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Abstract

This work explores the feature learning capabil-
ities of deep reinforcement learning algorithms
in the pursuit of optimal policy determination.
We particularly examine an over-parameterized
neural actor-critic framework within the mean-
field regime, where both actor and critic compo-
nents undergo updates via policy gradient and
temporal-difference (TD) learning, respectively.
We introduce the mean-field Langevin TD learn-
ing (MFLTD) method, enhancing mean-field
Langevin dynamics with proximal TD updates
for critic policy evaluation, and assess its perfor-
mance against conventional approaches through
numerical analysis. Additionally, for actor pol-
icy updates, we present the mean-field Langevin
policy gradient (MFLPG), employing policy gra-
dient techniques augmented by Wasserstein gra-
dient flows for parameter space exploration. Our
findings demonstrate that MFLTD accurately iden-
tifies the true value function, while MFLPG en-
sures linear convergence of actor sequences to-
wards the globally optimal policy, considering a
Kullback-Leibler divergence regularized frame-
work. Through both time particle and discretized
analysis, we substantiate the linear convergence
guarantees of our neural actor-critic algorithms,
representing a notable contribution to neural rein-
forcement learning focusing on global optimality
and feature learning, extending the existing under-
standing beyond the conventional scope of lazy
training.
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1. Introduction
In recent years, the field of reinforcement learning (RL) (Sut-
ton & Barto, 2018) including the policy gradient method
(Williams, 1992; Baxter et al., 1999; Sutton et al., 1999) and
the temporal-difference (TD) learning (Sutton, 1988) has
made tremendous progress, with deep reinforcement learn-
ing methods. The combination of the actor-critic method
(Konda & Tsitsiklis, 1999) and neural networks has demon-
strated significant empirical success in challenging applica-
tions, such as the game of Go (Silver et al., 2016; 2017) or
the human-like feedback alignment (Ouyang et al., 2022).
In these empirical successes, the employment of deep neural
networks plays an indispensable role — their expressivity
enable learning meaningful features that benefit decision-
making. However, despite the impressive empirical results,
there remain many open questions about the theoretical
foundations of these methods. In particular, when viewing
deep RL methods as optimization algorithms in the space
of neural network policies, it remains elusive how deep RL
algorithms learn features during the course of finding the
optimal policy.

One source of difficulty in the analysis of neural policy opti-
mization comes from the nonconvexity of the expected total
reward over the policy space. Also, TD learning used in
the policy evaluation subproblem faces classic challenges
(Baird, 1995; Tsitsiklis & Van Roy, 1996) stemming from
the bias of semi-gradient optimization (Sutton, 1988). An-
other source of difficulty is the nonlinearity associated with
the neural networks parameterizing both the policy and state-
action value functions. The tremendous success of deep RL
is attributed to its rich expressive power, which is backed
by the nonlinearity of neural networks, which at the same
time brings a considerable challenge to the optimization
aspect. Unfortunately, the advantages of data-dependent
learning of neural networks in the context of RL have only
a limited theoretical understanding. Classical theoretical
studies of policy optimization and policy evaluation prob-
lems, including the actor-critic method, limit their analysis
to the case of linear function approximation in both the actor
and the critic, where the feature mapping is fixed during
learning (Sutton et al., 1999; Kakade, 2001; Bhatnagar et al.,
2007; 2009). Recently, some analyses based on the theory
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of Neural Tangent Kernel (NTK) (Jacot et al., 2018) are
established, which state that an infinite-width neural net-
work is well approximated by a linear function of random
features determined by initial parameters under certain con-
ditions (Cai et al., 2019; Wang et al., 2020; Liu et al., 2019).
More recent works (Zhang et al., 2020; 2021) establish the
study of convergence and optimality of over-parameterized
neural networks over lazy training (Chizat et al., 2019), in-
corporating a mean-field perspective corresponding to NTK.
Specifically, by letting the network width be sufficiently
large under appropriate conditions in NTK or lazy train-
ing regimes, optimality is guaranteed based on the fact that
the neural network features are as close as possible to the
data-independent initial feature representation. Leahy et al.
(2022) In other words, these existing analyses do not fully
capture the representation learning aspect of neural RL em-
powered by the expressivity of neural networks. Thus, in
this paper, we aim to address the following question:

Does neural actor-critic provably learn features on the way
to the global optima?

We provide an affirmative answer to this question by focus-
ing on the case where both the actor and the critic are repre-
sented by an over-parameterized two-layer neural network
in the mean-field regime. Under this setting, we propose to
update the actor and critic by a variant of policy gradient and
TD learning tailored to mean-field neural networks, based
on Langevin dynamics. We prove that the critic converges
to the correct value function sublinearly and the sequence of
actors converges to the globally optimal policy of a Kullback
Leibler (KL) divergence regularized objective. More im-
portantly, our theory is beyond the lazy training regime and
provably shows that the actor and critic networks perform
feature learning in the algorithm.

Our Contributions The main contribution of this paper
is to propose the Mean-field Langevin actor-critic algorithm
and prove linear convergence and global optimality with
feature learning (Suzuki, 2019; Ghorbani et al., 2019). We
treat the problem of policy improvement and policy evalu-
ation as an optimization over a probability distribution of
network parameters with KL-divergence regularization and
build convergence analysis based on mean field Langevin
dynamics (MFLD). Specifically,

1. We introduce the mean-field Langevin TD learning
(MFLTD) as the policy evaluation component (critic)
and show that it converges to the true value function at
a sublinear rate. In this algorithm, we employ a double-
loop proximity gradient algorithm to resolve the difficul-
ties posed by having semi-gradients. Compared to the
existing TD(1) in a basic benchmark, we experimentally
test the practicality of this new method.

2. We introduce the mean-field Langevin policy gradient

(MFLPG) as the policy improvement component (actor)
and prove that it converges to the globally optimal pol-
icy at a linear convergence rate under KL-divergence
regularization, in continuous and discretization case, rep.
This algorithm is equivalent to the standard policy gra-
dient in the parameter space with additional injected
noises.

At the core of our analysis are (1) the over-parameterization
of two-layer neural networks to represent policies and ap-
proximate state-action value functions in the mean-field
regime, (2) the log-Sobolev-inequality argument to control
the local convergence, (3) Techniques for simultaneously
controlling the global optimal error and the KL divergence
error, an inherent problem arising from the Wasserstein gra-
dient flow in nonconvex objective functions (See the proof
of Lemma 9 and Theorem 3), (4) the proximal gradient algo-
rithm for TD learning to prevent convergence breakdown by
using the semi-gradient of the mean squared Bellman error.
In particular, (1) attributes the problem to the Wasserstein
gradient flow and enables the utilization of the convexity
of the loss function in the measure space. Furthermore, to-
gether with (2), it guarantees linear convergence speed in
the presence of globally convergent solutions. Note here
that, our whole results are valid with arbitrary regulariza-
tion parameters. It is worth noting that (3) directly induces
global optimality in distribution space, which eliminates
constraints on regularization and (4) allows the Bellman
error bias not to depend on the scale of the neural network
as in lazy training for the first time. To the best of our
knowledge, our analysis gives the first global optimality and
linear convergence guarantees for the neural policy gradient
methods with feature learning, confirming their consider-
able empirical success. Leahy et al. (2022) analyzed an
entropy-regularized policy gradient similar to ours using the
Wasserstein gradient flow, but the essence of their analysis
is strong convexity due to sufficiently large regularization
parameter λ > c > 0. On the other hand, our convergence
analysis allows arbitrary regularization parameters λ > 0.

Related Works Regarding the convergence and optimal-
ity of the actor-critic, there is a need to encompass the two
optimization problems of the actor component and the critic
component, and in terms of the complexity of each problem,
the theoretical research is limited. Regarding TD learning,
various approaches mainly utilizing linear function approxi-
mation have been made to address the divergence and non-
convergence issues arising from semi-gradient (Baird, 1995;
Tsitsiklis & Van Roy, 1996). In particular, Capturing neural
networks in the NTK regime, Cai et al. (2019) demonstrated
sublinear convergence to the true value function, and Zhang
et al. (2020) showed such sublinear convergence by attribut-
ing this optimization to lazy training. On the other hand,
the global convergence of policy gradient methods is lim-
ited due to the non-convexity of the objective function, but
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Fazel et al. (2018); Yang & Wang (2019) proved the con-
vergence of policy gradient methods to the globally optimal
policy in the LQR setting (Fazel et al., 2018; Zhou & Lu,
2023), and Bhandari & Russo (2019); Agarwal et al. (2020)
proved convergence to the globally optimal policy in tabular
and their own linear settings. Along the line of research,
Wang et al. (2020) incorporated Cai et al. (2019) as the critic
component, assuming that both the actor and critic are well
approximated by linear functions of random features deter-
mined by initial parameters. They provided convergence
to the globally optimal policy at a sublinear rate. However,
these analyses over NTK or lazy training regimes assume
that the neural network does not learn features from the
input data.

As opposed to the linearization analysis above, we use the
following tools of mean-field Langevin theory. In general,
gradient method analysis of mean-field neural networks
uses the convexity of the objective in the space of prob-
ability measures to show its global optimality (Nitanda
& Suzuki, 2017; Chizat & Bach, 2018; Mei et al., 2018),
MFLD yields to an entropy regularization term in the objec-
tive by adding Gaussian noises to the gradient. Within this
research stream, our work is closely related to Nitanda et al.
(2022); Chen et al. (2023) using convex analysis focusing
on the log-Sobolev inequality starting from the Nitanda et al.
(2021). There is also a large body of literature analyzing
the optimization analysis of supervised learning with over-
parameterized neural networks in the mean-field regime (Hu
et al., 2021; Chen et al., 2020; Nitanda et al., 2022; Chizat,
2022; Suzuki et al., 2023).

2. Background
The agent interacts with the environment in a discounted
Markov decision process (MDP) (Puterman, 2014) given
by a tuple (S,A, γ, P, r). The policy π : S × A →P(S)
represents the probability at which the agent takes a specific
action a ∈ A at a given state s ∈ S , with the agent receiving
a reward r(s, a) when taking an action a at state s, and
transitioning to a new state s′ ∈ S according to the transition
probability P (·|s, a) ∈ P(S). γ ∈ (0, 1) is the discount
factor. Here, we denote the state value function and the
state-action value function (Q-function) associated with π
by

Vπ(s) =(1− γ)E

[ ∞∑
τ=0

γτr(sτ , aτ ) | s0 = s

]
,

Qπ(s, a) =(1− γ)E

[ ∞∑
τ=0

γτr(sτ , aτ ) | s0 = s, a0 = a

]
,

where aτ ∼ π(sτ ), sτ+1 ∼ P (sτ , aτ ) for all τ ∈ Z>0.

Note that policy π with the transition kernel P induces a

Markov chain over state space S , and we make the assump-
tion that every policy π is ergodic, i.e. has a well-defined sta-
tionary state distribution ϱπ and the stationary state-action
distribution ςπ = π(a|s) · ϱπ(s). Moreover, we define the
state visitation measure and the state-action visitation mea-
sure induced by policy π, respectively, as

νπ(s) =(1− γ)

∞∑
τ=0

γτP (sτ = s) ,

σπ(s, a) =π(a|s) · νπ(s),

where aτ ∼ π(sτ ), sτ+1 ∼ P (sτ , aτ ) for all τ ∈ Z>0. The
visitation measures count the discounted number of steps
that the agent visits each s or (s, a) in expectation.

Policy Gradient Here, we define the expected total reward
function Jπ for all π as

Jπ =(1− γ)E

[ ∞∑
τ=0

γτr(sτ , aτ )

]
,

where aτ ∼ π(sτ ), sτ+1 ∼ P (sτ , aτ ) for all τ ∈ Z>0.
The goal of the policy gradient ascent is to maximize Jπ
by controlling policy π under the reinforcement learning
setting defined above, where the optimal policy is denoted
by π∗. We parameterize the policy as πΘ with the vector
parameter Θ ⊂ Rd and we further define JΘ = JπΘ

for
simplicity. The gradient of JΘ over Θ is introduced by the
policy gradient theorem (Sutton et al., 1999) as ∇ΘJΘ =
EνπΘ

[∫
∇ΘπΘ(da|s) ·QπΘ

(s, a)
]
. The state-action value

function in the above gradient is estimated by the policy
evaluation problem.

Temporal-Difference Learning In temporal-difference
(TD) learning, we parameterize a Q-function as QΩ and aim
to estimate Qπ by minimizing the mean-squared Bellman
error (MSBE):

min
Ω

MSBE(Ω) =Eςπ

[
(QΩ(s, a)− T πQΩ(s, a))

2
]
,

where T π is the Bellman evaluation operator associ-
ated with policy π, which is defined by T πQ(s, a) =
E [(1− γ)r(s, a) + γQ(s′, a′) | s′ ∼ P (s, a), a′ ∼ π(s′)],
and QΩ is a Q-function parameterized with pa-
rameter Ω ⊂ Rd. The most common TD-
learning algorithm is TD(0), which, in the pop-
ulation version, updates Ω via the semi-gradient
Eςπ [(QΩ(s, a)− T πQΩ(s, a)) · ∇ΩQΩ(s, a)].

3. Mean-field Langevin Actor Critic
In this section, we introduce a particle-based double-loop
neural actor-critic method with the policy and Q-function
parameterized by neural networks in discrete time and the
convergence analysis in the mean-field limit. We first intro-
duce the parameterization of actor and critic below.
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Parameterization of Policy and Q-Function For nota-
tional simplicity, we assume that S ×A ∈ RD with D ≥ 2
and that ∥(s, a)∥ ≤ 1 for all (s, a) ∈ S ×A without loss of
generality. We parameterize a function h : S×A → R using
a two-layer neural network with width m and d-dimentional
parameters Θ = (θ1, . . . , θm) ∈ Rd×m where it holds that
d = D + 2, which is denoted by NN(Θ;m),

fΘ(s, a) =
1

m

m∑
i=1

hθi(s, a),

hθ(s, a) =R · β(b) · σ(w⊤(s, a, 1)), θ = (w, b), (1)

where hθ(s, a) : S×A → R is the nonlinear transformation
function, σ : R → R is the activation function, β : R →
(−1, 1) is a bounded function that represents the second
layer weights with the bound R > 0. We now introduce the
parameterization of the policy π and the Q-function Q with
neural networks in the mean-field regimes respectively. Let
fΘ = NN(Θ;m), fΩ = NN(Ω;M). Then we denote the
policy and Q-function by πΘ and QΩ, which are given by

πΘ(a|s) ∝ exp (−fΘ(s, a)) , QΩ(s, a) =fΩ(s, a),

where the definition yields
∫
πΘ(a|s)da = 1 for all s ∈ S.

