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Abstract
Despite the impressive performance of mul-001
tilingual large language models (mLLMs) in002
various natural language processing tasks, their003
ability to understand procedural texts, partic-004
ularly those with culture-specific content, re-005
mains largely unexplored. Texts describing cul-006
tural procedures, including rituals, traditional007
craftsmanship, and social etiquette, require an008
inherent understanding of cultural context, pre-009
senting a significant challenge for mLLMs. In010
this work, we introduce CAPTex, a benchmark011
designed to evaluate mLLMs’ ability to pro-012
cess and reason about culturally diverse pro-013
cedural texts across multiple languages using014
various methodologies to assess their perfor-015
mance. Our findings indicate that (1) mLLMs016
face difficulties with culturally contextualized017
procedural texts, showing notable performance018
declines in low-resource languages, (2) model019
performance fluctuates across cultural domains,020
with some areas presenting greater difficulties,021
and (3) language models exhibit better perfor-022
mance on multiple-choice tasks within conver-023
sational frameworks compared to direct ques-024
tioning. These results underscore the current025
limitations of mLLMs in handling culturally nu-026
anced procedural texts and highlight the need027
for culturally aware benchmarks like CAPTex028
to enhance their adaptability and comprehen-029
sion across diverse linguistic and cultural land-030
scapes.1031

1 Introduction032

Procedural texts encompass a genre of writing that033

provides systematic instructions or guidance to nav-034

igate a sequence of actions or steps, aiming to035

achieve a specific outcome. These texts are com-036

mon in various fields, including technical docu-037

mentation, user manuals, and cookbooks. The core038

characteristic of procedural texts is their sequen-039

tial and organized structure, with each instruction040

1This dataset will be publicly released under a Creative
Commons license: http://anon.com

building on the previous one to ensure readers can 041

successfully reach the intended outcome. Unlike 042

other writing styles such as narrative or descriptive, 043

procedural texts emphasize clarity, accuracy, and 044

a straightforward progression of actions to enable 045

effective task completion. 046

Large Language Models (LLMs) have demon- 047

strated exceptional capabilities across various nat- 048

ural language processing (NLP) tasks, such as 049

text summarization (Jin et al., 2024), multi-modal 050

machine translation (Shen et al., 2024a), solving 051

complex tasks modeled as state machines (Wu 052

et al., 2024), and code generation and understand- 053

ing (Wong et al., 2023). Unlike traditional models 054

that rely on task-specific training, LLMs can be 055

adapted to a wide range of applications through ef- 056

fective prompting strategies, making them suitable 057

for diverse and dynamic contexts (Ouyang et al., 058

2022; Dai et al., 2023). 059

One particularly significant application area for 060

LLMs is their ability to accurately interpret pro- 061

cedural texts. This capability is becoming in- 062

creasingly vital as these models are employed in 063

tasks like generating automated instructions and 064

facilitating human-computer interactions (Kosch 065

and Feger, 2024). In such scenarios, the demand 066

for clear, contextually appropriate, and executable 067

steps is critical. However, inaccuracies or ambi- 068

guities in interpreting procedural instructions can 069

result in miscommunication, errors, and inefficien- 070

cies. These issues are particularly concerning in 071

real-world domains such as healthcare, education, 072

and technical support, where precision and clarity 073

are paramount. Consequently, ensuring that LLMs 074

can reliably process procedural texts is essential 075

for their effective and responsible integration into 076

various systems. 077

Culture plays a fundamental role in both the cre- 078

ation and comprehension of procedures. A step-by- 079

step instruction in one culture may rely on shared 080

knowledge or tacit understanding that is absent in 081
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Step Iran Indonesia

1 The body is taken to the
cemetery for burial.

The traditional Toraja
house is prepared in si-
lence, and tools are gath-
ered.

2 The deceased’s body is
washed according to Is-
lamic rituals.

The body is wrapped, and
the coffin is decorated in
a ritual performance.

3 The body is wrapped in
a plain white shroud.

A cultural parade is held,
transporting the body
from the house to the
burial site.

4 A special prayer is
performed for the de-
ceased.

A traditional Toraja dance
is performed as part of the
ceremony.

5 The body is buried fac-
ing Mecca, with a layer
of dirt and stones over
the grave.

Animal sacrifices, typi-
cally buffalo and pigs, are
offered as part of the final
rites.

Table 1: Comparison of funeral practices in Iran and
Indonesia. For Indonesia, it’s a tradition from North
Sumatra.

others (Steffensen et al., 1979). For instance, in-082

structions on performing a ritual practice may have083

meanings, symbols, and steps deeply embedded084

in the traditions of a particular culture, as demon-085

strated in Table 1. If language models are unable to086

recognize and navigate these cultural dimensions,087

they risk misrepresenting the intent or structure of088

the procedure, leading to errors or misinterpreta-089

tions.090

Studies have shown that current large language091

models (LLMs) tend to exhibit biases favoring092

Western perspectives, mirroring the cultural norms093

and values of Western, educated, industrialized,094

rich, and democratic (WEIRD) societies (Durmus095

et al., 2024; Naous et al., 2023), while often inade-096

quately representing other cultural contexts (Prab-097

hakaran et al., 2022). These biases primarily stem098

from the nature of training data (Arora et al., 2022;099

Ganguli et al., 2022; Nadeem et al., 2021) and100

design decisions, including model architecture, to-101

kenization approaches, evaluation methods, and102

instruction-tuning techniques. The significance of103

LLMs accurately comprehending these texts ex-104

tends beyond the technical understanding of in-105

structions; it also involves ensuring fairness, acces-106

sibility, and cultural sensitivity. Evaluating how107

well LLMs can decode procedural texts, particu-108

larly when cultural context plays a pivotal role, is109

critical for advancing their capability to serve a di-110

verse range of users across different linguistic and 111

cultural backgrounds. 112

Cultural procedural texts, which are deeply inter- 113

twined with societal norms, values, and traditions, 114

pose unique challenges for LLMs. This complexity 115

raises several critical questions about the ability 116

of LLMs to effectively navigate and reason within 117

culturally specific contexts: (1) How do LLMs 118

perform in understanding procedural texts in low- 119

resource languages compared to high-resource lan- 120

guages? (2) How effectively can LLMs recognize, 121

interpret, and preserve the cultural nuances embed- 122

ded in procedural texts? (3) Do LLMs demonstrate 123

consistent performance across different cultural do- 124

mains, such as food preparation, religious rituals, 125

and celebration setups? (4) Are there noticeable 126

strengths or weaknesses in LLMs’ understanding 127

depending on the cultural context of the procedural 128

text? 129

To address these questions, we introduce CAPTex 130

(Culturally-Aware Procedural Texts), an innova- 131

tive dataset crafted to evaluate multilingual LLMs’ 132

(mLLMs) ability to reason culturally through the 133

lens of procedural text understanding across diverse 134

tasks, including reordering tasks, multiple-choice 135

questions, and conversational frameworks, each 136

of which is elaborated upon in detail in Section 137

3.2. CAPTex is carefully developed with contri- 138

butions from native speakers representing seven 139

culturally distinct regions—China, India, Indone- 140

sia, Iran, Japan, Nigeria, and Pakistan—ensuring 141

authentic and nuanced cultural representation. 142

2 Related Work 143

Procedural text analysis has been a focal point of 144

research, addressing a wide array of tasks within 145

this domain. For example, Cao et al. (2023) tackles 146

the cultural adaptation of recipes between Chinese 147

and English-speaking cuisines. Their work aims to 148

automate the translation and cultural adaptation of 149

recipes, ensuring that cultural nuances—including 150

ingredients, cooking techniques, and unit conver- 151

sions—are appropriately represented. In contrast, 152

our work extends beyond the food domain, en- 153

compassing multiple cultural contexts across seven 154

countries, thereby offering a broader perspective 155

on cross-cultural procedural knowledge. 156

Several studies have also focused on advanc- 157

ing entity tracking methodologies. NCET (Gupta 158

and Durrett, 2019) introduces a mechanism for 159

continuous-space entity tracking, employing a con- 160
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ditional random field (CRF) to ensure sequential161

consistency in predictions. Similarly, Huang et al.162

(2021) utilizes a graph neural network to model163

semantic relationships among entities, actions, and164

locations, enhancing the understanding of procedu-165

ral text.166

Incorporating temporal aspects into procedu-167

ral comprehension, Rajaby Faghihi and Kord-168

jamshidi (2021) propose the Time-Stamped Lan-169

guage Model (TSLM), which augments pre-trained170

language models with timestamp embeddings. This171

approach has significantly improved performance172

on datasets such as Propara (Dalvi et al., 2018) and173

NPN-Cooking. Additionally, (Tang et al., 2020) in-174

troduces the Interactive Entity Network (IEN), a re-175

current network with memory designed to capture176

diverse entity interactions for state tracking. Mean-177

while, Amini et al. (2020) develops an algorithm178

for procedural reading comprehension, translating179

texts into a formalism that represents processes as180

sequences of transitions over entity attributes.181

Efforts to integrate multimodal data have also ad-182

vanced procedural text analysis. For instance, (Liu183

et al., 2020) introduces a transformer-based model184

that combines textual and visual information for185

processing multimodal recipe datasets effectively.186

Building on this, (Wu et al., 2022) conducts bench-187

marking on reasoning and sequencing unordered188

multimodal instructions, highlighting that state-of-189

the-art models still fall short of human-level perfor-190

mance. While their work primarily focuses on step191

reordering, our evaluation framework is more com-192

prehensive, introducing three additional tasks to as-193

sess LLMs’ capabilities. Furthermore, rather than194

being restricted to English, our research incorpo-195

rates the native languages of the targeted countries,196

ensuring that the procedures analyzed are culturally197

unique rather than globally common.198

Despite these advancements, a holistic bench-199

mark for procedural text comprehension remains200

elusive. Our work sets a new standard by ex-201

tending beyond food-related tasks to encompass202

multiple domains, incorporating a diverse range203

of languages beyond English, and evaluating the204

capabilities and limitations of mLLMs through a205

multifaceted assessment framework. In the follow-206

ing section, we will elaborate on these method-207

ologies in detail, highlighting how our benchmark208

surpasses prior efforts.209

Language Class
Chinese (Mandarin) 5 - The Winners
Japanese 5 - The Winners
Persian 4 - The Underdogs
Hindi 4 - The Underdogs
Indonesian 3 - The Rising Stars
Urdu 3 - The Rising Stars
Hausa 2 - The Hopefuls

Table 2: Resource availability of languages in CAPTex

3 CAPTex 210

To address our research objectives, we introduce 211

CAPTex, a dataset that incorporates cultural pro- 212

cedural texts across English and seven additional 213

languages from diverse linguistic and geographi- 214

cal backgrounds. CAPTex is built upon three foun- 215

dational components: (1) a curated collection of 216

procedures spanning ten unique categories, (2) a 217

series of thoughtfully crafted multiple-choice ques- 218

tions designed to evaluate the comprehension of 219

each procedure, and (3) a rich corpus of conver- 220

sational exchanges offering clarifications on the 221

corresponding procedures. 222

3.1 Data Construction 223

Language Coverage Contemporary large lan- 224

guage models demonstrate impressive performance 225

in languages with abundant training data; how- 226

ever, their capabilities diminish when applied to 227

low-resource languages and intricate cultural con- 228

texts, thereby constraining their global applicability 229

(Maaz et al., 2024). To promote linguistic diver- 230

sity, we selected languages—Chinese (Mandarin), 231

Japanese, Persian, Hindi, Indonesian, Urdu, and 232

Hausa—representing a spectrum of resource avail- 233

ability, as measured by the criteria established by 234

Joshi et al. (2020). Table 2 presents a detailed sum- 235

mary of the resource availability for each language 236

featured in CAPTex. 237

Topic Taxonomies The procedures in CAPTex 238

span ten culturally significant domains: (1) food 239

and cuisine, (2) celebrations and festivals, (3) social 240

etiquette and hospitality, (4) craftsmanship and ar- 241

tisan skills, (5) traditional attire and dress, (6) agri- 242

cultural and seasonal practices, (7) religious and 243

spiritual practices, (8) life milestones and family 244

rites, (9) sports, games, and competitions, and (10) 245

environmental and nature-based practices. These 246

categories were selected by adapting and expanding 247

upon the taxonomy from IndoCulture (Koto et al., 248
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Figure 1: End-to-End process of dataset creation

