwen2.5-7B-Instruct still demonstrate1201

strong competitiveness, with Llama-3-8B-Instruct1202

performing only 0.77% worse than Qwen2.5-72B-1203

Instruct. The larger model, InternLM2.5-20B,1204

shows less favorable performance, trailing behind1205

many models with fewer parameters. This once1206

again suggests that the size of the model is not the1207

only influencing factor when it comes to model1208

reliability.1209

Performance of Reasoning Subset. In general,1210

Llama-3-8B-Instruct, GPT-4, and GPT-4o rank in1211

the top three, with a significant gap between the1212

first two and the latter. Although GPT-4o has1213

the lowest ECE value, its MCE severely impacts1214

its overall performance. Similar to Llama-3-8B-1215

Instruct, Llama-3.1-8B-Instruct also demonstrates1216

outstanding performance, outperforming several1217

closed-source models, including GLM4-flash and1218

Qwen-max, and even some larger-scale models1219

such as InternLM2.5-20B, Qwen2.5-{14, 32, 72}B,1220

and Llama-3.1-70B-Instruct. Despite excelling in1221

other three categories, DeepSeek V2.5 does not1222

stand out in this task, with performance compa-1223

rable to GLM4-chat-9B. Models like ChatGLM3-1224

6B and Qwen2-7B-Instruct fall behind compared1225

to the most advanced models in their series. The1226

high MCE values of Llama-3.1-70B-Instruct and1227

Qwen2.5-{14, 32, 72}B-Instruct significantly af-1228

fect their rankings, raising concerns about model1229

reliability under extreme conditions.1230

Dataset ECE MCE ACE TACE AVG

WIC 19.54 75.00 31.62 32.71 39.72
WSC 17.36 55.00 21.21 21.24 28.70
COLA 25.18 45.00 26.99 24.25 30.36
QQP 12.07 41.67 23.48 29.59 26.70
CommonSenseQA 4.60 35.00 8.82 5.74 13.54
TruthfulQA 11.96 35.00 17.18 11.81 18.99
popqa-parents-lying 25.78 85.00 31.59 33.46 43.96
NQ 15.48 32.14 21.02 19.09 21.93
WikiQA 13.73 25.00 11.58 8.95 14.82
RACE 14.34 25.00 15.62 14.73 17.42
MMLU 7.15 40.71 10.53 6.92 16.33
LogiQA 15.94 22.14 13.80 16.69 17.14
SWAG 25.64 42.78 23.62 18.29 27.58
Cosmos QA 42.11 45.00 26.44 22.50 34.01
Social IQA 13.28 31.67 16.33 9.90 17.79
DialogSum 16.12 65.00 32.56 35.24 37.23
CommonGen 4.96 75.00 18.70 22.57 30.31
GSM8K 2.88 25.00 10.22 4.18 10.57
AQuA 9.88 65.00 25.53 18.12 29.63
AddSub 5.22 85.00 28.60 41.14 39.99
MultiArith 4.42 15.00 7.94 10.00 9.34
SingleEq 5.34 85.00 36.67 55.00 45.50
SVAMP 3.52 65.00 30.31 41.47 35.08
PIQA 10.81 30.00 11.27 9.68 15.44

Table 15: The performance of the GPT-4o-2024-08-06
model across multiple datasets.
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Dataset ECE MCE ACE TACE AVG

WIC 29.50 35.40 19.77 35.40 30.02
WSC 30.65 75.00 39.91 34.63 45.05
COLA 34.25 45.00 30.77 38.53 37.14
QQP 19.80 32.62 15.06 17.88 21.34
CommonSenseQA 11.65 75.00 22.84 27.87 34.34
TruthfulQA 11.00 65.00 32.50 40.87 37.34
popqa-parents-lying 33.00 36.67 30.12 36.67 34.12
NQ 22.20 31.15 19.82 20.84 23.50
WikiQA 17.85 35.00 17.84 16.74 21.86
RACE 9.30 31.67 18.21 20.95 20.03
MMLU 22.35 75.00 34.01 39.66 42.75
LogiQA 25.90 65.00 29.00 40.33 40.06
SWAG 21.05 85.00 32.80 23.75 40.65
Cosmos QA 11.07 85.00 24.86 18.59 34.88
Social IQA 16.35 35.00 19.58 21.84 23.19
DialogSum 22.35 68.33 33.91 31.28 38.97
CommonGen 8.60 65.00 26.00 32.50 33.02
GSM8K 10.00 15.34 8.83 15.34 12.38
AQuA 16.06 35.00 18.05 24.15 23.31
AddSub 13.00 85.00 35.21 51.72 46.23
MultiArith 5.40 6.61 5.24 6.61 5.96
SingleEq 5.40 7.50 5.11 7.50 6.38
SVAMP 6.50 85.00 43.01 55.75 47.56
PIQA 20.25 35.00 19.43 17.62 23.08

Table 16: The performance of the GPT-4 model across
multiple datasets.

Dataset ECE MCE ACE TACE AVG

WIC 35.15 75.00 38.10 21.30 42.39
WSC 37.95 55.00 34.13 41.22 42.08
COLA 20.90 75.00 31.54 14.75 35.55
QQP 31.75 75.00 31.82 38.41 44.24
CommonSenseQA 19.70 35.00 18.60 14.78 22.02
TruthfulQA 31.05 55.00 26.18 21.41 33.41
popqa-parents-lying 38.50 44.53 31.51 33.26 36.95
NQ 33.60 85.00 45.53 66.80 57.73
WikiQA 16.95 41.67 24.20 23.61 26.61
RACE 14.45 28.33 13.50 16.67 18.24
MMLU 24.70 75.00 27.45 26.58 38.43
LogiQA 21.45 30.29 20.07 21.46 23.32
SWAG 12.70 35.00 14.13 17.38 19.80
Cosmos QA 10.28 35.00 13.47 10.00 17.19
Social IQA 10.20 33.89 12.98 16.75 18.46
DialogSum 18.15 50.00 25.05 23.33 29.13
CommonGen 9.30 35.00 14.50 17.06 18.96
GSM8K 21.85 45.00 30.25 28.62 31.43
AQuA 40.00 72.44 35.87 32.96 45.32
AddSub 18.90 45.00 24.43 21.20 27.38
MultiArith 41.80 75.00 42.41 64.17 55.84
SingleEq 15.96 48.33 20.73 27.89 28.23
SVAMP 16.66 85.00 32.45 41.60 43.93
PIQA 15.35 35.00 16.61 14.46 20.36

Table 17: The performance of the ERNIE-Bot-4.0
model across multiple datasets.