Mean-field Limit By taking mean-field limit m → ∞,
we obtain the policy πρ and the Q-function Qq induced by
the weight distributions ρ, q ∈ P2, respectively:

πρ(a|s) ∝ exp (−E[hθ(s, a)]) , Qq(s, a) = E[hω(s, a)],

where the expectations are evaluated over θ ∼ ρ, ω ∼ q,
resp. We now impose the following assumption on the
two-layer neural network hθ.
Assumption 1 (Regularity of the neural network.). For
the neural network hθ defined in Eq. (1), we assume the
activation function σ : R → R is uniformly bounded, L1-
Lipschitz continuous, and L2-smooth. Besides, we assume
the second weight function β : R → (−1, 1) is an odd
function which is L3-Lipschitz continuous and L4-smooth.

Without loss of generality, we can assume σ ∈ (−1, 1),
which implies that the neural network hθ is bounded by
R > 0. Assumption 1 is a mild regularity condition except
for the boundary of the neural network. Assumption 1 can
be satisfied by a wide range of neural networks, e.g., β(·) =
tanh(·/R) and σ(·) = tanh(·). We further define J : ρ 7→
J [ρ] := Jπρ as a functional over ρ.
Remark 1. Assumptions 1 and 3 ensure our neural net-
work model class is sufficiently rich, covering widely used
activation functions like a sigmoid and hyperbolic tangent.
This approach aligns with common practices in analytical
research Agazzi & Lu (2020); Zhang et al. (2020; 2021);
Leahy et al. (2022) Additionally, this assumption is vali-
dated in cases where kernels are smooth and light-tailed,
like the RBF kernel as mentioned in Suzuki et al. (2023) for
applications such as MMD and KSD estimation.

3.1. Actor Update: Mean-field Langevin Policy
Gradient

We aim to minimize the regularized negative expected total
rewards J [ρ] over the probability distribution together. The
regularized objective can be written as follows:

min
ρ
{F [ρ] =− J [ρ] +

λ

2
Eρ[∥θ∥22] + λEnt[ρ] + λZ},

where λ > 0 is a regularization parameter, and Z =
1
2 ln(2π) is the normalization constant.

Remark 2. The L2-regularization Eρ[∥θ∥22] helps to induce
log-Sobolev inequality. This is due to the fact that ∥θ∥22 is
strongly convex, see Section B.1 especially Proposition 2
for details over log-Sobolev inequality. The entropy reg-
ularization term is required by adding Gaussian noise to
the gradient, allowing global convergence analysis under
less restrictive settings (Mei et al., 2019b). Adding these
terms introduces a slight optimization bias of order O(λ).
These regularization terms also have statistical benefits to
smooth the problem. Note that we can rewrite the objective
functionalF as minρ{F [ρ] = −J [ρ]+λ ·KL(ρ∥ν)} where
ν = N (0, Id) is a standard Gaussian distribution.

In the sequel, we introduce the policy gradient over the
measure space to construct the MFLD. Let the objective
subtracted by the entropy be F [ρ] := −J [ρ] + λ

2 ·Eρ[∥θ∥22].
Proposition 1 (Policy Gradient). For the distribution ρ over
the policy parameter θ, we have

δF

δρ
[ρ](θ) = Eσπρ

[Aπρ · hθ] +
λ

2
∥θ∥22, (2)

where δF
δρ [ρ](θ) is the first-variation of F [ρ] in Definition 1,

and Aπρ
is the advantage function defined by Aπρ

(s, a) =
Qπρ

(s, a)−
∫
πρ(da

′|s) ·Qπρ
(s, a′).

See Appendix D.1 for the proof. In practice, we do not get
the true advantage function Aπρ

, but instead use the estima-
tor At(s, a) = Qt(s, a)−

∫
πt(da

′|s)·Qt(s, a
′) with Qt ob-

tained from critic. Let the initial distribution ρ0 = N (0, Id).
Then we update ρt according to the following McKean-
Vlasov stochastic differential equation, which solves the
following Fokker-Planck equation over time t ∈ R≥0:

dθt =−∇
δ̃F

δρ
[ρt](θt) · dt+

√
2λ · dWt, (3)

∂tρt =λ ·∆ρt +∇ ·

(
ρt · ∇

δ̃F

δρ
[ρt]

)
. (4)

where δ̃F
δρ [ρt](θ) = Eσπρ

[At · hθ] +
λ
2 ∥θ∥

2
2 is the approxi-

mated policy gradient and {Wt}t≥0 is the Brownian motion
in Rd with W0 = 0.
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Time and Space Discretization To implement our ap-
proach, we represent ρΘ = 1

m

∑m
i=1 δθi as a mixture of

m particles Θ = {θi}i∈[m], which corresponds to a neural
network with m neurons. Let T be the number of iterations.
We perform a discrete-time update at each k-th step of a
noisy policy gradient method, where the policy parameter
Θk = {θik}i∈[m] is updated for all k ∈ [T ] as

θik+1 = (1− ηλ) θik − η Eσπk
[Ak∇hθi

k
] +
√
2ληξik,(5)

where we define ρk = ρΘk
, πk = πΘk

and denote a learning
rate by η > 0. Ak is an approximation of an advantage
function Aπk

and ξik is an i.i.d. random variable ξik ∼
N (0, Id). Note that, for each k-step, the agent uniformly
sample L ∈ [TTD] and adopt Q(L) as Qk from the estimated
Q-functions {Q(l)}l∈[TTD] obtained by MFLTD (Algorithm
2). See Algorithm 1 for more detail. We denote a learning
rate by η > 0. The discrete version of the MFLPG can be
attributed to the MFLDs in Eq. (3) by taking the mean-field
limit m, k →∞, η → 0 being t = ηk.

Algorithm 1 Mean-field Langevin Policy Gradient
Input: θi0 ← N(0, Id) for all i ∈ [m] and π0(·)← πΘ0

.
1: for k = 0 to T − 1 do
2: Given the current policy πk, run Algorithm 2 and

uniformly sample L ∈ [TTD]: Qk ← Q(L)

3: Calculate Ak = Qk − ⟨πk, Qk⟩ and update with
the i.i.d. noise ξik ∼ N (0, Id) for all i ∈ [m] by
θik+1 ← (1−ηλ) θik−η Eσπk

[Ak ·∇hθi
k
]+
√
2ληξik

4: πk+1 ← πΘk+1

5: end for
Output: πT

3.2. Critic Update: Mean-field Langevin TD Learning

In this section, we introduce the Mean Field Langevin Tem-
poral Difference (MFLTD) method to address the challenges
of TD learning in the mean-field regime, especially for
optimizing two-layer neural networks. The core issue in
TD learning is the semi-gradient of the mean-square Bell-
man error, which may not always converge due to its non-
monotonic descent in the mean-field context. This com-
plexity arises from optimizing over probability measures
rather than direct parameter adjustments, similar to navigat-
ing a Wasserstein gradient flow instead of a conventional
L2 descent.

MFLTD is a novel double-loop algorithm designed to ensure
monotonic objective reduction in each outer loop iteration,
akin to proximal gradient methods. The inner loop approx-
imates the true value function by solving a majorization
problem that overestimates the mean squared error. This
guarantees that the objective function, Ll, is convex over
the space of probability distributions. As a result, stationary
points of the inner objective yield values at least a constant

factor of the expected squared error 1−γ
2 E[(Qq−Qπ)

2] plus
an error term bounded by O(λ). This structure systemati-
cally reduces the expected squared error with each iteration,
enhancing the algorithm’s efficiency and clarity.
Inner Loop Update The inner loop is based on the KL-
divergence regularized MFLD analysis in (Nitanda et al.,
2022; Chizat, 2022). In the mean-field view, we minimize
the objective minq{Ll[q] = Ll[q] + λTD Ent[q]} where
λTD is a regularization parameter and Ll[q] is defined, for
l ∈ [0, TTD], by

Ll[q] = Eςπ [(Q
(l)−T πQ(l)) · (Qq−Qπ)] (6)

+
1

2(1− γ)
Eςπ [(Q

(l) −Qq)
2] +

λTD

2
Eq[∥ω∥22] + λTDZ,

where Z = 1
2
ln(2π) is the normalization constant and, on the

right-hand side, the first term is the linearized surrogate TD error
and the second one is the proximal control term. We obtain the
MFLD at time s as

dωs =−∇δLl

δq
[qs](ωs) · dt+

√
2λTD · dWs,

where {Ws}s≥0 is the Brownian motion in Rd with W0 = 0.
Let x′ = (s′, a′) be the next state and action of x = (s, a). To
understand the intuition behind the proximal semi-gradient, we
have the gradient of first variation of Ll as

∇δLl

δq
[q](ω)

=Eςπ

[(
Q

(l)

q (x)− (1− γ)r(x)− γQ(l)(x′)
)
∇hω(x)

]
+ λTDω,

where we define the averaged Q-function by Q
(l)

q = (Qq −
γ Q(l))/(1 − γ) and the expectation is obtained under
(x, x′) ∼ ςπ .

Outer Loop Update The last iterate QΩN
of the previ-

ous inner loop is given in the outer loop as Q(l+1). See
Algorithm 2 for the discretization algorithm of MFLTD.
We remark that considering that the inner-loop algorithm

Algorithm 2 Mean-field Langevin TD Learning

Input: ωj
0 ← N(0, Id) for all j ∈ [M ] and the policy π.

1: for l = 0 to TTD − 1 do
2: for n = 0 to N − 1 do
3: Average Q-function: Q

(l)

n = 1
1−γ (QΩn

− γ Q(l))

4: Update with the i.i.d. noise ξjn ∼ N (0, Id) for all
j ∈ [M ]:

ωj
n+1 ← ωj

n−ηTD ·∇ δLl

δq [qn](ω
j
n)+
√
2λTDηTDξ

j
n

5: end for
6: Q(l) ← QΩN

7: end for
Output: {Q(l)}l∈[TTD]

converges to the optimum at the exponential rate, the com-
putational complexity of the inner-loop does not become a
bottleneck in implementation. In this regard, the results in
Section 5 offer valuable insights.
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4. Main Results
In this section, we present the results of our investigation
into the theoretical support of the mean-field Langevin actor-
critic. First of all, we base our analysis on the regularity
condition that the reward is bounded.

Assumption 2 (Regularity Condition on Reward). We
assume that there exists an absolute constant Rr > 0
such that Rr = sup(s,a)∈S×A |r(s, a)|. As a result, we
have |Vπ(s)| ≤ Rr, |Qπ(s, a)| ≤ Rr, |Jπ| ≤ Rr and
|Aπ(s, a)| ≤ 2Rr for all π and (s, a) ∈ S ×A.

Combining Assumption 1 and 2 yields that 2Rr ≤ R by
setting R > 0 large enough. Such a regularity condition
is commonly used in the literature (Liu et al., 2019; Wang
et al., 2020). In what follows, we introduce the following
regularity condition on the state-action value function Qπ .

Assumption 3 (Value Function Class). We define for
R,M > 0

FR,M =

{∫
β′ · σ(w⊤(s, a, 1)) · ρ′(dβ′,dw)

: KL(ρ′∥ν) ≤M, ρ′ ∈P((−R,R)× Rd−1)
}
,(7)

which is equivalent to the function class of Eθ∼ρ[hθ] for
ρ ∈ P2. We assume that Qπ(x), Aπ(x) ∈ FR,M for any π.

As will be further explained in Appendix B.2, we note that
Assumption 3 is a natural regularity condition on Qπ, Aπ , as
FR,M captures a rich family of functions, which is a subset
of the Barron class (Barron, 1993). Indeed, by making
the neural network radius R,M sufficiently large, FR,M

asymptotically approaches the Barron class and captures a
rich function class by the universal approximation theorem
(Barron, 1993; Pinkus, 1999). Also, as long as smoothness
and boundedness of networks are assumed (Assumption 1),
every network can be included in the above class at least
with a small modification. Similar regularity condition is
a commonly used concept in literature (Farahmand et al.,
2016; Yang & Wang, 2019; Liu et al., 2019; Wang et al.,
2020).

4.1. Mean-field Langevin TD Learning
In the continuous-time limit, the next step is obtained by
q(l+1) = qS where we define S as the inner-loop run-time.
Regarding the outer-loop update, we obtain the following
one-step descent lemma.

Lemma 1 (One-Step Descent Lemma for MFLTD). Let
q
(l+1)
∗ be the inner-loop optimal distribution for any inner

step l. For {Q(l)}l∈[TTD] in Algorithm 2 with the TD update

in Line 2, it holds that

γ(2− γ)

2(1− γ)
Eςπ

[
(∆Q(l+1))2 − (∆Q(l))2

]
≤− 1− γ

2
∥∆Q(l+1)∥2ςπ +

2R

1− γ
∥Q(l+1) −Q(l+1)

∗ ∥ςπ

+ λTD KL(q(l+1)∥q(l+1)
∗ ) + λTD KL(qπ∥ν),

(8)

where we define that ∆Q(l) = Q(l) −Qπ, and denote by
Q

(l+1)
∗ the Q-function Q

q
(l+1)
∗

, and q(l+1), qπ are the weight

distributions inducing Q(l+1), Qπ , resp.

See Appendix C.1 for the proof. The existence of qπ is
guaranteed by Assumption 3. Lemma 1 illustrates the one-
step descent behavior. The second and third terms of the
right-hand side of Eq. (8) represent non-asymptotic errors
obtained through the inner loop, and it exponentially de-
creases with an increase in the run-time S of the inner loop.
The key to the proof of Lemma 1 is the use of geometric
features related to the norm of the Bellman equation opera-
tor in Lemma 11. The shrinking norm suppresses errors in
the semi-gradient direction that deviates from the true gra-
dient direction. In what follows, Combining Proposition 5
and Lemma 1 allows us to establish the global convergence
theorem for the MFLTD as

Theorem 1 (Global Convergence of the MFLTD). Under
Assumption 1, 2, and 3, the outputs {Q(l)}l∈[TTD] of Algo-
rithm 2 satisfies, for λTD > 0 and the inner runtime S > 0,
that

1

TTD

TTD∑
l=1

Eςπ [(Q
(l) −Qπ)

2] ≤ 8γR2

(1− γ)2TTD

+ C1λ
− 1

2

TDe
(−αλTDS) + C2e

(−2αλTDS) + C3λTD,

where C1, C2, C3 > 0 are the absolute constants such that
C1 = 8

√
3R3

(1−γ)5/2
, C2 = 24R4

(1−γ)2 , C3 = 2M
1−γ , and we define α

as a LSI constant in Definition 2.

See Appendix C.2 for the proof. Theorem 1 implies that
if the inner-loop error goes to zero, then Q-function con-
verges to the true state-action value function Qπ at the time-
averaged sublinear rate O(1/TTD) with the regularization
bias O(λTD). Therefore, setting the parameters suitably
yields the following corollary.

