
Published as a conference paper at ICLR 2026

HUMANLINE:
ONLINE ALIGNMENT AS PERCEPTUAL LOSS

Sijia Liu ∗

Princeton University
sijia.liu@cs.princeton.edu

Niklas Muennighoff ∗

Stanford University
muennighoff@stanford.edu

Kawin Ethayarajh
University of Chicago
kawin@uchicago.edu

ABSTRACT

Online alignment (e.g., GRPO) is generally more performant than offline align-
ment (e.g., DPO)—but why? Drawing on prospect theory from behavioral eco-
nomics, we propose a human-centric explanation. We prove that online on-policy
sampling better approximates the human-perceived distribution of what the model
can produce, and PPO/GRPO-style clipping—originally introduced to just stabi-
lize training—recovers a perceptual bias in how humans perceive probability. In
this sense, PPO/GRPO act as perceptual losses already. Our theory further sug-
gests that the online/offline dichotomy is itself incidental to maximizing human
utility, since we can achieve the same effect by selectively training on any data in
a manner that mimics human perception, rather than restricting ourselves to on-
line on-policy data. Doing so would allow us to post-train more quickly, cheaply,
and flexibly without sacrificing performance. To this end, we propose a design
pattern that explicitly incorporates perceptual distortions of probability into objec-
tives like DPO/KTO/GRPO, creating humanline variants of them. Surprisingly,
we find that these humanline variants, even when trained with offline off-policy
data, can match the performance of their online counterparts (on both verifiable
and unverifiable tasks) while running up to 6x faster.

1 INTRODUCTION

Aligning generative models with feedback—from a human, a learned reward model, or a ground-
truth verifier—is an increasingly important part of post-training, with methods categorized as offline
off-policy (e.g., DPO, KTO) or online on-policy (e.g., GRPO). Despite a flurry of initial optimism
around the former, recent work concurs that the latter have a higher performance ceiling, though
they come at the cost of more compute, training time, and instability (Xu et al., 2024b; Ivison et al.,
2024). But why are they better? Explanations range from online methods having better data coverage
(Song et al., 2024), emphasizing generation over discrimination (Tang et al., 2024a), and navigating
a simpler search space over policies (Swamy et al., 2025).

Although all these explanations have merit, we argue that if the goal is to maximize a model’s util-
ity to humans, then the dichotomy itself is incidental. We start with prospect theory, a framework
in behavioral economics that explains why humans make decisions about random variables that
do not necessarily maximize their expected value (Tversky & Kahneman, 1992). Classically, the
random variable would describe a monetary outcome, measured in dollars; when extended to gener-
ative modeling, it describes the goodness of outputs, measured in bits/nats (Ethayarajh et al., 2024).
Prospect theory offers a well-defined and empirically validated model of the subjective probability
distribution that humans implicitly assign to outcomes. As we will show, compared to random of-
fline data, online on-policy sampling better approximates the prospect theoretic distribution of what
the model can produce, offering a human-centric explanation for why online alignment should be
more performant (§3).

∗Equal contribution. Work started while the last author was at Princeton Language & Intelligence.

1

Published as a conference paper at ICLR 2026

DPO KTO GRPO
10

12

15

18

20

22

25

28

30

Le
ng

th
-C

on
tr

ol
le

d
W

in
ra

te
 (

%
)

(G
PT

 4
.1

-a
s-

a-
Ju

dg
e)

before alignment

+1.4x

+1.3x

+1.6x

Offline Offline + Humanline Online Online + Humanline

Figure 1: On instruction-following, Llama3-8B-Instruct aligned with online on-policy data
(blue) is 1.3x to 1.6x better than one aligned with offline off-policy data (red). However, when the
same offline data is fed to the humanline variant of the objective (orange), the gap vanishes.

However, this also suggests that online on-policy data is suboptimal on its own, as it reflects what
the policy is literally capable of producing, as opposed to what humans perceive it is capable of: for
example, people systematically overestimate the chance of extreme outcomes and underestimate the
chance of typical ones. We then prove that PPO/GRPO-style clipping—originally introduced to just
stabilize training (Schulman et al., 2017)—implicitly recovers a special case of this perceptual bias,
as formalized in prospect theory. In other words, state-of-the-art alignment methods are, to some
extent, perceptual losses already (§4).

If the success of PPO/GRPO can be ascribed to them being perceptual losses, then we do not nec-
essarily need online on-policy data: we can source data from anywhere—online, offline, on-policy,
off-policy—and selectively use it in a manner that reflects human perception. If we can source data
from anywhere while not sacrificing performance, then state-of-the-art post-training becomes much
faster and cheaper. To this end, we propose a design pattern for creating a variant of most alignment
objectives (including DPO, KTO, and GRPO) that explicitly incorporates these perceptual distor-
tions of probability while keeping the rest of the pipeline intact. This amounts to: (1) syncing the
reference model with the previous version of the policy at the end of k steps; (2) asymmetrically
clipping the log-probability ratio of each token upstream of the loss. These simple changes, when
applied correctly, create what we call the humanline variant of the original objective.

We consider two testbeds (§5), where an LLM is aligned to be better at: (1) instruction-following,
with unverifiable rewards; (2) mathematical reasoning, with verifiable feedback. On instruction-
following, an LLM trained with the online variant of DPO/KTO/GRPO has 1.3x to 1.6x higher
winrates against a frontier model than one trained with the offline variant of the objective; when the
same offline data is fed to the humanline variant, the gap with online alignment vanishes (Figure
1). Even on mathematical reasoning, where human utility is seemingly irrelevant, humanline GRPO
allows training data to be sampled up to 64x less frequently without performance degradation.

We do not claim that you can match the performance of online alignment by simply applying the
humanline variant to any offline data; data quality always matters. Rather, what we find is that if the
data has sufficiently high average token likelihood under the reference model at the start of training,
then using a humanline variant can fully bridge the gap with online alignment—this is an empirical
regularity that follows from our theory. Humanline variants offer us the flexibility to source good-
quality data from anywhere, which has the potential to not only make post-training many times faster
and cheaper, but also make models much more adaptable to new tasks and user populations.

2 BACKGROUND

We provide a high-level overview of alignment methods and leave a more detailed survey to Ap-
pendix A. For the sake of brevity, we will at times refer to the online on-policy(offline off-policy)
variant of a method as the online(offline) variant, in line with the literature. In most alignment al-

2

Published as a conference paper at ICLR 2026

gorithms, including all those discussed in this paper, two copies are made of our initial model: a
reference model πref that serves as an anchor, whose weights are not backpropagated through; and a
policy πθ whose parameters θ are updated to minimize the loss.

Online On-policy Alignment Samples are drawn from the policy, labeled with feedback—from a
learned reward model, a ground-truth verifier, etc.—and fed into a loss function, which is minimized
by updating θ. This is done iteratively until the desired level of progress has been made, with the
reference model periodically synced with the policy. The choice of loss function depends on many
factors. Proximal Policy Optimization (PPO) (Schulman et al., 2017) has long been the default,
since its clipped objective helps reduce training instability. Given that Grouped Relative Policy
Optimization (GRPO) simplifies PPO while often improving performance (Shao et al., 2024), we
use it instead. Its objective is to maximize:

LGRPO(θ) = Ex∼D,{yi}G
i=1∼πθold (·|x)

1

G

G∑
i=1

1

|yi|

|yi|∑
t=1

{min[rθ(i, t)Âi,t, clip(rθ(i, t), 1− ε, 1 + ε)Âi,t]− βKL[πθ ∥π0]}
(1)

where yi is an output sequence, θold is the last policy (what we call the reference1), Âi,t =
(Ri −mean(R))/std(R) is the sequence-level advantage of output yi compared to other outputs
(applied per token), {ϵ,G, β} are constants, and rθ(i, t) = πθ(yi,t|x, yi,<t)/πθold(yi,t|x, yi,<t) is a
token-wise probability ratio. KL denotes the token-wise forward KL divergence between the policy
and a fixed baseline π0 (e.g., the initial model).

Offline Off-policy Alignment Online alignment is often unstable and slow, since new data needs
to be continually sampled and labeled. For this reason, offline off-policy alignment has emerged
as a popular alternative. Here, outputs are not drawn from the policy but from another source (e.g.,
human demonstrations), then fed into a closed-form loss that is minimized by updating θ. The choice
of loss again depends on many factors, but the most popular options are DPO (Rafailov et al., 2023),
which operates on preference pairs (x, yw, yl) where yw ≻ yl, and KTO (Ethayarajh et al., 2024),
which operates on unpaired feedback (x, yw) and (x, yl) (see Appendix C for precise definitions).

Online vs. Offline Recent work concurs that online alignment has a higher performance ceiling,
although this comes at the expense of more compute, training time, and instability (Xu et al., 2024b;
Ivison et al., 2024). Recognizing their complementary strengths, some have proposed online ver-
sions of offline methods and vice-versa. For example, online DPO trains on samples generated from
the latest version of the policy, closing much—but not all—of the gap with standard PPO (Guo et al.,
2024; Xu et al., 2024b). Conversely, offline PPO—where the reference model is never synced and
training data is static—performs similarly to offline DPO (Ethayarajh et al., 2024). Explanations of
why online alignment works better have traditionally been rooted in RL theory (Song et al., 2024;
Tang et al., 2024a; Swamy et al., 2025) and are thus complementary to this work.

Verifiability The literature increasingly focuses on verifiable tasks whose correctness can be
checked programmatically, such as mathematical reasoning (Lambert et al., 2025). When correct-
ness is determined by preferences or open-ended judgments, the task is considered unverifiable.

3 ALIGNMENT AS PROSPECT THEORETIC OPTIMIZATION

Given a gamble that returns +$100 with 80% probability and −$100 with 20% probability, how
much would a player have to be offered to forgo playing? Classical decision theory tells us that an
agent meeting certain axioms of rationality (Von Neumann & Morgenstern, 1947) would have to be
offered the expected value of the gamble: 0.8(+$100)+0.2(−$100) = +$60. Most humans in this
situation accept far less than $60 however, even though in expectation they could make more money
gambling. Prospect theory offers a general framework of why, when presented with an uncertain

1Note that under our terminology πθold would be called the reference model, since it determines the ratio
rθ(i, t), and π0, which is called the reference in Shao et al. (2024), would be called the baseline. This is to
ensure terminological consistency with offline methods.

3

Published as a conference paper at ICLR 2026

0.0 0.2 0.4 0.6 0.8 1.0

Cumulative Probability under Policy

0.0

0.2

0.4

0.6

0.8

1.0

Im
pl

ie
d

Cu
m

ul
at

iv
e

Pr
ob

ab
ilit

y online on-policy

offline off-policy
(from worse model)

offline off-policy
(from better model)

human-perceived

humanline-sampled

Figure 2: To estimate human utility, outputs should be sampled from the typical human-perceived
distribution of what the policy can produce, whose inverted S-shape comes from prospect theory.
Online on-policy sampling (dashed black) is superior to offline off-policy—both from worse (red)
and better (blue) models—because the latter deviate more from human perception (solid black).
Rejection-sampling with perceptual bias gives us humanline sampling (green) that can mimic this,
and a special case of it simplifies to the humanline clipping used in our design pattern.

event, humans may choose not to maximize their expected value (Kahneman & Tversky, 1979;
Tversky & Kahneman, 1992). Its model of human utility is as follows:
Definition 3.1. A value function v : Z → R maps an outcome z, relative to a reference point z0, to
its subjective value as perceived by the human. When z is real-valued, the typical form of v is:

v(z;λ, α, z0) =

{
(z − z0)

α if z ≥ z0
−λ(z0 − z)α if z < z0

(2)

where λ, α ∈ R+ are constants.