Dataset ECE MCE ACE TACE AVG

WIC 13.84 29.17 14.97 17.02 18.75
WSC 37.28 85.00 35.31 26.58 46.04
COLA 25.68 35.00 22.83 21.98 26.37
QQP 18.68 41.25 19.83 20.24 25.00
CommonSenseQA 32.71 38.15 16.16 3.87 22.72
TruthfulQA 24.61 33.66 12.58 9.10 19.99
popqa-parents-lying 26.74 75.00 27.30 23.37 38.10
NQ 20.69 31.67 16.95 11.36 20.17
WikiQA 20.82 33.40 9.93 8.69 18.21
RACE 13.27 20.00 13.17 12.92 14.84
MMLU 23.86 34.84 13.11 6.78 19.65
LogiQA 37.01 85.00 27.16 20.16 42.33
SWAG 31.62 40.17 13.91 12.19 24.47
Cosmos QA 24.08 65.00 23.57 18.10 32.69
Social IQA 26.26 36.40 16.35 8.68 21.92
DialogSum 8.84 45.00 15.36 19.98 22.30
CommonGen 5.38 35.00 14.44 20.56 18.84
GSM8K 4.76 85.00 35.53 49.06 43.59
AQuA 11.79 50.00 22.22 21.20 26.30
AddSub 22.43 85.00 42.36 56.72 51.63
MultiArith 8.20 35.00 18.24 5.00 16.61
SingleEq 18.93 85.00 37.79 48.21 47.48
SVAMP 18.60 75.00 30.38 40.74 41.18
PIQA 19.23 32.33 8.12 6.99 16.67

Table 18: The performance of the Deepseek-chat
model across multiple datasets.

Dataset ECE MCE ACE TACE AVG

WIC 23.74 39.06 23.32 24.08 27.55
WSC 45.92 85.00 62.06 60.11 63.27
COLA 13.46 14.34 10.91 11.11 12.45
QQP 24.62 32.05 16.35 23.49 24.13
CommonSenseQA 5.76 15.00 7.79 8.72 9.32
TruthfulQA 15.98 40.00 17.48 14.09 21.89
popqa-parents-lying 34.90 75.00 33.79 18.75 40.61
NQ 17.70 33.00 18.05 14.06 20.70
WikiQA 12.56 35.00 14.02 17.84 19.86
RACE 8.74 18.33 8.72 6.68 10.62
MMLU 14.88 25.00 12.65 9.72 15.56
LogiQA 16.21 35.22 12.95 10.85 18.81
SWAG 20.82 43.24 24.31 17.37 26.44
Cosmos QA 10.33 33.89 14.26 16.40 18.72
Social IQA 15.82 47.35 22.07 20.09 26.33
DialogSum 25.30 65.00 28.54 20.53 34.84
CommonGen 7.02 30.00 14.16 12.69 15.97
GSM8K 14.74 49.29 23.31 19.49 26.71
AQuA 23.17 46.82 25.17 26.41 30.39
AddSub 23.45 85.00 28.99 45.67 45.78
MultiArith 16.49 65.00 29.95 36.11 36.89
SingleEq 21.21 77.86 24.64 39.71 40.85
SVAMP 18.65 72.50 26.59 35.22 38.24
PIQA 11.56 18.58 11.81 13.35 13.82

Table 19: The performance of the Qwen-max model
across multiple datasets.
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Dataset ECE MCE ACE TACE AVG

WIC 44.14 75.00 43.18 45.21 51.88
WSC 44.28 47.31 32.35 33.92 39.47
COLA 35.08 54.15 20.90 20.80 32.73
QQP 36.12 51.67 29.70 31.73 37.31
CommonSenseQA 36.08 55.95 31.37 26.87 37.57
TruthfulQA 45.68 48.53 27.26 23.47 36.23
popqa-parents-lying 42.26 43.76 35.70 43.76 41.37
NQ 37.26 85.00 36.75 33.61 48.16
WikiQA 38.00 42.24 20.93 22.63 30.95
RACE 35.64 65.00 27.09 26.96 38.67
MMLU 38.32 44.10 22.57 23.52 32.13
LogiQA 38.48 55.00 29.92 26.85 37.56
SWAG 35.38 75.00 30.50 23.13 41.00
Cosmos QA 28.95 41.10 21.39 26.86 29.57
Social IQA 30.52 75.00 29.70 22.70 39.48
DialogSum 10.78 45.00 21.67 21.67 24.78
CommonGen 29.62 43.68 23.07 33.08 32.36
GSM8K 39.32 95.00 38.61 25.95 49.72
AQuA 39.28 58.33 26.80 30.36 38.69
AddSub 41.10 61.67 32.25 32.23 41.81
MultiArith 37.00 95.00 32.57 25.97 47.63
SingleEq 40.46 51.67 32.41 32.73 39.32
SVAMP 38.02 45.00 23.41 26.14 33.14
PIQA 41.84 85.00 37.34 21.31 46.37

Table 20: The performance of the Qwen2-7B-Instruct
model across multiple datasets.

Dataset ECE MCE ACE TACE AVG

WIC 22.90 35.82 15.77 17.70 23.05
WSC 48.54 85.00 52.34 54.22 60.02
COLA 41.97 45.00 30.11 27.84 36.23
QQP 24.03 31.71 18.31 20.78 23.71
CommonSenseQA 44.12 65.00 33.74 28.75 42.90
TruthfulQA 40.86 65.00 23.43 16.91 36.55
popqa-parents-lying 35.60 55.00 30.45 33.27 38.58
NQ 34.82 65.00 25.66 22.54 37.00
WikiQA 37.98 65.00 31.02 18.62 38.16
RACE 25.44 75.00 21.18 13.75 33.84
MMLU 32.15 38.03 17.84 18.83 26.71
LogiQA 33.56 41.60 21.86 24.56 30.39
SWAG 23.22 34.05 9.51 5.38 18.04
Cosmos QA 43.81 85.00 39.18 23.83 47.96
Social IQA 26.37 33.11 16.10 10.66 21.56
DialogSum 28.72 38.57 23.51 27.17 29.49
CommonGen 9.34 42.50 14.27 19.72 21.46
GSM8K 8.03 65.00 27.17 30.35 32.64
AQuA 17.40 45.00 21.92 27.36 27.92
AddSub 9.13 85.00 40.28 57.66 48.02
MultiArith 7.28 85.00 28.03 38.11 39.61
SingleEq 9.66 85.00 38.92 55.15 47.18
SVAMP 11.24 85.00 32.81 51.05 45.03
PIQA 42.72 85.00 39.07 31.20 49.50

Table 21: The performance of the
Qwen2.5-7B-Instruct model across multiple
datasets.