Corollary 1. Under the same conditions as Theorem 1,
let S = − 3 log λTD

2αλTD
and λTD = T−1

TD, uniform sampling
L ∈ [TTD] yields that

EL,ςπ [(Q
(L) −Qπ)

2] ≤ C0 + C1 + C3

TTD
∧ C2

T 3
TD

,

where we denote C0 = 8γR2

(1−γ)2 .
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See the Appendix C.4 for the proof. Corollary 1 shows
that, given a policy π, Q(L) → Qπ as TTD → ∞ at rate
O(1/TTD). This result is in perfect agreement with the con-
vergence rate O(1/TTD) that Cai et al. (2019) obtains from
TD learning in the NTK regime. Note that the previous work
on TD learning in the mean-field regime has the 1/α-rate
bias with α being the network scaling factor (Zhang et al.,
2020). Thus, this is the first time that global convergence
has been demonstrated in a domain that takes advantage of
the data-dependent advantage of neural networks.

4.2. Mean-field Langevin Policy Gradient
We introduce the analysis of global convergence of the
MFLPG, under the mean-field limit and the discretized set-
ting, rep. First, we lay out a moment condition as
Assumption 4 (Moment Condition on Radon-Nikodym
Derivative). We assume that there exists absolute constants
κ, ι > 0 such that for any t ∈ R≥0

(i) ∥dσt/dςt∥ςt,2 ≤ ι, (ii) ∥dσ∗/dσt∥σt,2
≤ κ,

where dσt

dςt
and dσ∗

dσt
are the Radon-Nikodym derivatives.

Note that when the MDP starts at the stationary distribution
ςt, the state-action visitation measures σt are identical to ςt.
Regarding Assumption 4-(i), if the induced Markov state-
action chain rapidly reaches equilibrium, this assumption
also holds true. The same requirement is imposed by Liu
et al. (2019); Wang et al. (2020). Meanwhile, the optimal
moment condition in Assumption 4-(ii) asserts that the con-
centrability coefficients are upper-bounded. This regularity
condition is a commonly used concept in literature (Farah-
mand et al., 2016; Chen & Jiang, 2019; Liu et al., 2019;
Wang et al., 2020) and is utilized to guarantee the global
optimality in Theorem 2.

What we follow, since MFLD can be basically attributed
to the Wasserstein gradient flow, the convergence to the
stationary point is guaranteed. We define the proximal Gibbs
distribution ρ̂t by

ρ̂t ∝ exp

(
− 1

λ

δF

δρ
[ρt]

)
,

which the Wasserstein gradient flow in Eq. (4) goes to-
ward unless we have critic errors. Motivated by the log-
Sobolev-inequality argument in (Nitanda et al., 2022), the
convergence in KL divergence between ρt, ρ̂t are yielded as
Lemma 2 (Convergence to Stationary Point of MFLPG).
Under Assumption 1,2, 3, and 4-(i) we obtain for any t ≥ 0
that

d

dt
F [ρt] ≤ −αλ2 ·KL(ρt||ρ̂t)

+ 2R2(L1 + L3)
2ι2 Eςt [(Qt −Qπt)

2
],

(9)

where α > 0 is the LSI constant of ρ̂t and Qt is the Q-
function estimator given by the critic.

See Appendix D.2 for the proof. The second term on the
right-hand side of Eq. (9) is the policy evaluation error
given by the result in Corollary 1. Lemma 2 implies that,
if the critic error is zero, then ρt goes toward ρ̂t as t→∞.
The Entropy-sandwich-argument (derived from Lemma 3.4
(Chizat, 2022)) yields that if J is the convex functional
then the performance difference F [ρt] −minρ∈P2

F [ρ] is
upper-bounded by KL(ρt∥ρ̂t), which concludes the global
optimality of the stationary point. By contrast, we obtain
the global convergence by utilizing the one-point convexity
of Jπ at the global optimum π∗, which is established by
Proposition 3 in Kakade & Langford (2002).

Lemma 3 (Global Optimality of Stationary Point). Assume
the same conditions as Lemma 2 and Assumption 4-(ii), and
under KL(ν∥ρ̂t) ≤M for all t ≥ 0, we have for all t ≥ 0
and λ > 0 that

max
π

Jπ − J [ρt] ≤ λ KL(ρt||ρ̂t) + C̃1

√
λ, (10)

where we denote C̃1 = 1
4

(
R+ κ

1−γ

)2
+ 2M .

See Appendix D.3 for the proof. Lemma 3 implies that
J [ρt] → maxπ Jπ with a regularization bias O(

√
λ) as ρt

gets much closer to ρ̂t. In what follows, we establish the
global optimality and the convergence rate of the MFLPG.

Theorem 2 (Global Optimality and Convergence of the
MFLPG). We set TTD = 1

αλ3/2 . Under the same conditions
as Lemma 3, the continuous MFLPG yields for all t ∈ R≥0

and λ > 0 that

max
π

Jπ − J [ρt] ≤ 2R exp(−αλt) +O(λ1/2).

See Appendix D.4 for the proof. Theorem 2 demonstrates
that the MFLPG achieves linear convergence in continuous
time with regularization bias O(λ1/2), significantly over-
whelming the O(t−1/2) convergence rate typical of NTK
regime (Wang et al., 2020). Furthermore, we highlight an
enhanced convergence without bias through a time-varying
λt = O(1/ log t) strategy, given in the annealing argument
in Chizat (2022).

Theorem 3 (The Convergence Analysis for Fully Dis-
cretized Particle). Suppose that

∣∣∣ δ2Jδρ2 [ρ](θ, θ
′)
∣∣∣ ≤ L(1 +

c(∥θ∥2 + ∥θ′∥2)) for any θ, θ′ ∈ Rd and define δ2TD =
O(Eςπk

[(Qk −Qπk
)2]). Under the same conditions as The-

orem 2, run Algorithm 1, where the actor update is given
in Eq. (5). It holds for all m ∈ Z≥0, T ∈ Z≥0, η ≥ 0, and
λ > 0 that

max
π

Jπ − E[JΘT
] ≤ 2R exp(−αληT/2) (11)

+ η

(
C̃λ,1

1

m
+ C̃λ,2(η

2 + λη) + C̃αλ3/2 + δ2TD

)
,
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where C̃λ,1 = O
(
1 ∨ λ

η

)
, C̃λ,2 = O

(
1
λ ∨

1
η

)
and C̃ =

O(1). Especially, setting η ≍ λ = O( 1
m ), TTD = Ω(m),

and T = Ω(m3em) yields for any m ∈ Z≥0 particles that

max
π

Jπ − E[JΘT
] ≤ O

(
1

m2

)
. (12)

See Appendix E for the proof. Eq. (11) implies that the
expected JΘk

goes toward maxπ Jπ biased by the finite
width errorO(λ/m∨η/m) and the time-discretization error
depending on η, as T → ∞. In addition, Eq. (12) demon-
strates that we can evaluate the expected performance error
maxπ Jπ −E[JΘT

] = O(m−2) with the suitable parameter
setting. This result is an indicator of how well the neural
network performs as its width is increased, i.e., m → ∞,
and it is faster than the rate O(m−1/16) derived from the
existing policy gradient research in NTK regime (Wang
et al., 2020). Although it is hard to understand explicitly
the impact of training in the mean-field regime on feature
learning, training relies on a fixed set of features in NTK
scaling, limiting expressiveness to the network’s width. In
contrast, MF scaling allows feature bases in the first layer
to adjust dynamically, enhancing the training data’s adapt-
ability. In fact, MF networks have a superior representation
ability over finite-width NTK networks, which struggle to
approximate characteristic functions (Suzuki, 2019; Ghor-
bani et al., 2019; Damian et al., 2022). See Appendix B.3
for more detail.

5. Numerical Analysis
In this section, we conducted a numerical experiment to
compare the Critic component, which is based on the pro-
posed MFLTD, against the existing TD(1) algorithm that
utilizes the Bellman error semi-gradient. Additionally, we
demonstrated how the learning performance differs when
using a neural network that follows the NTK with a repre-
sentation that is independent of input data and dependent
on initial values. Specifically, we performed learning on the
CartPole-v1 environment provided by OpenAI’s Gym and
implemented the estimation of the state-action value func-
tion during optimal policy selection. In this experiment, we
used a neural network with 256 neurons, ran 4000 episodes
with a discounted factor of γ = 0.99, and employed a
learning rate of η = 0.0001 for MFLTD. Notably, we con-
ducted MFLTD’s inner loop with a step size of K = 10,
repeated it TTD = 400 times in the outer loop, and sampled
using one episode for each inner step. Furthermore, we ap-
plied Gaussian noise of magnitude induced by the entropy
regularization parameter λ = 0.001, following Algorithm
2, along with L2 regularization. To assess the difference
in performance due to representation learning covered by
Mean-field analysis, we also implemented NTK-TD with
a double-loop setup where representations are fixed at ini-
tial values, similar to MFLTD. Additionally, to address the

primary weakness of our proposed algorithm, the double-
loop, we examined its impact on computational complexity
compared to single-loop TD(1).
Figure 1 presents the average and standard deviation of each
learning process conducted ten times. From this figure, we
observe that MF training with features independent of initial
values outperforms when compared with an equal number of
neurons, primarily due to increased expressiveness gained
through feature learning. Furthermore, while the single-loop
results are faster in regions of lower accuracy under the same
computational load and time, they exhibit decreased speed
in regions of higher accuracy, ultimately demonstrating that
our proposed double-loop method approximates the true
value function more effectively.
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Figure 1. Comparison of Time Evolution of Mean Squared Bell-
man Error Between Algorithms for TD Learning Near the Optimal
Policy in the Game Model ”CartPole-v1”.

6. Conclusion
We studied neural policy optimization in the mean-field
regime and provided the first global optimality guarantee
and the linear convergence rate for a neural actor-critic algo-
rithm in the presence of feature learning. For both actor and
critic, we attributed their updates to the MFLD and analyzed
their evolutions as the optimization of corresponding proba-
bility measures under mean-field limit and time-and-particle
discretized version, resp. We provide theoretical guarantees
for global convergence to global optimality, and empirical
experiments that validate the superiority of the proposed
algorithm in policy evaluation.
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Sobolev inequalities by decomposition of the energy land-
scape. The Annals of Probability, 42(5):1809 – 1884,
2014.

Mousavi-Hosseini, A., Park, S., Girotti, M., Mitliagkas, I.,
and Erdogdu, M. A. Neural networks efficiently learn low-
dimensional representations with SGD. In The Eleventh

10



Mean Field Langevin Actor-Critic: Faster Convergence and Global Optimality beyond Lazy Learning

International Conference on Learning Representations,
2023. URL https://openreview.net/forum?
id=6taykzqcPD.

Nitanda, A. and Suzuki, T. Stochastic particle gradi-
ent descent for infinite ensembles. arXiv preprint
arXiv:1712.05438, 2017.

Nitanda, A., Wu, D., and Suzuki, T. Particle dual averaging:
Optimization of mean field neural network with global
convergence rate analysis. In Advances in Neural Infor-
mation Processing Systems, volume 34, pp. 19608–19621.
Curran Associates, Inc., 2021.

Nitanda, A., Wu, D., and Suzuki, T. Convex analysis of the
mean field Langevin dynamics. In Proceedings of The
25th International Conference on Artificial Intelligence
and Statistics, volume 151 of Proceedings of Machine
Learning Research, pp. 9741–9757. PMLR, 2022.

Ouyang, L., Wu, J., Jiang, X., Almeida, D., Wainwright,
C. L., Mishkin, P., Zhang, C., Agarwal, S., Slama, K.,
Ray, A., Schulman, J., Hilton, J., Kelton, F., Miller,
L., Simens, M., Askell, A., Welinder, P., Christiano, P.,
Leike, J., and Lowe, R. Training language models to
follow instructions with human feedback. arXiv preprint
arXiv:2203.02155, 2022.

Pinkus, A. Approximation theory of the MLP model in
neural networks. Acta Numerica, 8:143–195, 1999.

Puterman, M. L. Markov Decision Processes: Discrete
Stochastic Dynamic Programming. John Wiley & Sons,
2014.

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L.,
Van Den Driessche, G., Schrittwieser, J., Antonoglou, I.,
Panneershelvam, V., Lanctot, M., et al. Mastering the
game of go with deep neural networks and tree search.
nature, 529(7587):484–489, 2016.

Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou,
I., Huang, A., Guez, A., Hubert, T., Baker, L., Lai, M.,
Bolton, A., Chen, Y., Lillicrap, T., Hui, F., Sifre, L.,
van den Driessche, G., Graepel, T., and Hassabis, D.
Mastering the game of Go without human knowledge.
Nature, 550(7676):354–359, 2017.

Sutton, R. S. Learning to predict by the methods of temporal
differences. Machine Learning, 3:9–44, 1988.

Sutton, R. S. and Barto, A. G. Reinforcement Learning: An
Introduction. MIT press, 2018.

Sutton, R. S., McAllester, D., Singh, S., and Mansour, Y.
Policy gradient methods for reinforcement learning with
function approximation. In Advances in Neural Infor-
mation Processing Systems, volume 12, pp. 1057–1063.
MIT Press, 1999.

Suzuki, T. Adaptivity of deep ReLU network for learning
in Besov and mixed smooth Besov spaces: Optimal rate
and curse of dimensionality. In International Conference
on Learning Representations, 2019.

Suzuki, T., Wu, D., and Nitanda, A. Convergence of
mean-field langevin dynamics: Time and space discretiza-
tion, stochastic gradient, and variance reduction. arXiv
preprint, 2023.

Telgarsky, M. Feature selection and low test error in
shallow low-rotation reLU networks. In The Eleventh
International Conference on Learning Representations,
2023. URL https://openreview.net/forum?
id=swEskiem99.

Tsitsiklis, J. and Van Roy, B. Analysis of temporal-
diffference learning with function approximation. In
Advances in Neural Information Processing Systems, vol-
ume 9, pp. 1075–1081. MIT Press, 1996.

Wang, L., Cai, Q., Yang, Z., and Wang, Z. Neural pol-
icy gradient methods: Global optimality and rates of
convergence. In International Conference on Learning
Representations, 2020.

Weinan, E., Ma, C., and Wu, L. A comparative analysis of
optimization and generalization properties of two-layer
neural network and random feature models under gradient
descent dynamics. Sci. China Math, 2019.

Williams, R. J. Simple statistical gradient-following algo-
rithms for connectionist reinforcement learning. Rein-
forcement Learning, pp. 5–32, 1992.

Yang, J., Hu, W., Lee, J. D., and Du, S. S. Impact
of representation learning in linear bandits. In In-
ternational Conference on Learning Representations,
2021. URL https://openreview.net/forum?
id=edJ_HipawCa.

Yang, L. and Wang, M. Sample-optimal parametric Q-
learning using linearly additive features. In Proceedings
of the 36th International Conference on Machine Learn-
ing, volume 97 of Proceedings of Machine Learning Re-
search, pp. 6995–7004. PMLR, 2019.

Zhang, Y., Cai, Q., Yang, Z., Chen, Y., and Wang, Z. Can
temporal-difference and Q-learning learn representation?
a mean-field theory. In Advances in Neural Information
Processing Systems, volume 33, pp. 19680–19692. Cur-
ran Associates, Inc., 2020.