The salient qualities of a value function are: the existence of a reference point z0 used to determine
the relative gain or loss; concavity in relative gains (α < 1), known as risk aversion; and greater
sensitivity to relative losses than gains (λ > 1), known as loss aversion. Under these settings, it is
easy to see how the subjective expected value—as induced by v—could be less than $60.
Definition 3.2. The weighting function ω, when applied to an outcome zi, supplants its objective
probability. Let pi denote the objective probability of outcome zi and Ω+ a capacity function that
maps cumulative probabilities to perceived cumulative probabilities. A typical functional form for
the capacity function is

Ω+(a; γ) =
aγ

(aγ + (1− a)γ)1/γ
(3)

where γ ∈ R+ is a constant. γ = 1 recovers the objective probability but lies in (0, 1) for most
humans. Letting zi denote a positive outcome relative to z0 and z1, ..., zn the ordered outcomes
from least to most positive, the weights are then:

ω(zi) =

{
Ω+(

∑n
j=i pj)− Ω+(

∑n
j=i+1 pj) if i < n

Ω+(pn) if i = n
(4)

If zi were instead a negative outcome relative to z0, then it would be compared to outcomes even
more negative than it, with a separate function Ω−(a; γ−) following the same form as (3).

For example, suppose that in our gamble, there were now two positive outcomes instead of one:
winning +$50 with 60% probability and winning +$100 with 20% probability. The probability of
an outcome as good or better than $50 is 0.8 (= 0.6 + 0.2) and one as good or better than $100
is 0.2 (itself); these are our cumulative probabilities. Since Ω+ captures the human tendency to
overweight extreme outcomes at the expense of moderate ones, let us say the perceived cumulative
probabilities are 0.8 and 0.3 respectively. By applying (4), we then get weights of 0.5 (= 0.8− 0.3)
for the $50 outcome and 0.3 for the $100 outcome. That is, the extreme outcome of winning $100
has been up-weighted from its objective probability of 0.2 to a subjective probability of 0.3 while
the moderate outcome of winning $50 has been down-weighted from 0.6 to 0.5.

4

Published as a conference paper at ICLR 2026

Definition 3.3. The subjective expected utility of a random variable Z is a weighted combination of
the subjective values of its outcomes: u(Z;ω) ≜

∑
z∈Z ω(z)v(z;λ, α, z0).

Although every human has a unique value and capacity function, the functional forms in (2) and (3)
describe those belonging to the majority of people in human studies (Tversky & Kahneman, 1992).2

In the original literature, random variables were only studied in a monetary context, where outcomes
can be measured in dollars. Ethayarajh et al. (2024) were the first to extend prospect theory to the
alignment of generative models. Taking any output (token or sequence) y given context x, they treat
the surprisal term zx,y = log[πθ(y|x)/πref(y|x)] as the outcome, whose units are nats of information.
They propose that the goal of alignment is to modify θ such that desirable outputs have zx,y > z0
and undesirable outputs have zx,y < z0, formally proving that all the commonly used alignment
objectives—DPO, KTO, PPO, and GRPO—encode a prospect theoretic model of utility3, differing
only in the shape of their value function and the distribution over which the expected surprisal is
taken to construct z0.

However, they ignore the weighting function, assuming that the human perception of probability
is effectively objective when it comes to generative model outputs. But what if it were not? It is
intractable to infer the human-perceived probability distribution over large output spaces (e.g., token
vocabularies), which is why the original prospect theory experiments were limited to a handful of
possible monetary outcomes (Tversky & Kahneman, 1992). Because of this, we will assume that
the perceptual distortion of probability in the generative model setting has the same shape as in the
monetary setting (Figure 2), allowing us to use the well-established parameterization in Definitions
3.1 through 3.3.
Proposition 3.4. For any input x and bounded value function v, let the outcome of an output y
be its surprisal log[πθ(y|x)/πref(y|x)] and Q be a candidate distribution over outcomes. Then to
guarantee |u(Z;ω)− u(Z;Q)| ≤ δ for some δ ≥ 0, it suffices that

√
KL(ω∥Q) ≤ δ/

(√
2∥v∥∞

)
.

The proof is deferred to Appendix B. Even if we had oracle access to a value function and thus knew
exactly which alignment objective to use, we could not necessarily maximize human utility. As the
proposition suggests, the simplest way to do so would be to sample generations according to the
subjective distribution that was implicitly assigned to the outputs.

This offers a human-centric explanation for why online on-policy sampling is superior to offline off-
policy sampling for alignment, one that is complementary to the RL-theoretic explanations in prior
work. As illustrated in Figure 2, if the median human capacity function (solid black) is a function of
the probabilities from the current version of the policy, then the subjective probabilities will loosely
track online on-policy sampling (dashed black). In contrast, offline off-policy sampling can deviate
sharply from both. Consider the desirable outputs for some context x:

1. When sampling from a model worse than the policy, the outputs’ surprisals—computed
under the current policy—will on average be lower (i.e., less positive), since they are more
likely under the worse model and less likely under the current one. Recall that in (3),
positive outcomes are ordered from least good to most good. This means that the implied
capacity function (red) will saturate much more quickly than the human capacity function.

2. Conversely, when sampling from a model better than the current policy, surprisals will be
larger. Given that more-positive outputs are more plentiful than they would be under the
policy, the implied capacity function (blue) will saturate more slowly.

Returning to Proposition 3.4, if we cannot directly sample the perceived distribution, then a natu-
ral solution is to rejection-sample our outputs to simulate the drawing of tokens according to their
subjective probabilities.4 Moreover, this allows us to use data sourced from anywhere instead of
limiting ourselves to online on-policy data. In §4, we modify the standard rejection sampling al-
gorithm to capture the perceptual bias in (4), which we call humanline sampling. By tweaking its
hyperparameters, we can mimic a wide range of distributions (Figure 2, green).

2Other parameterizations have been proposed, however: Prelec (1998); Gonzalez & Wu (1999), inter alia.
3Even losses without an explicit surprisal term, such as PPO and GRPO, do have a tokenwise likelihood

ratio [πθ(y|x)/πref(y|x)] that can be framed as the exponentiated surprisal.
4Although importance sampling is another option, it comes with its own problems in the context of genera-

tive models, such as degenerate importance weights.

5

Published as a conference paper at ICLR 2026

4 CLIPPING RECOVERS PERCEPTUAL BIAS

In §3, we established that human utility can be maximized when outputs are drawn according to the
human-perceived distribution. Given that we do not have access to anyone’s perceived distribution,
we will instead modify the standard rejection sampling algorithm to simulate drawing from the
typical human’s, as formalized by prospect theory (4). We call this humanline sampling.

Proposition 4.1. Under typical conditions, for any context x, simulating output sequences y from
ω is equivalent to performing token-wise rejection sampling with the rejection criterion

πθ(yt|x; y<t)/πref(yt|x; y<t) < M ′
θB

where B ∼ Beta(γ, 1), M ′
θ is a finite upper bound on the token-level likelihood ratio under the

vocabulary (i.e., ∀ yt, πθ(yt|x;y<t)
πref(yt|x;y<t)

< M ′
θ), and γ ∈ (0, 1] is the capacity function constant.

We defer the proof to Appendix B. Still, applying rejection sampling during training comes with
several practical concerns. For one, in an online setting, both the reference and policy models
change, and the objective probabilities that are fed into a human observer’s capacity function could
reflect exposure to either the current policy or the previous one. Second, resampling only those
tokens that have been rejected while leaving the others untouched will not guarantee that the final
output is coherent or relevant. Third, zeroing out the rejected tokens could destabilize sequence-
wise losses like KTO whose training dynamics are affected by the saturation induced by all tokens.
Taking this into account, we propose humanline sampling:

Definition 4.2. Given output sequence y, humanline sampling rejects tokens yt that meet the fol-
lowing rejection criteria by detaching them from the computational graph:

πθ(yt|x; y<t)

πref(yt|x; y<t)
< MPBP or

πref(yt|x; y<t)

πθ(yt|x; y<t)
< MRBR (5)

where MP ,MR are constants such that πθ(yt|x; y<t) < MPπref(yt|x; y<t) and πref(yt|x; y<t) <
MRπθ(yt|x; y<t) for all yt, BP ∼ Beta(γP , βP) and BR ∼ Beta(γR, βR) are independent Beta
random variables, and γP , γR, βP , βR are Beta distribution-specific constants.

The two-sided criteria address the first concern about the origins of the objective probabilities that
are fed to a human observer’s capacity functions in an online setting. Keeping the rejected tokens in
the sequence addresses the second and third concerns, while detaching the tokens from the compu-
tational graph (i.e., stopping gradient flow for those tokens) ensures that they do not contribute to the
updates of θ that minimize the loss. Even though we are not resampling tokens, γR, γP effectively
control an exploration-exploitation trade-off. If γP < γR, there is more emphasis on drawing from
the policy (i.e., more exploitation); if γP > γR, there is more emphasis on exploration.

Theorem 4.3. The clipped component in PPO/GRPO is a special case of humanline sampling that
arises under limit conditions.

We defer the proof to Appendix B. The intuition is that there exists a construction such that sampling
from the Beta distributions is equivalent to deterministically sampling their means. The two criteria
can then be combined into a range that the likelihood ratio must fall in, analogous to the clipping
range. In both cases, the gradient is zero outside this range: the clipping function due to its deriva-
tive, and humanline sampling because it explicitly stops the gradients for those tokens from flowing
through the graph. However, the unclipped component in PPO/GRPO does allow ratios outside this
range to affect the overall gradient of the loss; to more fully integrate this perceptual bias, we would
need to clip the ratios upstream of the objective, not just within it (§5).

5 HUMANLINE VARIANTS

5.1 METHOD

If the success of PPO/GRPO can be ascribed to them being perceptual losses (§3, §4), then we need
not limit ourselves to using online on-policy data; we can source data from anywhere and selectively
train on it in a manner that reflects the prospect theoretic model of perceived probability. To this

6

Published as a conference paper at ICLR 2026

Figure 3: In offline objectives (left), the reference model does not change during training. In online
objectives (middle), the reference is synced with the policy at the current step; at scale, some asyn-
chrony is permitted (a lag of one step is depicted here). In humanline syncing (right), every k steps,
the reference is synced with the policy from the previous step (k = 1 is depicted here).

Figure 4: In humanline clipping, the token-wise likelihood ratios rθ(i, t) are asymmetrically clipped
to [ϵP , ϵR] upstream of the loss. In the humanline variant of GRPO, instead of there being an
unclipped rθ and a [1− ϵ, 1 + ϵ]-clipped rθ as in (1), we have a once-clipped and twice-clipped rθ.
Though humanline clipping should in theory be most impactful for losses without any clipping to
begin with (e.g., DPO, KTO), it still benefits GRPO (see Figure 5, left).

end, we propose creating a humanline variant of any alignment objective that is a function of both a
policy πθ and reference model πref.5 This is done by applying a two-part design pattern:

1. Humanline Syncing: Every k steps, after the loss is calculated but before the optimizer
step is taken, sync the weights of πref with πθ (Figure 3). In general, lower k leads to better
performance but also more instability (Figure 8, Appendix D).

2. Humanline Clipping: Clip all token-wise likelihood ratios πθ(yt|x, y<t)/πref(yt|x, y<t)
to the range [ϵP , ϵR] even before they are fed into the loss, where ϵP , ϵR ∈ R+ and the
range can be asymmetric. Losses that already do some clipping, such as GRPO, will do
clipping twice over (Figure 4). We clip in log-space for greater numerical precision.