2024b) to ensure comprehensive coverage of cul-249

tural traditions and everyday practices. Please refer250

to Appendix for more detailed topic taxonomies.251

Writing Procedural Text As shown in Figure 1,252

for each language, we employed two native speak-253

ers from each target nation to manually write pro-254

cedural texts in their native language along with255

their English translations. These workers have deep256

cultural ties, having spent their entire lives in their257

native lands, ensuring strong familiarity with local258

traditions. The only exceptions are two individuals259

who lived in their home countries for the first 25260

years before moving abroad, but have been residing261

outside their homeland for fewer than five years.2262

Given a specific topic or category, each worker263

manually wrote procedural texts in their native lan-264

guage and translated them into English. They were265

strictly prohibited from using AI-based text gener-266

ation tools but were allowed to reference reliable267

literature to verify cultural details and improve the268

accuracy of their writing. In total, we produce269

1,400 human-written procedural texts (100 texts270

per language × 7 native languages × 2, including271

English translations).272

Quality Control We ensure the high quality of273

CAPTex through two quality checks. First, we con-274

duct an automated check to verify that each proce-275

dure consists of 5–10 steps and that the step count276

aligns between the native language and its English277

translation. Second, we perform a manual review278

by having workers cross-check procedural texts279

written by their peers. This evaluation follows a280

detailed checklist assessing conceptual accuracy,281

cultural relevance, logical progression, step order,282

grammatical correctness, and the accuracy and con-283

sistency of English translations. Any issues iden-284

tified during the manual review are addressed by285

2Each worker is compensated fairly based on a five-day
workload, with payments aligned with the minimum wage in
their respective country.

having the original worker revise their text accord- 286

ingly. A common challenge arises from the lack 287

of logical progression, which requires consolidat- 288

ing certain steps or eliminating those that do not 289

impact the sequence. This restructuring makes the 290

order of the remaining steps critical, as they be- 291

come inherently non-interchangeable. For a more 292

detailed description of the data collection process 293

and quality control measures, refer to Appendix 294

A.2. 295

3.2 Task Formulation 296

Using CAPTex, we developed four tasks, each de- 297

signed with specific objectives. The following sec- 298

tions provide a detailed explanation of these tasks 299

and their intended goals. 300

Task 1: Step Reordering In this task, procedural 301

steps are initially shuffled and labeled with sequen- 302

tial letters (such as A, B, C, D). The model is then 303

tasked with reconstructing the correct sequence, 304

outputting a comma-separated list of these letters 305

without any additional explanation. 306

To gauge performance, we utilize three estab- 307

lished metrics. The first, Spearman’s rank corre- 308

lation (Spearman, 1904), examines the monotonic 309

relationship between the predicted and actual rank- 310

ings. The second, Levenshtein distance (Leven- 311

shtein, 1965), measures the minimum number of 312

edit operations needed to transform the predicted 313

sequence into the correct one. Lastly, Kendall’s 314

Tau rank correlation (Kendall, 1938) assesses the 315

ordinal agreement between the predicted and true 316

sequence by counting pairwise swaps. This assess- 317

ment is performed in both English and a native 318

language, ensuring a thorough evaluation of the 319

model’s ability to generalize across different lin- 320

guistic environments. 321

Task 2: Procedure-Based Multiple-Choice Ques- 322

tions (PB-MCQ) We design a comprehensive 323

multiple-choice question (MCQ) framework for 324
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each procedure to evaluate mLLMs’ comprehen-325

sion and reasoning abilities in identifying both sub-326

sequent and preceding steps. We created affirma-327

tive and negative versions for each question type,328

constructing them in the original language as well329

as in English. This approach ensured consistency330

across all question types (Subsequent Affirmative,331

Subsequent Negative, Antecedent Affirmative, An-332

tecedent Negative) in both languages. To maintain333

linguistic parity, we construct all questions in both334

the original language and English. Each question335

consists of four answer choices, with one correct336

option. As a result, we generate eight MCQs per337

procedure, leading to a total of 5,600 questions (4338

question types × 100 procedures × 14 languages,339

including native languages and their English trans-340

lations).341

In our question formulation, we ensured that for342

queries about upcoming steps, the correct answer343

was the next step, while three incorrect options344

were randomly chosen from earlier steps. Likewise,345

for questions regarding previous steps, the correct346

response was the preceding step, with three incor-347

rect choices randomly selected from later steps. We348

confirmed that each question had one correct an-349

swer and three incorrect options. An illustrative350

example of MCQs is provided in Table 7. For ad-351

ditional information about MCQs, please refer to352

appendix A.3353

The language model is prompted to generate354

only the correct choice option (A, B, C, or D) as355

its output. The primary evaluation metric for as-356

sessing model performance in this task is accuracy,357

measured by the proportion of correctly selected an-358

swers. Beyond evaluating the cultural understand-359

ing and procedural reasoning of language mod-360

els, this task also enables an analysis of how well361

mLLMs comprehend affirmative and negative ques-362

tions. Additionally, it assesses the model’s ability363

to predict both the subsequent and the antecedent364

procedural steps, further refining our understanding365

of its reasoning and contextual awareness.366

Task 3: Conversation-Based Multiple-Choice367

Questions (CB-MCQ) To evaluate the reason-368

ing capabilities of large language models (LLMs)369

using procedural text, we created procedurally370

grounded conversations in English. We utilized371

GPT-4o along with a specially designed prompt372

(detailed in Appendix A.4) to generate a series of373

four-utterance dialogues, conditioned on CAPTex.374

These dialogues simulate a natural conversation be-375

tween two individuals, referred to as Person A and 376

Person B. In the conversation, Person A starts by 377

asking about a particular procedure. Person B, act- 378

ing as a knowledgeable respondent, introduces the 379

procedure and describes the initial steps involved. 380

Person A then asks a follow-up question to clarify 381

the next step in the process, and Person B provides 382

a detailed explanation in response. Table 8 presents 383

an example of the generated conversations. 384

Based on the conversation structure, the third 385

utterance presents a question regarding the next 386

step of the process. However, the fourth utter- 387

ance, which contains the explanation of that step, 388

is intentionally omitted. The language model 389

must then select the correct answer from four op- 390

tions corresponding to the missing explanation, us- 391

ing the same answer choices as PB-MCQ. Com- 392

paring PB-MCQ and CB-MCQ allows us to as- 393

sess whether models perform better in structured 394

question-answering or conversational reasoning. 395

PB-MCQ evaluates direct procedural knowledge, 396

while CB-MCQ tests inference within dialogue, 397

providing insights into model adaptability across 398

different task formats. 399

For quality control, we employ a native speaker 400

to review each dialogue assessing conceptual accu- 401

racy, grammatical correctness, and the consistency 402

of Person B’s explanations with the actual steps out- 403

lined in the procedure. If any errors are identified, 404

the worker manually corrects them to maintain ac- 405

curacy and coherence. Similar to PB-MCQ, we use 406

accuracy as the evaluation metric for CB-MCQ. 407

Task 4: The Conversation-Based Question An- 408

swering (CB-QA) This task is similar to CB- 409

MCQ but differs in that it requires the model to 410

generate a response as if it were the conversa- 411

tional participant, rather than selecting from prede- 412

fined choices. This task is chosen over CB-MCQ 413

to evaluate the model’s ability to produce natu- 414

ral, contextually appropriate responses, reflecting 415

a deeper understanding of procedural knowledge 416

in dialogue. The performance of mLLMs is eval- 417

uated using three metrics: ROUGE-L score (Lin, 418

2004), BERTScore (Zhang et al., 2020), and ad- 419

ditional semantic similarity score (Corley and Mi- 420

halcea, 2005), which quantifies meaning alignment 421

between generated and reference responses. 422

3.3 Data Statistics 423

For each country and category, CAPTex incorpo- 424

rates 10 procedures, totaling 100 distinct proce- 425
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Figure 2: Procedures step counts by country

dures per country. Figure 2 represents the distribu-426

tion of procedural steps across countries, with num-427

bers above each bar indicating the average number428

of steps.429

The methodology guarantees an equitable distri-430

bution of multiple-choice questions (MCQs) across431

various countries, categories, and formats. For432

each designated format3 a single question is crafted.433

This approach results in the creation of 2,800434

unique questions in the original language and an435

additional 2,800 in English, culminating in a to-436

tal of 5,600 MCQs. Tables 3 and 6 present the437

mean lexical density of CAPTex, analyzed across438

countries and categories, respectively.439

The conversations dataset is thoroughly bal-440

anced, with one conversation constructed for each441

procedure. This approach yielded a total of 700442

English conversations.443

4 Experiments444

4.1 Setup445

We assessed 31 multilingual language models of446

different sizes, including DeepSeek(DeepSeek-AI447

et al., 2025), Gemma-2 (Team et al., 2024), Llama-448

3 (Grattafiori et al., 2024), Mamba (Gu and Dao,449

2024), Mistral (Jiang et al., 2023), Qwen2.5 (Qwen450

et al., 2025), BLOOMZ (Muennighoff et al., 2023),451

Aya-Expanse (Dang et al., 2024), mT0 (Muen-452

nighoff et al., 2023), GPT-4 (OpenAI et al., 2024),453

and O3-mini (OpenAI, 2025).454

We conducted zero-shot evaluations using455

prompt templates exclusively in English. Prior re-456

search has shown that prompting in different lan-457

guages can lead to variations in responses to sim-458

ilar queries (Lin et al., 2022; Shen et al., 2024b).459

Moreover, studies on multilingual LLMs have con-460

sistently found that these models tend to perform461

better when prompted in English rather than in462

3Subsequent Affirmative, Subsequent Negative, An-
tecedent Affirmative, and Antecedent Negative

other languages (Muennighoff et al., 2023; Ozsoy, 463

2024; Koto et al., 2024a). 464

4.2 Results and Analysis 465

Table 4 provides a comprehensive overview of 466

model performance across all four tasks, consis- 467

tently highlighting GPT-4o as the top-performing 468

model. Among open-weight models, Gemma-2-9b- 469

it outperforms others in the reordering task, while 470

Qwen2.5-14B-Instruct achieves the highest accu- 471

racy in MCQ tasks, and Qwen2.5-7B demonstrates 472

the strongest performance in the CB-QA task. 473

Among models of comparable size, Qwen2.5 474

demonstrates superior performance relative to its 475

counterparts. Notably, Mamba exhibits signifi- 476

cantly weaker performance in procedural text com- 477

prehension compared to transformer-based models. 478

Our findings indicate that increasing the number of 479

parameters within the same model family generally 480

enhances performance. Additionally, for language 481

models with an available Instruct variant, the In- 482

struct versions consistently achieve higher perfor- 483

mance—except in the cases of Gemma-2-2B and 484

Qwen2.5-1.5B. 485

We calculate Kendall rank correlation scores 486

across four tasks to assess task sensitivity when 487

comparing LLMs. Our analysis shows strong cor- 488

relations (0.8–0.9) between reordering, PB-MCQ, 489

and CB-MCQ, indicating that these tasks rank mod- 490

els similarly. However, CB-QA (the generation 491

task) has a lower correlation (0.4–0.5) with the 492

others, suggesting that text generation captures dif- 493

ferent aspects of procedural reasoning and is a valu- 494

able addition to the evaluation. 495

Analysis of PB-MCQ Subtypes Table 5 show- 496

cases the performance of the top models across 497

PB-MCQ task for four distinct question types: The 498

results reveal that antecedent affirmative (AA) ques- 499

tions are the easiest for language models, while 500

subsequent affirmative (SA) questions are the most 501

challenging. This suggests that models find it easier 502

to reason about preceding steps than following ones. 503

Interestingly, while prior studies (Truong et al., 504

2023; She et al., 2023; Kassner and Schütze, 2020) 505

indicate that negation generally weakens model per- 506

formance in NLP tasks, this pattern does not hold in 507

the procedural context. Subsequent negative (SN) 508

leads to better performance, whereas affirmative 509

negative (AN) questions result in a notable decline 510

in accuracy. 511

Language Effects on Performance We examine 512
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Country Procedures MCQ (English/Native) Conversations (Utterances)
(English/Native) Question Correct Ans. Incorrect Ans. First Second Third Fourth