Zhang, Y., Chen, S., Yang, Z., Jordan, M., and Wang, Z.
Wasserstein flow meets replicator dynamics: A mean-
field analysis of representation learning in actor-critic.
In Advances in Neural Information Processing Systems,
volume 34, pp. 15993–16006. Curran Associates, Inc.,
2021.

11

https://openreview.net/forum?id=6taykzqcPD
https://openreview.net/forum?id=6taykzqcPD
https://openreview.net/forum?id=swEskiem99
https://openreview.net/forum?id=swEskiem99
https://openreview.net/forum?id=edJ_HipawCa
https://openreview.net/forum?id=edJ_HipawCa


Mean Field Langevin Actor-Critic: Faster Convergence and Global Optimality beyond Lazy Learning

Zhou, M. and Lu, J. Single timescale actor-critic method
to solve the linear quadratic regulator with convergence
guarantees. Journal of Machine Learning Research, 24
(222):1–34, 2023.

12



Mean Field Langevin Actor-Critic: Faster Convergence and Global Optimality beyond Lazy Learning

A. Notations
We denote by P(X ) the set of distribution measures over the measurable space X . Given a distribution measure function
µ ∈P(X ), the expectation with respect to µ as Eθ∼µ[·] or simply Eµ[·],Eθ[·] when the random variable and distribution
are obvious from the context. In addition, for µ ∈ P(X ) and p > 0, we define ∥f(·)∥µ,p = (

∫
Θ
|f |pdµ)

1
p as the

Lp(µ)-norm of f . We define ∥f(·)∥µ,∞ = inf{C ≥ 0 : |f(x)| ≤ C for µ-almost every x} as the L∞(µ)-norm of f . We
write ∥f∥µ,p for notational simplicity when the variable of f is obvious from the context. Especially, the L2(µ)-norm is
denoted by ∥ · ∥µ. For a vector v ∈ Rd and p > 0, we denote by ∥v∥p the Lp-norm of v. Given two distribution measures
µ, ρ ∈P(X ), we denote the Radon–Nikodým derivative between µ and ρ by dµ

dρ . KL(·∥·) stands for the Kullbuck-Leibler

divergence as KL(µ∥ρ) =
∫
dµ ln dµ

dρ , and also I(·∥·) stands for the Fisher divergence as I(µ∥ρ) =
∫
dµ∥∇θ ln

dµ
dρ ∥

2
2. Also,

we define the entropy Ent[·] by Ent[µ] =
∫
dµ lnµ. Let P2 ⊂P(Rd) be the space of probability density functions such

that both the entropy and second moment are finite.

B. Additional Remarks
B.1. Logarithmic Sobolev Inequality

In this paper, we extend the convergence analysis of a nonlinear Fokker-Planck equation, mean-field Langevin dynamics to
the context of reinforcement learning. The analysis is based on the KL-divergence regularization (Mei et al., 2019a; Hu
et al., 2021; Chen et al., 2020) and the induced log-Sobolev inequality (Nitanda et al., 2022; Chizat, 2022). Below are some
mathematical tools necessary for them. Particularly, in the MFLD convergence analysis, it is important to make use of the
following proximal Gibbs distribution defined as follows. To define the MFLD of functional F , we first introduce the first
variation of functionals as

Definition 1 (First-variation of Functionals). Let F : P2 → R and we suppose there is a functional δF
δρ : P2 × Rd ∋

(ρ, θ) 7→ δF
δρ [ρ](θ) ∈ R such that for any ρ, ρ′ ∈ P2,

dF (ρ+ ϵ · (ρ′ − ρ))

dϵ

∣∣∣∣
ϵ=0

=

∫
δF

δρ
[ρ](θ)(ρ′ − ρ)(dθ),

for all ρ ∈ P2. If there exists a functional δF
δρ [ρ](θ), we say that F is differentiable at ρ.

Note that any first variation of a functional is invariant with respect to a constant shift. In what follows, we define the
proximal Gibbs distribution (PGD) with a first variation, as

Definition 2 (Proximal Gibbs Distribution (PGD)). Let ρ ∈ P2 and λ > 0 the temperature. We define the Gibbs distribution
with potential function − 1

λ
δF
δρ around ρ for any θ ∈ Rd by

ρ̂(θ) ∝ exp

(
− 1

λ

δF

δρ
[ρ](θ)

)
.

We call ρ̂(θ) the proximal Gibbs distribution of the functional F around ρ.

The convergence analysis of ρt over the objective F heavily depends on the relationship between the PGD around ρt, ρ̂t
and the optimal distribution ρ∗. Regarding the convergence rate of MFLDs, the key analysis is depending on the following
logarithmic Sobolev inequality.

Definition 3 (Logarithmic Sobolev Inequality (LSI)). We define that a distribution measure ρ ∈ P2 satisfies a logarithmic
Sobolev inequality with constant α > 0, which is called LSI(α) in short, if and only if, for any smooth function Ψ : Rd → R
with Eρ[Ψ

2] <∞, it holds that

Eρ[Ψ
2 ln(Ψ2)]− Eρ[Ψ

2] · ln(Eρ[Ψ
2]) ≤ 2

α
Eρ[∥∇Ψ∥22],

which is equivalent to the condition that for all µ ∈ P2 absolutely continuous w.r.t. ρ, it holds

KL(µ∥ρ) ≤ 1

2α
I(µ∥ρ).
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In particular, the LSI holds uniformly for the PGD over the mean-field neural network condition, given some appropriate
boundedness assumptions. The result is achieved by leveraging two well-known facts. Firstly, it is established that strongly
log-concave densities satisfy the LSI with a dimension-free constant, up to the spectral norm of the covariance. For instance,
Bakry & Émery (1985) showed the following lemma:

Lemma 4 (Bakry & Émery (1985)). If ρ ∝ exp(−f(θ)) is a smooth probability density with f : Rd → R and there exists
c > 0 such that the Hessian matrix of f satisfies∇2f ⪰ c · Id, then the distribution ρ(θ)dθ satisfies the LSI with constant c.

It is worth noting that, for example, the Gaussian distribution ν ∼ N (0, Id) satisfies Lemma 4 with the LSI constant
c = 1. That is, ν ∼ N (0, Id) satisfies LSI(1). In addition to that, preservation of LSI under bounded perturbation has been
demonstrated in Holley & Stroock (1987) as

Lemma 5 (Holley & Stroock (1987)). If ρ is a distribution on Rd that satisfies the LSI with constant c > 0, and for a
bounded function f : Rd → R, the distribution ρf is defined as

ρf (θ) ∝ exp(f(θ)) · ρ(θ),

then ρf satisfies the LSI with a constant c/ exp (4|f |∞).

Combined with the previous example of Lemma 4, νf with some uniformly bounded potential function f satisfies Lemma 5.
These lemmas lead to the important fact that follows. Under the definition of the two-layer neural network in mean-field
regime and Assumption 1, the PGD of each function appearing in this paper satisfies the LSI with an absolute constant α.
Specifically, we have

Proposition 2 (LSI Constant of PGD). Let the first-variation of a function L, δL
δρ be uniformly bound by C > 0, and

F = L+ λ
2 · Eρ[∥θ∥22] with λ > 0. Then we have that the PGD around ρ, ρ̂ satisfies the LSI with a constant α = 1

exp( 4C
λ )

.

In our case, the boundness of each first-variation is guaranteed by the neural network’s boundness in Assumption 1 and
the reward’s boundness in Assumption 2. It is worth noting that the exponential dependence on the LSI constant may be
inevitable in the most general setting (Menz & Schlichting, 2014).

Definition 4 (Inequalities of Poincaré and Talagrand). Consider a probability measure ρ within the space P2. It fulfills the
Poincaré inequality with a constant α > 0 if, for any function f : Rd → R that is smoothly defined, the variance under ρ is
given by

Varρ(f) = Eρ[f
2]− (Eρ[f ])

2 ≤ 1

α
Eρ[∥∇f∥22].

Additionally, ρ adheres to Talagrand’s inequality with a constant α > 0 when, for every measure µ ∈ P2 that is absolutely
continuous relative to ρ, the squared 2-Wasserstein distance between µ and ρ is constrained by

α

2
W 2

2 (µ, ρ) ≤ KL(µ∥ρ).

If ν is in compliance with the Logarithmic Sobolev Inequality (LSI) characterized by a constant α, then it inherently satisfies
the Poincaré inequality with the identical constant.

B.2. On the Function Class

In Assumption 3, we considered the class of measures with the bounded KL divergence and some regularity condition. We
first note that, as we let M and R large, then FR,M contain a wider class of neural networks. What is worth mentioning is
the relation to the so-called Barron class. As we increase M and R, we can approximate a neural network in the Barron
class with arbitrary accuracy.

Barron (1993; 1994) showed that a neural network with a sigmoid activation function can avoid the curse of dimensionality
(Weinan et al., 2019) if the Fourier transform of the function f satisfies certain integrability conditions, and he defined a
function class with good properties that can be approximated universally (Barron, 1993; Pinkus, 1999). Particularly, we
name the function class as the Barron class and denote it as BF , such that∫

Cd

∥ω∥21 · |f̂(ω)|dω <∞,
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where f̂ is the Fourier transform of a function f .

One pleasant aspect of considering the Barron class is that one of the biggest contributions of feature learning, the avoidance
of the curse of dimensionality inherent in neural networks, theoretically arises (Weinan et al., 2019). The Barron class is
also closely related to the avoidance of the curse of dimensionality in other function spaces such as in the mixed Besov
space (Suzuki, 2019).

A similar analysis of function classes has been developed (Klusowski & Barron, 2016; E et al., 2019) and, in particular, the
following derivations of the Barron class are known:

Definition 5 (Barron Class (Li et al., 2020)). The Barron class is defined as

B∞ =

{∫
Rd

β(w) · σ(w⊤(x, 1)) · ρ(dw) : ρ ∈P(Rd), inf
ρ
∥β(w) · (∥w∥1 + 1)∥ρ,∞ <∞

}
,

The Barron norm for any f ∈ B∞ is defined by ∥f∥B∞ = infρ ∥β(w) · (∥w∥1+1)∥ρ,∞. In addition, we define the R-Barron
space by R′ > 0 by

BR′ = {f ∈ B∞ : ∥f∥B∞ ≤ R′}.

Note that the R-Barron space BR′ corresponds to the function class FR,M targeted by our neural network. That is, our
function class can approximate an element of the Barron class with any degree of accuracy as a set. Although the R-Barron
space and the Barron class cannot be directly compared, they are closely related and can be adequately covered by a
sufficiently large R′.

Finally, we remark that based on Assumption 1, which guarantees the smoothness and boundedness of neural networks, it is
very easy for such a network to satisfy Eq. (7) with some R and M at least with a small modification. For any such neural
network, if we consider convolution of the corresponding measure with a Gaussian of small variance, this does not change
the output of the network very much due to the smoothness and boundedness, this smoothens the distribution and as a result,
guarantees that the modified neural network belongs to our class of measures.

B.3. More Related Works on Feature Learning: MF vs. NTK

(1) The performance difference due to representational capabilities In NTK scaling, training relies on a fixed set
of features, limiting expressiveness to the network’s width. In contrast, MF scaling allows feature bases in the first layer
to dynamically adjust, enhancing adaptability to the training data. For instance, representing specific polynomials in a
high-dimensional space requires exponentially more neurons in NTK scaling, as initial layer weights may not align with key
dimensions. However, in MF scaling, the network’s width need not increase with the dimensionality of the data, sidestepping
this optimization issue, as discussed by Damian et al. (2022). This adaptability gives MF networks a superior representation
ability over finite-width NTK networks, which struggle to approximate common learning theory functions.

(2) Sample complexity with respect to the dimension. The MF network with infinite width also has an advantage over
the NTK network with infinite width in terms of sample complexity in high-dimensional problems. If you look at the learned
network in MF, the first layer parameters typically align with the important directions. But not in NTK, because NTK
weight is not allowed to travel so much. As a result, the MF learned network typically has low dimensionality and, therefore,
requires fewer samples. Specific examples are parity function (Telgarsky, 2023), polynomials of few relevant dimensions
(Damian et al., 2022), low dimensionality (Mousavi-Hosseini et al., 2023), hierarchical functions (Abbe et al., 2023), and
single-index models(Ba et al., 2022). For example, in order to learn the 2-parity in a d-dimensional space, O(d2/ϵ) sample
is required for NTK but O(d/ϵ) for MF (Telgarsky, 2023) to achieve the accuracy. However, the dimension dependency will
be absorbed by just looking at T or TTD. This is not because MF has less (or more) representation ability and the whole
hypothesis class is smaller (or larger) but because the parameters can gain the aligned structure as a result of training.

(3) Reinforcement learning unique feature learning trends. Feature learning is very useful in the context of RL. In
particular, RL agents often encounter state-action samples possessing low-dimensional structures. For instance, when
training a reinforcement learning model to control a robotic arm, the feasible states are not uniformly distributed across
the entire space but are constrained to specific subspaces due to their mechanical limitations. Additionally, in cases where
images are used as state inputs, the learning data can often be projected onto lower-dimensional spaces. This reduction
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in dimensionality plays a crucial role not only in the implicit learning within NN but is also explicitly addressed in some
recent studies (Dayan, 1993; Yang et al., 2021; Huang et al., 2022; Le Lan et al., 2022). In response to these research trends,
recent studies (Zhang et al., 2020; 2021) confront the implicit representation learning optimization in neural networks
through the utilization of Lazy training. On the other hand, our study aims to revisit the significance of MF networks in this
context. Through our research, we expect to demonstrate how the efficiency of representation learning, already established
in supervised learning paradigms as mentioned earlier, can similarly benefit reinforcement learning.