The motivation behind humanline syncing is that as the policy changes over the course of training,
the standard against which the policy is judged also changes. Since the outcome is defined as the
surprisal log[πθ(y|x)/πref(y|x)], this means that the reference model must change as well, at a rate
controlled by k. We choose to implement humanline clipping instead of the humanline sampling
proposed in §3 for a few different reasons. For one, humanline clipping is a special case of hu-
manline sampling, one that arises under limit conditions (Theorem 4.3). However, it is much faster
(since no new tensors have to be allocated), requires fewer hyperparameters, and is more stable than
humanline sampling while being as or more performant (Figure 5, right). Clipping multiple times
(Team et al., 2025) and asymmetric clipping (Yu et al., 2025) have been explored in past work, but
to our knowledge, the specific formulation in humanline clipping has not been used.

Note that the humanline variant of each method can be used with both online on-policy data and
offline off-policy data, which we denote as online+humanline and offline+humanline respectively.
In contrast, the online variant of a method is only used with online on-policy data; the offline variant,
only with offline off-policy data. Alignment objectives without a reference model, such as SimPO
(Meng et al., 2024), cannot have a humanline variant because neither change is applicable.

5As defined in §2, the reference model is the one against which the surprisal is calculated (explicitly, in the
log-ratios of DPO and KTO; implicitly in the ratios of PPO and GRPO).

7

Published as a conference paper at ICLR 2026

KTO GRPO
10

15

20

25

30

LC
 W

in
ra

te
 (

%
)

offline + humanline
w/o clipping
w/o syncing
w/o either

DPO KTO GRPO
10

15

20

25

30

LC
 W

in
ra

te
 (

%
)

humanline sampling
humanline clipping

Figure 5: The majority of the improvement comes from humanline syncing (left). However, human-
line clipping is still necessary—syncing alone is not competitive with online alignment. Although
humanline clipping is a special case of the more general humanline sampling (§4), it performs as
well while being stabler and simpler to implement (right).

5.2 EXPERIMENTS

We create humanline variants of DPO/KTO/GRPO and compare them to both their offline and online
counterparts, ensuring that the number of examples seen by the different variants is the same. Details
on how we created the online version of DPO/KTO and the offline version of GRPO can be found in
Appendix C. We test these variants in an unverifiable reward setting where the goal is to follow open-
ended instructions and a verifiable reward setting where the goal is to do mathematical reasoning.

5.2.1 UNVERIFIABLE REWARDS

Using offline DPO/KTO/GRPO, we first align Llama3-8B-Instruct (AI@Meta, 2024) on
an instruction-following dataset called UltraFeedback ArmoRM (Meng et al., 2024). For online
DPO/KTO/GRPO, we use the same contexts but sample completions from the policy, score them
with the ArmoRM reward model (Wang et al., 2024), and then construct preference pairs. This is
how the offline data was constructed as well—but sampled from different models—allowing for an
apples-to-apples comparison between the online and offline variants of the same objective. Using
the humanline variants with either the online or offline data does not require further changes. The
models are evaluated with AlpacaEval2 (Dubois et al., 2024).6

For all objectives, the offline+humanline variant performs significantly better than the offline
variant (p < 0.05)7 and is on par with the online variant, as seen in Figure 1. The magnitude of
improvement is large, with offline+humanline GRPO performing 1.6x better than its offline coun-
terpart. Improvements persist at the 27B scale and with different model families (Appendix D).
However, the online+humanline variants are only slightly better than their online counterparts. This
is not surprising: under our theory (§3), online on-policy sampling is superior to offline off-policy
sampling because it deviates far less from human perception; the marginal benefit of humanline
objectives will naturally be smaller in this case.

Humanline objectives do not obviate the need for good-quality data. We stress that although
offline+humanline variants can match the performance of their online counterparts, this is not a
given for any offline data (Appendix D, Table 5). Fortunately, we find that the average token log-
probability of the output under πref (before training starts) is a good proxy for whether the offline
data will be ‘good enough’. Training on the lowest quartile—with average token log-probability in
the range [−1.03,−0.36]—leads to significantly worse results than training on the rest (Figure 6).
This can be ascribed to lower sample efficiency that arises from more frequent humanline clipping.

Humanline syncing is responsible for most of the improvement; humanline clipping is needed
to fully close the gap. In Figure 5, we plot the drop in performance as one or both changes are
ablated. Humanline syncing, done here every step (k = 1) is the more crucial ingredient; without it,
the performance would be as bad as with the offline variant. However, it can be done as infrequently

6We use GPT 4.1 as the judge instead of the default GPT-4-Turbo, as it is cheaper and more performant.
7We apply the Holm-Bonferroni correction to adjust for multiple comparisons (Holm, 1979; Dunn, 1961).

8

Published as a conference paper at ICLR 2026

Figure 6: Data quality matters, even when using humanline variants. As seen here, the average token
log-probability of the output under πref (at step 0) is a good proxy for offline data quality; if it is too
low, as in the first quartile of data, the DPO-aligned model’s performance will be worse.

Figure 7: For mathematical reasoning (MATH500), sampling data 64x less frequently (orange) than
in online GRPO (blue) leads to significantly worse performance, even though the total volume of
data seen remains the same. In contrast, using the humanline variant of GRPO while being 64x more
offline does not incur performance degradation (green). Less frequent humanline syncing (k = 20,
violet) leads to slower but more stable learning; at k = 1, the instability would cause collapse.

as k = 4 without a loss in performance (Appendix D, Figure 8). Note that not all kinds of syncing
are equal: trust region-style syncing (Gorbatovski et al., 2024), which happens after the policy
is updated—thus rendering the policy and reference equal—leads to worse results (Appendix D,
Figure 10). Humanline clipping is still needed for the offline+humanline variants to match the
performance of their online counterparts (Figure 5, left). For instruction-following, a clipping range
of log ϵP = −1.5, log ϵR = 1.5 ⇐⇒ ϵP = 0.22, ϵR = 4.48 works best for the humanline variants
of all methods, and performance is robust to small changes (Appendix D,Table 6).

Humanline variants do not require changing method-specific hyperparameters, but the learn-
ing rate or maximum gradient norm need to be adjusted. The use of a humanline variant in-
troduces two counteracting forces. On one hand, the likelihood ratios rθ can get smaller compared
to offline learning—explicitly, due to clipping, and implicitly, due to the syncing of the reference
model, since πθ(y|x) cannot drift too far from πref(y|x)—causing gradients to get smaller. The
learning rate or maximum gradient norm needs to increase to make up for this. Conversely, updat-
ing the reference model introduces more training instability, which demands a lower learning rate
or maximum gradient norm. Therefore, depending on the circumstances, this shift could require
increasing or decreasing the learning rate/gradient norm by 0.1x–4x (Appendix D, Table 3).

Offline+humanline GRPO is over 6x faster to train with than the online variant, while attain-
ing equal performance. Compared to offline GRPO, the offline+humanline variant takes roughly
twice as long to run when syncing every step (Appendix D, Figure 11). However, this is a com-
paratively small price to pay to match the performance of online GRPO, which takes over 12x the
wall-clock time of offline GRPO.

5.2.2 VERIFIABLE REWARDS

When doing alignment for mathematical reasoning, it is standard to be fully online on-policy and
use the correctness of the final output as the only reward (DeepSeek-AI et al., 2025). Our goal

9

Published as a conference paper at ICLR 2026

with the humanline variants will be to push the extent to which the data can be offline off-policy.
For example, sampling completions every 10 steps instead of every step would make the process
much more efficient: in the fully online on-policy setup, training waits on the next batch of samples
from the current policy and inference requires the policy to finish training on the current batch; by
sampling less frequently, training, inference, and labeling can all be asynchronously overlapped.

Humanline GRPO allows data to be sampled up to 64x less often with no performance degra-
dation on mathematical reasoning. We first align Qwen2.5-1.5B-Instruct8 (Yang et al.,
2025) with online GRPO on the MATH500 training set (Lightman et al., 2023), largely following
the setup in Open-R1 (Hugging Face, 2025) and assigning rewards based on formatting and cor-
rectness. Instead of sampling every step, we then sample 64 times as much data every 64 steps
to get a model that is significantly worse (p < 0.05) (Figure 7). Running the same off-policy
setup with the humanline variant of GRPO closes the gap in rewards within 1000 steps. After 1600
steps, the Pass@1 accuracy on the MATH500 test set is 0.593 ± 0.019 for both the online and
humanline runs. The degree of humanline clipping remains the same as in instruction-following
(log ϵP = −1.5, log ϵR = 1.5), suggesting that it works as a strong default for a wide variety of
tasks. However, we find that syncing too frequently (k = 1) leads to reward collapse. Increasing
k leads to slower but stabler training, with any k ∈ [12, 24] closing the gap with online alignment
in 1000 steps while avoiding collapse. Although human utility seems irrelevant to mathematical
correctness, the fact that reasoning is still expressed in language, a human abstraction, may help
explain why incorporating perceptual biases via a humanline objective is still useful for this task.

6 LIMITATIONS & FUTURE WORK

We stress that although humanline variants trained with offline off-policy data are able to match the
performance of their online counterparts, this is still an empirical regularity as opposed to a formal
guarantee. In addition to the average token log-probability of the output under πref, are there other
metrics that we can use to quantify what makes offline data ‘good-quality’? Conversely, are there
settings under which alignment data must necessarily be online and on-policy? We leave these as
directions for future work.

The model of human utility discussed in this paper comes directly from prospect theory, which was
originally developed in the context of monetary random variables. Although it has since been em-
pirically validated in other contexts, there is no guarantee that it naturally extends to the generative
modeling setting. Assuming that it does is another limitation of our work, one we accept because
our primary goal is to improve the post-training of generative models, and because experimentally
inferring biases in human perception over very large output spaces is intractable. Developing new
theories of human probability perception as it relates to generative models is another future direction.

Lastly, humanline variants raise practical questions: How large are the systems gains from fully
overlapping training/inference/labeling? Can we reduce the cost of syncing (e.g., by only syncing
some of the model weights)? Should γ be personalized instead of using one setting for all?

7 CONCLUSION

Based on a prospect theoretic framework, we proposed that the online-offline dichotomy central to
post-training is incidental to actually maximizing utility: what matters is not the source of data per
se, but whether it reflects the human-perceived distribution over model outcomes. This perspective
interprets PPO/GRPO’s clipping as recovering a form of probability distortion, suggesting that these
state-of-the-art objectives are successful because they are perceptual losses. We then proposed a
generic design pattern for explicitly incorporating perceptual biases into commonly used alignment
objectives, giving us humanline variants of DPO/KTO/GRPO. When trained with offline off-policy
data, the humanline variants were able to match the performance of their online counterparts, closing
1.3–1.6x gaps in winrate for instruction-following and enabling up to 64× less frequent sampling in
mathematical reasoning without performance degradation. This opens the door to cheaper, faster,
and more parallelizable alignment that is not constrained by the need for online on-policy data.

8Since mathematical reasoning on MATH500 requires the generation of many intermediate reasoning to-
kens, we were forced to use a smaller model than in §5.2.1 due to memory constraints.

10

Published as a conference paper at ICLR 2026

REFERENCES

AI@Meta. Llama 3 model card. 2024. URL https://github.com/meta-llama/
llama3/blob/main/MODEL_CARD.md.

Zachary Ankner, Mansheej Paul, Brandon Cui, Jonathan D Chang, and Prithviraj Ammanabrolu.
Critique-out-loud reward models. arXiv preprint arXiv:2408.11791, 2024.

Mohammad Gheshlaghi Azar, Zhaohan Daniel Guo, Bilal Piot, Remi Munos, Mark Rowland,
Michal Valko, and Daniele Calandriello. A general theoretical paradigm to understand learn-
ing from human preferences. In International Conference on Artificial Intelligence and Statistics,
pp. 4447–4455. PMLR, 2024.

Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova DasSarma, Dawn
Drain, Stanislav Fort, Deep Ganguli, Tom Henighan, et al. Training a helpful and harmless
assistant with reinforcement learning from human feedback. arXiv preprint arXiv:2204.05862,
2022a.