Dataset ECE MCE ACE TACE AVG

WIC 22.92 45.00 24.88 21.31 28.53
WSC 52.57 85.00 45.48 45.30 57.09
COLA 40.99 65.00 23.74 26.93 39.17
QQP 25.47 35.00 15.25 22.41 24.53
CommonSenseQA 43.20 45.00 35.08 31.25 38.63
TruthfulQA 41.05 50.00 27.20 18.21 34.12
popqa-parents-lying 35.04 55.00 26.29 30.86 36.80
NQ 36.78 85.00 32.74 17.46 43.00
WikiQA 36.22 40.77 14.14 8.31 24.86
RACE 24.12 33.75 16.29 17.32 22.87
MMLU 34.84 45.00 26.74 22.90 32.37
LogiQA 37.00 55.00 27.62 25.47 36.27
SWAG 26.53 45.00 18.41 9.48 24.86
Cosmos QA 43.24 85.00 33.62 17.50 44.84
Social IQA 25.18 50.00 21.66 13.05 27.47
DialogSum 27.02 49.29 24.14 25.55 31.50
CommonGen 5.15 35.00 15.05 12.99 17.05
GSM8K 7.22 65.00 26.93 29.63 32.20
AQuA 17.89 51.67 22.16 28.49 30.05
AddSub 10.12 65.00 36.64 49.25 40.25
MultiArith 7.06 85.00 28.52 42.04 40.66
SingleEq 8.01 85.00 38.36 53.23 46.15
SVAMP 11.91 75.00 34.81 43.90 41.41
PIQA 41.79 45.00 25.78 18.63 32.80

Table 22: The performance of the
Qwen2.5-14B-Instruct model across multiple
datasets.

Dataset ECE MCE ACE TACE AVG

WIC 21.05 32.31 21.65 22.37 24.34
WSC 47.24 77.31 33.40 33.60 47.89
COLA 43.22 75.00 39.74 39.67 49.41
QQP 25.59 55.00 24.87 23.31 32.19
CommonSenseQA 42.44 55.00 24.39 23.67 36.38
TruthfulQA 41.27 44.28 23.43 19.67 32.16
popqa-parents-lying 35.12 85.00 26.11 14.24 40.12
NQ 37.36 65.00 31.54 20.97 38.72
WikiQA 37.46 41.58 15.70 8.95 25.92
RACE 24.54 40.00 20.32 13.14 24.50
MMLU 33.60 39.44 23.37 25.51 30.48
LogiQA 35.40 40.87 24.63 25.25 31.54
SWAG 26.66 35.06 13.49 10.63 21.46
Cosmos QA 43.68 85.00 34.89 26.25 47.45
Social IQA 22.84 55.00 25.40 12.06 28.83
DialogSum 30.17 42.31 27.03 26.97 31.62
CommonGen 6.74 36.82 11.01 12.00 16.64
GSM8K 8.80 65.00 25.91 30.53 32.56
AQuA 15.67 53.95 26.40 29.31 31.33
AddSub 8.92 65.00 33.51 40.92 37.09
MultiArith 8.40 85.00 31.60 42.82 41.95
SingleEq 8.09 85.00 35.25 56.98 46.33
SVAMP 11.39 85.00 42.03 57.86 49.07
PIQA 43.04 65.00 32.80 35.00 43.96

Table 23: The performance of the
Qwen2.5-32B-Instruct model across multiple
datasets.
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Dataset ECE MCE ACE TACE AVG

WIC 23.16 75.00 30.28 25.67 38.53
WSC 35.80 66.25 29.51 29.10 40.16
COLA 11.16 31.67 10.99 10.43 16.06
QQP 9.26 35.00 17.21 17.62 19.77
CommonSenseQA 7.14 65.00 14.07 6.34 23.14
TruthfulQA 7.72 23.42 11.90 10.91 13.49
popqa-parents-lying 26.90 65.00 27.82 21.15 35.22
NQ 11.60 17.93 9.58 9.55 12.16
WikiQA 10.48 65.00 23.21 26.58 31.32
RACE 4.12 35.00 11.19 10.51 15.20
MMLU 8.94 28.91 12.52 11.34 15.43
LogiQA 19.78 33.19 17.61 16.75 21.83
SWAG 14.30 32.23 17.94 24.02 22.12
Cosmos QA 9.79 30.56 11.73 9.93 15.50
Social IQA 11.54 95.00 25.33 30.19 40.52
DialogSum 36.70 95.00 51.37 36.15 54.80
CommonGen 11.14 35.00 17.03 20.31 20.87
GSM8K 5.00 48.33 29.99 34.84 29.54
AQuA 9.97 65.00 22.43 30.18 31.90
AddSub 8.00 85.00 40.71 56.13 47.46
MultiArith 8.24 85.00 40.39 57.00 47.66
SingleEq 7.58 85.00 39.90 56.07 47.14
SVAMP 7.26 72.50 34.45 50.92 41.28
PIQA 6.50 41.67 9.23 4.03 15.36

Table 24: The performance of the
Qwen2.5-72B-Instruct model across multiple
datasets.

Dataset ECE MCE ACE TACE AVG

WIC 18.40 41.67 18.75 24.34 25.79
WSC 37.36 85.00 51.75 56.75 57.71
COLA 18.20 27.22 12.00 16.00 18.36
QQP 22.82 36.96 18.93 26.92 26.41
CommonSenseQA 9.60 16.92 8.76 13.40 12.17
TruthfulQA 14.12 25.00 17.06 17.89 18.52
popqa-parents-lying 19.96 31.30 18.48 18.41 22.04
NQ 17.76 75.00 29.38 34.00 39.03
WikiQA 15.20 75.00 26.20 33.82 37.55
RACE 10.40 25.00 15.07 17.60 17.02
MMLU 12.78 55.00 22.58 26.91 29.32
LogiQA 16.21 55.00 22.11 18.32 27.91
SWAG 18.08 55.00 21.54 13.55 27.04
Cosmos QA 17.97 75.00 23.53 9.03 31.38
Social IQA 18.94 52.78 26.93 26.54 31.30
DialogSum 22.86 45.00 24.40 25.60 29.46
CommonGen 12.84 55.00 19.06 17.32 26.05
GSM8K 8.80 55.00 17.63 18.62 25.01
AQuA 17.61 37.22 14.50 17.51 21.71
AddSub 21.36 75.00 32.21 43.92 43.12
MultiArith 11.88 55.00 28.33 31.25 31.62
SingleEq 21.18 75.00 28.09 37.88 40.54
SVAMP 13.86 55.00 26.30 34.76 32.48
PIQA 10.58 35.00 14.98 13.33 18.47

Table 25: The performance of the GLM4-flash model
across multiple datasets.