C. Mean-field Langevin TD Learning
C.1. Proof of Lemma 1

Proof. From the definition of Ll[·] in Eq. (6), for s ∈ [0, TTD] we have

Ll[q] =Ll[q] + λTD · Ent[q]

=Eςπ [(Q
(l) − T Q(l)) · (Qq −Qπ)] +

1

2(1− γ)
Eςπ [(Q

(l) −Qq)
2] + λTD ·KL(q∥ν), (13)

where we ignore a constant without loss of generality. The inner algorithm performs a gradient descent ofLl over Wasserstein
metric. We evaluate the difference of the objective function Ll between the optimum of the true objective function qπ , and
q(l+1) which is ideally the optimum of the majorization problem, from above and below, respectively. For l ∈ N we have

Ll[qπ]− Ll[q
(l+1)] =− Eςπ [(Q

(l) − T Q(l)) · (Q(l+1) −Qπ)] +
1

2(1− γ)
Eςπ [(Q

(l) −Qπ)
2]

− 1

2(1− γ)
Eςπ [(Q

(l) −Q(l+1))2] + λTD ·KL(qπ∥ν)− λTD ·KL(q(l+1)∥ν).
(14)

In what follows, we upper bound the first term on the right-hand side of Eq. (14) by each difference of Q-functions
without any transition kernels. For simplicity, we define that ∆Q(l) = Q(l) − Qπ, I is an identity operator, and P :
L2(ςπ)(S ×A)→ L2(ςπ)(S ×A) as the linear operator such that PQ(s, a) =

∫
ds′P (s′|s, a)

∫
da′π(a′|s′)Q(s, a), Q ∈

L2(ςπ)(S × A). Focusing on the fact that we can reformulate the first term on the right-hand side of Eq. (14) as
Eςπ [(Q

(l) − T Q(l)) · (Q(l+1) −Qπ)] = Eςπ [∆Q(l+1)(I − γP)∆Q(l)], it holds that

Eςπ [(∆Q(l+1) −∆Q(l))(I − γP)(∆Q(l+1) −∆Q(l))]

=Eςπ [∆Q(l+1)(I − γP)∆Q(l+1)] + Eςπ [∆Q(l)(I − γP)∆Q(l)]

− Eςπ [∆Q(l+1)(I − γP)∆Q(l)]− Eςπ [∆Q(l)(I − γP)∆Q(l+1)]

=Eςπ [∆Q(l+1)(I − γP)∆Q(l+1)] + Eςπ [∆Q(l)(I − γP)∆Q(l)]

+ Eςπ [∆Q(l)(I − γP∗)∆Q(l+1)]− Eςπ [∆Q(l)(I − γP)∆Q(l+1)]

− 2Eςπ [∆Q(l+1)(I − γP)∆Q(l)]

=Eςπ [∆Q(l+1)(I − γP)∆Q(l+1)] + Eςπ [∆Q(l)(I − γP)∆Q(l)]

+ γ · Eςπ [∆Q(l+1)(P∗ − P)∆Q(l)]− 2Eςπ [∆Q(l+1)(I − γP)∆Q(l)]
, (15)

where P∗ is the adjoint operator of P . As for each term of Eq. (15), we have the following inequalities:

Eςπ [(∆Q(l+1) −∆Q(l))(I − γP)(∆Q(l+1) −∆Q(l))]

=Eςπ [(Q
(l+1) −Q(l))(I − γP)(Q(l+1) −Q(l))]

=Eςπ [(Q
(l+1) −Q(l))2]− γ · Eςπ [(Q

(l+1) −Q(l)) · P(Q(l+1) −Q(l))]

≤Eςπ [(Q
(l+1) −Q(l))2] + γ · Eςπ [(Q

(l+1) −Q(l))2]1/2 · ∥P(Q(l+1) −Q(l))∥ςπ,2
≤Eςπ [(Q

(l+1) −Q(l))2] + γ · Eςπ [(Q
(l+1) −Q(l))2]1/2 · Eςπ [(Q

(l+1) −Q(l))2]1/2

=(1 + γ) · Eςπ [(Q
(l+1) −Q(l))2], (16)
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where the first inequality follows from Hölder’s inequality and the second one follows from Lemma 11. In exactly the same
way, we have

−Eςπ [∆Q(l+1)(I − γP)∆Q(l+1)]

=− Eςπ [(∆Q(l+1))2] + γ · Eςπ [∆Q(l+1) · P∆Q(l+1)]

≤− Eςπ [(∆Q(l+1))2] + γ · Eςπ [(∆Q(l+1))2]1/2 · ∥P(∆Q(l+1))∥ςπ,2
≤− Eςπ [(∆Q(l+1))2] + γ · Eςπ [(∆Q(l+1))2]1/2 · Eςπ [(∆Q(l+1))2]1/2

=− (1− γ) · Eςπ [(∆Q(l+1))2], (17)

where the first inequality follows from Hölder’s inequality and the second one follows from Lemma 11. From the same
discussions, we also have −Eςπ [∆Q(l)(I − γP)∆Q(l)] ≤ −(1 − γ) · Eςπ [(∆Q(l))2]. In addition, from the fact that
Eςπ [Q(P∗ − P)Q] = 0 for all Q ∈ L2(ςπ)(S ×A), it holds that

−Eςπ [∆Q(l+1)(P∗ − P)∆Q(l)]

=− Eςπ [∆Q(l+1)(P∗ − P)∆Q(l)] + Eςπ [∆Q(l+1)(P∗ − P)∆Q(l+1)]

=Eςπ [∆Q(l+1)(P∗ − P)(Q(l+1) −Q(l))]

≤1

2
· 2(1− γ)

γ
Eςπ [(∆Q(l+1))2] +

1

2
· γ

2(1− γ)
∥(P∗ − P)(Q(l+1) −Q(l))∥2ςπ,2

≤1− γ

γ
Eςπ [(∆Q(l+1))2] +

γ

1− γ
∥P(Q(l+1) −Q(l))∥2ςπ,2

≤1− γ

γ
Eςπ [(∆Q(l+1))2] +

γ

1− γ
Eςπ [(Q

(l+1) −Q(l))2], (18)

where the first inequality follows from Young’s inequality with an arbitrary constant 2(1−γ)
γ > 0, and the last one follows

from Lemma 11. Combining Eq. (16), (17), (18), and (15), we obtain that

−Eςπ [(Q
(l) − T Q(l)) · (Q(l+1) −Qπ)]

=− Eςπ [∆Q(l+1)(I − γP)∆Q(l)]

=− 1

2
Eςπ [∆Q(l+1)(I − γP)∆Q(l+1)]− 1

2
Eςπ [∆Q(l)(I − γP)∆Q(l)]

− γ

2
Eςπ [∆Q(l+1)(P∗ − P)∆Q(l)]

+
1

2
Eςπ [(∆Q(l+1) −∆Q(l))(I − γP)(∆Q(l+1) −∆Q(l))]

≤− 1− γ

2
Eςπ [(∆Q(l))2] +

1

2(1− γ)
Eςπ [(Q

(l+1) −Q(l))2]. (19)

Plugging Eq. (19) into Eq. (14), we obtain the following upper-bound of Eq. (14) as

Ll[qπ]− Ll[q
(l+1)] ≤γ(2− γ)

2(1− γ)
Eςπ [(∆Q(l))2]

+ λTD ·KL(qπ∥ν)− λTD ·KL(q(l+1)∥ν),
(20)

In what follows, we give a lower bound on the difference for majorization objectives using the strong convexity of Ll. From
the definition of Ll in Eq. (13), it holds that

δLl

δq
[q](ω) =Eςπ [(Q

(l) − T Q(l)) · hω] +
1

1− γ
Eςπ [(Qq −Q(l)) · hω] + λTD · ln

q

ν
. (21)
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In what we follow, we control the error induced by the difference between the last iterate of inner-loop dynamics, q(l+1),
and the optimal distribution of L(l), q(l+1)

∗ .It holds from Eq. (21) that

−
∫

δLl

δq
[q(l+1)](dqπ − dq(l+1))− λTD ·KL(qπ∥q(l+1))

=Eςπ [(Q
(l) − T Q(l)) · (Q(l+1) −Qπ)] +

1

1− γ
Eςπ [(Q

(l+1) −Q(l)) · (Q(l+1) −Qπ)]

− λTD ·
∫

ln
q(l+1)

ν
(dqπ − dq(l+1))− λTD ·KL(qπ∥q(l+1))

=Eςπ [(Q
(l) − T Q(l)) · (Q(l+1) −Qπ)] +

1

1− γ
Eςπ [(Q

(l+1) −Q(l)) · (Q(l+1) −Qπ)]

− λTD ·KL(qπ∥ν) + λTD ·KL(q(l+1)∥ν).
(22)

Plugging Eq. (22) into Eq. (14), we have

Ll[qπ]− Ll[q
(l+1)] =− Eςπ [(Q

(l) − T Q(l)) · (Q(l+1) −Qπ)]

+
1

2(1− γ)
Eςπ [(Q

(l) −Qπ)
2]− 1

2(1− γ)
Eςπ [(Q

(l) −Q(l+1))2]

+ λTD ·KL(qπ∥ν)− λTD ·KL(q(l+1)∥ν)

=
1

2(1− γ)
Eςπ [(Q

(l) −Qπ)
2]− 1

2(1− γ)
Eςπ [(Q

(l) −Q(l+1))2]

+
1

1− γ
· Eςπ [(Q

(l+1) −Q(l)) · (Q(l+1) −Qπ)]

+

∫
δLl

δq
[q(l+1)](dqπ − dq(l+1)) + λTD ·KL(qπ∥q(l+1))

=
1

2(1− γ)
Eςπ [(Q

(l+1) −Qπ)
2]

+

∫
δLl

δq
[q(l+1)](dqπ − dq(l+1)) + λTD ·KL(qπ∥q(l+1))

. (23)

We evaluate the inner-loop error bound in the sequel by establishing Lemma 6.

Lemma 6 (Inner-Loop Error Bound). Under assumptions of Proposition 5, for any l ∈ N, s > 0, we have

−
∫

δLl

δq
[qs](dqπ − dqs)− λTD ·KL(qπ∥qs)

≤ 2R

1− γ

(
Eςπ [(Qqs −Q

(l+1)
∗ )2]

) 1
2

+ λTD ·KL(qs∥q(l+1)
∗ ).

Proof. See Appendix C.3 for a detailed proof.

Lemma 6 guarantees that the optimality error−
∫

δLl

δq [qs](dqπ−dqs) is biased by at most the KL divergence λTD·KL(qπ∥qs).
Recall that the inner dynamics is stopped at the time s = S > 0 when we set the next outer iterate q(l+1) as that q(l+1) = qS .
Combining Eq. (20), Eq. (23), and Lemma 6, we finish the proof of Lemma 1.

C.2. Proof of Theorem 1

Proof. Before jumping to the proof of Theorem 1, we evaluate the mean-squared error between the Q-function Qqs

induced by qs and the global optimal Q-function q
(l+1)
∗ = Qq∗ over the L2-norm. In the sequel, we provide the following

convergence lemma about the mean squared error of Q-functions.
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Lemma 7 (Linear Convergence of the Mean Squared Error of Q-functions). Under the same assumption of Theorem 1, for
l ∈ N we have

Eςπ [(Q
(l+1) −Q

(l+1)
∗ )2] ≤ 4(3− 2γ)R4

(1− γ)λTD
· exp(−2αλTDS).

where we denote Q
(l+1)
∗ = Q

q
(l)
∗

with the global optimal distribution q
(l+1)
∗ of the inner objective Ll and the definition of

each variable follows that of Proposition 5.

Proof. For any parameter distributions q, q′ ∈ P2, we first upper bound the Q-function difference with the Wasserstein
distance.

(Qq(x)−Qq′(x))
2
=

(∫
hω(x)(dq(ω)− dq′(ω))

)2

≤R2 · ∥q − q′∥21
≤2R2 ·KL(q∥q′), (24)

where R > 0 is an absolute constant defined in Assumption 1 and the last inequality follows from Pinsker’s inequality.
Combining eq. (24) and Proposition 5, we obtain that

Eςπ [(Qqs −Q
(l+1)
∗ )2] ≤2R2 ·KL(qs∥q(l+1)

∗ )

=
2R2

λTD
exp (−2αλTDs) ·

(
Ll[q0]− Ll[q

(l+1)
∗ ]

)
.

To control the right-hand side of the inequality, we evaluate the objective difference Ll[q0] − Ll[q
(l+1)
∗ ]. It holds from

Assumption 1, 2, that

Ll[q0]− Ll[q
(l+1)
∗ ] =Eςπ [(Q

(l) − T Q(l)) · (Q0 −Q
(l+1)
∗ )]

+
1

2(1− γ)
Eςπ [(Q

(l) −Q0)
2] + λTD ·KL(q0∥ν)

− 1

2(1− γ)
Eςπ [(Q

(l) −Q
(l+1)
∗ )2]− λTD ·KL(q

(l+1)
∗ ∥ν)

≤4R2 +
1

2(1− γ)
4R2

=
2(3− 2γ)R2

1− γ
,

where we use KL(q0∥ν) = 0. We conclude the proof of Lemma 7.

By Lemma 1, we have

Eςπ [(Q
(l+1) −Qπ)

2] ≤γ(2− γ)

(1− γ)2
Eςπ

[
(∆Q(l))2 − (∆Q(l+1))2

]
+

4R

(1− γ)2
(Eςπ [(Q

(l+1) −Q
(l+1)
∗ )2])

1
2

+
2λTD

1− γ
·KL(q(l+1)∥q(l+1)

∗ ) +
2λTD

1− γ
KL(qπ∥ν).

Combining Lemma 7 and Proposition 5, by the same argument of the proof of Lemma 7, it holds that

Eςπ [(Q
(l+1) −Qπ)

2] ≤γ(2− γ)

(1− γ)2
Eςπ

[
(∆Q(l))2 − (∆Q(l+1))2

]
+

8
√
3R3

(1− γ)
5
2λ

1
2

TD

· exp (−αλTDS)

+
24R4

(1− γ)2
· exp (−2αλTDS) +

2λTDM

1− γ
. (25)

19



Mean Field Langevin Actor-Critic: Faster Convergence and Global Optimality beyond Lazy Learning

Telescoping (25) for s = 0, . . . , TTD − 1, we obtain

1

TTD

TTD∑
s=1

Eςπ [(Q
(l) −Qπ)

2] ≤ γ(2− γ)

(1− γ)2TTD
Eςπ

[
(∆Q(0))2 − (∆Q(TTD))2

]
+

8
√
3R3

(1− γ)
5
2λ

1
2

TD

· exp (−αλTDS)

+
24R4

(1− γ)2
· exp (−2αλTDS) +

2λTDM

1− γ

≤ γ(2− γ)

(1− γ)2TTD
Eςπ

[
(∆Q(0))2

]
+

8
√
3R3

(1− γ)
5
2λ

1
2

TD

· exp (−αλTDS)

+
24R4

(1− γ)2
· exp (−2αλTDS) +

2λTDM

1− γ
.

Recall that Q ≤ R for any Q-function Q from Assumption 1 and 3, we have

Eςπ [(∆Q(0))2] = Eςπ [(Q
(0) −Qπ)

2] ≤ 4R2.

Therefore, we have

1

TTD

TTD∑
s=1

Eςπ [(Q
(l) −Qπ)

2] ≤ 8γR2

(1− γ)2TTD
+

8
√
3R3

(1− γ)
5
2λ

1
2

TD

· exp (−αλTDS)

+
24R4

(1− γ)2
· exp (−2αλTDS) +

2λTDM

1− γ

which concludes the proof of Theorem 1.

C.3. Proof of Lemma 6

Proof. We first present some lemmas on convergence properties. In specific, we prove the convergence of the parameter
distribution qs to the global optimal distribution q∗ in the inner-loop MFLD and also Using the two convergence lemmas
above, we evaluate the error derived from the inner-loop algorithm.

−
∫

δLl

δq
[qs](dqπ − dqs)− λTD ·KL(qπ∥qs)

=−
∫ (

δLl

δq
[qs]−

δLl

δq
[q

(l+1)
∗ ]

)
(dqπ − dqs)− λTD ·KL(qπ∥qs), (26)

where the last equality follows from the optimal condition with the stationary point q(l+1)
∗ as

δLl

δq
[q

(l+1)
∗ ] = const.