Yuntao Bai, Saurav Kadavath, Sandipan Kundu, Amanda Askell, Jackson Kernion, Andy Jones,
Anna Chen, Anna Goldie, Azalia Mirhoseini, Cameron McKinnon, et al. Constitutional ai: Harm-
lessness from ai feedback. arXiv preprint arXiv:2212.08073, 2022b.

Lawrence Chan, Andrew Critch, and Anca Dragan. Human irrationality: both bad and good for
reward inference. arXiv preprint arXiv:2111.06956, 2021.

Zixiang Chen, Yihe Deng, Huizhuo Yuan, Kaixuan Ji, and Quanquan Gu. Self-play fine-tuning
converts weak language models to strong language models. arXiv preprint arXiv:2401.01335,
2024.

Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario Amodei. Deep
reinforcement learning from human preferences. Advances in neural information processing sys-
tems, 30, 2017.

Ganqu Cui, Lifan Yuan, Ning Ding, Guanming Yao, Bingxiang He, Wei Zhu, Yuan Ni, Guotong
Xie, Ruobing Xie, Yankai Lin, et al. Ultrafeedback: Boosting language models with scaled ai
feedback. In International Conference on Machine Learning, pp. 9722–9744. PMLR, 2024.

DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu,
Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu,
Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao
Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan,
Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao,
Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui Ding,
Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang
Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai
Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang,
Liang Zhao, Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang,
Minghui Tang, Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang,
Qiancheng Wang, Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang,
R. J. Chen, R. L. Jin, Ruyi Chen, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shengfeng
Ye, Shiyu Wang, Shuiping Yu, Shunfeng Zhou, Shuting Pan, S. S. Li, Shuang Zhou, Shaoqing
Wu, Shengfeng Ye, Tao Yun, Tian Pei, Tianyu Sun, T. Wang, Wangding Zeng, Wanjia Zhao, Wen
Liu, Wenfeng Liang, Wenjun Gao, Wenqin Yu, Wentao Zhang, W. L. Xiao, Wei An, Xiaodong
Liu, Xiaohan Wang, Xiaokang Chen, Xiaotao Nie, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu,
Xinyu Yang, Xinyuan Li, Xuecheng Su, Xuheng Lin, X. Q. Li, Xiangyue Jin, Xiaojin Shen, Xi-
aosha Chen, Xiaowen Sun, Xiaoxiang Wang, Xinnan Song, Xinyi Zhou, Xianzu Wang, Xinxia
Shan, Y. K. Li, Y. Q. Wang, Y. X. Wei, Yang Zhang, Yanhong Xu, Yao Li, Yao Zhao, Yaofeng
Sun, Yaohui Wang, Yi Yu, Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Yishi Piao, Yisong
Wang, Yixuan Tan, Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yuan Ou, Yuduan Wang, Yue Gong,
Yuheng Zou, Yujia He, Yunfan Xiong, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou,
Y. X. Zhu, Yanhong Xu, Yanping Huang, Yaohui Li, Yi Zheng, Yuchen Zhu, Yunxian Ma, Ying
Tang, Yukun Zha, Yuting Yan, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhenda

11

https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md

Published as a conference paper at ICLR 2026

Xie, Zhengyan Zhang, Zhewen Hao, Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zijia Zhu,
Zijun Liu, Zilin Li, Ziwei Xie, Ziyang Song, Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu
Zhang, and Zhen Zhang. Deepseek-r1: Incentivizing reasoning capability in llms via reinforce-
ment learning, 2025. URL https://arxiv.org/abs/2501.12948.

Shihan Dou, Yan Liu, Haoxiang Jia, Limao Xiong, Enyu Zhou, Wei Shen, Junjie Shan, Caishuang
Huang, Xiao Wang, Xiaoran Fan, et al. Stepcoder: Improve code generation with reinforcement
learning from compiler feedback. arXiv preprint arXiv:2402.01391, 2024.

Yann Dubois, Balázs Galambosi, Percy Liang, and Tatsunori B Hashimoto. Length-controlled al-
pacaeval: A simple way to debias automatic evaluators. arXiv preprint arXiv:2404.04475, 2024.

Olive Jean Dunn. Multiple comparisons among means. Journal of the American Statistical Associ-
ation, 56(293):52–64, 1961.

Kawin Ethayarajh, Winnie Xu, Niklas Muennighoff, Dan Jurafsky, and Douwe Kiela. Model align-
ment as prospect theoretic optimization. In International Conference on Machine Learning, pp.
12634–12651. PMLR, 2024.

Jonas Gehring, Kunhao Zheng, Jade Copet, Vegard Mella, Quentin Carbonneaux, Taco Cohen, and
Gabriel Synnaeve. Rlef: Grounding code llms in execution feedback with reinforcement learning.
arXiv preprint arXiv:2410.02089, 2024.

Richard Gonzalez and George Wu. On the shape of the probability weighting function. Cognitive
psychology, 38(1):129–166, 1999.

Alexey Gorbatovski, Boris Shaposhnikov, Alexey Malakhov, Nikita Surnachev, Yaroslav Aksenov,
Ian Maksimov, Nikita Balagansky, and Daniil Gavrilov. Learn your reference model for real good
alignment. arXiv preprint arXiv:2404.09656, 2024.

Shangmin Guo, Biao Zhang, Tianlin Liu, Tianqi Liu, Misha Khalman, Felipe Llinares, Alexandre
Rame, Thomas Mesnard, Yao Zhao, Bilal Piot, et al. Direct language model alignment from
online ai feedback. arXiv preprint arXiv:2402.04792, 2024.

Joey Hejna, Rafael Rafailov, Harshit Sikchi, Chelsea Finn, Scott Niekum, W Bradley Knox, and
Dorsa Sadigh. Contrastive preference learning: learning from human feedback without rl. arXiv
preprint arXiv:2310.13639, 2023.

Sture Holm. A simple sequentially rejective multiple test procedure. Scandinavian Journal of
Statistics, 6(2):65–70, 1979.

Jiwoo Hong, Noah Lee, and James Thorne. Orpo: Monolithic preference optimization without
reference model. arXiv preprint arXiv:2403.07691, 2024.

Hugging Face. Open r1: A fully open reproduction of deepseek-r1, January 2025. URL https:
//github.com/huggingface/open-r1.

Hamish Ivison, Yizhong Wang, Jiacheng Liu, Zeqiu Wu, Valentina Pyatkin, Nathan Lambert,
Noah A Smith, Yejin Choi, and Hanna Hajishirzi. Unpacking dpo and ppo: Disentangling best
practices for learning from preference feedback. Advances in neural information processing sys-
tems, 37:36602–36633, 2024.

Seungjae Jung, Gunsoo Han, Daniel Wontae Nam, and Kyoung-Woon On. Binary classifier opti-
mization for large language model alignment. arXiv preprint arXiv:2404.04656, 2024.

Daniel Kahneman and Amos Tversky. Prospect theory: An analysis of decision under risk. Econo-
metrica, 47(2):263–292, 1979.

Minae Kwon, Erdem Biyik, Aditi Talati, Karan Bhasin, Dylan P Losey, and Dorsa Sadigh. When
humans aren’t optimal: Robots that collaborate with risk-aware humans. In Proceedings of the
2020 ACM/IEEE international conference on human-robot interaction, pp. 43–52, 2020.

Xin Lai, Zhuotao Tian, Yukang Chen, Senqiao Yang, Xiangru Peng, and Jiaya Jia. Step-dpo: Step-
wise preference optimization for long-chain reasoning of llms. arXiv preprint arXiv:2406.18629,
2024.

12

https://arxiv.org/abs/2501.12948
https://github.com/huggingface/open-r1
https://github.com/huggingface/open-r1

Published as a conference paper at ICLR 2026

Nathan Lambert, Jacob Morrison, Valentina Pyatkin, Shengyi Huang, Hamish Ivison, Faeze Brah-
man, Lester James V. Miranda, Alisa Liu, Nouha Dziri, Shane Lyu, Yuling Gu, Saumya Ma-
lik, Victoria Graf, Jena D. Hwang, Jiangjiang Yang, Ronan Le Bras, Oyvind Tafjord, Chris
Wilhelm, Luca Soldaini, Noah A. Smith, Yizhong Wang, Pradeep Dasigi, and Hannaneh Ha-
jishirzi. Tulu 3: Pushing frontiers in open language model post-training, 2025. URL https:
//arxiv.org/abs/2411.15124.

Jack Lanchantin, Angelica Chen, Janice Lan, Xian Li, Swarnadeep Saha, Tianlu Wang, Jing Xu,
Ping Yu, Weizhe Yuan, Jason E Weston, Sainbayar Sukhbaatar, and Ilia Kulikov. Bridging offline
and online reinforcement learning for llms, 2025a. URL https://arxiv.org/abs/2506.
21495.

Jack Lanchantin, Angelica Chen, Janice Lan, Xian Li, Swarnadeep Saha, Tianlu Wang, Jing Xu,
Ping Yu, Weizhe Yuan, Jason E Weston, et al. Bridging offline and online reinforcement learning
for llms. arXiv preprint arXiv:2506.21495, 2025b.

Hung Le, Yue Wang, Akhilesh Deepak Gotmare, Silvio Savarese, and Steven Chu Hong Hoi. Coderl:
Mastering code generation through pretrained models and deep reinforcement learning. Advances
in Neural Information Processing Systems, 35:21314–21328, 2022.

Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. In The Twelfth
International Conference on Learning Representations, 2023.

Yen-Ting Lin, Di Jin, Tengyu Xu, Tianhao Wu, Sainbayar Sukhbaatar, Chen Zhu, Yun He, Yun-
Nung Chen, Jason Weston, Yuandong Tian, et al. Step-kto: Optimizing mathematical reasoning
through stepwise binary feedback. arXiv preprint arXiv:2501.10799, 2025.

Jiate Liu, Yiqin Zhu, Kaiwen Xiao, Qiang Fu, Xiao Han, Wei Yang, and Deheng Ye. Rltf: Rein-
forcement learning from unit test feedback. arXiv preprint arXiv:2307.04349, 2023.

Zichen Liu, Changyu Chen, Wenjun Li, Penghui Qi, Tianyu Pang, Chao Du, Wee Sun Lee,
and Min Lin. Understanding r1-zero-like training: A critical perspective. arXiv preprint
arXiv:2503.20783, 2025.

Yu Meng, Mengzhou Xia, and Danqi Chen. Simpo: Simple preference optimization with a
reference-free reward, 2024. URL https://arxiv.org/abs/2405.14734.

Rémi Munos, Michal Valko, Daniele Calandriello, Mohammad Gheshlaghi Azar, Mark Rowland,
Zhaohan Daniel Guo, Yunhao Tang, Matthieu Geist, Thomas Mesnard, Andrea Michi, et al. Nash
learning from human feedback. arXiv preprint arXiv:2312.00886, 18, 2023.

Reiichiro Nakano, Jacob Hilton, Suchir Balaji, Jeff Wu, Long Ouyang, Christina Kim, Christo-
pher Hesse, Shantanu Jain, Vineet Kosaraju, William Saunders, et al. Webgpt: Browser-assisted
question-answering with human feedback. arXiv preprint arXiv:2112.09332, 2021.

Michael Noukhovitch, Shengyi Huang, Sophie Xhonneux, Arian Hosseini, Rishabh Agarwal, and
Aaron Courville. Asynchronous rlhf: Faster and more efficient off-policy rl for language models.
arXiv preprint arXiv:2410.18252, 2024.

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser Kel-
ton, Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul Christiano, Jan Leike,
and Ryan Lowe. Training language models to follow instructions with human feedback, March
2022. URL http://arxiv.org/abs/2203.02155. arXiv:2203.02155 [cs].