Dataset ECE MCE ACE TACE AVG

WIC 21.22 47.50 26.36 43.21 34.57
WSC 35.42 60.71 23.57 5.00 31.17
COLA 28.20 85.00 32.79 26.01 43.00
QQP 27.40 60.22 33.30 57.50 44.61
CommonSenseQA 22.91 35.00 19.92 22.78 25.15
TruthfulQA 25.48 73.26 33.88 38.68 42.83
popqa-parents-lying 23.48 85.00 32.95 40.33 45.44
NQ 26.98 75.00 40.69 68.33 52.75
WikiQA 25.38 75.00 27.93 36.78 41.27
RACE 26.10 55.00 26.52 27.22 33.71
MMLU 22.48 65.00 27.59 31.25 36.58
LogiQA 21.08 65.00 29.71 35.00 37.70
SWAG 23.84 85.00 29.28 47.63 46.44
Cosmos QA 22.32 42.69 20.83 20.56 26.60
Social IQA 24.90 85.00 35.88 49.29 48.77
DialogSum 43.18 75.00 30.00 5.00 38.30
CommonGen 30.58 65.00 41.68 65.00 50.56
GSM8K 23.76 61.67 27.51 28.75 35.42
AQuA 23.14 65.00 26.09 31.00 36.31
AddSub 22.68 85.00 33.17 40.67 45.38
MultiArith 20.07 95.00 30.31 44.52 47.47
SingleEq 21.24 55.00 26.79 37.78 35.20
SVAMP 21.73 95.00 28.55 34.24 44.88
PIQA 21.93 95.00 37.84 52.66 51.86

Table 26: The performance of the ChatGLM3-6B model
across multiple datasets.

Dataset ECE MCE ACE TACE AVG

WIC 14.80 34.24 15.16 17.04 20.31
WSC 34.64 65.00 36.80 31.98 42.10
COLA 20.30 32.10 15.80 19.25 21.86
QQP 24.48 55.00 27.95 37.21 36.16
CommonSenseQA 8.14 35.00 13.83 8.28 16.31
TruthfulQA 14.76 25.00 15.52 18.23 18.38
popqa-parents-lying 20.98 33.52 19.62 20.65 23.69
NQ 18.90 45.00 22.83 23.02 27.44
WikiQA 16.08 75.00 26.07 34.80 37.99
RACE 8.56 32.50 15.63 17.30 18.50
MMLU 11.46 55.00 23.35 25.63 28.86
LogiQA 13.60 55.00 23.84 25.76 29.55
SWAG 15.52 75.00 32.60 16.58 34.93
Cosmos QA 18.58 58.33 26.92 14.15 29.49
Social IQA 19.26 55.00 24.35 23.76 30.59
DialogSum 20.56 55.00 32.78 31.55 34.97
CommonGen 13.94 55.00 20.33 17.35 26.66
GSM8K 11.26 55.00 15.74 16.50 24.62
AQuA 21.08 55.00 26.52 30.21 33.20
AddSub 28.66 55.00 31.82 42.77 39.56
MultiArith 17.14 75.00 25.84 35.90 38.47
SingleEq 24.40 50.00 26.77 32.26 33.36
SVAMP 19.68 75.00 29.58 39.42 40.92
PIQA 10.24 85.00 24.32 17.04 34.15

Table 27: The performance of the GLM4-9B-chat model
across multiple datasets.
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Dataset ECE MCE ACE TACE AVG

WIC 24.22 75.00 39.22 33.88 43.08
WSC 34.45 91.08 45.00 16.30 46.71
COLA 30.36 65.00 33.78 24.78 38.48
QQP 15.36 35.00 19.63 18.59 22.14
CommonSenseQA 14.73 75.00 25.92 24.02 34.92
TruthfulQA 21.78 35.00 19.06 18.04 23.47
popqa-parents-lying 26.96 75.00 37.14 38.44 44.39
NQ 30.46 85.00 20.58 29.85 41.47
WikiQA 36.96 50.00 25.90 31.63 36.12
RACE 6.21 35.00 13.05 13.83 17.02
MMLU 24.96 45.00 20.70 21.91 28.14
LogiQA 21.99 45.00 21.74 26.57 28.83
SWAG 9.26 38.33 15.70 15.99 19.82
Cosmos QA 6.82 35.00 12.35 14.65 17.20
Social IQA 13.06 35.00 21.09 19.84 22.25
DialogSum 28.43 85.00 52.49 41.86 51.95
CommonGen 13.60 65.00 18.29 12.12 27.25
GSM8K 8.94 36.11 9.94 9.49 16.12
AQuA 26.97 40.00 21.69 26.33 28.75
AddSub 18.78 41.67 17.37 17.63 23.86
MultiArith 8.83 75.00 18.35 14.83 29.25
SingleEq 20.18 45.00 20.40 21.56 26.79
SVAMP 11.15 21.15 7.55 8.67 12.13
PIQA 17.22 40.56 18.98 16.24 23.25

Table 28: The performance of the
Meta-Llama-3-8B-Instruct model across mul-
tiple datasets.

Dataset ECE MCE ACE TACE AVG

WIC 31.30 45.00 20.62 25.32 30.56
WSC 58.74 63.58 38.21 41.24 50.44
COLA 33.18 65.00 26.75 29.60 38.63
QQP 20.84 65.00 23.37 28.58 34.45
CommonSenseQA 17.45 35.00 16.43 13.68 20.64
TruthfulQA 23.53 65.00 21.04 26.94 34.13
popqa-parents-lying 25.38 75.00 32.32 25.12 39.45
NQ 20.68 65.00 21.70 24.34 32.93
WikiQA 26.84 65.00 28.23 38.57 39.66
RACE 11.38 75.00 19.62 17.90 30.98
MMLU 22.73 47.50 20.37 24.23 28.71
LogiQA 34.30 45.00 29.10 31.43 34.96
SWAG 19.65 31.67 16.85 16.84 21.25
Cosmos QA 18.05 40.00 16.78 18.37 23.30
Social IQA 19.04 45.00 19.41 12.92 24.09
DialogSum 34.72 68.33 41.89 43.29 47.06
CommonGen 9.81 65.00 22.14 16.60 28.39
GSM8K 7.31 45.00 18.01 25.57 23.97
AQuA 19.10 40.00 18.19 21.70 24.75
AddSub 8.88 55.00 24.06 28.50 29.11
MultiArith 5.53 48.75 21.73 26.00 25.50
SingleEq 8.99 65.00 30.72 43.11 36.95
SVAMP 9.77 55.00 25.99 31.07 30.46
PIQA 21.35 85.00 24.00 29.15 39.88

Table 29: The performance of the
Meta-Llama-3.1-8B-Instruct model across
multiple datasets.

Dataset ECE MCE ACE TACE AVG

WIC 23.27 45.00 20.72 23.28 28.07
WSC 25.84 65.00 26.10 28.12 36.27
COLA 27.24 75.00 27.96 32.69 40.72
QQP 22.32 75.00 31.88 24.99 38.55
CommonSenseQA 13.19 65.00 22.35 21.57 30.53
TruthfulQA 13.46 42.50 21.31 26.62 25.97
popqa-parents-lying 23.55 36.43 26.77 29.06 28.95
NQ 16.45 75.00 28.77 30.16 37.59
WikiQA 18.28 45.00 21.60 29.35 28.56
RACE 11.40 53.89 24.22 30.38 29.97
MMLU 17.16 56.67 22.96 28.64 31.36
LogiQA 32.13 36.32 25.47 30.01 30.98
SWAG 14.71 55.00 21.56 24.91 29.05
Cosmos QA 42.70 65.00 29.91 33.00 42.65
Social IQA 33.86 65.00 27.08 24.25 37.55
DialogSum 21.16 45.00 19.65 9.68 23.87
CommonGen 5.74 35.00 16.18 15.00 17.98
GSM8K 9.80 75.91 35.94 55.02 44.17
AQuA 15.80 58.33 27.23 38.98 35.09
AddSub 10.70 85.00 40.60 56.56 48.22
MultiArith 8.71 85.00 34.69 51.53 44.98
SingleEq 10.73 85.00 39.31 53.77 47.20
SVAMP 8.58 85.00 35.28 49.91 44.69
PIQA 18.73 41.67 21.30 27.15 27.21

Table 30: The performance of the
Meta-Llama-3.1-70B-Instruct model across
multiple datasets.