China 157.8 / 138.8 38.0 / 39.8 24.5 / 21.2 26.0 / 22.8 9.4 46.2 13.1 34.3
India 37.5 / 50.4 16.5 / 21.8 4.8 / 6.3 4.7 / 6.3 9.3 37.2 12.7 23.6
Indonesia 121.9 / 98.9 39.1 / 31.9 19.5 / 15.6 20.1 / 16.4 14.8 41.1 12.4 30.1
Iran 144.5 / 166.4 34.3 / 40.3 21.6 / 24.7 22.4 / 25.8 10.0 44.7 13.2 30.2
Japan 120.6 / 147.1 30.6 / 45.5 16.2 / 19.6 15.8 / 19.2 12.3 43.8 13.1 29.5
Nigeria 162.3 / 173.3 35.8 / 38.1 21.1 / 22.8 21.8 / 23.5 11.0 45.7 13.2 29.6
Pakistan 76.6 / 99.7 23.9 / 36.4 9.2 / 12.0 9.4 / 12.2 12.0 42.0 12.9 27.0

Table 3: Average word counts for CAPTex components (Procedures, MCQs, and Conversations) by country.

Model Reordering PB-MCQ CB-MCQ CB-QA

ρ ↑ LD↓ τ ↑ R-L BS SS

Random 0.00 5.56 0.00 0.25 0.25 0.00 0.00 0.00
DeepSeek-R1(Distill-Llama-8B) 0.30 5.48 0.14 0.27 0.38 0.20 0.53 0.48
DeepSeek-R1(Distill-Qwen-14B) 0.43 4.47 0.33 0.42 0.54 0.22 0.55 0.50
Gemma-2-2b 0.30 5.49 0.14 0.27 0.30 0.23 0.58 0.55
Gemma-2-2b-it 0.21 5.48 0.10 0.08 0.26 0.25 0.55 0.48
Gemma-2-9b 0.48 4.94 0.32 0.37 0.57 0.21 0.53 0.47
Gemma-2-9b-it 0.75 3.09 0.66 0.43 0.46 0.15 0.50 0.42
Llama-3.1-8B 0.30 5.49 0.14 0.28 0.32 0.24 0.59 0.55
Llama-3.1-8B-Instruct 0.43 4.69 0.33 0.37 0.48 0.24 0.59 0.55
Llama-3.2-1B 0.29 5.56 0.12 0.25 0.27 0.22 0.57 0.52
Llama-3.2-1B-Instruct 0.31 5.44 0.15 0.26 0.34 0.23 0.58 0.54
Llama-3.2-3B 0.29 5.56 0.12 0.26 0.28 0.23 0.58 0.54
Llama-3.2-3B-Instruct 0.25 5.35 0.14 0.33 0.36 0.24 0.59 0.54
Mamba-1.4b-hf 0.30 5.59 0.14 0.00 0.00 0.13 0.39 0.25
Mamba-2.8b-hf 0.25 5.51 0.14 0.00 0.00 0.12 0.39 0.26
Mistral-7B-Instruct-v0.2 0.51 4.60 0.40 0.34 0.48 0.23 0.58 0.54
Mistral-7B-v0.3 0.19 5.45 0.11 0.32 0.31 0.24 0.58 0.54
Mistral-7B-Instruct-v0.3 0.38 4.75 0.30 0.37 0.41 0.24 0.59 0.55
Mistral-Nemo-Base-2407 0.33 5.34 0.18 0.34 0.50 0.20 0.53 0.43
Mistral-Nemo-Instruct-2407 0.43 4.59 0.34 0.39 0.57 0.21 0.53 0.43
Qwen2.5-1.5B 0.38 5.15 0.26 0.31 0.34 0.23 0.58 0.55
Qwen2.5-1.5B-Instruct 0.42 4.82 0.32 0.33 0.21 0.23 0.58 0.54
Qwen2.5-7B 0.63 3.94 0.52 0.45 0.54 0.25 0.59 0.57
Qwen2.5-7B-Instruct 0.69 3.65 0.60 0.50 0.60 0.24 0.59 0.56
Qwen2.5-14B 0.70 3.33 0.62 0.48 0.64 0.26 0.59 0.55
Qwen2.5-14B-Instruct 0.72 3.21 0.64 0.56 0.70 0.24 0.59 0.56
Aya-Expanse-8b 0.47 4.71 0.37 0.39 0.43 0.24 0.58 0.54
Bloomz-560m 0.37 5.39 0.22 0.15 0.00 0.14 0.45 0.32
Bloomz-7b1 0.29 5.48 0.13 0.09 0.20 0.17 0.50 0.38
mT0-xxl 0.29 5.54 0.13 0.35 0.27 0.14 0.50 0.43

GPT-4o 0.81 2.38 0.75 0.58 0.74 0.29 0.62 0.60
O3-mini 0.78 2.54 0.72 0.66 0.65 0.27 0.61 0.59

Table 4: Models’ performance across tasks. Metrics include Spearman’s Rank Correlation (ρ) [-1,1], Levenshtein
Distance (LD) [0,∞], and Kendall’s Tau Rank Correlation (τ ) [-1,1] for Reordering; accuracy [0,1] for PB-MCQ
and CB-MCQ; and ROUGE-F1 [0,1], BERT-F1 [0,1], and Semantic Similarity (SS) [0,1] for CB-QA. Higher values
indicate better performance for all metrics except LD, where lower is better.

the influence of language on the performance of513

Qwen2.5-14B-Instruct, the top-performing open-514

weight model, in the reordering and PB-MCQ515

tasks. To quantify this effect, we first normalize516

the evaluation metrics for these tasks and then com-517

pute an aggregated score using a weighted sum518

approach.4 As depicted in Figure 3, with the ex-519

4The weighted sum assigns a weight of 0.6 to the reorder-

ception of China, Qwen2.5-14B-Instruct generally 520

outperforms in English across other countries, es- 521

pecially in low-resource languages like Hausa and 522

Urdu. This divergence may stem from the model’s 523

extensive proficiency in English, whereas the lin- 524

guistic nuances, idiomatic expressions, and pro- 525

cedural reasoning structures inherent to Chinese 526

ing task (0.2 for each metric) and 0.4 to PB-MCQ accuracy.
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Model PB-MCQ
SA SN AA AN

Gemma-2-9b-it 0.31 0.51 0.56 0.36
Llama-3.1-8B-Instruct 0.24 0.38 0.55 0.33
Mistral-Nemo-Instruct-2407 0.29 0.34 0.60 0.34
Qwen2.5-14B-Instruct 0.45 0.53 0.69 0.55
Aya-Expanse-8b 0.33 0.38 0.61 0.24
GPT-4o 0.46 0.57 0.73 0.54
O3-mini 0.51 0.70 0.72 0.72

Table 5: Model performance on PB-MCQ across ques-
tion types. “SA”, “SN”, “AA”, and “AN” denote Sub-
sequent Affirmative, Subsequent Negative, Antecedent
Affirmative, and Antecedent Negative, respectively.

Figure 3: Language impact on Qwen2.5-14B-Instruct
performance

contexts might be underrepresented in the training527

data.528

Performance Across Cultural Dimensions Fig-529

ure 4 presents the aggregated performance scores of530

the top-performing open-weight model, Qwen2.5-531

14B-Instruct, across all evaluation tasks.5 Our anal-532

ysis shows that Qwen2.5-14B-Instruct’s knowledge533

of procedural texts varies across cultural domains.534

For instance, it demonstrates strong familiarity with535

Indian agriculture but performs less effectively on536

Chinese agricultural topics. Conversely, for crafts-537

manship and artisan skills, Qwen2.5-14B-Instruct538

encodes Chinese cultural knowledge better than539

other countries. In the food category, Indian cui-540

sine is better represented, while Iranian religious541

practices appear more prominently. Additionally,542

Indonesian social etiquette are well captured by543

Qwen2.5-14B-Instruct, suggesting variation in how544

different cultural aspects are reflected in the model.545

Impact of Procedure Length on Ordering Fig-546

ure 5 shows that as procedure length increases,547

Levenshtein distance rises, indicating greater re-548

5Scores are normalized and computed using a weighted
sum approach, with the following weight distribution: 0.3
for reordering, 0.1 for each metric, 0.2 for PB-MCQ, 0.2 for
CB-MCQ, and 0.3 for CB-QA.

Figure 4: Cultural dimension performance by country

Figure 5: Impact of step count on reordering

ordering difficulty. However, Spearman’s rank and 549

Kendall’s Tau correlations remain high, suggesting 550

that models generally preserve step order despite 551

complexity. Shorter procedures introduce more 552

ambiguity, making errors more impactful, while 553

longer sequences benefit from stronger local de- 554

pendencies, aiding order retention. Notably, proce- 555

dures with ten steps achieve the highest rank cor- 556

relations, indicating that structural cues in longer 557

sequences enhance model performance. Most er- 558

rors involve minor swaps rather than complete mis- 559

ordering. 560

5 Conclusion 561

We introduce CAPTex, a benchmark for evaluating 562

mLLMs’ ability to process culturally diverse pro- 563

cedural texts across seven languages. Our findings 564

show that model performance varies across cultural 565

domains, with greater challenges in tasks requiring 566

implicit cultural knowledge, such as environmental 567

practices, while structured domains like craftsman- 568

ship are better handled. Multiple-choice tasks in 569

conversational contexts improve reasoning, while 570

generation evaluation highlights gaps in procedural 571

text comprehension. 572
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Limitations573

Our study provides valuable insights into the perfor-574

mance of mLLMs on procedural texts, but there are575

a few limitations to consider. Firstly, our research576

is limited to textual data and does not include multi-577

modal inputs, such as procedural texts with images.578

Incorporating images would enhance model under-579

standing, but due to the added complexity, this is580

reserved for future work.581

Additionally, our dataset focuses on seven coun-582

tries, primarily due to budget constraints. While583

this may seem limited, the selected countries offer584

diverse language categories and varying resource585

levels, ensuring a meaningful analysis of cultural586

gaps in mLLMs. These findings can be generalized587

to a broader context, given the representativeness588

of the samples.589

Finally, the conversation dataset consists of ex-590

changes with exactly four utterances. While real-591

world dialogues are typically longer and more dy-592

namic, this limitation was made for practical rea-593

sons. Despite the brevity, we found that mLLMs594

still struggle with maintaining coherence and un-595

derstanding conversational flow, underscoring the596

challenges these models face, even in simpler dia-597

logue settings.598
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Tsai, Dragan Gašević, and Guanliang Chen. 2023.622

Can large language models provide feedback to stu- 623
dents? a case study on chatgpt. In 2023 IEEE In- 624
ternational Conference on Advanced Learning Tech- 625
nologies (ICALT), pages 323–325. IEEE. 626