Richard Yuanzhe Pang, Weizhe Yuan, He He, Kyunghyun Cho, Sainbayar Sukhbaatar, and Jason
Weston. Iterative reasoning preference optimization. Advances in Neural Information Processing
Systems, 37:116617–116637, 2024.

Drazen Prelec. The probability weighting function. Econometrica, pp. 497–527, 1998.

13

https://arxiv.org/abs/2411.15124
https://arxiv.org/abs/2411.15124
https://arxiv.org/abs/2506.21495
https://arxiv.org/abs/2506.21495
https://arxiv.org/abs/2405.14734
http://arxiv.org/abs/2203.02155

Published as a conference paper at ICLR 2026

Rafael Rafailov, Archit Sharma, Eric Mitchell, Stefano Ermon, Christopher D. Manning, and
Chelsea Finn. Direct preference optimization: Your language model is secretly a reward model,
2023. URL https://arxiv.org/abs/2305.18290.

Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and Yuxiong He. Zero: Memory optimizations
toward training trillion parameter models. In SC20: International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis, pp. 1–16. IEEE, 2020.

Corby Rosset, Ching-An Cheng, Arindam Mitra, Michael Santacroce, Ahmed Awadallah, and
Tengyang Xie. Direct nash optimization: Teaching language models to self-improve with general
preferences. arXiv preprint arXiv:2404.03715, 2024.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms, 2017. URL https://arxiv.org/abs/1707.06347.

Rulin Shao, Shuyue Stella Li, Rui Xin, Scott Geng, Yiping Wang, Sewoong Oh, Simon Shaolei
Du, Nathan Lambert, Sewon Min, Ranjay Krishna, et al. Spurious rewards: Rethinking training
signals in rlvr. arXiv preprint arXiv:2506.10947, 2025.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, Y. K. Li, Y. Wu, and Daya Guo. Deepseekmath: Pushing the limits of mathe-
matical reasoning in open language models, 2024. URL https://arxiv.org/abs/2402.
03300.

Yuda Song, Gokul Swamy, Aarti Singh, J Bagnell, and Wen Sun. The importance of online data:
Understanding preference fine-tuning via coverage. Advances in Neural Information Processing
Systems, 37:12243–12270, 2024.

Nisan Stiennon, Long Ouyang, Jeffrey Wu, Daniel Ziegler, Ryan Lowe, Chelsea Voss, Alec Radford,
Dario Amodei, and Paul F Christiano. Learning to summarize with human feedback. Advances
in neural information processing systems, 33:3008–3021, 2020.

Liting Sun, Wei Zhan, Yeping Hu, and Masayoshi Tomizuka. Interpretable modelling of driving
behaviors in interactive driving scenarios based on cumulative prospect theory. In 2019 IEEE
Intelligent Transportation Systems Conference (ITSC), pp. 4329–4335. IEEE, 2019.

Gokul Swamy, Sanjiban Choudhury, Wen Sun, Zhiwei Steven Wu, and J Andrew Bagnell. All
roads lead to likelihood: The value of reinforcement learning in fine-tuning. arXiv preprint
arXiv:2503.01067, 2025.

Yunhao Tang, Daniel Zhaohan Guo, Zeyu Zheng, Daniele Calandriello, Yuan Cao, Eugene Tarassov,
Rémi Munos, Bernardo Ávila Pires, Michal Valko, Yong Cheng, et al. Understanding the perfor-
mance gap between online and offline alignment algorithms. arXiv preprint arXiv:2405.08448,
2024a.

Yunhao Tang, Zhaohan Daniel Guo, Zeyu Zheng, Daniele Calandriello, Rémi Munos, Mark Row-
land, Pierre Harvey Richemond, Michal Valko, Bernardo Ávila Pires, and Bilal Piot. Gen-
eralized preference optimization: A unified approach to offline alignment. arXiv preprint
arXiv:2402.05749, 2024b.

Yunhao Tang, Sid Wang, Lovish Madaan, and Rémi Munos. Beyond verifiable rewards: Scaling re-
inforcement learning for language models to unverifiable data. arXiv preprint arXiv:2503.19618,
2025.

Prime Intellect Team, Sami Jaghouar, Justus Mattern, Jack Min Ong, Jannik Straube, Manveer
Basra, Aaron Pazdera, Kushal Thaman, Matthew Di Ferrante, Felix Gabriel, et al. Intellect-2:
A reasoning model trained through globally decentralized reinforcement learning. arXiv preprint
arXiv:2505.07291, 2025.

Amos Tversky and Daniel Kahneman. Advances in prospect theory: Cumulative representation of
uncertainty. Journal of Risk and uncertainty, 5:297–323, 1992.

14

https://arxiv.org/abs/2305.18290
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2402.03300

Published as a conference paper at ICLR 2026

Jonathan Uesato, Nate Kushman, Ramana Kumar, Francis Song, Noah Siegel, Lisa Wang, Antonia
Creswell, Geoffrey Irving, and Irina Higgins. Solving math word problems with process-and
outcome-based feedback. arXiv preprint arXiv:2211.14275, 2022.

John Von Neumann and Oskar Morgenstern. Theory of games and economic behavior, 2nd rev.
1947.

Haoxiang Wang, Wei Xiong, Tengyang Xie, Han Zhao, and Tong Zhang. Interpretable preferences
via multi-objective reward modeling and mixture-of-experts, 2024. URL https://arxiv.
org/abs/2406.12845.

Peiyi Wang, Lei Li, Zhihong Shao, RX Xu, Damai Dai, Yifei Li, Deli Chen, Yu Wu, and Zhifang
Sui. Math-shepherd: Verify and reinforce llms step-by-step without human annotations. arXiv
preprint arXiv:2312.08935, 2023.

Shenzhi Wang, Le Yu, Chang Gao, Chujie Zheng, Shixuan Liu, Rui Lu, Kai Dang, Xionghui Chen,
Jianxin Yang, Zhenru Zhang, et al. Beyond the 80/20 rule: High-entropy minority tokens drive
effective reinforcement learning for llm reasoning. arXiv preprint arXiv:2506.01939, 2025a.

Yiping Wang, Qing Yang, Zhiyuan Zeng, Liliang Ren, Liyuan Liu, Baolin Peng, Hao Cheng, Xuehai
He, Kuan Wang, Jianfeng Gao, et al. Reinforcement learning for reasoning in large language
models with one training example. arXiv preprint arXiv:2504.20571, 2025b.

Junkang Wu, Yuexiang Xie, Zhengyi Yang, Jiancan Wu, Jinyang Gao, Bolin Ding, Xiang Wang,
and Xiangnan He. β-dpo: Direct preference optimization with dynamic β. Advances in Neural
Information Processing Systems, 37:129944–129966, 2024a.

Tianhao Wu, Weizhe Yuan, Olga Golovneva, Jing Xu, Yuandong Tian, Jiantao Jiao, Jason Weston,
and Sainbayar Sukhbaatar. Meta-rewarding language models: Self-improving alignment with
llm-as-a-meta-judge. arXiv preprint arXiv:2407.19594, 2024b.

Zeqiu Wu, Yushi Hu, Weijia Shi, Nouha Dziri, Alane Suhr, Prithviraj Ammanabrolu, Noah A Smith,
Mari Ostendorf, and Hannaneh Hajishirzi. Fine-grained human feedback gives better rewards for
language model training. Advances in Neural Information Processing Systems, 36:59008–59033,
2023.

Tengyang Xie, Dylan J Foster, Akshay Krishnamurthy, Corby Rosset, Ahmed Awadallah, and
Alexander Rakhlin. Exploratory preference optimization: Harnessing implicit q*-approximation
for sample-efficient rlhf. arXiv preprint arXiv:2405.21046, 2024.

Huajian Xin, Daya Guo, Zhihong Shao, Zhizhou Ren, Qihao Zhu, Bo Liu, Chong Ruan, Wenda Li,
and Xiaodan Liang. Deepseek-prover: Advancing theorem proving in llms through large-scale
synthetic data. arXiv preprint arXiv:2405.14333, 2024.

Wei Xiong, Hanze Dong, Chenlu Ye, Ziqi Wang, Han Zhong, Heng Ji, Nan Jiang, and Tong Zhang.
Iterative preference learning from human feedback: Bridging theory and practice for rlhf under
kl-constraint. arXiv preprint arXiv:2312.11456, 2023.

Haoran Xu, Amr Sharaf, Yunmo Chen, Weiting Tan, Lingfeng Shen, Benjamin Van Durme, Kenton
Murray, and Young Jin Kim. Contrastive preference optimization: Pushing the boundaries of llm
performance in machine translation. arXiv preprint arXiv:2401.08417, 2024a.

Jing Xu, Andrew Lee, Sainbayar Sukhbaatar, and Jason Weston. Some things are more cringe
than others: Iterative preference optimization with the pairwise cringe loss. arXiv preprint
arXiv:2312.16682, 2023.

Shusheng Xu, Wei Fu, Jiaxuan Gao, Wenjie Ye, Weilin Liu, Zhiyu Mei, Guangju Wang, Chao Yu,
and Yi Wu. Is dpo superior to ppo for llm alignment? a comprehensive study. In International
Conference on Machine Learning, pp. 54983–54998. PMLR, 2024b.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
Chang Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. arXiv preprint
arXiv:2505.09388, 2025.

15

https://arxiv.org/abs/2406.12845
https://arxiv.org/abs/2406.12845

Published as a conference paper at ICLR 2026

Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Weinan Dai,
Tiantian Fan, Gaohong Liu, Lingjun Liu, Xin Liu, Haibin Lin, Zhiqi Lin, Bole Ma, Guang-
ming Sheng, Yuxuan Tong, Chi Zhang, Mofan Zhang, Wang Zhang, Hang Zhu, Jinhua Zhu,
Jiaze Chen, Jiangjie Chen, Chengyi Wang, Hongli Yu, Yuxuan Song, Xiangpeng Wei, Hao
Zhou, Jingjing Liu, Wei-Ying Ma, Ya-Qin Zhang, Lin Yan, Mu Qiao, Yonghui Wu, and Mingx-
uan Wang. Dapo: An open-source llm reinforcement learning system at scale, 2025. URL
https://arxiv.org/abs/2503.14476.

Yang Yue, Zhiqi Chen, Rui Lu, Andrew Zhao, Zhaokai Wang, Shiji Song, and Gao Huang. Does re-
inforcement learning really incentivize reasoning capacity in llms beyond the base model? arXiv
preprint arXiv:2504.13837, 2025.

Xuandong Zhao, Zhewei Kang, Aosong Feng, Sergey Levine, and Dawn Song. Learning to reason
without external rewards. arXiv preprint arXiv:2505.19590, 2025.

Wenxuan Zhou, Ravi Agrawal, Shujian Zhang, Sathish Reddy Indurthi, Sanqiang Zhao, Kaiqiang
Song, Silei Xu, and Chenguang Zhu. Wpo: Enhancing rlhf with weighted preference optimiza-
tion. arXiv preprint arXiv:2406.11827, 2024.

Xiangxin Zhou, Zichen Liu, Anya Sims, Haonan Wang, Tianyu Pang, Chongxuan Li, Liang
Wang, Min Lin, and Chao Du. Reinforcing general reasoning without verifiers. arXiv preprint
arXiv:2505.21493, 2025.

Daniel M Ziegler, Nisan Stiennon, Jeffrey Wu, Tom B Brown, Alec Radford, Dario Amodei, Paul
Christiano, and Geoffrey Irving. Fine-tuning language models from human preferences. arXiv
preprint arXiv:1909.08593, 2019.

Yuxin Zuo, Kaiyan Zhang, Li Sheng, Shang Qu, Ganqu Cui, Xuekai Zhu, Haozhan Li, Yuchen
Zhang, Xinwei Long, Ermo Hua, et al. Ttrl: Test-time reinforcement learning. arXiv preprint
arXiv:2504.16084, 2025.