For the first term on the right-hand side of Eq. (26), the difference of the first-variations of Ll satisfies from the definition in
Eq. (6) that

δLl

δq
[qs]−

δLl

δq
[q

(l+1)
∗ ] =

1

1− γ
Eςπ

[
(Qqs −Q

(l+1)
∗ ) · hω

]
+ λTD · ln

qs

q
(l+1)
∗

. (27)
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Plugging Eq. (27) into Eq. (26), we have

−
∫

δLl

δq
[qs](dqπ − dqs)− λTD ·KL(qπ∥qs)

=
1

1− γ
Eςπ

[
(Qqs −Q

(l+1)
∗ ) · (Qqs −Qπ)

]
− λTD ·

∫
ln

qs

q
(l+1)
∗

(dqπ − dqs)− λTD ·KL(qπ∥qs)

≤ 1

1− γ
Eςπ

[
(Qqs −Q

(l+1)
∗ )2)

] 1
2 · ∥Qqs −Qπ∥ςπ,2

+ λTD ·KL(qs∥q(l+1)
∗ )− λTD ·KL(qπ∥q(l+1)

∗ )

≤ 2R

1− γ
Eςπ

[
(Qqs −Q

(l+1)
∗ )2)

] 1
2

+ λTD ·KL(qs∥q(l+1)
∗ )− λTD ·KL(qπ∥q(l+1)

∗ )

≤ 2R

1− γ
Eςπ

[
(Qqs −Q

(l+1)
∗ )2)

] 1
2

+ λTD ·KL(qs∥q(l+1)
∗ ),

where the second inequality follows from Assumption 1 and 2.

C.4. Proof of Corollary 1

Proof. The results of Corollary 1 naturally follows from the convergence rate of Theorem 1, which concludes that

1

TTD

TTD∑
l=1

Eςπ [(Q
(l) −Qπ)

2] ≤ C0

TTD
+ C1λ

− 1
2

TDe
(−αλTDS) + C2e

(−2αλTDS) + C3λTD.

letting S = − 3 log λTD

2αλTD
yields that

λ
− 1

2

TDe
−αλTDS = λTD,

e−2αλTDS = λ3
TD.

Since we set the regularization parameter for the inner loop as λTD = 1
TTD

, sampling L ∈ [TTD] uniformly, it holds that
EL,ςπ [(Q

(L) −Qπ)
2] = O(T−1

TD ∧ T−3
TD).

D. Mean-field Langevin Policy Gradient
D.1. Proof of Proposition 1

Proof. By Proposition 4, we have for all πρ that

dJ [ρ] =Eνπρ

[∫
dπρ(da) ·Qπρ

(a)

]
=Eνπρ

[∫ (
−dfρ(a) +

∫
πρ(da

′)dfρ(a
′)

)
πρ(da) ·Qπρ(a)

]
=Eνπρ

[
−
∫

πρ(da)dfρ(a) ·Qπρ
(a) +

(∫
πρ(da

′)dfρ(a
′)

)
·
(∫

πρ(da)Qπρ
(a)

)]
=− Eνπρ

[∫
πρ(da)dfρ(a) ·

(
Qπρ

(a)−
∫

πρ(da
′)Qπρ

(a′)

)]
=− Eσπρ

[
dfρ ·Aπρ

]
=

∫
dρ(dθ)Eσπρ

[
−hθ ·Aπρ

]
.
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In addition, we have

d(Eρ[∥θ∥2]) =
∫

dρ(dθ)∥θ∥2.

Recalling F [ρ] = −J [ρ] + λ
2Eρ[∥θ∥2], we obtain that

dF [ρ] =− dJ [ρ] +
λ

2
d(Eρ[∥θ∥2]) =

∫
dρ(dθ)

(
Eσπρ

[
hθ ·Aπρ

]
+

λ

2
∥θ∥2

)
. (28)

From the definition of the first-variation of F [ρ] in Definition 1, it holds that

dF [ρ] =

∫
dρ(dθ)

δF

δρ
[ρ]. (29)

Comparing Eq. (28) and Eq. (29), we obtain Eq. (2).

D.2. Proof of Lemma 2

Proof. First of all, we define the proximal Gibbs distribution of F around ρt by ρ̂t ∝ exp
(
− 1

λ
δF
δρ [ρt]

)
. We can obtain the

time derivative of F :

d

dt
F [ρt] =

∫
δF
δρ

[ρt]∂tρt(dθ). (30)

Since we have F [ρ] = F [ρ] + λ · Ent[ρ], it holds that

δF
δρ

[ρ] =
δF

δρ
[ρ] + λ · ln ρ

=− λ · ln exp
(
− 1

λ

δF

δρ
[ρ]

)
+ λ · ln ρ

=λ · ln ρ

ρ̂
− λ · lnZλ, (31)

where we define by Zλ > 0 the normalization constant of ρ̂t ∝ exp
(
− 1

λ
δF
δρ [ρt]

)
, i.e., we have

Zλ =

∫
exp

(
− 1

λ

δF

δρ
[ρt]

)
dθ.

We note that the first variance can ignore the shift of constants. On the other hand, from the definitions we have the following
Fokker-Planck equation about the time evolution of ρt:

∂tρt =λ ·∆ρt +∇ ·

(
ρt · ∇

δ̃F
δρ

[ρt]

)

=λ · ∇
(
ρt · ∇ ln

ρt
ρ̂t

)
+∇ ·

(
ρt ·

(
∇ δ̃F

δρ
[ρt]−∇

δF
δρ

[ρt]

))
. (32)

Plugging Eq. (31) and (32) into Eq. (30), it holds that

d

dt
F [ρt] ≤−

λ2

2

∫
ρt(dθ)

∥∥∥∥∇ ln
ρt
ρ̂t

∥∥∥∥2
2

+
1

2

∫
ρt(dθ)

∥∥∥∥∥∇ δ̃F
δρ

[ρt]−∇
δF
δρ

[ρt]

∥∥∥∥∥
2

2

 . (33)

For the first term on the right-hand side of Eq. (33), it holds from the LSI of ρ̂t with the LSI constant α > 0 that

−λ2

2

∫
ρt(dθ)

∥∥∥∥∇ ln
ρt
ρ̂t

∥∥∥∥2
2

=− λ2

2
I(ρt||ρ̂t)

≤− αλ2 ·KL(ρt||ρ̂t).
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Note that α depends on λ at the order O(exp(−1/λ)). See Proposition 2 for the detail of the construction of the LSI
constant.

In the sequel, to bound the second term on the right-hand side of Eq. (33),

Lemma 8. Under Assumption 1, and 4-(I), it holds for any θ ∈ Rd that∫
ρt(dθ)

∥∥∥∥∥∇ δ̃F
δρ

[ρt](θ)−∇
δF
δρ

[ρt](θ)

∥∥∥∥∥
2

≤ 4R2(L1 + L3)
2ι2 Eςt

[
(Qt −Qπt

)
2
]
.

Proof. We obtain the difference of advantage functions as

∇ δ̃F
δρ

[ρt]−∇
δF
δρ

[ρt] = Eσt
[∇hθ(s, a) · (At(s, a)−Aπt

(s, a))],

= Eσt
[∇hθ(s, a) · (Qt(s, a)−Qπt

(s, a))]

− Eσt

[
∇hθ(s, a) ·

(∫
πt(da

′|s)Qt(s, a
′)− Vπt(s)

)]
,

where we denote by At(s, a) = Qt(s, a)−
∫
πt(da

′)Qt(s, a
′) the advantage function estimator with the Q-function given

by the critic at time t. The second term in the right-hand side can be transformed as

Eσt

[
∇hθ(a) ·

(∫
πt(da

′)Qt(a
′)− Vπt

)]
= Eνt

[∫
πt(da)∇hθ(a) ·

(∫
πt(da

′) (Qt(a
′)−Qπt(a

′))

)]
= Eνt

[∫
πt(da) (Qt(a)−Qπt

(a)) ·
(∫

πt(da
′)∇hθ(a

′)

)]
= Eσt

[(∫
πt(da

′)∇hθ(a
′)

)
· (Qt(a)−Qπt

(a))

]
,

where we exchange a with a′ in the second equality. Since the neural network hθ is assumed to be R(L1 + L3)-Lipschitz
continuous in Assumption 1, we can evaluate the squared expectation as∫

ρt(dθ)

∥∥∥∥∥∇ δ̃F
δρ

[ρt]−∇
δF
δρ

[ρt]

∥∥∥∥∥
2

=

∫
ρt(dθ)

∥∥∥∥Eσt

[(
∇hθ −

∫
πt(da

′)∇hθ

)
· (Qt −Qπt

)

]∥∥∥∥2
≤ 4R2(L1 + L3)

2Eσt
[|Qt −Qπt

|]2 ,

where the inequality follows from Hölder’s inequality. Assumption 4-(i) bounds the moment of the Radon-Nikodim
derivative, it holds that

Eσt
[|Qt −Qπt

|]2 = Eςt

[
dσt

dςt
· |Qt −Qπt

|
]2

≤
∥∥∥∥dσt

dςt

∥∥∥∥2
ςt,2

Eςt

[
(Qt −Qπt

)
2
]

≤ ι2Eςt

[
(Qt −Qπt

)
2
]
,

where dσt

dςt
is the Radon-Nikodim derivative between the state-action visitation measure σt and the stationary state-action

distribution ςt corresponding to the same policy πt, and the first inequality follow from Hölder’s inequality. Combining the
inequalities yields the proof of Lemma 8.

Combining all of them, we have

d

dt
F [ρt] ≤ −αλ2 ·KL(ρt||ρ̂t) + 2R2(L1 + L3)

2ι2 Eςt

[
(Qt −Qπt

)
2
]
,

which concludes the proof of Lemma 2.
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D.3. Proof of Lemma 3

Proof. It is well known that the expected total reward function J [π] has non-convexity, which makes the optimization of the
expected total rewards much more difficult. To access the problem, we make use of a proposition to prove the one-point
convexity of J [π] at the global optimum π∗. This proposition is established by Kakade & Langford (2002).

Proposition 3 (Expected Total Rewards Difference (Kakade & Langford, 2002)). For all π, π′, it holds that

(1− γ) · (J [π′]− J [π]) = Eσπ′ [Aπ]

where σπ′ and νπ′ are the state-action visitation measure and the state visitation measure induced by policy π′, respectively.

In our analysis, we utilize Proposition 3 as a one-point convexity of the expected total rewards to prove the global optimality
of the stationary point of the MFLPG. In specific, we first evaluate the left-hand side of Eq. (10), the performance difference.
Let π∗ = argmax Jπ be the globally optimal policy of the expected total reward function J and further define the globally
optimal expected total reward by J∗ = Jπ∗ . By Proposition 3, it holds for any t ∈ R≥0 that

J∗ − J [ρt] =(1− γ)−1Eσ∗ [Aπt
] = (1− γ)−1Eσt

[
dσ∗

dσt
·Aπt

]
, (34)

where Eσ∗ [·] = Eσπ∗ [·], hereafter.

On the other hand, we evaluate the first term on the right-hand side of Eq. (10) as

λ KL(ρt||ρ̂t) =λ

∫
ρt(dθ) ln

ρt
ρ̂t

=− λ

∫
ln

ρt
ρ̂t

(
1√
λ
ρ̂t − ρt

)
dθ −

√
λ KL (ρ̂t∥ρt) .

To bound the right-hand side, consider the following functional for any ρ ∈ P2:

−λ
∫

ln
ρt
ρ̂t

(
1√
λ
ρ− ρt

)
dθ −

√
λ KL (ρ∥ρt) = −

√
λ KL(ρ∥ρ̂t) + λ KL(ρt∥ρ̂t),

whose maximizer is explicitly ρ = ρ̂t. Then we have

λ KL(ρt||ρ̂t) ≥max
ρ∈P2

{
−λ
∫

ln
ρt
ρ̂t

(
1√
λ
ρ− ρt

)
dθ −

√
λ KL (ρ∥ρt)

}
≥− λ

∫
ln

ρt
ρ̂t

(
1√
λ
ρ− ρt

)
dθ −

√
λKL (ρ∥ρt)

=

∫
Eσt [Aπt · hθ]

(
ρt −

1√
λ
ρ

)
dθ − (

√
λ− λ) lnZλ

−
∫

ln
ρt
ν

(√
λρ− λρt

)
dθ −

√
λ KL (ρ∥ρt) ,

(35)

where you set ρ ∈ P2 arbitrarily. Recall δF
δρ [ρt](θ) = Eσt

[Aπt
hθ]− λ ln ν(θ), then it holds that

KL(ν∥ρ̂t) =
∫

dν ln ν −
∫

dν ln ρ̂t

=
1

λ
E
[
Aπt

∫
hθdν

]
+ lnZλ

= lnZλ,

where we use
∫
hθdν = 0, since hθ is an odd function. On the right-hand side of Eq. (35), The first term holds that∫

Eσt
[Aπt

hθ]

(
ρt −

1√
λ
ρ

)
dθ =Eσt

[
Aπt

(∫
hθρt(dθ)−

1√
λ

∫
hθρ(dθ)

)]
=Eσt

[
Aπt

(
ft −

fρ√
λ

)]
,
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where fρ =
∫
hθρ(dθ).

On the other hand, the rest on the right-hand side of Eq. (35) can be evaluated by

−
∫

ln
ρt
ν

(√
λρ− λρt

)
dθ −

√
λ KL (ρ∥ρt) =−

∫
ln

ρt
ν

(√
λρ− λρt

)
(dθ)−

√
λ

∫
ρ(dθ) ln

ρ

ρt

=λ

∫
dρt ln

ρt
ν
−
√
λ

∫
dρ ln

ρ

ν

=λ KL(ρt∥ν)−
√
λ KL(ρ∥ν).

Combining all of them, we can evaluate the left-hand side of Eq. (35) by

λ KL(ρt||ρ̂t) ≥ Eσt

[
Aπt

(
ft −

fρ√
λ

)]
+ λ KL(ρt∥ν)−

√
λKL(ρ∥ν)−

√
λKL(ν∥ρ̂t), (36)

where we can take any ρ ∈ P2 arbitrarily.

Lemma 9 (Error of Global Optimality). Under the same conditions as Theorem 2, for t ≥ 0, there exists fρ ∈ FR,M such
as

J∗ − J [ρt]− Eσt

[
Aπt

(
ft −

fρ√
λ

)]
≤ 1

4

(
R+

κ

1− γ

)2√
λ. (37)

Especially, fρ = −Aπt ∈ FR,M satisfies the inequality above.