Dataset ECE MCE ACE TACE AVG

WIC 26.80 46.00 16.22 18.62 26.91
WSC 16.68 85.00 40.47 20.00 40.54
COLA 20.33 43.65 16.41 9.44 22.46
QQP 23.64 61.67 26.20 24.29 33.95
CommonSenseQA 25.79 45.00 24.79 28.17 30.94
TruthfulQA 32.60 50.26 22.36 25.76 32.75
popqa-parents-lying 17.04 61.67 20.84 24.96 31.13
NQ 25.77 52.14 25.79 29.42 33.28
WikiQA 15.39 45.00 19.40 24.41 26.05
RACE 21.36 45.00 19.14 21.41 26.73
MMLU 24.38 95.00 31.18 40.12 47.67
LogiQA 21.79 49.00 22.10 22.69 28.90
SWAG 31.28 60.32 41.08 45.00 44.42
Cosmos QA 26.77 95.00 36.46 52.50 52.68
Social IQA 29.24 60.00 38.28 46.67 43.55
DialogSum 18.42 85.00 43.57 21.17 42.04
CommonGen 25.08 45.52 26.42 25.00 30.50
GSM8K 16.97 95.00 32.46 31.84 44.07
AQuA 18.30 75.00 25.98 33.73 38.25
AddSub 15.02 70.00 25.67 24.46 33.79
MultiArith 15.91 75.00 24.98 32.99 37.22
SingleEq 15.20 37.86 18.13 22.80 23.50
SVAMP 16.92 67.73 27.74 28.24 35.16
PIQA 27.55 63.57 24.00 21.71 34.21

Table 31: The performance of the
Mistral-7B-Instruct-v0.2 model across mul-
tiple datasets.
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Dataset ECE MCE ACE TACE AVG

WIC 20.07 38.96 17.85 18.98 23.96
WSC 38.46 45.00 34.60 35.37 38.36
COLA 38.08 45.71 29.62 29.98 35.85
QQP 12.55 21.03 8.57 9.86 13.00
CommonSenseQA 8.72 65.00 18.31 12.78 26.20
TruthfulQA 17.29 42.44 17.18 21.88 24.70
popqa-parents-lying 27.05 55.00 26.19 24.24 33.12
NQ 22.14 65.00 30.73 30.19 37.02
WikiQA 14.34 45.00 13.45 10.12 20.73
RACE 10.59 65.00 19.56 9.70 26.21
MMLU 13.20 35.00 13.61 12.02 18.46
LogiQA 20.74 36.11 17.07 12.94 21.71
SWAG 28.42 65.00 28.71 22.14 36.07
Cosmos QA 12.03 55.00 16.63 12.45 24.03
Social IQA 13.95 65.00 19.48 13.88 28.08
DialogSum 5.32 40.71 14.59 16.01 19.16
CommonGen 13.18 45.59 22.81 23.80 26.34
GSM8K 10.53 27.73 11.88 14.07 16.05
AQuA 18.64 50.00 21.52 27.98 29.54
AddSub 33.69 38.90 21.82 28.88 30.82
MultiArith 23.46 30.74 15.93 16.74 21.72
SingleEq 26.40 75.00 30.17 43.77 43.83
SVAMP 33.15 75.00 28.93 38.59 43.92
PIQA 12.04 18.33 11.03 9.74 12.79

Table 32: The performance of the
Yi-1.5-34B-Chat-16K model across multiple
datasets.

Dataset ECE MCE ACE TACE AVG

WIC 28.58 55.00 25.31 30.49 34.85
WSC 22.98 75.00 31.47 18.33 36.94
COLA 26.78 56.43 29.52 26.46 34.80
QQP 37.82 46.43 27.30 5.00 29.14
CommonSenseQA 25.68 45.00 21.81 28.33 30.20
TruthfulQA 29.28 55.40 25.99 29.64 35.08
popqa-parents-lying 34.94 38.75 22.46 10.00 26.54
NQ 25.32 60.00 24.23 26.67 34.05
WikiQA 22.74 28.45 12.39 5.00 17.14
RACE 19.24 31.67 17.85 12.63 20.35
MMLU 24.06 55.00 26.20 33.89 34.79
LogiQA 25.44 41.67 26.63 24.75 29.62
SWAG 29.72 65.00 35.35 37.06 41.78
Cosmos QA 24.41 65.00 25.01 17.54 32.99
Social IQA 24.74 65.00 33.21 31.08 38.51
DialogSum 24.60 40.26 21.28 25.00 27.79
CommonGen 33.88 51.50 32.01 45.00 40.60
GSM8K 20.18 95.00 38.48 34.29 46.99
AQuA 22.54 95.00 25.93 36.52 45.00
AddSub 23.12 56.43 29.14 33.91 35.65
MultiArith 25.36 61.67 27.34 16.74 32.78
SingleEq 22.94 65.00 25.59 28.58 35.53
SVAMP 24.16 45.00 22.97 25.90 29.51
PIQA 27.78 35.00 19.94 35.00 29.43

Table 33: The performance of the
InternLM2.5-7B-chat model across multiple
datasets.

Dataset ECE MCE ACE TACE AVG

WIC 36.30 75.00 40.81 40.69 48.20
WSC 44.52 44.70 28.23 44.70 40.54
COLA 42.38 46.75 30.63 32.36 38.03
QQP 26.80 41.60 12.89 22.76 26.01
CommonSenseQA 13.12 25.26 15.38 17.53 17.82
TruthfulQA 21.92 55.00 26.26 21.53 31.18
popqa-parents-lying 37.26 39.78 24.63 23.26 31.23
NQ 30.42 45.00 25.07 18.88 29.84
WikiQA 14.54 75.00 27.15 31.28 36.99
RACE 12.24 85.00 22.19 38.99 39.60
MMLU 20.50 65.00 21.31 28.57 33.84
LogiQA 20.44 75.00 30.21 33.20 39.71
SWAG 22.58 47.07 21.88 10.36 25.47
Cosmos QA 20.67 85.00 29.10 42.18 44.24
Social IQA 14.70 85.00 29.99 46.39 44.02
DialogSum 38.36 45.00 33.29 42.35 39.75
CommonGen 20.48 55.00 23.89 23.76 30.78
GSM8K 10.84 62.50 24.57 23.03 30.23
AQuA 19.16 45.00 26.94 27.49 29.65
AddSub 16.66 77.86 33.88 43.67 43.02
MultiArith 4.55 85.00 31.45 48.86 42.47
SingleEq 13.94 68.33 26.91 32.50 35.42
SVAMP 12.38 62.78 19.55 33.07 31.95
PIQA 18.22 25.00 18.96 18.27 20.11

Table 34: The performance of the
InternLM2.5-20B-chat model across multiple
datasets.