16

https://arxiv.org/abs/2503.14476

Published as a conference paper at ICLR 2026

A RELATED WORK

Alignment Methods Reinforcement Learning from Human Feedback (RLHF) involves training a
reward model on human preference data and then using it to fine-tune a policy, commonly via online
reinforcement learning (Christiano et al., 2017; Schulman et al., 2017; Nakano et al., 2021; Ouyang
et al., 2022). The complexity of online RL has motivated a line of research on simpler, offline meth-
ods that optimize a policy on a static dataset (Ziegler et al., 2019; Rafailov et al., 2023; Ethayarajh
et al., 2024; Hejna et al., 2023; Azar et al., 2024; Hong et al., 2024; Munos et al., 2023; Xu et al.,
2024a; Jung et al., 2024; Wu et al., 2024a; Xie et al., 2024; Pang et al., 2024; Tang et al., 2024b).
Other work aims to bridge the gap between offline and online methods via iteratively collecting new
data from the policy (Stiennon et al., 2020; Xu et al., 2023; Xiong et al., 2023; Wu et al., 2024b;
Chen et al., 2024; Rosset et al., 2024; Pang et al., 2024; Lanchantin et al., 2025b), reweighting offline
loss terms (Zhou et al., 2024), or recasting offline methods as online (Guo et al., 2024). Recently,
there has been an increase in interest in online reinforcement learning with verifiable rewards, in-
cluding training hyperparameters (Yu et al., 2025; Liu et al., 2025; Wang et al., 2025a) and other
aspects (Wang et al., 2025b; Zuo et al., 2025; Shao et al., 2025; Yue et al., 2025; Zhao et al., 2025).
The humanline design pattern can be applied to most alignment algorithms in both offline and online
settings.

Sources of Feedback The performance of alignment algorithms is directly linked to the type and
quality of the feedback signal. This signal often comes from direct human judgment (Bai et al.,
2022a; Wu et al., 2023). To improve scalability, researchers have also explored the use of AI-
generated feedback (RLAIF) (Bai et al., 2022b). For more objective domains such as coding, verifi-
able feedback can be derived from execution results and unit tests (Le et al., 2022; Liu et al., 2023;
Gehring et al., 2024; Dou et al., 2024). Due to the difficulty of obtaining feedback in some do-
mains, researchers are exploring learning without external feedback (Tang et al., 2025; Zhou et al.,
2025). Another axis of differentiation is whether feedback is based on the final output of the model
(outcome-based) (Xin et al., 2024; Ankner et al., 2024; DeepSeek-AI et al., 2025) or its intermedi-
ate steps (process-based) (Uesato et al., 2022; Lightman et al., 2023; Wang et al., 2023; Lai et al.,
2024; Lin et al., 2025). The humanline paradigm works with different forms of feedback and is
independent of whether that feedback is outcome- or process-based.

Prospect Theory Having revolutionized behavioral economics, prospect theory (Kahneman &
Tversky, 1979; Tversky & Kahneman, 1992) has recently been incorporated into LLM alignment
via Kahneman-Tversky Optimization (KTO) (Ethayarajh et al., 2024). Previously, it has had only a
limited impact in machine learning, mostly in human-robot interaction research (Kwon et al., 2020;
Sun et al., 2019; Chan et al., 2021). While KTO focuses on human biases in the value function (2),
the humanline design pattern does so for the weighting function (4).

17

Published as a conference paper at ICLR 2026

B PROOFS

Proposition 3.4 (restated) For any input x and bounded value function v, let the outcome of an
output y be its surprisal log[πθ(y|x)/πref(y|x)] and Q be a candidate distribution over outcomes.
Then to guarantee |u(Z;ω) − u(Z;Q)| ≤ δ for some δ ≥ 0, it suffices that

√
KL(ω∥Q) ≤

δ/
(√

2∥v∥∞
)
.

Proof. Let zx,y denote the outcome of an input-output pair (x, y), where as in Ethayarajh et al.
(2024), it is measured as the surprisal term log[πθ(y|x)/πref(y|x)]. Assume that the human value
function is bounded (as is the case in prospect theory), that the human-perceived distribution has
support subsuming that of Q (i.e., supp(Q) ⊆ supp(ω)), and that zx,y is measurable with respect
to the support of both distributions. Note that ω(zx,y) denotes the subjective probability (weight)
assigned to output y based on its outcome zx,y , not a probability distribution over y itself. That is, ω
is a distortion of the cumulative distribution over outcomes (surprisals), as defined in Eq. (4). Then
using Definition (3.3) of subjective utility:

|u(Z;ω)− u(Z;Q)| =

∣∣∣∣∣∑
y

ω(zx,y)v(zx,y)−
∑
y

Q(zx,y)v(zx,y)

∣∣∣∣∣
=

∣∣∣∣∣∑
y

(ω(zx,y)−Q(zx,y))v(zx,y)

∣∣∣∣∣
≤

∑
y

|v(zx,y)| |ω(zx,y)−Q(zx,y)| (triangle inequality)

≤ ∥v∥∞∥ω −Q∥1
≤ ∥v∥∞

√
2 · KL(ω∥Q) (Pinsker’s inequality)

Then if
√

KL(ω∥Q) ≤ δ/
(√

2∥v∥∞
)
, we get |u(Z;ω)− u(Z;Q)| ≤ δ.

Proposition 4.1 (restated) Under typical conditions, for any context x, simulating output se-
quences y from ω is equivalent to performing token-wise rejection sampling with the rejection
criterion

πθ(yt|x; y<t)/πref(yt|x; y<t) < M ′
θB

where B ∼ Beta(γ, 1), M ′
θ is a finite upper bound on the LHS for all tokens in the vocabulary, and

γ ∈ (0, 1] is the capacity function constant.

Proof. We consider the following conditions:

1. The proposal distribution is the current iteration of the reference model: i.e., any output se-
quence was produced by autoregressively sampling tokens from πref(·|x, yi,<t). Moreover,
πref(·|x, yi,<t) and πθ(·|x, yi,<t) have the same support and a finite likelihood ratio bound.
In practice, this means that they share a vocabulary (which holds because they are identical
at t = 0); and that each possible token has non-zero probability, which arises trivially from
a softmax output distribution.

2. The capacity functions Ω+,Ω− have the standard functional form (3), implying that the
human-biased CDF has the same structural form for all outcomes. This was found to hold
in Tversky & Kahneman (1992) (for probability in a more general sense).

3. For context x with output sequence yi, let surprisal zi = log[πθ(y|x)/πref(y|x)] denote the
outcome. The cumulative probability of outcomes with higher absolute surprisal than zi is
negligible (i.e., the vast majority of all possible output sequences is nonsensical or irrele-
vant, which holds trivially). To be more specific, for any given prompt, the possible output
space of n-length sequences is very large. Only a small minority of possible completions
are good or bad enough that we want to explicitly align towards or away from them, and
the cumulative probability mass of better or worse completions is negligible.

18

Published as a conference paper at ICLR 2026

Under these conditions, given outcome zi,
∑

j>i pj ≈ 0 for Ω+ and
∑

j<i pj ≈ 0 for Ω−. Following
from (4), the weight (i.e., subjective probability) of a sequence is

ω(z) ≈ pγ

(pγ + (1− p)γ)1/γ

For a sufficiently long sequence, the denominator will approach 1, meaning ω(z) ≈ pγ . The nu-
merator (and thus the weight) can be factorized over tokens as pγ =

∏
t p

γ
t , meaning that instead

of rejection-sampling entire sequences, we can just rejection sample one token at time. Because
the policy and reference models yield softmax distributions over a finite shared vocabulary, for any
given (x, y<t) the likelihood ratio for a fixed (policy, reference) pair takes finitely many positive
values, so there exists a finite bound M ′

θ. Our results only require that this maximum exists; they
do not require M ′

θ to be small, known, or independent of vocabulary size. Note that our results
only need a finite bound for each fixed θ, not a uniform covering argument over the entire parameter
space. Then:

πγ
θ (yt|x; y<t)

πγ
ref(yt|x; y<t)

< Mθ · U ⇐⇒
πθ(yt|x; y<t)

πref(yt|x; y<t)
< M

1
γ

θ · U
1
γ

where U ∼ Uniform(0, 1).

Let B ≜ U
1
γ , where γ ∈ (0, 1] is the capacity function constant in (3). To get the density of this

new random variable, we apply the transformation rule, noting that because U is uniform on [0, 1],
fU (·) = 1:

fB(b) = fU (b
γ)

∣∣∣∣ ddbbγ
∣∣∣∣ = 1 · γbγ−1

This is the density of Beta(γ, 1). Therefore,

B ∼ Beta(γ, 1), M ′
θ = M

1
γ

θ .

Theorem 4.3 (restated) The clipped component in PPO/GRPO is a special case of humanline
sampling that arises under limit conditions.

Proof. Let BP denote the Beta random variable in Definition 4.2 and MP its corresponding constant
that bounds the likelihood ratio. By definition, its mean and variance are

E[BP] =
γP

γP + βP
, Var[BP] =

γPβP

(γP + βP)2(γP + βP + 1)
.

Let k, ϵP ∈ R+ be constants such that ϵP < MP . Setting γP = kϵP
MP

, βP = k(1− ϵP
MP

), we get

E[BP] =
k εP
MP

k εP
MP

+ k(1− εP
MP

)
=

εP
MP

,

Var[BP] =
k εP
MP

k(1− εP
MP

)

(k εP
MP

+ k(1− εP
MP

))2(k εP
MP

+ k(1− εP
MP

) + 1)
=

εP
MP

(
1− εP

MP

)
k + 1

.

As k →∞, ∀ δ > 0, Pr(|BP − ϵP /MP | ≥ δ)→ 0 (i.e., we deterministically sample the mean).

Similarly, for BR,MR in Definition 4.2, let ϵR ∈ R+ be such that ϵR > 1/MR and set γR =
k/(ϵRMR), βR = k(1− 1/(ϵRMR)). Then as k →∞, ∀ δ > 0, Pr(|BR − 1/ϵRMR| ≥ δ)→ 0.

Thus as k →∞, the rejection criteria in token-level humanline sampling simplify to:

πθ(yt|x; y<t)

πref(yt|x; y<t)
< MP ·

εP
MP

= εP ,
πref(yt|x; y<t)

πθ(yt|x; y<t)
< MR ·

1

εRMR
=

1

εR

which means that the tokens that are accepted satisfy:

εP ≤
πθ(yt|x; y<t)

πref(yt|x; y<t)
≤ εR.

19

Published as a conference paper at ICLR 2026

Recall that MP ,MR are upper bounds on the likelihood ratios, and given that πθ, πref are distribu-
tions over the same support and are generally not identical, there will exist tokens for which these
ratios are both greater than 1. Thus MP ≥ 1 and MR ≥ 1. For any fixed ε ∈ (0, 1), it is therefore a
given that (1 − ϵ) < MP and (1 + ϵ) > 1/MR, meeting the constraints imposed earlier on ϵP , ϵR.
Letting εR = 1 + ε and εP = 1 − ε, we get the following inequality that is satisfied by accepted
tokens:

1− ε ≤ πθ(yt|x; y<t)

πref(yt|x; y<t)
≤ 1 + ε.

This recovers the clipped term in PPO and GRPO, where the ratio πθ(yt|x; y<t)/πref(yt|x; y<t) for
each token is clipped to the range [1 − ϵ, 1 + ϵ]. Note that the equivalence is not only due to the
likelihood ratios being bound to the same range, but also due to ratios outside the range contributing
nothing to the gradient, either due to the shape of the clipping function (in PPO/GRPO) or due to
being explicitly detached from the computation graph (in humanline sampling).