Bhavana Dalvi, Lifu Huang, Niket Tandon, Wen-tau 627
Yih, and Peter Clark. 2018. Tracking state changes in 628
procedural text: a challenge dataset and models for 629
process paragraph comprehension. In Proceedings 630
of the 2018 Conference of the North American Chap- 631
ter of the Association for Computational Linguistics: 632
Human Language Technologies, Volume 1 (Long Pa- 633
pers), pages 1595–1604, New Orleans, Louisiana. 634
Association for Computational Linguistics. 635

John Dang, Shivalika Singh, Daniel D’souza, Arash 636
Ahmadian, Alejandro Salamanca, Madeline Smith, 637
Aidan Peppin, Sungjin Hong, Manoj Govindassamy, 638
Terrence Zhao, Sandra Kublik, Meor Amer, Viraat 639
Aryabumi, Jon Ander Campos, Yi-Chern Tan, Tom 640
Kocmi, Florian Strub, Nathan Grinsztajn, Yannis 641
Flet-Berliac, Acyr Locatelli, Hangyu Lin, Dwarak 642
Talupuru, Bharat Venkitesh, David Cairuz, Bowen 643
Yang, Tim Chung, Wei-Yin Ko, Sylvie Shang Shi, 644
Amir Shukayev, Sammie Bae, Aleksandra Piktus, Ro- 645
man Castagné, Felipe Cruz-Salinas, Eddie Kim, Lu- 646
cas Crawhall-Stein, Adrien Morisot, Sudip Roy, Phil 647
Blunsom, Ivan Zhang, Aidan Gomez, Nick Frosst, 648
Marzieh Fadaee, Beyza Ermis, Ahmet Üstün, and 649
Sara Hooker. 2024. Aya expanse: Combining re- 650
search breakthroughs for a new multilingual frontier. 651
Preprint, arXiv:2412.04261. 652

DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, 653
Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu, 654
Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, 655
Xingkai Yu, Yu Wu, Z. F. Wu, Zhibin Gou, Zhihong 656
Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, 657
Bingxuan Wang, Bochao Wu, Bei Feng, Chengda Lu, 658
Chenggang Zhao, Chengqi Deng, Chenyu Zhang, 659
Chong Ruan, Damai Dai, Deli Chen, Dongjie Ji, 660
Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, 661
Guangbo Hao, Guanting Chen, Guowei Li, H. Zhang, 662
Han Bao, Hanwei Xu, Haocheng Wang, Honghui 663
Ding, Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, 664
Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang 665
Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. 666
Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai Dong, Kai 667
Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai 668
Yu, Lean Wang, Lecong Zhang, Liang Zhao, Litong 669
Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan 670
Zhang, Minghua Zhang, Minghui Tang, Meng Li, 671
Miaojun Wang, Mingming Li, Ning Tian, Panpan 672
Huang, Peng Zhang, Qiancheng Wang, Qinyu Chen, 673
Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, 674
Runji Wang, R. J. Chen, R. L. Jin, Ruyi Chen, 675
Shanghao Lu, Shangyan Zhou, Shanhuang Chen, 676
Shengfeng Ye, Shiyu Wang, Shuiping Yu, Shunfeng 677
Zhou, Shuting Pan, S. S. Li, Shuang Zhou, Shaoqing 678
Wu, Shengfeng Ye, Tao Yun, Tian Pei, Tianyu Sun, 679
T. Wang, Wangding Zeng, Wanjia Zhao, Wen Liu, 680
Wenfeng Liang, Wenjun Gao, Wenqin Yu, Wentao 681
Zhang, W. L. Xiao, Wei An, Xiaodong Liu, Xiaohan 682
Wang, Xiaokang Chen, Xiaotao Nie, Xin Cheng, Xin 683

9

https://arxiv.org/abs/2003.13878
https://arxiv.org/abs/2003.13878
https://arxiv.org/abs/2003.13878
https://arxiv.org/abs/2003.13878
https://arxiv.org/abs/2003.13878
https://doi.org/10.18653/v1/2022.findings-acl.58
https://doi.org/10.18653/v1/2022.findings-acl.58
https://doi.org/10.18653/v1/2022.findings-acl.58
https://doi.org/10.18653/v1/2022.findings-acl.58
https://doi.org/10.18653/v1/2022.findings-acl.58
https://arxiv.org/abs/2310.17353
https://arxiv.org/abs/2310.17353
https://arxiv.org/abs/2310.17353
https://aclanthology.org/W05-1203
https://aclanthology.org/W05-1203
https://aclanthology.org/W05-1203
https://doi.org/10.18653/v1/N18-1144
https://doi.org/10.18653/v1/N18-1144
https://doi.org/10.18653/v1/N18-1144
https://doi.org/10.18653/v1/N18-1144
https://doi.org/10.18653/v1/N18-1144
https://arxiv.org/abs/2412.04261
https://arxiv.org/abs/2412.04261
https://arxiv.org/abs/2412.04261


Liu, Xin Xie, Xingchao Liu, Xinyu Yang, Xinyuan Li,684
Xuecheng Su, Xuheng Lin, X. Q. Li, Xiangyue Jin,685
Xiaojin Shen, Xiaosha Chen, Xiaowen Sun, Xiaoxi-686
ang Wang, Xinnan Song, Xinyi Zhou, Xianzu Wang,687
Xinxia Shan, Y. K. Li, Y. Q. Wang, Y. X. Wei, Yang688
Zhang, Yanhong Xu, Yao Li, Yao Zhao, Yaofeng689
Sun, Yaohui Wang, Yi Yu, Yichao Zhang, Yifan Shi,690
Yiliang Xiong, Ying He, Yishi Piao, Yisong Wang,691
Yixuan Tan, Yiyang Ma, Yiyuan Liu, Yongqiang Guo,692
Yuan Ou, Yuduan Wang, Yue Gong, Yuheng Zou, Yu-693
jia He, Yunfan Xiong, Yuxiang Luo, Yuxiang You,694
Yuxuan Liu, Yuyang Zhou, Y. X. Zhu, Yanhong Xu,695
Yanping Huang, Yaohui Li, Yi Zheng, Yuchen Zhu,696
Yunxian Ma, Ying Tang, Yukun Zha, Yuting Yan,697
Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean698
Xu, Zhenda Xie, Zhengyan Zhang, Zhewen Hao,699
Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zi-700
jia Zhu, Zijun Liu, Zilin Li, Ziwei Xie, Ziyang Song,701
Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu702
Zhang, and Zhen Zhang. 2025. Deepseek-r1: Incen-703
tivizing reasoning capability in llms via reinforce-704
ment learning. Preprint, arXiv:2501.12948.705

Esin Durmus, Karina Nguyen, Thomas I. Liao,706
Nicholas Schiefer, Amanda Askell, Anton Bakhtin,707
Carol Chen, Zac Hatfield-Dodds, Danny Hernan-708
dez, Nicholas Joseph, Liane Lovitt, Sam McCan-709
dlish, Orowa Sikder, Alex Tamkin, Janel Thamkul,710
Jared Kaplan, Jack Clark, and Deep Ganguli. 2024.711
Towards measuring the representation of subjec-712
tive global opinions in language models. Preprint,713
arXiv:2306.16388.714

Deep Ganguli, Danny Hernandez, Liane Lovitt,715
Amanda Askell, Yuntao Bai, Anna Chen, Tom Con-716
erly, Nova Dassarma, Dawn Drain, Nelson Elhage,717
Sheer El Showk, Stanislav Fort, Zac Hatfield-Dodds,718
Tom Henighan, Scott Johnston, Andy Jones, Nicholas719
Joseph, Jackson Kernian, Shauna Kravec, Ben Mann,720
Neel Nanda, Kamal Ndousse, Catherine Olsson,721
Daniela Amodei, Tom Brown, Jared Kaplan, Sam722
McCandlish, Christopher Olah, Dario Amodei, and723
Jack Clark. 2022. Predictability and surprise in large724
generative models. In Proceedings of the 2022 ACM725
Conference on Fairness, Accountability, and Trans-726
parency, FAccT ’22, page 1747–1764, New York,727
NY, USA. Association for Computing Machinery.728

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri,729
Abhinav Pandey, Abhishek Kadian, Ahmad Al-730
Dahle, Aiesha Letman, Akhil Mathur, Alan Schel-731
ten, Alex Vaughan, Amy Yang, Angela Fan, Anirudh732
Goyal, Anthony Hartshorn, Aobo Yang, Archi Mi-733
tra, Archie Sravankumar, Artem Korenev, Arthur734
Hinsvark, Arun Rao, Aston Zhang, Aurelien Ro-735
driguez, Austen Gregerson, Ava Spataru, Baptiste736
Roziere, Bethany Biron, Binh Tang, Bobbie Chern,737
Charlotte Caucheteux, Chaya Nayak, Chloe Bi,738
Chris Marra, Chris McConnell, Christian Keller,739
Christophe Touret, Chunyang Wu, Corinne Wong,740
Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Al-741
lonsius, Daniel Song, Danielle Pintz, Danny Livshits,742
Danny Wyatt, David Esiobu, Dhruv Choudhary,743
Dhruv Mahajan, Diego Garcia-Olano, Diego Perino,744

Dieuwke Hupkes, Egor Lakomkin, Ehab AlBadawy, 745
Elina Lobanova, Emily Dinan, Eric Michael Smith, 746
Filip Radenovic, Francisco Guzmán, Frank Zhang, 747
Gabriel Synnaeve, Gabrielle Lee, Georgia Lewis An- 748
derson, Govind Thattai, Graeme Nail, Gregoire Mi- 749
alon, Guan Pang, Guillem Cucurell, Hailey Nguyen, 750
Hannah Korevaar, Hu Xu, Hugo Touvron, Iliyan 751
Zarov, Imanol Arrieta Ibarra, Isabel Kloumann, Is- 752
han Misra, Ivan Evtimov, Jack Zhang, Jade Copet, 753
Jaewon Lee, Jan Geffert, Jana Vranes, Jason Park, 754
Jay Mahadeokar, Jeet Shah, Jelmer van der Linde, 755
Jennifer Billock, Jenny Hong, Jenya Lee, Jeremy Fu, 756
Jianfeng Chi, Jianyu Huang, Jiawen Liu, Jie Wang, 757
Jiecao Yu, Joanna Bitton, Joe Spisak, Jongsoo Park, 758
Joseph Rocca, Joshua Johnstun, Joshua Saxe, Jun- 759
teng Jia, Kalyan Vasuden Alwala, Karthik Prasad, 760
Kartikeya Upasani, Kate Plawiak, Ke Li, Kenneth 761
Heafield, Kevin Stone, Khalid El-Arini, Krithika Iyer, 762
Kshitiz Malik, Kuenley Chiu, Kunal Bhalla, Kushal 763
Lakhotia, Lauren Rantala-Yeary, Laurens van der 764
Maaten, Lawrence Chen, Liang Tan, Liz Jenkins, 765
Louis Martin, Lovish Madaan, Lubo Malo, Lukas 766
Blecher, Lukas Landzaat, Luke de Oliveira, Madeline 767
Muzzi, Mahesh Pasupuleti, Mannat Singh, Manohar 768
Paluri, Marcin Kardas, Maria Tsimpoukelli, Mathew 769
Oldham, Mathieu Rita, Maya Pavlova, Melanie Kam- 770
badur, Mike Lewis, Min Si, Mitesh Kumar Singh, 771
Mona Hassan, Naman Goyal, Narjes Torabi, Niko- 772
lay Bashlykov, Nikolay Bogoychev, Niladri Chatterji, 773
Ning Zhang, Olivier Duchenne, Onur Çelebi, Patrick 774
Alrassy, Pengchuan Zhang, Pengwei Li, Petar Va- 775
sic, Peter Weng, Prajjwal Bhargava, Pratik Dubal, 776
Praveen Krishnan, Punit Singh Koura, Puxin Xu, 777
Qing He, Qingxiao Dong, Ragavan Srinivasan, Raj 778
Ganapathy, Ramon Calderer, Ricardo Silveira Cabral, 779
Robert Stojnic, Roberta Raileanu, Rohan Maheswari, 780
Rohit Girdhar, Rohit Patel, Romain Sauvestre, Ron- 781
nie Polidoro, Roshan Sumbaly, Ross Taylor, Ruan 782
Silva, Rui Hou, Rui Wang, Saghar Hosseini, Sa- 783
hana Chennabasappa, Sanjay Singh, Sean Bell, Seo- 784
hyun Sonia Kim, Sergey Edunov, Shaoliang Nie, Sha- 785
ran Narang, Sharath Raparthy, Sheng Shen, Shengye 786
Wan, Shruti Bhosale, Shun Zhang, Simon Van- 787
denhende, Soumya Batra, Spencer Whitman, Sten 788
Sootla, Stephane Collot, Suchin Gururangan, Syd- 789
ney Borodinsky, Tamar Herman, Tara Fowler, Tarek 790
Sheasha, Thomas Georgiou, Thomas Scialom, Tobias 791
Speckbacher, Todor Mihaylov, Tong Xiao, Ujjwal 792
Karn, Vedanuj Goswami, Vibhor Gupta, Vignesh 793
Ramanathan, Viktor Kerkez, Vincent Gonguet, Vir- 794
ginie Do, Vish Vogeti, Vítor Albiero, Vladan Petro- 795
vic, Weiwei Chu, Wenhan Xiong, Wenyin Fu, Whit- 796
ney Meers, Xavier Martinet, Xiaodong Wang, Xi- 797
aofang Wang, Xiaoqing Ellen Tan, Xide Xia, Xin- 798
feng Xie, Xuchao Jia, Xuewei Wang, Yaelle Gold- 799
schlag, Yashesh Gaur, Yasmine Babaei, Yi Wen, 800
Yiwen Song, Yuchen Zhang, Yue Li, Yuning Mao, 801
Zacharie Delpierre Coudert, Zheng Yan, Zhengxing 802
Chen, Zoe Papakipos, Aaditya Singh, Aayushi Sri- 803
vastava, Abha Jain, Adam Kelsey, Adam Shajnfeld, 804
Adithya Gangidi, Adolfo Victoria, Ahuva Goldstand, 805
Ajay Menon, Ajay Sharma, Alex Boesenberg, Alexei 806
Baevski, Allie Feinstein, Amanda Kallet, Amit San- 807
gani, Amos Teo, Anam Yunus, Andrei Lupu, An- 808