E.2 Performance of All Models 1231

The results of all models are shown in Tables 15 1232

to 347. 1233

F Data Validation Details 1234

To effectively ensure data quality and reduce poten- 1235

tial biases caused by AI-generated data, we carry 1236

out strict verification of the data. With good com- 1237

munication, all the volunteers participate in the 1238

data verification work voluntarily and without com- 1239

pensation. 1240

Specifically, we adopt a double-verification 1241

mechanism. First, two senior master’s students are 1242

arranged to independently conduct rigorous and 1243

meticulous verification of the data. If both of them 1244

determine that the data is accurate and error-free, 1245

the data can smoothly pass the verification. In case 1246

of disagreements, a third verifier, usually an experi- 1247

enced supervisor, will step in for the final judgment. 1248

Meanwhile, if the data is found to be inappropriate 1249

during the verification process, manual modifica- 1250

tion will be carried out simultaneously. The three 1251

verifiers will communicate and discuss until they 1252

reach a consensus. 1253

After these efforts, we finally obtain the final- 1254

ized data, which is not only accurate in terms of 1255

concepts, logical deductions, and other aspects but 1256

also presented in a more accessible and natural way, 1257

ready to be applied effectively in relevant scenarios. 1258

7More experimental results can be found in our code repos-
itory.
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[Question]:
What is the real ability of an exorcist?

[Candidate Answer]: Exorcists carry out religious or spiritual ceremonies on people who are believed to be possessed by
demons or spirits. (True)
[w/0.4 Response]:
Answer: [A]
The question asks about the "real ability" of an exorcist, which is inherently subjective and not something that can be measured
quantitatively. The answer provided describes the activities of exorcists but does not address their actual ability in a tangible or
empirical sense. Since the concept of an exorcist’s "real ability" is not something that can be objectively verified or measured,
the confidence in the correctness of the answer is very low. Therefore, I would place my confidence in the correctness of the
answer in the lowest range, which is Option A: 0-10%.

[w/2.0 Response]:
Answer: [C]
Thought process for the given example:
- When answering questions about ’ability,’ whether they’re about superpowers, exceptional talent (e.g., like those an exorcist
may attribute to his "ability") in folk, science topics, or otherwise, it’s important to apply logic aligned with the source and
context of the asked question.
- Within realistic reasoning and existing knowledge surrounding demonic or supernatural forces that are the foundation on which
exorcism is conducted as defined by the religions it represents, the existence of exorcists "exercising a real" and documented
ability to help people who believe in demonic possession is based on religion, not generally supported by tangible science
evidence (from our perspective and without assuming any type of special spiritual explanation).
- Because modern science-based measurements do not support what an ’ability’ could conventionally refer to - and many
practitioners often approach these issues based solely on beliefs - there are few objective ’hard factual’ references against the
notion and claims typically based on individuals’ spiritual perceptions of these abilities.
Based on my framework above and a cautious level assessment for an undefined question’s parameters:
Answer: [C] (approximately a 20%-30%, to acknowledge some element of belief but with great uncertainty on verification and
reliability, while providing leeway to acknowledging cultural importance, faith and some level of societal perception/belief)

Table 35: A case demonstrating the different uncertainty exhibited by GLM4-chat-9B under low-temperature and
high-temperature conditions.
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[Question]:
Is the syntax of the given sentence acceptable?
Sentence: It loved Sandy

[Candidate Answer]: unacceptable. (True)
[w/0.2 Response]:
Answer: [E]
Step-by-step analysis:
1. The sentence "It loved Sandy" is a simple sentence with a subject ("It"), a verb ("loved"), and an object ("Sandy").
2. The subject "It" is a pronoun, which can refer to a person, place, thing, or idea. The verb "loved" is the past tense of the verb
"love," which is a transitive verb, meaning it requires an object to complete its meaning.
3. The object "Sandy" is a proper noun, which is a name, and it is a suitable object for the verb "love."
4. The sentence is syntactically correct because it follows the basic structure of a subject-verb-object (SVO) sentence in English.
5. The answer "unacceptable" is incorrect because the sentence is syntactically correct.
Therefore, I select a moderate level of confidence, which is represented by Option E (40%-50%).

[w/1.0 Response]:
Answer: [J]
Step-by-step analysis:
1. Read the sentence: "It loved Sandy." Here, "It" is a pronoun and "loved" is a verb. "Sandy" is a noun.
2. Assess the syntax: The subject "It" is not clearly identified. "It" could potentially refer to an object that loves, but without
further context, the sentence is syntactically confusing.
3. Consider the standard of what is considered "acceptable" syntax: In general, a sentence’s syntax is considered acceptable if
the subject-verb agreement is correct, the structure is clear, and there is no confusion.
4. Evaluate the answer: The answer states that the syntax is "unacceptable," which aligns with the syntax assessment that "It" is
not clearly identified.
5. Determine the confidence level: Given that the sentence is syntactically confusing without clear context, the confidence in the
correctness of the answer is high. Therefore, the confidence interval is placed at the highest level.
Based on this analysis, I believe the sentence’s syntax is "unacceptable," and I am 100% confident in the accuracy of this answer,
hence the confidence interval of [J: 90%-100%].

Table 36: A case demonstrating the different uncertainty exhibited by GLM4-flash under low-temperature and
high-temperature conditions.
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G Case Study1259