Proof. Plugging Eq. (34) to Eq. (37), the left-hand side of Eq. (37)

J∗ − J [ρt]− Eσt

[
Aπt

(
ft −

fρ√
λ

)]
= Eσt

[
Aπt
·
(

fρ√
λ
− ft + (1− γ)−1 dσ∗

dσt

)]
=

1√
λ
⟨Aπt

, fρ⟩σt
− ⟨Aπt

, ft⟩σt
+ (1− γ)−1

〈
Aπt

,
dσ∗

dσt

〉
σt

, (38)

where ⟨·, ·⟩σt
denotes inner product which introduces Lσt,2 norm. Recall that we have Aπt

∈ FR,M from Assumption 3
and that the second weight function β(·) is an odd function given by Assumption 1, then we can adapt fρ = −Aπt

. it holds
for the first term on the right-hand side in Eq. (38) that

1√
λ
⟨Aπt

, fρ⟩σt
= − 1√

λ
∥Aπt

∥2σt,2

The second term on the right-hand side in Eq. (38) can be bounded by

−⟨Aπt
, ft⟩σt

≤ |⟨Aπt
, ft⟩σt

|
≤ ∥Aπt

∥σt,2 · ∥ft∥σt,2

≤ R ∥Aπt
∥σt,2, (39)

where R > 0 is an absolute constant defined in Assumption 1. Meanwhile, the third term on the right-hand side in Eq. (38)
can be bounded by

(1− γ)−1

〈
Aπt ,

dσ∗

dσt

〉
σt

≤ (1− γ)−1∥Aπt
∥σt,2

∥∥∥∥dσ∗

dσt

∥∥∥∥
σt,2

≤ κ

1− γ
∥Aπt

∥σt,2, (40)

where the first inequality follows from Jensen’s inequality, the second inequality follows from Assumption 4, and κ > 0 is
an absolute constant defined in Assumption 4-(ii). By plugging Eq. (39) and (40) into Eq. (38), we have

Eσt

[
Aπt
·
(

fρ√
λ
− ft + (1− γ)−1 dσ∗

dσt

)]
≤ − 1√

λ
∥Aπt

∥2σt,2 +

(
R+

κ

1− γ

)
∥Aπt

∥σt,2. (41)
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Considering that the right-hand side of Eq. (41) is a quadratic function for ∥Aπt
∥σt,2 as−ax2+bx ≤ b2

4a for any x, a, b > 0,
it can be bounded by

− 1√
λ
∥Aπt

∥2σt,2 +

(
R+

κ

1− γ

)
∥Aπt

∥σt,2 ≤
√
λ

4

(
R+

κ

1− γ

)2

.

Combining Eq. (36) and (37), we finish the proof of Lemma 3 as

J∗ − J [ρt] ≤ λ KL(ρt||ρ̂t) +
√
λ

4

(
R+

κ

1− γ

)2

+ 2
√
λM − λ KL(ρt∥ν), (42)

where we use KL(ρ∥ν) ≤M from the definition of ρ ∈ FR,M .

D.4. Proof of Theorem 2

Proof. Combining Lemma 2 and Eq. (42) in the proof of Lemma 3, we have

d

dt
F [ρt] ≤ −αλ2 KL(ρt||ρ̂t) + 2R2(L1 + L3)

2ι2 Eςt

[
(Qt −Qπt)

2
]

≤ −αλ

(
J∗ − J [ρt]−

√
λ

4

(
R+

κ

1− γ

)2

− 2
√
λM + λ KL(ρt∥ν)

)
+ 2R2(L1 + L3)

2ι2 Eςt

[
(Qt −Qπt)

2
]

≤ −αλ

(
F [ρt] + J∗ −

√
λ

4

(
R+

κ

1− γ

)2

− 2
√
λM

)
+ 2R2(L1 + L3)

2ι2 Eςt

[
(Qt −Qπt

)
2
]
.

According to Corollary 1 with TTD = Ω(1/αλ3/2), the last term on the right-hand side can be bounded by

2R2(L1 + L3)
2ι2 Eςt

[
(Qt −Qπt

)
2
]
= O(αλ3/2),

and define ε(λ) as

ε(λ) =

√
λ

4

(
R+

κ

1− γ

)2

+ 2
√
λM +

2R2(L1 + L3)
2ι2

αλ
Eςt

[
(Qt −Qπt

)
2
]
= O(

√
λ).

Hence, we have

d

dt
F [ρt] ≤ −αλ (F [ρt] + J∗ − ε(λ)) .

We obtain from a straightforward application of the Grönwall’s inequality that

J∗ − J [ρt] ≤ exp(−2αλt) · (F [ρ0] + J∗ − ε(λ)) + ε(λ)− λ KL(ρt∥ν).

Recalling ρ0 = ν ∼ N (0, Id) yields that

F [ρ0] = −J [ρ0] + λ KL(ρ0∥ν) = −J [ρ0].

Considering ε(λ), λ KL(ρt∥ν) ≥ 0, we obtain that

J∗ − J [ρt] ≤ exp(−2αλt) (J∗ − J [ρ0]) + ε(λ),

which concludes the proof of Theorem 2 with |J | ≤ R given by Assumption 2.
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E. Time and Space Discretized Mean-field Langevin Policy Gradient: Proof of Theorem 3
We control the discretization error by the argument analogous to Chen et al. (2023). For the finite particle setting, we analyse
the dynamics under the distribution space Pm

2 of m particles Θ = {θi}i∈[m] ∈ Rd×m, instead of the conventional single
distribution space on θ ∈ Rd.

Hereafter, we denote the distribution of Θ = {θi}i∈[m] ∈ Rd×m by ρm ∈ Pm
2 . Corresponding to Pm

2 , we introduce the
following objective:

Fm[ρm] = EΘ∼ρm

[
−JΘ +

λ

2
∥Θ∥2

]
+

λ

m
Ent(ρm).

We also define two types of proximal distribution for ρΘ as

ρ̂Θ(θ) ∝ exp

(
− 1

λ

δF

δρ
[ρΘ](θ)

)
,

ρ̂m(Θ) ∝ exp
(
−m

λ
F [ρΘ]

)
.

We have the continuous dynamics to consider the discretized update of each step for any t′ ∈ [0, η] as

dθik,t′ =−∇
δ̃F

δρ
[ρk](θ

i
k) · dt′ +

√
2λ · dW i

k,t′ , (43)

where θik,0 = θik and θik,η = θik+1 and {W i
k,t′}t′∈[0,η] is an i.i.d. Brownian motion with W i

k,0 = 0. Note that the dynamics
correspond to the McKean-Vlasov SDE with the bias term fixed in Eq. (4). We define ρk,t′ ∈ P2 and ρmk,t′ ∈ Pm

2 as
distributions induced by Θk,t′ = {θik,t′}i∈[m]. In addition, we define Θ−i = {θj}j ̸=i and ρi(·|Θ−i) as the conditioned
distribution of θi conditioned by Θ−i. Hence, the time derivative of Fm[ρmk,t′ ] can be evaluated as

d

dt
Fm[ρmk,t′ ] ≤ −

λ2

2

1

m

m∑
i=1

∫
ρmk,t′(dΘ)

∥∥∥∥∇i ln
ρmk,t′

ρ̂m
(Θ)

∥∥∥∥2
2

(44a)

+
1

m

m∑
i=1

∫
ρmk,t′(dΘ)

∥∥∥∥∥∇ δ̃F
δρ

[ρk](θ
i)−∇δF

δρ
[ρk](θ

i)

∥∥∥∥∥
2

2

 (44b)

+
1

m

m∑
i=1

∫
ρmk,t′(dΘ)ρmk,0(dΘ

′)

(∥∥∥∥∇i
δF
δρ

[ρk,t′ ](θ
i)−∇i

δF
δρ

[ρk,0](θ
′i)

∥∥∥∥2
)
, (44c)

which follows from a similar argument as one in the proof in Theorem 2. The first term (44a) is the main term to decide the
convergence rate. By the leave-one-out argument in the proof of Theorem 2.1 of Chen et al.(2022), the first term of the
right-hand side can be upper bounded by

− 1

m

m∑
i=1

∫
ρmk,t′(dΘ)

∥∥∥∥∇i ln
ρmk,t′

ρ̂m
(Θ)

∥∥∥∥2
2

≤ − α

m

m∑
i=1

∫
ρmk,t′(dΘ) KL

(
ρi(·|Θ−i)

∥∥ ρ̂Θ−i

)
+

1

m
C̃λ,3, (45)

where C̃λ,3 = O(λ−2 ∨ λ−1η−1). This inequality is given by Proposition 6. To control the first term on the right-hand side
of Eq. (45), we use the following lemma.
Lemma 10 (Global Optimal Error for Discretized MFLPG). Under the same conditions as Theorem 3, it holds for all
k ∈ [T ], t′ ∈ [0, η], i ∈ [m], and λ > 0 that

− λ

m

m∑
i=1

∫
ρmk,t′(dΘ) KL

(
ρi(·|Θ−i)

∥∥ ρ̂Θ−i

)
≤ −J∗ + EΘ∼ρm

k,t′
[J [ρΘ]] +

√
λ

[
1

4

(
R+

κ

1− γ

)2

+ 2M

]
+

1

m
C̃λ,4 − λ KL

(
ρmk,t′

∥∥µm
)

where C̃λ,4 = O(λ−5/2 ∨ λ−3/2η−1).
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See Appendix E.1 for the proof. Combining Eq. (45) and Lemma 10 finishes the upper-bound of the term (44a).

The second term (44b) can be evaluated with Lemma 8 for continuous version of MFLPG as

1

m

m∑
i=1

∫
ρmk,t′(dΘ)

∥∥∥∥∥∇ δ̃F
δρ

[ρk](θ
i)−∇δF

δρ
[ρk](θ

i)

∥∥∥∥∥
2

2

 ≤ 4R2L2
1L

2
3ι

2 Eςπk

[
(Qk −Qπk

)
2
]
:= δ2TD,k,

which corresponds to the policy evaluation error given by MFLTD.

Moreover, the third term (44c) can be bounded by

1

m

m∑
i=1

∫
ρmk,t′(dΘ)ρmk,0(dΘ

′)

(∥∥∥∥∇i
δF
δρ

[ρk,t′ ](θ
i)−∇i

δF
δρ

[ρk,0](θ
′i)

∥∥∥∥2
)
≤ C̃λ,2(η

2 + λη),

with constant C̃λ,2 = O(λ−1 ∨ η−1). The bound follows from Proposition 7, which controls the time discretization error.

Combining all of them, we have

d

dt
Fm[ρmk,t′ ] ≤

αλ

2

(
−J∗ + EΘ∼ρm

k,t′
[J [ρΘ]] +

√
λ

[
1

4

(
R+

κ

1− γ

)2

+ 2M

]
+

1

m
C̃λ,4 − λ KL

(
ρmk,t′

∥∥µm
))

+
λ2C̃λ,3

m
+ δ2TD,k + C̃λ,2(η

2 + λη)

≤ −αλ

2

(
Fm[ρmk,t′ ] + J∗)+ αλ3/2

[
1

8

(
R+

κ

1− γ

)2

+M

]
+

αλ

2m
C̃λ,4

+
λ2C̃λ,3

m
+ δ2TD,k + C̃λ,2(η

2 + λη)

≤ −αλ

2

(
Fm[ρmk,t′ ] + J∗)+ C̃αλ3/2 +

C̃λ,1

m
+ C̃λ,2(η

2 + λη) + δ2TD,k,

where we define each constants as follows

C̃ =
1

8

(
R+

κ

1− γ

)2

+M = O(1),

C̃λ,1 = λ2C̃λ,3 +
αλ

2
C̃λ,4 = O

(
1 ∨ λ

η

)
,

C̃λ,2 = O
(
1

λ
∨ 1

η

)
.

By applying the Grönwall’s lemma, we obtain the following one-step update:

Fm[ρmk+1] + J∗ ≤ exp(−αλη/2) (Fm[ρmk ] + J∗)

+
1− exp(−αλη/2)

αλ/2

(
C̃αλ3/2 +

C̃λ,1

m
+ C̃λ,2(η

2 + λη) + δ2TD,k

)

≤ exp(−αλη/2) (Fm[ρmk ] + J∗) + η

(
C̃αλ3/2 +

C̃λ,1

m
+ C̃λ,2(η

2 + λη) + δ2TD,k

)
,

where the second inequality follows from the fact that 1− e−x ≤ x for any x ∈ R. This reduction holds at every iteration k.
Hence, if δ2TD,k = δ2TD then we arrive at the desired result for all k ∈ [T ]:

J∗ − EΘ∼ρm
k
[JΘ] ≤ exp(−αληk/2)

(
J∗ − EΘ∼ρm

0
[JΘ]

)
+ η

(
C̃αλ3/2 +

C̃λ,1

m
+ C̃λ,2(η

2 + λη) + δ2TD

)
.
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Recall that JΘ ≤ R from Assumption 2, we have for all T ∈ Z≥0 that

J∗ − E[JΘT
] ≤ 2R exp(−αληT/2) + η

(
C̃αλ3/2 +

C̃λ,1

m
+ C̃λ,2(η

2 + λη) + δ2TD

)
,

which concludes the result of Theorem 3.

E.1. Proof of Lemma 10

Proof. We bound the KL divergence KL
(
ρi(·|Θ−i)

∥∥ ρ̂Θ−i

)
with the same argument as the proof of Theorem 2 as

λ KL
(
ρi(·|Θ−i)

∥∥ ρ̂Θ−i

)
= λ

∫
ρi(dθ|Θ−i) ln

ρi(θ|Θ−i)

ρ̂Θ−i(θ)

=− λ

∫
ln

ρi(θ|Θ−i)

ρ̂Θ−i(θ)

(
1√
λ
ρ̂Θ−i(θ)− ρi(θ|Θ−i)

)
dθ −

√
λ KL

(
ρ̂Θ−i(θ)

∥∥ρi(θ|Θ−i)
)
.