20

Published as a conference paper at ICLR 2026

C ALGORITHMS

C.1 DEFINITIONS

C.1.1 OFFLINE DPO/KTO

DPO (Rafailov et al., 2023) and KTO (Ethayarajh et al., 2024) were originally proposed as offline
algorithms, and we use the original definitions without any change for offline DPO/KTO. Where
(x, yw, yl) is a tuple from an offline dataset D representing a preference for output yw over yl given
context x, the DPO loss is:

LDPO(πθ, πref) = Ex,yw,yl∼D

[
− log σ

(
β log

πθ(yw|x)
πref(yw|x)

− β log
πθ(yl|x)
πref(yl|x)

)]
(6)

where β ∈ R+ is a hyperparameter and σ is the sigmoid function.

Instead of paired preferences, KTO frames outputs y as undesirable or desirable. Where λy ∈ R+

denotes λD(λU) when y is desirable(undesirable) respectively, the default KTO loss is:
LKTO(πθ, πref) = Ex,y∼D[λy − v(x, y)] (7)

where

rθ(x, y) = log
πθ(y|x)
πref(y|x)

z0 = KL(πθ(y
′|x)∥πref(y

′|x))

v(x, y) =

{
λDσ(β(rθ(x, y)− z0)) if y ∼ ydesirable|x
λUσ(β(z0 − rθ(x, y))) if y ∼ yundesirable|x

There is no backpropagation through z0; it exists purely to control the loss saturation. In practice,
for the sake of efficiency, a shared KL estimate is used for all examples in the same batch by taking
the average rθ over mismatched input-output pairs (x, y′). In our experiments, for an apples-to-
apples comparison across methods, we break up DPO preference pairs to get unpaired data for
KTO, although we use twice the batch size so that the same number of steps are taken.

C.1.2 ONLINE DPO/KTO

Our implementation of online DPO combines features of the online DPO implementation in Guo
et al. (2024), iterative DPO in Xu et al. (2024b), and semi-online DPO in Lanchantin et al. (2025a).
Like Guo et al. (2024) and Lanchantin et al. (2025a), we sample completions from the policy being
actively aligned. However, like Lanchantin et al. (2025a), we do not sample every step, because
it is slower, more computationally expensive, and leads to worse results. Asynchronous training is
typical in RLHF, especially in large-scale distributed settings (Noukhovitch et al., 2024).

We find that sampling once every 1024 contexts (i.e., 32 steps) leads to best performance in the
instruction-following setting, which we call one round. For each of the 1024 contexts in a round,
we sample 8 completions {yi}8i=1 ∼ πθ(·|x), score them with a reward model, compare the highest-
and lowest-scoring y for each x, and construct a paired preference (x, yw, yl) if the difference in
score exceeds τ = 0.01. We use this methodology because it is nearly identical to how the offline
instruction-following data was constructed (Meng et al., 2024), even using the exact same reward
model (Wang et al., 2024) and contexts x (Cui et al., 2024) to enable an apples-to-apples compari-
son. The differences are: (1) our use of threshold τ , which is needed to construct feedback that is
sufficiently discriminative; (2) using 22% more contexts than in the offline data to adjust for the fact
that using τ leads to roughly 18% of the preferences (albeit low-signal preferences) being discarded.
Therefore the volume of data seen by both offline DPO and online DPO is approximately the same,
although the latter sees more diversity in contexts, which may provide an additional advantage. At
the end of a round, the policy is checkpointed, and at the start of the next round, the new policy and
reference model are loaded from this checkpoint.

Online KTO is implemented the exact same way, albeit the final loss is calculated with (7) instead of
(6). Notably, we construct DPO-style paired preferences before breaking them up to create unpaired
data for KTO, instead of directly creating unpaired data using positive and negative thresholds. Not
only does this allow for a better comparison with DPO, but it also works better in practice. See
Algorithm 1 for the pseudo-code of Online DPO/KTO.

21

Published as a conference paper at ICLR 2026

Algorithm 1 Online DPO / KTO
Input: initial policy model πθinit ; reward model rφ; reward threshold τ ; promptsD; hyperparameters
β, λdesirable, λundesirable
Output: policy model πθ

1: Initiate policy model πθ ← πθinit

2: for round = 1 to N do
3: Set reference model πref ← πθ; Dtrain ← ∅
4: Sample a batch of contexts Db from D, where |Db| = 1024
5: for prompt x ∈ Db do ▷ Online sampling and relabeling
6: Sample G outputs {yi}Gi=1 ∼ πθ(· | x), where G = 8
7: Compute rewards {ri}Gi=1 for each yi via rφ
8: if |maxj rj − minj rj | ≥ τ then ▷ ∼18% samples will be filtered out
9: (yw, yl)←

(
argmaxj rj , argminj rj

)
10: Dtrain ← Dtrain ∪ {(x, yw, yl)}
11: end if
12: end for
13: for batch B ∈ Dtrain do ▷ Train with newly generated preference data
14: Compute token-level surprisal r̂i,t for every token t in (yw, yl) ∼ B via πθ and πref
15: Update πθ by maximizing the DPO / KTO objective (Eq. 6; 7)
16: end for
17: end for

Algorithm 2 Offline GRPO
Input: initial policy model πθinit ; prompts and completions D; hyperparameters β, ϵ
Output: policy model πθ

1: Initiate policy model πθ ← πθinit ; reference model πref ← πθ

2: for step = 1, ..., M do
3: Sample a batch Db from D ▷ Train with off-policy preference data
4: for prompt x ∈ Db do
5: Set G← {yw, yl} from off-policy (x, yw, yl) tuples ▷ Default group size = 2
6: Compute token-level surprisal r̂i,t for every token t in {yw, yl} via πθ and πref

7: Compute Âi,t for every token t in {yw, yl} through group relative advantage estimation
8: Update πθ by maximizing the GRPO objective (Eq. 1)
9: end for

10: end for

C.1.3 OFFLINE GRPO

Given that GRPO is inherently an online method (Shao et al., 2024), we make a few different changes
to create an offline variant, which largely follow those made by Ethayarajh et al. (2024) to make an
offline variant of PPO. For one, instead of sampling new completions, we take tuples (x, yw, yl) in
an offline preference dataset (e.g., UltraFeedback (Cui et al., 2024)) and treat them as a group of
two: G = {yi}2i=1 = {yw, yl}. The reference model is never updated: its weights remain those of
the policy at initialization. See Algorithm 2 for the pseudo-code of offline GRPO.

C.1.4 ONLINE GRPO

Instead of sampling every step, we sample data as in Online DPO/KTO, the only difference being
that we retain the raw scores from the scoring step so that they can later be fed into the loss calcula-
tion (1). We use this approach to allow for an apples-to-apples comparison with Online DPO/KTO,
as well as because some asynchronicity is usually permitted in practice and we find that sampling
once per round (i.e., roughly every 32 steps) does not degrade performance. A consequence of this
choice is that the group size is exactly 2 for all contexts, making the relative advantages either -1 or
1. Naturally, this does not unlock the full potential of GRPO, since one of its strengths is its ability to
leverage scalar rewards. However, we consider it more important that the volume of training data to
be roughly the same across different variants and methods. We also use DAPO-style normalization

22

Published as a conference paper at ICLR 2026

(i.e., taking the average loss over the number of tokens in the batch instead of within a sequence),
as we find this leads to better performance on instruction-following (Yu et al., 2025). Lastly, we
reuse the reference model as the base model for calculating the KL penalty, both because it saves us
the space of storing a third model and because prior work has identified the KL penalty to not be of
much import, allowing its estimate to be less precise.

C.2 HUMANLINE IMPLEMENTATION

The instruction-following experiments were done in a fork of the HALOs repository. Below, we
provide a relatively straightforward implementation of the humanline design pattern for DPO, KTO
and GRPO, which is triggered by setting self.config.humanline = True in our codebase.

The mathematical reasoning experiments were implemented in a fork of the Open-R1 repository
(Hugging Face, 2025), which itself is based on Huggingface’s TRL library. Because of this, hu-
manline syncing is implemented differently, by over-writing callback methods: before the optimizer
step happens, the current state of the policy is stored locally; at the end of the step, the stored policy
is loaded into the reference model. This improves stability when doing distributed training with
ZeRO2 (Rajbhandari et al., 2020).

C.2.1 HUMANLINE SYNCING

In our codebase, we first modify the training loop to implement humanline syncing. For the sake of
brevity, we highlight only the relevant changes in train() and omit code used for logging. The
accelerator object is used to manage distributed training with FSDP in our own codebase:

1 def train():
2 ...
3 self.optimizer.zero_grad()
4 loss, metrics = self.get_batch_metrics(batch)
5 self.accelerator.backward(loss)
6 grad_norm = self.accelerator.clip_grad_norm_(self.policy.parameters(),
7 self.config.model.max_grad_norm)
8

9 if self.config.loss.sync_reference or self.config.humanline:
10 self.sync_reference_with_policy()
11

12 self.optimizer.step()
13 self.scheduler.step()
14 ...
15

16 def sync_reference_with_policy(self):
17 """
18 Update the reference model to have the policy weights.
19 """
20 if self.batch_counter % self.config.sync_freq == 0:
21 state_dict = self.accelerator.unwrap_model(self.policy).state_dict()
22 self.accelerator.unwrap_model(self.reference_model).load_state_dict(state_dict)
23 self.accelerator.wait_for_everyone()

Humanline clipping is even easier to implement, although it has to be implemented in two different
places in our codebase because of the different abstractions used for DPO/KTO and GRPO:

1 def get_sequence_rewards(self,
2 policy_logps: torch.FloatTensor,
3 reference_logps: torch.FloatTensor,
4 length_normalized=False,
5):
6 """
7 If regular alignment, return the surprisal for the sequence
8 (log [policy(y|x)/reference(y|x)]).
9 This is called the "sequence reward", following DPO terminology.

10 Apply humanline if specified.
11

23

https://github.com/ContextualAI/HALOs/tree/research/
https://github.com/kawine/open-r1-humanline

Published as a conference paper at ICLR 2026

12 Args:
13 policy_logps: token-level probabilities according to policy
14 (microbatch_size, maximum sequence length)
15 reference_logps: token-level probabilities according to reference
16 model (microbatch_size, maximum sequence length)
17 length_normalized: divide the sequence reward by the number of
18 non-rejected tokens
19

20 Returns:
21 The sequence-level rewards (microbatch_size, 1).
22 """
23 if self.config.humanline:
24 token_rewards = (policy_logps - reference_logps).clamp(
25 self.config.log_epsilon_P, self.config.log_epsilon_R)
26 else:
27 token_rewards = policy_logps - reference_logps
28

29 normalization_factor = (token_rewards.abs() != 0).float().sum(-1) \
30 if length_normalized else 1
31 sequence_rewards = token_rewards.sum(-1) / normalization_factor
32

33 return sequence_rewards
34

35

36 class DPOTrainer(PairedPreferenceTrainer):
37 def loss(self,
38 batch: Dict,
39 policy_chosen_logps: torch.FloatTensor,
40 policy_rejected_logps: torch.FloatTensor,
41 reference_chosen_logps: torch.FloatTensor,
42 reference_rejected_logps: torch.FloatTensor,
43 *args,
44):
45 """Compute the DPO loss for a batch of policy and reference model
46 token-level log probabilities."""
47

48 # apply humanline clipping via get_sequence_rewards on token-level
49 # log probabilities before they are fed into loss computation
50 chosen_rewards = self.get_sequence_rewards(policy_chosen_logps,
51 reference_chosen_logps)
52 rejected_rewards = self.get_sequence_rewards(policy_rejected_logps,
53 reference_rejected_logps)
54

55 chosen_rewards *= self.config.loss.beta
56 rejected_rewards *= self.config.loss.beta
57