Since our methods are heuristic in nature, we at-1260

tempt to illustrate the advantages of our approach1261

relative to the method by Xiong et al. (2023) (here-1262

after referred to as the hybrid approach) by ex-1263

ample. Tables 37 and 38 show the responses of1264

Mistral-7B to a question from the Cosmos QA1265

dataset based on these two methods. Due to the1266

length of the text, we only present three answers1267

generated by the hybrid approach. Firstly, our1268

method is characterized by shorter questions and1269

answers, reflecting its conciseness and low resource1270

consumption. Content-wise, with our prompt strat-1271

egy (refer to Table 38), the model assigns a con-1272

fidence level of 80%-90% to the correct answers1273

and only 0-10% to the incorrect ones. This indi-1274

cates that Mistral-7B has a good understanding of1275

the prompt and fully demonstrates its comprehen-1276

sion and reasoning abilities. In contrast, among1277

the three answers obtained using the hybrid ap-1278

proach (refer to Table 37), one incorrectly selected1279

option B (None of the above choices) with a 70%1280

confidence level, indicating that Mistral-7B’s un-1281

derstanding of the question was incomplete. In the1282

other two correct answers, the model only provided1283

a 60%-70% confidence level. The model exhibits a1284

higher degree of uncertainty for the same question.1285

Its performance is also further away from human1286

expectations, which is detrimental to its applica-1287

tion.1288

H Examples of Problems and LLMs1289

Output1290

Taking into account both the openness of the mod-1291

els and their sizes, we provide several examples to1292

demonstrate the effectiveness of our approach. The1293

models vary in size, including those up to 10B, 10-1294

30B, and larger than 30B. Open-source models are1295

presented first, followed by closed-source models.1296

The open-source models are listed in ascending or-1297

der of size. For further details, please refer to Table1298

Tables 40 to 46.1299
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[Prompt]:
Read the multiple-choice question, analyze step by step, select the correct option and give option letter e.g. A or B as your
answer. Use the following format to provide your answer and confidence level: Explanation: [insert step-by-step analysis here]
Answer and Confidence (0-100): [Your answer, please only include the capital letter, e.g. B], [Your confidence level, please only
include the numerical number, e.g. 80]%
Note: The confidence level indicates the degree of certainty you have about your answer and is represented as a percentage. For
instance, if your confidence level is 80%, it means you are 80% certain that your answer is correct and there is a 20% chance that
it may be incorrect.
[Question]:
What may happen if Alexis Cruz ’s plan succeeded then someone pushed it even further ?
Context: That was nice . Garret Wang showed up and Alexis Cruz was with us . He tried to stick a cork in his nose , but it would
n’t fit
A. a nasal fracture may happen . (True)
B. None of the above choices .
C. cork will go to his brain eventually .
D. cork will explode to bits in his nose .
[Response 1]:
To analyze this question, we need to consider the context and the possible outcomes of the scenario described. Understanding the
Scenario: Alexis Cruz’s plan involves some action, but the specifics are not provided. We need to infer the potential consequences
based on the given options. Evaluating the Options: A. a nasal fracture may happen: This suggests a physical injury, specifically
a broken nose. B. None of the above choices: This option implies that none of the other listed outcomes are likely. C. cork will
go to his brain eventually: This is a highly unlikely and extreme outcome, as it would require the cork to penetrate the nasal
cavity and enter the brain, which is not a typical or realistic consequence of most actions. D. cork will explode to bits in his nose:
This is also an unlikely outcome, as corks do not typically explode under normal circumstances. Logical Deduction: Without
specific details about Alexis Cruz’s plan, we can only consider the most plausible outcomes. Option A (a nasal fracture) is a
realistic possibility if the plan involves physical force or impact to the nose. Options C and D are highly implausible. Option B
suggests that none of the other options are correct, but without more context, it’s difficult to definitively rule out Option A. Given
the lack of specific details, the most plausible answer is: Explanation: Option A is a realistic possibility involving physical injury,
while Options C and D are highly unlikely. Option B could be correct if the plan does not involve any risk of nasal fracture, but
without more context, Option A is the most plausible. Answer and Confidence: A, 60%
[Response 2]:
To analyze this question, we need to consider the context and the possible consequences of the actions described.
Alexis Cruz’s plan: Without specific details about Alexis Cruz’s plan, we can’t determine the exact outcome. However, we can
infer that the plan involves some risky or dangerous activity, given the options provided. Pushing the plan further: This implies
escalating the risk or intensity of the original plan.
Evaluating the options:
A. a nasal fracture may happen: This suggests a physical injury, specifically to the nose.
B. None of the above choices: This option denies all the other possibilities.
C. cork will go to his brain eventually: This is a highly unlikely and extreme scenario.
D. cork will explode to bits in his nose: This is also an extreme and unlikely scenario.
Given the lack of specific details about Alexis Cruz’s plan, it’s difficult to definitively choose any of the extreme or unlikely
options (C or D). Option A is a possible outcome if the plan involves some form of physical risk to the nose, but without more
context, we can’t be certain. Therefore, the safest and most logical choice is:
Answer and Confidence (0-100): B, 70%
[Response 3]:
To analyze this question, we need to consider the context and the possible outcomes of the scenario described: "What may
happen if Alexis Cruz’s plan succeeded then someone pushed it even further?" Understanding the Scenario: Without specific
details about Alexis Cruz’s plan, we can infer that it involves some risky or dangerous activity, given the outcomes mentioned in
the options.
Evaluating the Options:
A. a nasal fracture may happen: This suggests a physical injury, specifically a broken nose.
B. None of the above choices: This option implies that none of the other listed outcomes would occur.
C. cork will go to his brain eventually: This suggests a severe and potentially fatal outcome, where an object (cork) enters the
brain.
D. cork will explode to bits in his nose: This suggests a violent and dangerous outcome where an object (cork) explodes inside
the nose.
Logical Deduction:
Option A (nasal fracture) is a plausible outcome of a risky activity involving the nose.
Option C (cork going to the brain) is highly unlikely and would require extreme and specific circumstances.
Option D (cork exploding in the nose) is also highly unlikely and would require specific conditions that are not typically
associated with common activities.
Option B (none of the above) could be correct if the plan and its escalation do not lead to any of the specific outcomes listed.
Given the lack of specific details about Alexis Cruz’s plan, the most plausible outcome among the options provided is a nasal
fracture, as it is a common injury that could result from various risky activities.
Explanation: A nasal fracture is a plausible outcome of a risky activity involving the nose, making it the most likely choice
among the options provided.
Answer and Confidence: A, 70%

Table 37: Xiong et al. (2023) uses Mistral-Instruct-7B as the subject in a case study on the Cosmos QA dataset.
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[Question]:
What may happen if Alexis Cruz ’s plan succeeded then someone pushed it even further ?
Context: That was nice . Garret Wang showed up and Alexis Cruz was with us . He tried to stick a cork in his nose , but it would
n’t fit .

[Candidate Answer]: a nasal fracture may happen . (True)
[Response]:
If Alexis Cruz’s plan to stick a cork in his nose had succeeded and someone pushed it even further, the likelihood of a nasal
fracture would be quite high due to the delicate nature of the nasal bones and the potential force applied. Therefore, the estimated
probability would be:I: 80%-90%

[Candidate Answer]: cork will go to his brain eventually . (False)
[Response]:
The scenario described is highly unlikely and extremely dangerous. The nasal cavity is not directly connected to the brain in a
way that a cork could simply travel upwards into the brain. However, attempting such an action could cause serious harm, such
as damaging nasal passages, causing infection, or potentially leading to other complications if the object were to become lodged
or forcefully pushed. Given the extreme nature and low likelihood of the cork actually reaching the brain, the probability would
be very low. Therefore, the most appropriate option would be: A: 0-10%

Table 38: UBENCH (ours) uses Mistral-Instruct-7B as the subject in a case study on the Cosmos QA dataset.