To bound the right-hand side, consider the following functional for any ρ ∈ P2:

−λ
∫

ln
ρi(θ|Θ−i)

ρ̂Θ−i(θ)

(
1√
λ
ρ− ρi(θ|Θ−i)

)
dθ −

√
λ KL

(
ρ
∥∥ρi(θ|Θ−i)

)
= −
√
λ KL (ρ∥ρ̂Θ−i(θ)) + λ KL

(
ρi(θ|Θ−i)

∥∥ ρ̂Θ−i(θ)
)
,

whose maximizer is explicitly ρ = ρ̂Θ−i(θ). Then we have for Θ ∈ Rd×m that

λ KL
(
ρi(·|Θ−i)

∥∥ ρ̂Θ−i

)
≥ max

ρ∈P2

{
−λ
∫

ln
ρi(θ|Θ−i)

ρ̂Θ−i(θ)

(
1√
λ
ρ− ρi(θ|Θ−i)

)
dθ −

√
λ KL

(
ρ
∥∥ρi(θ|Θ−i)

)}
≥ −λ

∫
ln

ρi(θ|Θ−i)

ρ̂Θ−i(θ)

(
1√
λ
ρ− ρi(θ|Θ−i)

)
dθ −

√
λ KL

(
ρ
∥∥ρi(θ|Θ−i)

)
= −

∫
δJ

δρ
[ρΘ−i ](θ)

(
ρi(θ|Θ−i)− 1√

λ
ρ

)
dθ − (

√
λ− λ)KL(ν∥ρ̂Θ−i)

−
∫

ln
ρi(θ|Θ−i)

ν

(√
λρ− λρi(θ|Θ−i)

)
dθ −

√
λ KL

(
ρ
∥∥ρi(·|Θ−i)

)
,

(46)

where we can set ρ ∈ P2 arbitrarily and we denote π−i = πρΘ−i for simple notation. On the right-hand side of Eq. (46),
The first term holds that

−
∫

δJ

δρ
[ρΘ−i ](θ)

(
ρi(θ|Θ−i)− 1√

λ
ρ

)
dθ

≥ −
∫

δJ

δρ
[ρΘ](θ)

(
ρi(θ|Θ−i)− 1√

λ
ρ

)
dθ −

∫ ∣∣∣∣δJδρ [ρΘ](θ)− δJ

δρ
[ρΘ−i ](θ)

∣∣∣∣ (ρi(θ|Θ−i) +
1√
λ
ρ

)
dθ, (47)

The first term on the right-hand side can be evaluated as

1

m

m∑
i=1

∫ {
−
∫

δJ

δρ
[ρΘ](θ)

(
ρi(θ|Θ−i)− 1√

λ
ρ

)
dθ

}
dρmk,t′(dΘ)

= −
∫ ∫

δJ

δρ
[ρΘ](θ)

(
ρΘ(θ)−

1√
λ
ρ

)
dθ dρmk,t′(dΘ)

=

∫ ∫
EσπΘ

[AπΘ
hθ]

(
ρΘ −

1√
λ
ρ

)
dθ dρmk,t′(dΘ)

=

∫
EσπΘ

[
AπΘ

(∫
hθρΘ dθ − 1√

λ

∫
hθρ dθ

)]
dρmk,t′(dΘ)

=

∫
EσπΘ

[
AπΘ

(
fΘ −

1√
λ
fρ

)]
dρmk,t′(dΘ).
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To control the error of global optimality, the same argument as Lemma 9 yields that∫
EσπΘ

[
AπΘ

(
fΘ −

1√
λ
fρ

)]
dρmk,t′(dΘ) ≥ J∗ − EΘ∼ρm

k,t′
[J [ρΘ]]−

√
λ

4

(
R+

κ

1− γ

)2

. (48)

The third term on the right-hand side of Eq. (47) can be bounded as∫ ∣∣∣∣δJδρ [ρΘ](θ)− δJ

δρ
[ρΘ−i ](θ)

∣∣∣∣ (ρi(θ|Θ−i) +
1√
λ
ρ

)
dθ

=

∫ ∫ 1

0

∣∣∣∣∣∣− 1

m

δ2J

δρ2
[pϵ](θ, θ

i) +
1

m(m− 1)

∑
j ̸=i

δ2J

δρ2
[pϵ](θ, θ

j)

∣∣∣∣∣∣dϵ
(
ρi(θ|Θ−i) +

1√
λ
ρ

)
dθ

≤ L

m

∫ ∣∣∣∣∣∣2 + c

2∥θ∥2 + ∥θi∥2 + 1

m− 1

∑
j ̸=i

∥θj∥2
∣∣∣∣∣∣
(
ρi(θ|Θ−i) +

1√
λ
ρ

)
dθ

≤ (1 + 1/
√
λ)L

m

2 + c

∥θi∥2 + 1

m− 1

∑
j ̸=i

∥θj∥2
+

2L

m

(
1√
λ

∫
∥θ∥2 dρ+ ∥θi∥2

)
where we define pϵ as a connecting distribution pϵ = ϵρΘ + (1 − ϵ)ρΘ−i for ∀ϵ ∈ [0, 1] and use the assumption on the
second variation of J [ρ]. By taking the averaged expectation over each i ∈ [m] and the randomness of Θ ∼ ρmk,t′ , we have

1

m

m∑
i=1

∫  (1 + 1/
√
λ)L

m

2 + c

∥θi∥2 + 1

m− 1

∑
j ̸=i

∥θj∥2
+

2L

m

(
1√
λ

∫
∥θ∥2 dρ+ ∥θi∥2

) dρmk,t′(dΘ)

=
(1 + 1/

√
λ)L

m

(
2 +

2c

m

m∑
i=1

E[∥θi∥2]

)
+

2L

m

(
1√
λ

∫
∥θ∥2 dρ+ 1

m

m∑
i=1

E[∥θi∥2]

)
,

where we take the expectation over Θ ∼ ρmk,t′ . We can bound the moment of each particle E[∥θi∥2] as

E[∥θik+1∥2] = E

∥∥∥∥∥θik + η∇ δ̃F

δρ
[ρk](θ

i
k) +

√
2ηλξik

∥∥∥∥∥
2


= E
[∥∥∥(1− λη)θik − η Eσπk

[Ak ∇hθi
k
] +
√
2ηλξik

∥∥∥2]
≤ 1

1− λη
(1− λη)2E

[
∥θik∥2

]
+

1

λη
E
[∥∥∥−η Eσπk

[Ak ∇hθi
k
] +
√

2ηλξik

∥∥∥2]
≤ (1− λη)E

[
∥θik∥2

]
+

2η

λ
E
[∥∥∥Eσπk

[Ak ∇hθi
k
]
∥∥∥2]+ 4E

[∥∥ξik∥∥2]
≤ (1− λη)E

[
∥θik∥2

]
+

2η

λ
(R2L1L3)

2 + 4d,

where the first inequality follows from the fact that (a+ b)2 ≤ a2

1−c +
b2

c for any a, b, c ∈ R and the last inequality follows
from Assumption 1 and 2. Applying the Grönwall’s inequality, we obtain that

E[∥θik∥2] ≤ (1− λη)kE
[
∥θi0∥2

]
+

2

λ2
(R2L1L3)

2 +
4d

λη
,

≤ d+
2R4L2

1L
2
3

λ2
+

4d

λη
=: C̃λ,5, (49)

where we use the initial distribution being a normal standard distribution θi0 ∼ N (0, Id). In the sequel, we bound the
moment over ρ. Note that fρ ∈ FR,M yields that KL(ρ∥ν) ≤M . From Lemma 4 and Definition 4, it holds that

W 2
2 (ρ, ν) := inf

φ∈Φ(ρ,ν)

∫
∥θ − θ′∥2φ(dθ,dθ′) ≤ 2KL(ρ∥ν) ≤ 2M,
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where Φ(ρ, ν) denotes the set of joint distributions on Rd × Rd with marginal laws ρ and ν on the first and second factors,
respectively. Recall ∥θ∥2 ≤ 2∥θ′∥2 + 2∥θ − θ′∥2, then taking the expectation over such a φ ∈ Φ(ρ, ν) yields that

Eθ∼ρ[∥θ∥2] ≤ 2Eθ′∼ν [∥θ′∥2] + 2

∫
∥θ − θ′∥2φ(dθ,dθ′)

≤ 2(1 + 2M). (50)

Combining Eq. (49) and (50), it holds that

(1 + 1/
√
λ)L

m

(
2 +

2c

m

m∑
i=1

E[∥θi∥2]

)
+

2L

m

(
1√
λ

∫
∥θ∥2 dρ+ 1

m

m∑
i=1

E[∥θi∥2]

)

≤ L

m

(
1 +

1√
λ

)(
2 + 2c C̃λ,5

)
+

2L

m

(
2(1 + 2M)√

λ
+ C̃λ,5

)
,

=
C̃λ,4

m
, (51)

where we define C̃λ,4 = 2L
(
1 + 1√

λ

)(
1 + c C̃5,λ

)
+ 2L

(
2(1+2M)√

λ
+ C̃5,λ

)
= O(λ−5/2 ∨ λ−3/2η−1).

On the other hand, the rest on the right-hand side of Eq. (46) can be evaluated under the averaged expectation taken over all
i ∈ [m] and the randomness of Θ ∼ ρmk,t′ by

1

m

m∑
i=1

E
[
−
∫

ln
ρi(θ|Θ−i)

ν

(√
λρ− λρi(θ|Θ−i)

)
dθ −

√
λ KL

(
ρ
∥∥ρi(·|Θ−i)

)]

=
λ

m

m∑
i=1

E
[
KL
(
ρi(·|Θ−i)

∥∥ ν)]−√λ KL(ρ∥ν).

The first term on the right-hand side can be bounded as

1

m

m∑
i=1

E
[
KL
(
ρi(·|Θ−i)

∥∥ ν)] = 1

m

m∑
i=1

E
[
Ent

[
ρi(·|Θ−i)

]]
− E

[
1

m

m∑
i=1

ln ν(θi)

]
≥ KL

(
ρmk,t′

∥∥µm
)
,

where the inequality follows from Lemma 3.6 in Chen et al. (2023). In addition, ρ, ρ̂Θ−i ∈ FR,M yields that

λ

m

m∑
i=1

E
[
KL
(
ρi(·|Θ−i)

∥∥ ν)]−√λ KL(ρ∥ν) ≥ KL
(
ρmk,t′

∥∥µm
)
+ 2
√
λ M. (52)

Combining Eq. (48), (51), and (52) yields that

− λ

m

m∑
i=1

∫
ρmk,t′(dΘ) KL

(
ρi(·|Θ−i)

∥∥ ρ̂Θ−i

)
≤ −J∗ + EΘ∼ρm

k,t′
[J [ρΘ]] +

√
λ

4

(
R+

κ

1− γ

)2

+ 2
√
λ M +

C̃λ,4

m
− λ KL

(
ρmk,t′

∥∥µm
)
,

which concludes the proof of Lemma 10.

F. Auxiliary Lemmas
This section is devoted to presenting the related propositions and lemmas used in the proof.

First of all, we present the policy gradient theorem presented by Sutton et al. (1999) as Proposition 4, which provides the
gradient of the expected total reward function J with a policy πΘ parameterized by Θ. Refer to the original paper for the
proof.
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Proposition 4 (Policy Gradient Theorem (Sutton et al., 1999)). For any MDP, it holds that

∇J [πΘ] =EσπΘ

[∫
∇πΘ(da|s) ·QπΘ(s, a)

]
,

where σπθ
is the state visitation measure.

Second, we provide the basic proposition to access the inner-loop convergence of MFLTD. For l-th outer step, we define the
global optimal distribution of an inner-loop MFLD by q

(l+1)
∗ . It holds that

Proposition 5 (Linear Convergence of Inner-Loop MFLD). Under Assumption 1, 2, and 3, if we run the noisy gradient
descent which is the inner-loop algorithm in Algorithm 2 for all l-step, we obtain for all s ≥ 0, l ∈ [0, TTD − 1] and
λTD > 0 that

λTD KL(qs∥q(l+1)
∗ ) ≤ Ll[qs]− Ll[q

(l+1)
∗ ] ≤ exp (−2αλTDs) ·

(
Ll[q0]− Ll[q

(l+1)
∗ ]

)
,

where α is the LSI constant induced by λTD.

Proof. For the proof of Proposition 5, we apply Nitanda et al. (2022)’s convex optimization analysis. First of all, we prove
the convexity of Ll over the parameter distribution. From the definition of Ll, we can reformulate Ll as

Ll[q] =

∫
Udq +

(∫
V dq

)2

, (53)

where U, V do not depend on q but only θ. Eq. (53) results that the objective function Ll is convex in terms of a functional
with a probability distribution q as a variable, where we define the convexity condition for functional F and q, q′ ∈ P2 as

F [q′] ≥ F [q] +

∫
δF

δq
[q](θ)(dq′ − dq).

Therefore, Noting that the MFLD used in the inner algorithm of the MFLTD is a simple Wasserstein gradient flow with the
convex objective functional Ll, it holds from Theorem 1 in (Nitanda et al., 2022) that

Ll[qs]− Ll[q
(l+1)
∗ ] ≤ exp (−2αλTDs) ·

(
Ll[q0]− Ll[q

(l+1)
∗ ]

)
,

where α is the LSI constant induced by λTD, which is given in Proposition 2. In addition, the proof of the first inequality of
the statement Proposition 5 follows from Proposition 1. in (Nitanda et al., 2022), from which we have

λTD KL(qs∥q(l+1)
∗ ) ≤ Ll[qs]− Ll[q

(l+1)
∗ ].

We finish the proof of Proposition 5.

In the sequel, we introduce the following basic lemma about the norm of the transition operator, which is useful for a
geometric property of the semi-gradient of the Bellman error.
Lemma 11 (Transition Operator Norm). Let the linear operator P : L2(ςπ)(S ×A)→ L2(ςπ)(S ×A) be the transition
operator satisfying PQ(s, a) =

∫
ds′P (s′|s, a)

∫
da′π(a′|s′)Q(s′, a′), Q ∈ L2(ςπ)(S ×A). Then the operator norm of

P is no more than 1.

Proof. For all Q(x) ∈ L2(ςπ)(S ×A), x = (s, a) ∈ S ×A, we have that

∥PQ(x)∥ςπ,2 =Ex∼ςπ

[(∫
d(π ⊗ P )(x′|x)Q(x′)

)2
]

≤Ex∼ςπ

[∫
d(π ⊗ P )(x′|x)Q(x′)2

]
=Ex∼ςπ

[
Q(x)2

]
=∥Q(x)∥ςπ,2,

where the inequality follows Jensen’s inequality and the second equality follows the fact that ςπ is the stationary distribution
under the transition probability.
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What we follow, we introduce some propositions to control each error given in the proof of Theorem 3.

Proposition 6 (Log-Sobolev Inequality for Discretized Mean-field Langevin Dynamics). We define Θ−i = {θj}j ̸=i and
ρi(·|Θ−i) as the conditioned distribution of θi conditioned by Θ−i. Under the same conditions as Theorem 3, it holds that

− 1

m

m∑
i=1

∫
ρmk,t′(dΘ)

∥∥∥∥∇i ln
ρmk,t′

ρ̂m
(Θ)

∥∥∥∥2
2

≤ − α

m

m∑
i=1

∫
ρmk,t′(dΘ) KL

(
ρi(·|Θ−i)

∥∥ ρ̂Θ−i

)
+

C̃λ,3

m
,

where C̃λ,3 = O(λ−2 ∨ λ−1η−1).

Proof. The proof of Proposition 6 is analogous to Chen et al. (2023). See the proof of Theorem 2.6 in Chen et al. (2023) for
more detail.

Proposition 7 (Time Discretization Error for MFLD). The distribution contour ρmk,t′ for t′ ∈ [0, η] follows the dynamics in
Eq. (43). Under the same conditions as Theorem 3, it holds that

1

m

m∑
i=1

∫
ρmk,t′(dΘ)ρmk,0(dΘ

′)

(∥∥∥∥∇i
δF
δρ

[ρk,t′ ](θ
i)−∇i

δF
δρ

[ρk,0](θ
′i)

∥∥∥∥2
)
≤ C̃λ,2(η

2 + λη)

where C̃λ,2 = O(λ−1 ∨ η−1).

Proof. The proof of Proposition 7 is given by Suzuki et al. (2023). See the proof of Lemma 2 in Suzuki et al. (2023) for
more detail.
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