10

https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2306.16388
https://arxiv.org/abs/2306.16388
https://arxiv.org/abs/2306.16388
https://doi.org/10.1145/3531146.3533229
https://doi.org/10.1145/3531146.3533229
https://doi.org/10.1145/3531146.3533229


dres Alvarado, Andrew Caples, Andrew Gu, Andrew809
Ho, Andrew Poulton, Andrew Ryan, Ankit Ramchan-810
dani, Annie Dong, Annie Franco, Anuj Goyal, Apara-811
jita Saraf, Arkabandhu Chowdhury, Ashley Gabriel,812
Ashwin Bharambe, Assaf Eisenman, Azadeh Yaz-813
dan, Beau James, Ben Maurer, Benjamin Leonhardi,814
Bernie Huang, Beth Loyd, Beto De Paola, Bhargavi815
Paranjape, Bing Liu, Bo Wu, Boyu Ni, Braden Han-816
cock, Bram Wasti, Brandon Spence, Brani Stojkovic,817
Brian Gamido, Britt Montalvo, Carl Parker, Carly818
Burton, Catalina Mejia, Ce Liu, Changhan Wang,819
Changkyu Kim, Chao Zhou, Chester Hu, Ching-820
Hsiang Chu, Chris Cai, Chris Tindal, Christoph Fe-821
ichtenhofer, Cynthia Gao, Damon Civin, Dana Beaty,822
Daniel Kreymer, Daniel Li, David Adkins, David823
Xu, Davide Testuggine, Delia David, Devi Parikh,824
Diana Liskovich, Didem Foss, Dingkang Wang, Duc825
Le, Dustin Holland, Edward Dowling, Eissa Jamil,826
Elaine Montgomery, Eleonora Presani, Emily Hahn,827
Emily Wood, Eric-Tuan Le, Erik Brinkman, Este-828
ban Arcaute, Evan Dunbar, Evan Smothers, Fei Sun,829
Felix Kreuk, Feng Tian, Filippos Kokkinos, Firat830
Ozgenel, Francesco Caggioni, Frank Kanayet, Frank831
Seide, Gabriela Medina Florez, Gabriella Schwarz,832
Gada Badeer, Georgia Swee, Gil Halpern, Grant833
Herman, Grigory Sizov, Guangyi, Zhang, Guna834
Lakshminarayanan, Hakan Inan, Hamid Shojanaz-835
eri, Han Zou, Hannah Wang, Hanwen Zha, Haroun836
Habeeb, Harrison Rudolph, Helen Suk, Henry As-837
pegren, Hunter Goldman, Hongyuan Zhan, Ibrahim838
Damlaj, Igor Molybog, Igor Tufanov, Ilias Leontiadis,839
Irina-Elena Veliche, Itai Gat, Jake Weissman, James840
Geboski, James Kohli, Janice Lam, Japhet Asher,841
Jean-Baptiste Gaya, Jeff Marcus, Jeff Tang, Jen-842
nifer Chan, Jenny Zhen, Jeremy Reizenstein, Jeremy843
Teboul, Jessica Zhong, Jian Jin, Jingyi Yang, Joe844
Cummings, Jon Carvill, Jon Shepard, Jonathan Mc-845
Phie, Jonathan Torres, Josh Ginsburg, Junjie Wang,846
Kai Wu, Kam Hou U, Karan Saxena, Kartikay Khan-847
delwal, Katayoun Zand, Kathy Matosich, Kaushik848
Veeraraghavan, Kelly Michelena, Keqian Li, Ki-849
ran Jagadeesh, Kun Huang, Kunal Chawla, Kyle850
Huang, Lailin Chen, Lakshya Garg, Lavender A,851
Leandro Silva, Lee Bell, Lei Zhang, Liangpeng852
Guo, Licheng Yu, Liron Moshkovich, Luca Wehrst-853
edt, Madian Khabsa, Manav Avalani, Manish Bhatt,854
Martynas Mankus, Matan Hasson, Matthew Lennie,855
Matthias Reso, Maxim Groshev, Maxim Naumov,856
Maya Lathi, Meghan Keneally, Miao Liu, Michael L.857
Seltzer, Michal Valko, Michelle Restrepo, Mihir Pa-858
tel, Mik Vyatskov, Mikayel Samvelyan, Mike Clark,859
Mike Macey, Mike Wang, Miquel Jubert Hermoso,860
Mo Metanat, Mohammad Rastegari, Munish Bansal,861
Nandhini Santhanam, Natascha Parks, Natasha862
White, Navyata Bawa, Nayan Singhal, Nick Egebo,863
Nicolas Usunier, Nikhil Mehta, Nikolay Pavlovich864
Laptev, Ning Dong, Norman Cheng, Oleg Chernoguz,865
Olivia Hart, Omkar Salpekar, Ozlem Kalinli, Parkin866
Kent, Parth Parekh, Paul Saab, Pavan Balaji, Pe-867
dro Rittner, Philip Bontrager, Pierre Roux, Piotr868
Dollar, Polina Zvyagina, Prashant Ratanchandani,869
Pritish Yuvraj, Qian Liang, Rachad Alao, Rachel870
Rodriguez, Rafi Ayub, Raghotham Murthy, Raghu871
Nayani, Rahul Mitra, Rangaprabhu Parthasarathy,872

Raymond Li, Rebekkah Hogan, Robin Battey, Rocky 873
Wang, Russ Howes, Ruty Rinott, Sachin Mehta, 874
Sachin Siby, Sai Jayesh Bondu, Samyak Datta, Sara 875
Chugh, Sara Hunt, Sargun Dhillon, Sasha Sidorov, 876
Satadru Pan, Saurabh Mahajan, Saurabh Verma, 877
Seiji Yamamoto, Sharadh Ramaswamy, Shaun Lind- 878
say, Shaun Lindsay, Sheng Feng, Shenghao Lin, 879
Shengxin Cindy Zha, Shishir Patil, Shiva Shankar, 880
Shuqiang Zhang, Shuqiang Zhang, Sinong Wang, 881
Sneha Agarwal, Soji Sajuyigbe, Soumith Chintala, 882
Stephanie Max, Stephen Chen, Steve Kehoe, Steve 883
Satterfield, Sudarshan Govindaprasad, Sumit Gupta, 884
Summer Deng, Sungmin Cho, Sunny Virk, Suraj 885
Subramanian, Sy Choudhury, Sydney Goldman, Tal 886
Remez, Tamar Glaser, Tamara Best, Thilo Koehler, 887
Thomas Robinson, Tianhe Li, Tianjun Zhang, Tim 888
Matthews, Timothy Chou, Tzook Shaked, Varun 889
Vontimitta, Victoria Ajayi, Victoria Montanez, Vijai 890
Mohan, Vinay Satish Kumar, Vishal Mangla, Vlad 891
Ionescu, Vlad Poenaru, Vlad Tiberiu Mihailescu, 892
Vladimir Ivanov, Wei Li, Wenchen Wang, Wen- 893
wen Jiang, Wes Bouaziz, Will Constable, Xiaocheng 894
Tang, Xiaojian Wu, Xiaolan Wang, Xilun Wu, Xinbo 895
Gao, Yaniv Kleinman, Yanjun Chen, Ye Hu, Ye Jia, 896
Ye Qi, Yenda Li, Yilin Zhang, Ying Zhang, Yossi Adi, 897
Youngjin Nam, Yu, Wang, Yu Zhao, Yuchen Hao, 898
Yundi Qian, Yunlu Li, Yuzi He, Zach Rait, Zachary 899
DeVito, Zef Rosnbrick, Zhaoduo Wen, Zhenyu Yang, 900
Zhiwei Zhao, and Zhiyu Ma. 2024. The llama 3 herd 901
of models. Preprint, arXiv:2407.21783. 902

Albert Gu and Tri Dao. 2024. Mamba: Linear- 903
time sequence modeling with selective state spaces. 904
Preprint, arXiv:2312.00752. 905

Aditya Gupta and Greg Durrett. 2019. Tracking discrete 906
and continuous entity state for process understanding. 907
In Proceedings of the Third Workshop on Structured 908
Prediction for NLP, pages 7–12, Minneapolis, Min- 909
nesota. Association for Computational Linguistics. 910

Hao Huang, Xiubo Geng, Jian Pei, Guodong Long, and 911
Daxin Jiang. 2021. Reasoning over entity-action- 912
location graph for procedural text understanding. In 913
Proceedings of the 59th Annual Meeting of the Asso- 914
ciation for Computational Linguistics and the 11th 915
International Joint Conference on Natural Language 916
Processing (Volume 1: Long Papers), pages 5100– 917
5109, Online. Association for Computational Lin- 918
guistics. 919

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Men- 920
sch, Chris Bamford, Devendra Singh Chaplot, Diego 921
de las Casas, Florian Bressand, Gianna Lengyel, Guil- 922
laume Lample, Lucile Saulnier, Lélio Renard Lavaud, 923
Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, 924
Thibaut Lavril, Thomas Wang, Timothée Lacroix, 925
and William El Sayed. 2023. Mistral 7b. Preprint, 926
arXiv:2310.06825. 927

Hanlei Jin, Yang Zhang, Dan Meng, Jun Wang, and 928
Jinghua Tan. 2024. A comprehensive survey on 929
process-oriented automatic text summarization with 930
exploration of llm-based methods. arXiv preprint 931
arXiv:2403.02901. 932