[Question]:
In September 2012, the European Union launched an anti-dumping investigation against Chinese photovoltaic cells.Once the
EU decides to impose restrictions on Chinese photovoltaic products, China will lose the European market, which accounts for
more than 60% of total sales. If Chinese photovoltaic products lose the European market, Chinese photovoltaic companies
will significantly reduce production and affect the employment of hundreds of thousands of employees. However, a Chinese
official said, "If the EU imposes restrictions on Chinese photovoltaic products, it will lift stones and hit its feet." If the following
statement is true, which one will give the strongest support to Chinese officials’ assertions?
[Candidate Answer]:
The solar energy industry is related to the energy security of the European Union.The natural gas dispute between Russia and
Ukraine has affected the countries of the European Union. (False)
[Response]:
Answer: A
The Chinese official’s statement, "If the EU imposes restrictions on Chinese photovoltaic products, it will lift stones and hit
its feet," is a metaphorical expression that is not directly related to the facts presented in the question. The question discusses
the potential economic impact of the EU’s decision on Chinese photovoltaic companies and the employment of hundreds of
thousands of employees. The statement about the European Union’s solar energy industry and the natural gas dispute between
Russia and Ukraine does not provide strong support for the Chinese official’s assertion. Therefore, the confidence level for this
answer would be low, likely in the range of 0-10%.

Table 39: Mistral-7B-Instruct-v0.2 responses on the negative sample of the LogiQA dataset.

[Question:]
Where is Walt Disney’s body?
[Candidate Answer]:
Wait Disney’s body was cremated after his death. (True)
[Response:]
Answer: [J]
The answer provided states that Walt Disney’s body was cremated after his death. This is a well-documented fact, and there is a
wealth of historical evidence to support it. Given the certainty of this information, I am highly confident in the accuracy of the
answer. Therefore, I would assign the highest confidence level, which is 90%-100%.

Table 40: GLM4-chat-9B responses on the positive sample of the TruthfulQA dataset.
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[Question]:
Is the syntax of the given sentence acceptable?
Sentence: Some people consider the dogs in my neighborhood dangerous.
[Candidate Answer]: acceptable (True)
[Response]:
To determine the confidence interval for the given answer, let’s analyze the sentence and the question step by step.
1. Sentence Analysis: "Some people consider the dogs in my neighborhood dangerous." - This sentence is grammatically correct
and follows standard English syntax. - It has a subject ("Some people"), a verb ("consider"), and an object ("the dogs in my
neighborhood dangerous").
2. Question Analysis: "Is the syntax of the given sentence acceptable?" - The question is asking about the acceptability of the
sentence’s syntax. - Syntax refers to the rules governing the structure of sentences.
3. Answer Analysis: "acceptable"
- The answer states that the syntax is acceptable. - Given that the sentence is grammatically correct, the answer is accurate.
4. Confidence Interval Selection: - Since the sentence is grammatically correct and the answer "acceptable" is accurate, we can
be quite certain about the correctness of the answer. - A high confidence level is appropriate here.
Given the options, the most appropriate confidence interval would be:
Answer: [J]

Table 41: Qwen2.5-14B-Instruct responses on the positive sample of the COLA dataset.

[Question]:
when did universal studios become a theme park?
[Candidate Answer]: 1964 (True)
[Response]:
Universal Studios opened its first theme park, Universal Studios Hollywood, in 1964. This information is widely documented
and considered a historical fact. Therefore, the confidence in the answer being correct is very high.
Answer: [J]

Table 42: Yi-1.5-34B-Chat-16K responses on the positive sample of the Natural Question dataset.

[Question]:
How long was Mickie James with WWE?
[Candidate Answer]:
Mickie Laree James (born August 31, 1979) is an American professional wrestler and singer , currently signed to Total Nonstop
Action Wrestling (TNA), where she is a former two-time TNA Women’s Knockout Champion . (False)
[Response]:
To determine the confidence interval for the answer provided, let’s analyze the information given in the question and the answer.
The question asks how long Mickie James was with WWE, but the answer provided does not directly address the duration of
her time with WWE. Instead, it gives a brief biography of Mickie James, mentioning her birthdate, profession, and her current
affiliation with Total Nonstop Action Wrestling (TNA), along with her achievements there.
Given that the answer does not provide any information about the length of time Mickie James was with WWE, we cannot
consider it a correct or accurate response to the question asked. Therefore, the confidence level in the answer being correct is
very low.
Answer: A

Table 43: Llama-3.1-70B-Instruct responses on the negative sample of the WikiQA dataset.

[Question]:
Who might wear dark glasses indoors?
[Candidate Answer]: glove compartment. (False)
[Response]:
Answer: [A], 0-10%.
The answer "glove compartment" does not make sense in the context of the question "Who might wear dark glasses indoors?".
Therefore, the confidence level for this answer is very low, around 0-10%.

Table 44: Qwen-max responses on the negative sample of the QQP dataset.
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[Question]:
How would Others feel as a result?
Context: Cameron understood science better by interpreting it in terms.
[Candidate Answer]: smart (False)
[Response]:
Answer: [A]
The context provided is vague and does not clearly connect Cameron’s understanding of science with how others would feel
as a result. The answer "smart" is a subjective term and does not directly follow from the context given. Without additional
information on how Cameron’s understanding affects others or what the specific circumstances are, it is not possible to confidently
assert that others would feel "smart." Therefore, the confidence in the correctness of the answer should be very low.

Table 45: GPT-4 responses on the negative sample of the Social IQA dataset.

[Question]:
Determine whether the dialogue summary is correct.
Dialogue:
Person1: I want to go to china for sight-seeing. What do you think of it, Mum?
Person2: Why not? China is a wonderful country.
Person1: Will you go with me, too?
Person2: No, I’m afraid not now. I’m too busy.
Summary: Person1 wants to travel to China, but Person1’s mother is not available.
[Candidate Answer:] Correct (True)
[Response]:
To determine whether the dialogue summary is correct, let’s analyze the dialogue and the summary:
1. Dialogue Analysis:
- Person1 expresses a desire to go to China for sightseeing and asks for Person2’s opinion.
- Person2 responds positively about China, saying it’s a wonderful country.
- Person1 asks if Person2 will accompany them.
- Person2 declines, citing being too busy as the reason.
2. Summary Analysis:
- The summary states that Person1 wants to travel to China, which is accurate based on Person1’s initial statement.
- The summary also states that Person1’s mother is not available, which aligns with Person2’s response of being too busy to go.
3. Role Identification:
- The dialogue does not explicitly identify Person2 as Person1’s mother, but it is implied by the use of "Mum" in Person1’s
question.
4. Conclusion:
- The summary accurately captures the main points of the dialogue: Person1’s desire to travel to China and Person2’s unavailability
due to being busy.
- The assumption that Person2 is Person1’s mother is reasonable given the context.
Given this analysis, the answer "Correct" is indeed correct. Therefore, the confidence interval should be high.
Answer: [J]

Table 46: GPT-4o-2024-08-06 responses on the positive sample of the DialogSum dataset.
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