11

https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2312.00752
https://arxiv.org/abs/2312.00752
https://arxiv.org/abs/2312.00752
https://doi.org/10.18653/v1/W19-1502
https://doi.org/10.18653/v1/W19-1502
https://doi.org/10.18653/v1/W19-1502
https://doi.org/10.18653/v1/2021.acl-long.396
https://doi.org/10.18653/v1/2021.acl-long.396
https://doi.org/10.18653/v1/2021.acl-long.396
https://arxiv.org/abs/2310.06825


Pratik Joshi, Sebastin Santy, Amar Budhiraja, Kalika933
Bali, and Monojit Choudhury. 2020. The state and934
fate of linguistic diversity and inclusion in the NLP935
world. In Proceedings of the 58th Annual Meeting of936
the Association for Computational Linguistics, pages937
6282–6293, Online. Association for Computational938
Linguistics.939

Nora Kassner and Hinrich Schütze. 2020. Negated and940
misprimed probes for pretrained language models:941
Birds can talk, but cannot fly. In Proceedings of the942
58th Annual Meeting of the Association for Compu-943
tational Linguistics, pages 7811–7818, Online. Asso-944
ciation for Computational Linguistics.945

M. G. Kendall. 1938. A new measure of rank correla-946
tion. Biometrika, 30(1/2):81–93.947

Thomas Kosch and Sebastian Feger. 2024. Risk or948
chance? large language models and reproducibility949
in hci research. Interactions, 31(6):44–49.950

Fajri Koto, Haonan Li, Sara Shatnawi, Jad Doughman,951
Abdelrahman Sadallah, Aisha Alraeesi, Khalid Al-952
mubarak, Zaid Alyafeai, Neha Sengupta, Shady She-953
hata, Nizar Habash, Preslav Nakov, and Timothy954
Baldwin. 2024a. ArabicMMLU: Assessing massive955
multitask language understanding in Arabic. In Find-956
ings of the Association for Computational Linguistics:957
ACL 2024, pages 5622–5640, Bangkok, Thailand. As-958
sociation for Computational Linguistics.959

Fajri Koto, Rahmad Mahendra, Nurul Aisyah, and Tim-960
othy Baldwin. 2024b. IndoCulture: Exploring ge-961
ographically influenced cultural commonsense rea-962
soning across eleven Indonesian provinces. Transac-963
tions of the Association for Computational Linguis-964
tics, 12:1703–1719.965

Vladimir I. Levenshtein. 1965. Binary codes capable of966
correcting deletions, insertions, and reversals. Soviet967
physics. Doklady, 10:707–710.968

Chin-Yew Lin. 2004. ROUGE: A package for auto-969
matic evaluation of summaries. In Text Summariza-970
tion Branches Out, pages 74–81, Barcelona, Spain.971
Association for Computational Linguistics.972

Xi Victoria Lin, Todor Mihaylov, Mikel Artetxe, Tianlu973
Wang, Shuohui Chen, Daniel Simig, Myle Ott, Na-974
man Goyal, Shruti Bhosale, Jingfei Du, Ramakanth975
Pasunuru, Sam Shleifer, Punit Singh Koura, Vishrav976
Chaudhary, Brian O’Horo, Jeff Wang, Luke Zettle-977
moyer, Zornitsa Kozareva, Mona Diab, Veselin Stoy-978
anov, and Xian Li. 2022. Few-shot learning with979
multilingual generative language models. In Proceed-980
ings of the 2022 Conference on Empirical Methods981
in Natural Language Processing, pages 9019–9052,982
Abu Dhabi, United Arab Emirates. Association for983
Computational Linguistics.984

Ao Liu, Shuai Yuan, Chenbin Zhang, Congjian Luo,985
Yaqing Liao, Kun Bai, and Zenglin Xu. 2020. Multi-986
level multimodal transformer network for multimodal987
recipe comprehension. In Proceedings of the 43rd In-988
ternational ACM SIGIR Conference on Research and989

Development in Information Retrieval, SIGIR ’20, 990
page 1781–1784, New York, NY, USA. Association 991
for Computing Machinery. 992

Muhammad Maaz, Hanoona Rasheed, Abdelrahman 993
Shaker, Salman Khan, Hisham Cholakal, Rao M. An- 994
wer, Tim Baldwin, Michael Felsberg, and Fahad S. 995
Khan. 2024. Palo: A polyglot large multimodal 996
model for 5b people. Preprint, arXiv:2402.14818. 997

Niklas Muennighoff, Thomas Wang, Lintang Sutawika, 998
Adam Roberts, Stella Biderman, Teven Le Scao, 999
M Saiful Bari, Sheng Shen, Zheng Xin Yong, Hai- 1000
ley Schoelkopf, Xiangru Tang, Dragomir Radev, 1001
Alham Fikri Aji, Khalid Almubarak, Samuel Al- 1002
banie, Zaid Alyafeai, Albert Webson, Edward Raff, 1003
and Colin Raffel. 2023. Crosslingual generaliza- 1004
tion through multitask finetuning. In Proceedings 1005
of the 61st Annual Meeting of the Association for 1006
Computational Linguistics (Volume 1: Long Papers), 1007
pages 15991–16111, Toronto, Canada. Association 1008
for Computational Linguistics. 1009

Moin Nadeem, Anna Bethke, and Siva Reddy. 2021. 1010
StereoSet: Measuring stereotypical bias in pretrained 1011
language models. In Proceedings of the 59th Annual 1012
Meeting of the Association for Computational Lin- 1013
guistics and the 11th International Joint Conference 1014
on Natural Language Processing (Volume 1: Long 1015
Papers), pages 5356–5371, Online. Association for 1016
Computational Linguistics. 1017

Tarek Naous, Michael Joseph Ryan, and Wei Xu. 2023. 1018
Having beer after prayer? measuring cultural bias 1019
in large language models. In Annual Meeting of the 1020
Association for Computational Linguistics. 1021

OpenAI. 2025. Openai o3-mini system card. 1022

OpenAI, Josh Achiam, Steven Adler, Sandhini Agarwal, 1023
Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale- 1024
man, Diogo Almeida, Janko Altenschmidt, Sam Alt- 1025
man, Shyamal Anadkat, Red Avila, Igor Babuschkin, 1026
Suchir Balaji, Valerie Balcom, Paul Baltescu, Haim- 1027
ing Bao, Mohammad Bavarian, Jeff Belgum, Ir- 1028
wan Bello, Jake Berdine, Gabriel Bernadett-Shapiro, 1029
Christopher Berner, Lenny Bogdonoff, Oleg Boiko, 1030
Madelaine Boyd, Anna-Luisa Brakman, Greg Brock- 1031
man, Tim Brooks, Miles Brundage, Kevin Button, 1032
Trevor Cai, Rosie Campbell, Andrew Cann, Brittany 1033
Carey, Chelsea Carlson, Rory Carmichael, Brooke 1034
Chan, Che Chang, Fotis Chantzis, Derek Chen, Sully 1035
Chen, Ruby Chen, Jason Chen, Mark Chen, Ben 1036
Chess, Chester Cho, Casey Chu, Hyung Won Chung, 1037
Dave Cummings, Jeremiah Currier, Yunxing Dai, 1038
Cory Decareaux, Thomas Degry, Noah Deutsch, 1039
Damien Deville, Arka Dhar, David Dohan, Steve 1040
Dowling, Sheila Dunning, Adrien Ecoffet, Atty Eleti, 1041
Tyna Eloundou, David Farhi, Liam Fedus, Niko Felix, 1042
Simón Posada Fishman, Juston Forte, Isabella Ful- 1043
ford, Leo Gao, Elie Georges, Christian Gibson, Vik 1044
Goel, Tarun Gogineni, Gabriel Goh, Rapha Gontijo- 1045
Lopes, Jonathan Gordon, Morgan Grafstein, Scott 1046
Gray, Ryan Greene, Joshua Gross, Shixiang Shane 1047
Gu, Yufei Guo, Chris Hallacy, Jesse Han, Jeff Harris, 1048

12

https://doi.org/10.18653/v1/2020.acl-main.560
https://doi.org/10.18653/v1/2020.acl-main.560
https://doi.org/10.18653/v1/2020.acl-main.560
https://doi.org/10.18653/v1/2020.acl-main.560
https://doi.org/10.18653/v1/2020.acl-main.560
https://doi.org/10.18653/v1/2020.acl-main.698
https://doi.org/10.18653/v1/2020.acl-main.698
https://doi.org/10.18653/v1/2020.acl-main.698
https://doi.org/10.18653/v1/2020.acl-main.698
https://doi.org/10.18653/v1/2020.acl-main.698
http://www.jstor.org/stable/2332226
http://www.jstor.org/stable/2332226
http://www.jstor.org/stable/2332226
https://doi.org/10.1145/3695765
https://doi.org/10.1145/3695765
https://doi.org/10.1145/3695765
https://doi.org/10.1145/3695765
https://doi.org/10.1145/3695765
https://doi.org/10.18653/v1/2024.findings-acl.334
https://doi.org/10.18653/v1/2024.findings-acl.334
https://doi.org/10.18653/v1/2024.findings-acl.334
https://doi.org/10.1162/tacl_a_00726
https://doi.org/10.1162/tacl_a_00726
https://doi.org/10.1162/tacl_a_00726
https://doi.org/10.1162/tacl_a_00726
https://doi.org/10.1162/tacl_a_00726
https://api.semanticscholar.org/CorpusID:60827152
https://api.semanticscholar.org/CorpusID:60827152
https://api.semanticscholar.org/CorpusID:60827152
https://aclanthology.org/W04-1013
https://aclanthology.org/W04-1013
https://aclanthology.org/W04-1013
https://doi.org/10.18653/v1/2022.emnlp-main.616
https://doi.org/10.18653/v1/2022.emnlp-main.616
https://doi.org/10.18653/v1/2022.emnlp-main.616
https://doi.org/10.1145/3397271.3401247
https://doi.org/10.1145/3397271.3401247
https://doi.org/10.1145/3397271.3401247
https://doi.org/10.1145/3397271.3401247
https://doi.org/10.1145/3397271.3401247
https://arxiv.org/abs/2402.14818
https://arxiv.org/abs/2402.14818
https://arxiv.org/abs/2402.14818
https://doi.org/10.18653/v1/2023.acl-long.891
https://doi.org/10.18653/v1/2023.acl-long.891
https://doi.org/10.18653/v1/2023.acl-long.891
https://doi.org/10.18653/v1/2021.acl-long.416
https://doi.org/10.18653/v1/2021.acl-long.416
https://doi.org/10.18653/v1/2021.acl-long.416
https://api.semanticscholar.org/CorpusID:258865272
https://api.semanticscholar.org/CorpusID:258865272
https://api.semanticscholar.org/CorpusID:258865272
https://cdn.openai.com/o3-mini-system-card.pdf


Yuchen He, Mike Heaton, Johannes Heidecke, Chris1049
Hesse, Alan Hickey, Wade Hickey, Peter Hoeschele,1050
Brandon Houghton, Kenny Hsu, Shengli Hu, Xin1051
Hu, Joost Huizinga, Shantanu Jain, Shawn Jain,1052
Joanne Jang, Angela Jiang, Roger Jiang, Haozhun1053
Jin, Denny Jin, Shino Jomoto, Billie Jonn, Hee-1054
woo Jun, Tomer Kaftan, Łukasz Kaiser, Ali Ka-1055
mali, Ingmar Kanitscheider, Nitish Shirish Keskar,1056
Tabarak Khan, Logan Kilpatrick, Jong Wook Kim,1057
Christina Kim, Yongjik Kim, Jan Hendrik Kirch-1058
ner, Jamie Kiros, Matt Knight, Daniel Kokotajlo,1059
Łukasz Kondraciuk, Andrew Kondrich, Aris Kon-1060
stantinidis, Kyle Kosic, Gretchen Krueger, Vishal1061
Kuo, Michael Lampe, Ikai Lan, Teddy Lee, Jan1062
Leike, Jade Leung, Daniel Levy, Chak Ming Li,1063
Rachel Lim, Molly Lin, Stephanie Lin, Mateusz1064
Litwin, Theresa Lopez, Ryan Lowe, Patricia Lue,1065
Anna Makanju, Kim Malfacini, Sam Manning, Todor1066
Markov, Yaniv Markovski, Bianca Martin, Katie1067
Mayer, Andrew Mayne, Bob McGrew, Scott Mayer1068
McKinney, Christine McLeavey, Paul McMillan,1069
Jake McNeil, David Medina, Aalok Mehta, Jacob1070
Menick, Luke Metz, Andrey Mishchenko, Pamela1071
Mishkin, Vinnie Monaco, Evan Morikawa, Daniel1072
Mossing, Tong Mu, Mira Murati, Oleg Murk, David1073
Mély, Ashvin Nair, Reiichiro Nakano, Rajeev Nayak,1074
Arvind Neelakantan, Richard Ngo, Hyeonwoo Noh,1075
Long Ouyang, Cullen O’Keefe, Jakub Pachocki, Alex1076
Paino, Joe Palermo, Ashley Pantuliano, Giambat-1077
tista Parascandolo, Joel Parish, Emy Parparita, Alex1078
Passos, Mikhail Pavlov, Andrew Peng, Adam Perel-1079
man, Filipe de Avila Belbute Peres, Michael Petrov,1080
Henrique Ponde de Oliveira Pinto, Michael, Poko-1081
rny, Michelle Pokrass, Vitchyr H. Pong, Tolly Pow-1082
ell, Alethea Power, Boris Power, Elizabeth Proehl,1083
Raul Puri, Alec Radford, Jack Rae, Aditya Ramesh,1084
Cameron Raymond, Francis Real, Kendra Rimbach,1085
Carl Ross, Bob Rotsted, Henri Roussez, Nick Ry-1086
der, Mario Saltarelli, Ted Sanders, Shibani Santurkar,1087
Girish Sastry, Heather Schmidt, David Schnurr, John1088
Schulman, Daniel Selsam, Kyla Sheppard, Toki1089
Sherbakov, Jessica Shieh, Sarah Shoker, Pranav1090
Shyam, Szymon Sidor, Eric Sigler, Maddie Simens,1091
Jordan Sitkin, Katarina Slama, Ian Sohl, Benjamin1092
Sokolowsky, Yang Song, Natalie Staudacher, Fe-1093
lipe Petroski Such, Natalie Summers, Ilya Sutskever,1094
Jie Tang, Nikolas Tezak, Madeleine B. Thompson,1095
Phil Tillet, Amin Tootoonchian, Elizabeth Tseng,1096
Preston Tuggle, Nick Turley, Jerry Tworek, Juan Fe-1097
lipe Cerón Uribe, Andrea Vallone, Arun Vijayvergiya,1098
Chelsea Voss, Carroll Wainwright, Justin Jay Wang,1099
Alvin Wang, Ben Wang, Jonathan Ward, Jason Wei,1100
CJ Weinmann, Akila Welihinda, Peter Welinder, Ji-1101
ayi Weng, Lilian Weng, Matt Wiethoff, Dave Willner,1102
Clemens Winter, Samuel Wolrich, Hannah Wong,1103
Lauren Workman, Sherwin Wu, Jeff Wu, Michael1104
Wu, Kai Xiao, Tao Xu, Sarah Yoo, Kevin Yu, Qim-1105
ing Yuan, Wojciech Zaremba, Rowan Zellers, Chong1106
Zhang, Marvin Zhang, Shengjia Zhao, Tianhao1107
Zheng, Juntang Zhuang, William Zhuk, and Bar-1108
ret Zoph. 2024. Gpt-4 technical report. Preprint,1109
arXiv:2303.08774.1110

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Car-1111

roll L. Wainwright, Pamela Mishkin, Chong Zhang, 1112
Sandhini Agarwal, Katarina Slama, Alex Ray, John 1113
Schulman, Jacob Hilton, Fraser Kelton, Luke Miller, 1114
Maddie Simens, Amanda Askell, Peter Welinder, 1115
Paul Christiano, Jan Leike, and Ryan Lowe. 2022. 1116
Training language models to follow instructions with 1117
human feedback. Preprint, arXiv:2203.02155. 1118

Makbule Gulcin Ozsoy. 2024. Multilingual prompts in 1119
llm-based recommenders: Performance across lan- 1120
guages. Preprint, arXiv:2409.07604. 1121

Vinodkumar Prabhakaran, Rida Qadri, and Ben Hutchin- 1122
son. 2022. Cultural incongruencies in artificial intel- 1123
ligence. Preprint, arXiv:2211.13069. 1124

Qwen, :, An Yang, Baosong Yang, Beichen Zhang, 1125
Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li, 1126
Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, 1127
Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Yang, 1128
Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, 1129
Keming Lu, Keqin Bao, Kexin Yang, Le Yu, Mei Li, 1130
Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji 1131
Lin, Tianhao Li, Tianyi Tang, Tingyu Xia, Xingzhang 1132
Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang 1133
Zhang, Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru 1134
Zhang, and Zihan Qiu. 2025. Qwen2.5 technical 1135
report. Preprint, arXiv:2412.15115. 1136

Hossein Rajaby Faghihi and Parisa Kordjamshidi. 2021. 1137
Time-stamped language model: Teaching language 1138
models to understand the flow of events. In Pro- 1139
ceedings of the 2021 Conference of the North Amer- 1140
ican Chapter of the Association for Computational 1141
Linguistics: Human Language Technologies, pages 1142
4560–4570, Online. Association for Computational 1143
Linguistics. 1144

Jingyuan S. She, Christopher Potts, Samuel R. Bowman, 1145
and Atticus Geiger. 2023. ScoNe: Benchmarking 1146
negation reasoning in language models with fine- 1147
tuning and in-context learning. In Proceedings of the 1148
61st Annual Meeting of the Association for Compu- 1149
tational Linguistics (Volume 2: Short Papers), pages 1150
1803–1821, Toronto, Canada. Association for Com- 1151
putational Linguistics. 1152

Huangjun Shen, Liangying Shao, Wenbo Li, Zhibin 1153
Lan, Zhanyu Liu, and Jinsong Su. 2024a. A survey 1154
on multi-modal machine translation: Tasks, methods 1155
and challenges. Preprint, arXiv:2405.12669. 1156

Lingfeng Shen, Weiting Tan, Sihao Chen, Yunmo Chen, 1157
Jingyu (Jack) Zhang, Haoran Xu, Boyuan Zheng, 1158
Philipp Koehn, and Daniel Khashabi. 2024b. The 1159
language barrier: Dissecting safety challenges of llms 1160
in multilingual contexts. ArXiv, abs/2401.13136. 1161

C. Spearman. 1904. The proof and measurement of as- 1162
sociation between two things. The American Journal 1163
of Psychology, 15(1):72–101. 1164

Margaret S. Steffensen, Chitra Joag-Dev, and Richard C. 1165
Anderson. 1979. A cross-cultural perspective on 1166
reading comprehension. Reading Research Quar- 1167
terly, 15(1):10–29. 1168

13

https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2203.02155
https://arxiv.org/abs/2203.02155
https://arxiv.org/abs/2203.02155
https://arxiv.org/abs/2409.07604
https://arxiv.org/abs/2409.07604
https://arxiv.org/abs/2409.07604
https://arxiv.org/abs/2409.07604
https://arxiv.org/abs/2409.07604
https://arxiv.org/abs/2211.13069
https://arxiv.org/abs/2211.13069
https://arxiv.org/abs/2211.13069
https://arxiv.org/abs/2412.15115
https://arxiv.org/abs/2412.15115
https://arxiv.org/abs/2412.15115
https://doi.org/10.18653/v1/2021.naacl-main.362
https://doi.org/10.18653/v1/2021.naacl-main.362
https://doi.org/10.18653/v1/2021.naacl-main.362
https://doi.org/10.18653/v1/2023.acl-short.154
https://doi.org/10.18653/v1/2023.acl-short.154
https://doi.org/10.18653/v1/2023.acl-short.154
https://doi.org/10.18653/v1/2023.acl-short.154
https://doi.org/10.18653/v1/2023.acl-short.154
https://arxiv.org/abs/2405.12669
https://arxiv.org/abs/2405.12669
https://arxiv.org/abs/2405.12669
https://arxiv.org/abs/2405.12669
https://arxiv.org/abs/2405.12669
https://api.semanticscholar.org/CorpusID:267200158
https://api.semanticscholar.org/CorpusID:267200158
https://api.semanticscholar.org/CorpusID:267200158
https://api.semanticscholar.org/CorpusID:267200158
https://api.semanticscholar.org/CorpusID:267200158
http://www.jstor.org/stable/1412159
http://www.jstor.org/stable/1412159
http://www.jstor.org/stable/1412159
http://www.jstor.org/stable/747429
http://www.jstor.org/stable/747429
http://www.jstor.org/stable/747429


Jizhi Tang, Yansong Feng, and Dongyan Zhao. 2020.1169
Understanding procedural text using interactive entity1170
networks. In Proceedings of the 2020 Conference on1171
Empirical Methods in Natural Language Processing1172
(EMNLP), pages 7281–7290, Online. Association for1173
Computational Linguistics.1174

Gemma Team, Morgane Riviere, Shreya Pathak,1175
Pier Giuseppe Sessa, Cassidy Hardin, Surya Bhupati-1176
raju, Léonard Hussenot, Thomas Mesnard, Bobak1177
Shahriari, Alexandre Ramé, Johan Ferret, Peter1178
Liu, Pouya Tafti, Abe Friesen, Michelle Casbon,1179
Sabela Ramos, Ravin Kumar, Charline Le Lan,1180
Sammy Jerome, Anton Tsitsulin, Nino Vieillard,1181
Piotr Stanczyk, Sertan Girgin, Nikola Momchev,1182
Matt Hoffman, Shantanu Thakoor, Jean-Bastien Grill,1183
Behnam Neyshabur, Olivier Bachem, Alanna Wal-1184
ton, Aliaksei Severyn, Alicia Parrish, Aliya Ah-1185
mad, Allen Hutchison, Alvin Abdagic, Amanda1186
Carl, Amy Shen, Andy Brock, Andy Coenen, An-1187
thony Laforge, Antonia Paterson, Ben Bastian, Bilal1188
Piot, Bo Wu, Brandon Royal, Charlie Chen, Chintu1189
Kumar, Chris Perry, Chris Welty, Christopher A.1190
Choquette-Choo, Danila Sinopalnikov, David Wein-1191
berger, Dimple Vijaykumar, Dominika Rogozińska,1192
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5. Traditional Attire and Dress: Highlights1282

practices involving culturally significant cloth-1283

ing and adornments.1284

6. Agricultural and Seasonal Practices: Docu-1285

ments cultural procedures tied to agricultural1286

cycles and seasonal changes.1287

7. Religious and Spiritual Practices: Encapsu-1288

lates practices integral to religious and spiri-1289

tual traditions.1290

8. Life Milestones and Family Rites: Repre-1291

sents cultural customs marking significant life1292

events.1293

9. Sports, Games, and Competitions: Covers1294

traditional recreational and competitive activi-1295

ties.1296

10. Environmental and Nature-Based Prac-1297

tices: Focuses on cultural interactions with1298

and stewardship of the natural environment.1299

A.2 Procedures Collection1300

In the initial phase, we conducted a pilot study us-1301

ing Prolific 6 to recruit workers and gather some1302

procedures. However, upon evaluating the qual-1303

ity of the collected procedures, we determined that1304

Prolific was unsuitable for this specific task. Conse-1305

quently, we opted to directly engage reliable work-1306

ers who met our stringent requirements. Native1307

speakers of the target languages were responsible1308

for crafting each procedure in their native language.1309

These were then precisely translated into English,1310

ensuring both versions accurately conveyed the1311

same content. Each procedure consisted of five1312

to ten sequential steps, where the order was crucial1313

for the proper understanding and execution of the1314

tasks. To preserve the dataset’s authenticity, work-1315

ers were strictly prohibited from using AI-based1316

text generation tools, which could introduce inac-1317

curacies or fabrications, thereby compromising the1318

reliability of the procedures. We implemented a1319

two-step quality control process, comprising auto-1320

mated checks and peer evaluations through cross-1321

verification. An all-inclusive checklist was em-1322

ployed to assess conceptual precision, cultural au-1323

thenticity, logical flow, the necessity of maintaining1324

step sequence, grammatical accuracy, and adher-1325

ence to the required number of steps. This rigorous1326

process ensured that both the native language and1327

English versions met our high standards.1328

6http://prolific.com/

A.3 MCQ Design and Structure 1329

As previously outlined, four distinct categories 1330

of questions are systematically generated using 1331

Python code. These questions adhere to the fol- 1332

lowing templates for inquiries in English: 1333

• Subsequent Affirmative: In the procedure 1334

“Procedure Name”, what is the next step after: 1335

“Reference Step”? 1336

• Subsequent Negative: In the procedure “Pro- 1337

cedure Name”, which one is not the step be- 1338

fore: “Reference Step”? 1339

• Antecedent Affirmative: In the procedure 1340

“Procedure Name”, which step must be com- 1341

pleted before: “Reference Step”? 1342

• Antecedent Negative: In the procedure “Pro- 1343

cedure Name”, which step does not come af- 1344

ter: “Reference Step”? 1345

These templates ensure clarity and consistency in 1346

question generation, aligning with the procedural 1347

framework. 1348

A.4 Conversation Generation 1349

The following prompt is used to generate conversa- 1350

tions using GPT-4o: Create a short conversation 1351

between two people, Person A and Person B, based 1352

on the following procedure. The conversation 1353

should begin with (Have you heard about the 1354

“Procedure Name” from “Country”?) and progress 1355

naturally, with each message reflecting a clear 1356

and logical flow of ideas related to the steps of 1357

the procedure. The conversation should consist of 1358

four messages. In the third message, Person A asks 1359

a question about the next step in the procedure. 1360

In the last message, Person B should respond 1361

according to the procedure’s step, providing a 1362

clear answer or action related to the next step, and 1363

explicitly mention the step number. 1364

1365

Example Structure: 1366

Person A: Have you heard about the “Procedure 1367

Name” from “Country”? 1368

Person B: (Response introducing the procedure 1369

and discussing some of the first steps) 1370

Person A: (Asks a follow-up question to clarify the 1371

next step) 1372

Person B: (Explains the first next step in the 1373

procedure according to the procedure’s step) 1374

Next step: (number of next step) 1375
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1376

IMPORTANT: Ensure the generated conver-1377

sation adheres to the above structure. The last1378

message should always be "Next step: (number)",1379

where (number) is the next step in the procedure.1380

1381

The procedure is as follows:1382

“Procedure Steps”1383

Given the suboptimal performance of GPT-4o in1384

processing lower-resource languages, this section is1385

exclusively dedicated to generating conversations1386

in English.1387

The generated conversations are subjected to a1388

two-phase verification process. The initial phase in-1389

volves automated verification using a Python script,1390

ensuring that each conversation comprises exactly1391

four utterances. The subsequent phase entails thor-1392

ough evaluation by qualified human annotators.1393

These annotators assess each dialogue against a1394

detailed checklist, which evaluates conceptual ac-1395

curacy, grammatical precision, and alignment of1396

Person B’s responses with the procedural steps.1397

During the review process, two types of errors were1398

identified: 76 conversations had an incorrect next1399

step number, and 45 conversations included expla-1400

nations of multiple steps in the final utterance.1401

B Additional Results1402

Figure 8 presents the aggregated performance7 of1403

the models across all four tasks.1404

Language Effects on Performance As shown1405

in Figure 6, the results for GPT-4o, the top-1406

performing model, are presented in a manner sim-1407

ilar to those for Qwen2.5-14B-Instruct in Figure1408

3. GPT-4o generally performs better in English1409

across most countries, with the exceptions of China1410

and Indonesia. A comparison of the two figures1411

reveals that GPT-4o maintains a more balanced per-1412

formance between English and native languages in1413

most countries. While GPT-4o tends to perform1414

better in English, reflecting its extensive training1415

on high-resource languages, it displays a smaller1416

performance gap in low-resource languages such as1417

Hausa (Nigeria) and Urdu (Pakistan). In contrast,1418

Qwen2.5-14B-Instruct shows a more pronounced1419

decline in native languages, indicating that GPT-1420

4o may possess superior cross-lingual capabilities1421

7Scores are normalized and computed using a weighted
sum approach, with the following weight distribution: 0.3
for reordering, 0.1 for each metric, 0.2 for PB-MCQ, 0.2 for
CB-MCQ, and 0.3 for CB-QA.

Figure 6: Language impact on GPT-4o performance

Figure 7: Cultural dimension performance by country

and stronger support for languages with limited re- 1422

sources. This gives GPT-4o a distinct advantage in 1423

multilingual contexts, while Qwen2.5-14B-Instruct 1424

shows a stronger preference for English, particu- 1425

larly in regions with fewer linguistic resources. 1426

Performance Across Cultural Dimensions The 1427

aggregated performance scores of GPT-4o, the 1428

top-performing model, are displayed in Figure 7 1429

for all evaluation tasks. Our analysis reveals that 1430

GPT-4o’s understanding of procedural texts differs 1431

across cultural contexts. Specifically, the model 1432

demonstrates robust familiarity with Indian agricul- 1433

tural practices, while its performance on Japanese 1434

agricultural topics is comparatively weaker. In con- 1435

trast, GPT-4o excels in encoding Japanese cultural 1436

knowledge related to celebrations and festivals, sur- 1437

passing its representations of other cultures. In the 1438

culinary domain, Pakistani cuisine is more accu- 1439

rately captured, whereas Iranian religious practices 1440

are more prominently reflected. Furthermore, the 1441

model effectively encapsulates Indonesian social 1442

etiquette, highlighting the diversity in how various 1443

cultural elements are represented within the model. 1444
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Figure 8: Performance of LLMs by model size

Category Procedures MCQs (English/Native) Conversations(Utternaces)

(English/Native) Question Correct
Answer

Wrong
Answer

First Second Third Fourth

Agricultural and
Seasonal Procedures

94.6 / 104.1 26.8 / 32.7 13.6 / 14.6 13.4 / 14.3 10.4 41.1 12.7 28.5

Celebrations and
Festivals

118.2 / 124.2 31.7 / 35.8 17.4 / 17.9 17.8 / 18.2 11.0 43.3 12.5 29.0

Craftsmanship and
Artisan Skills

132.4 / 146.5 32.6 / 39.0 18.6 / 20.5 18.7 / 20.3 10.3 45.0 13.2 30.6

Environmental and
Nature-Based Proce-
dures

93.3 / 108.8 29.1 / 36.0 14.2 / 16.3 15.3 / 17.4 11.3 42.5 12.9 28.8

Food and Cuisine 137.8 / 139.9 32.2 / 36.3 18.2 / 18.6 18.5 / 18.5 10.7 43.2 13.1 28.6
Life Milestones and
Family Rites

132.3 / 137.0 32.8 / 38.7 18.0 / 18.0 18.7 / 19.3 11.7 43.3 12.7 29.5

Religious and Spiri-
tual Practices

105.1 / 109.7 30.4 / 34.4 15.2 / 15.3 15.7 / 16.0 12.1 41.4 12.5 28.0

Social Etiquette and
Hospitality

115.0 / 125.2 32.8 / 38.7 17.2 / 18.6 18.5 / 19.7 13.0 43.5 13.3 29.6

Sports, Games, and
Competitions

112.2 / 122.1 30.5 / 36.0 16.1 / 16.9 16.9 / 18.3 10.5 42.6 13.6 28.2

Traditional Attire
and Dress

132.5 / 131.8 32.7 / 36.2 18.0 / 17.9 18.4 / 18.1 11.6 43.6 12.9 31.1

Table 6: Average word counts for CAPTex components (Procedures, MCQs, and Conversations) by category
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Country Category Language Type Question Choices

Japan Food and Cuisine Japanese SA 手順 ’昆布巻き
の 作 り 方 （4人
前）’ では、’鍋
に6と5の戻し汁
を入れ、中火で
沸騰させる。’の
後の次のステッ
プは何ですか？

A. 1を昆布と戻し汁に分け
る。昆布を端からしっかり
巻き付けて爪楊枝で留め
る。
B. 4を巻き付け、きつく結ん
だら爪楊枝を抜き、余分な
かんぴょうを切る。
C. 醤油大さじ1.5、顆粒和風
だし大さじ1、料理酒大さ
じ1、みりん大さじ2、砂糖
大さじ2、塩小さじ1/2を加え
る。
D. 塩を洗い流し、水気
を 切 っ た ら20cm幅 に 切
り、12本にする。

Japan Food and Cuisine English SA In the procedure
’How to Make
Kelp Rolls (for 4
Persons)’, what is
the next step after:
’Place the rolls into
a saucepan and add
the stock. Bring to
a boil over medium
heat.’?

A. Separate the kelp and stock.
Wrap the kelp tightly around the
filling and secure it with a tooth-
pick.
B. Wrap a piece of kanpyo
around the roll and tie it tightly.
Remove the toothpick and trim
any excess kanpyo.
C. Add 1.5 tbsp soy sauce, 1 tbsp
granulated Japanese soup stock,
1 tbsp cooking sake, 2 tbsp mirin,
2 tbsp sugar, and 1/2 tsp salt.
D. Rinse off the salt, drain,
and cut the kanpyo into 20
cm lengths, then divide into 12
pieces.

Table 7: Example of MCQs
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Country Category Conversation

Iran Sports, Games, and
Competitions

Person A: Have you heard about the Alak-Dolak Game from Iran?
Person B: Yes, it’s quite an interesting traditional game! It starts
with forming two teams, and they draw lots to see which team gets
to go first. Each team also has a leader who plays a crucial role
at the beginning. For instance, the leader places two stones and
then positions the "Alak" stick on top of them while holding the
"Dolak" stick in their hand.
Person A: That’s fascinating! What does the leader do next after
placing the Alak stick on the stones?
Person B: After placing the Alak stick, the leader uses the Dolak
stick by positioning its tip under the Alak stick. Then they move
the Dolak stick left and right to launch the Alak stick into the air.
Next step: 3.

Nigeria Celebrations and
Festivals

Person A: Have you heard about the Osun-Osogbo Festival from
Nigeria?
Person B: Yes, I have! It’s a fascinating cultural event that spans
two weeks, starting with cleansing rituals called Iwopopo. The
festival begins by preparing the Arugba, a virgin maiden who
carries a sacred calabash. She plays a vital role as she represents
purity and connects the people with the goddess Osun. It’s all part
of cleansing the community of evil spirits.
Person A: That sounds amazing. What happens after the cleansing
rituals?
Person B: After the cleansing, traditional Yoruba music, drum-
ming, and dances are performed daily, highlighting the commu-
nity’s rich cultural heritage. Craftsmen and vendors set up in the
marketplace near the sacred Osun Grove to display arts, crafts, and
local foods.
Next step: 2

Table 8: Examples of a procedurally grounded conversations
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