58 losses = -F.logsigmoid(chosen_rewards - rejected_rewards)
59

60 return losses, chosen_rewards.detach(), rejected_rewards.detach()
61

62

63 class KTOTrainer(UnpairedPreferenceTrainer):
64 def loss(self,
65 batch: Dict,
66 policy_chosen_logps: torch.FloatTensor,
67 policy_rejected_logps: torch.FloatTensor,
68 policy_KL_logps: torch.FloatTensor,
69 reference_chosen_logps: torch.FloatTensor,
70 reference_rejected_logps: torch.FloatTensor,
71 reference_KL_logps: torch.FloatTensor,
72 *args,
73):
74 """Compute the KTO loss for a batch of policy and
75 reference model log probabilities.
76

24

Published as a conference paper at ICLR 2026

77 If generation y ˜ p_desirable, we have the 'desirable' loss:
78 L(x, y) := 1 - sigmoid(beta * ([log p_policy(y|x)
79 - log p_reference(y|x)] - KL(p_policy || p_reference)))
80 If generation y ˜ p_undesirable, we have the 'undesirable' loss:
81 L(x, y) := 1 - sigmoid(beta * (KL(p_policy || p_reference)
82 - [log p_policy(y|x) - log p_reference(y|x)]))
83

84 The desirable losses are weighed by config.loss.desirable_weight.
85 The undesirable losses are weighed by config.loss.undesirable_weight.
86 This should be used to address imbalances in the ratio of
87 desirable:undesirable examples respectively.
88 The KL term is estimated by matching x with unrelated outputs y',
89 then calculating the average log ratio
90 log p_policy(y'|x) - log p_reference(y'|x).
91 """
92 if policy_chosen_logps.shape[0] != 0:
93 chosen_rewards = self.get_sequence_rewards(
94 policy_chosen_logps, reference_chosen_logps)
95 else:
96 chosen_rewards = torch.Tensor([]).to(self.policy_dtype).to(
97 self.accelerator.device)
98

99 if policy_rejected_logps.shape[0] != 0:
100 rejected_rewards = self.get_sequence_rewards(
101 policy_rejected_logps, reference_rejected_logps)
102 else:
103 rejected_rewards = torch.Tensor([]).to(self.policy_dtype).to(
104 self.accelerator.device)
105

106 # For KTO, humanline also applies to the KL term
107 KL_rewards = self.get_sequence_rewards(policy_KL_logps.detach(),
108 reference_KL_logps.detach())
109 KL = (KL_rewards.sum() / (KL_rewards.abs() != 0).float().sum().item()
110 .clamp(min=0)
111

112 if policy_chosen_logps.shape[0] != 0:
113 chosen_losses = self.config.loss.desirable_weight *
114 (1 - F.sigmoid(self.config.loss.beta * (chosen_rewards - KL)))
115 else:
116 chosen_losses = torch.Tensor([]).to(self.policy_dtype).to(
117 self.accelerator.device)
118

119 if policy_rejected_logps.shape[0] != 0:
120 rejected_losses = self.config.loss.undesirable_weight *
121 (1 - F.sigmoid(self.config.loss.beta * (KL - rejected_rewards)))
122 else:
123 rejected_losses = torch.Tensor([]).to(self.policy_dtype).to(
124 self.accelerator.device)
125

126 losses = torch.cat((chosen_losses, rejected_losses), 0)
127

128 return losses, chosen_rewards.detach(), rejected_rewards.detach(),
129 KL.detach()

For both DPO and KTO, we apply the same token-wise likelihood clipping with the function
get sequence rewards as shown above. For GRPO, we do the same but with the function
get ratios to return the probability ratio under the policy and the reference models instead of
the log probability ratio, as defined in the clipped surrogate objective. Note that we clamp in log-
space for greater numerical precision.

1 def get_ratios(self,
2 policy_logps,
3 reference_logps,
4):

25

Published as a conference paper at ICLR 2026

5 """
6 If regular alignment, return the token-level probability ratio
7 under the policy vs the reference [policy(y|x)/reference(y|x)].
8 Apply humanline if specified.
9

10 Args:
11 policy_logps: token-level probabilities according to policy
12 (microbatch_size, maximum sequence length)
13 reference_logps: token-level probabilities according to
14 reference model (microbatch_size, maximum sequence length)
15

16 Returns:
17 The probability ratios (microbatch_size, sequence length) if
18 sequence_level; otherwise, (microbatch_size, 1)
19 """
20 if self.config.humanline:
21 logratio = (policy_logps - reference_logps).clamp(
22 self.config.log_epsilon_P, self.config.log_epsilon_R
23)
24 else:
25 logratio = policy_logps - reference_logps
26

27 ratio = logratio.exp()
28

29 return ratio
30

31

32 class GRPOTrainer(BasicTrainer):
33 def loss(self,
34 batch: Dict,
35 policy_logps: torch.FloatTensor,
36 reference_logps: torch.FloatTensor,
37 advantages: torch.FloatTensor,
38 group_size: torch.FloatTensor,
39 *args,
40):
41 """
42 Compute the GRPO loss.
43

44 Args:
45 policy_logps: log probability of the output under the policy
46 (microbatch_size, sequence_length)
47 reference_logps: log probability of the output under the
48 reference model (microbatch_size, sequence_length)
49 advantages: sequence level advantages (microbatch_size,)
50 group_size: number of outputs (in entire batch) belonging to
51 prompt associated with sequence (microbatch_size,)
52

53 Returns:
54 average loss, average KL, average weighted advantage,
55 average unweighted advantage
56 """
57 # apply humanline clipping via get_ratios on token-level
58 # log probabilities which returns probability ratios
59 ratio = self.get_ratios(policy_logps, reference_logps)
60 masks = (batch['target_labels'][:, 1:] != -100).clone().to(
61 self.policy_dtype)
62

63 advantages = advantages.unsqueeze(-1)
64 group_size = group_size.unsqueeze(-1)
65

66 weighted_adv = advantages * ratio
67 # probability ratios get clipped again in the GRPO surrogate
68 # objective controlled by a separate hyperparameter epsilon
69 weighted_adv_clipped = advantages * ratio.clamp(

26

Published as a conference paper at ICLR 2026

70 1 - self.config.loss.epsilon,
71 1 + self.config.loss.epsilon)
72

73 # humanline clipping does not apply to KL term in GRPO
74 per_token_KL = torch.exp(reference_logps - policy_logps)
75 - (reference_logps - policy_logps) - 1
76 per_token_loss = -torch.min(weighted_adv, weighted_adv_clipped)
77 + self.config.loss.beta * per_token_KL
78

79 # do DAPO-style normalization
80 return masked_mean(per_token_loss, masks),
81 masked_mean(per_token_KL.detach(), masks),
82 masked_mean(weighted_adv.abs().detach(), masks),
83 advantages.abs().mean()
84

27

Published as a conference paper at ICLR 2026

D ADDITIONAL EXPERIMENTS

Table 1: Hyperparameters that are common to all of our instruction-following experiments, across
different alignment objectives and different variants for each objective. Note that we generate much
more data than we ultimately use during online training (see Appendix C.1 for details). Note the
data volume for KTO/GRPO is twice that of DPO because the latter operates on paired preferences
containing two sequences each.

Hyperparameter Value
Optimizer AdamW
AdamW β1 0.9
AdamW β2 0.999
AdamW ϵ 1e-5
Weight Decay 1e-2
Warmup 10%
Offline Training Examples 10K (DPO) / 20K (KTO, GRPO)
Offline Batch Size 32 (DPO) / 64 (KTO, GRPO)
Online Training Contexts 12288
Online Batch Size 32 (DPO) / 64 (KTO, GRPO)
Round (Number of Contexts) 1024
Generations per Context (sampled) 8
Generations per Context (after filtering) 2 or 0
Maximum Generation Length 2048
Top-p (Nucleus Sampling) 0.95
Sampling Temperature 0.7
Reward Threshold τ 0.01
Humanline log ϵP −1.5
Humanline log ϵR 1.5
Humanline k 1

Table 2: Hyperparameters that are common to all of our mathematical reasoning experiments with
GRPO. We use the setup in Huggingface’s Open-R1 (Hugging Face, 2025), except instead of plac-
ing equal weight on the tag count, format, and accuracy rewards, we place weights of 1, 1,
and 8 respectively (i.e., emphasizing accuracy over the rest). Doing humanline syncing every step
(k = 1) will lead to collapse in this setup because of the smaller models involved; k ∈ [12, 20]
closes the gap with the online reward curves within 1000 steps.

Hyperparameter Value
Optimizer AdamW
AdamW β1 0.9
AdamW β2 0.999
AdamW ϵ 1e-8
Weight Decay 0
Warmup 10%
Learning Rate 1e-6
Max Gradient Norm 1.0
Training Contexts 12K
Batch Size (incl. duplicate prompts due to groups) 256
Group Size 8
Maximum Generation Length 2048
Top-p (Nucleus Sampling) 1.0
Sampling Temperature 0.7
Humanline log ϵP −1.5
Humanline log ϵR 1.5
Humanline k [12, 24]

28

Published as a conference paper at ICLR 2026

Table 3: The performance of Llama3-8B-Instruct trained with all variants of all objectives
on AlpacaEval2, along with the objective-specific hyperparameters. Note that while humanline
alignment usually reduces the average length (Length) of completions, this is not a universal char-
acteristic of humanline variants, but of the data and hyperparameters used; results from training on
a different version of UltraFeedback, where completions are sampled from a different model, lead
to offline+humanline variants having roughly the same length as their offline counterparts (Table 4).
The hyperparameters that require the most adjusting are the learning rate (LR) and the maximum
gradient clipping norm (Max Norm); going from offline to online requires the LR and Max Norm
to be scaled by 0.5x-1x, but adding a humanline variant on top can increase or decrease the Max
Norm (see §5.2.1 for a discussion of why). Objective-specific hyperparameters remain fixed across
variants to allow for a fair comparison, with the exception of Offline GRPO ϵ, which needs to be
much larger when the reference model is fixed.

Objective LR β λD λU Max Norm LC-WR ↑ WR ↑ Length
Offline KTO 5.0e-6 0.25 1.1 1 1.0 17.40 14.13 1658
Offline+Humanline KTO 5.0e-6 0.25 1.1 1 4.0 22.19 14.70 1407
Online KTO 2.5e-6 0.25 1.1 1 0.5 22.45 19.47 1744
Online+Humanline KTO 2.5e-6 0.25 1.1 1 0.1 22.79 18.78 1663

Objective LR β Max Norm LC-WR ↑ WR ↑ Length
Offline DPO 5.0e-6 0.10 1.0 18.07 16.07 1767
Offline+Humanline DPO 5.0e-6 0.10 1.0 24.82 20.18 1637
Online DPO 2.5e-6 0.10 0.5 24.96 22.99 1828
Online+Humanline DPO 2.5e-6 0.10 1.0 26.84 23.64 1774

Objective LR β ϵ Max Norm LC-WR ↑ WR ↑ Length
Offline GRPO 5.0e-6 0.01 0.50 1.0 15.52 12.61 1648
Offline+Humanline GRPO 5.0e-6 0.01 0.15 1.0 25.24 18.11 1488
Online GRPO 5.0e-6 0.01 0.15 1.0 25.05 18.82 1529
Online+Humanline GRPO 5.0e-6 0.01 0.15 0.5 26.10 21.57 1647

Table 4: AlpacaEval2 results when Llama3-8B-Instruct is trained on two different versions
of offline UltraFeedback ArmoRM (Meng et al., 2024), one where completions are generated by
Llama3-8B-Instruct (a separate unaligned version producing offline data, not to be confused
with the policy) and another where completions are generated by Gemma2-9B-Instruct. The
contexts are the same in both cases. Significant differences (p < 0.05) are highlighted in red.
Although the performance is not significantly different in most cases, when trained on the Llama3
completions, the offline+humanline-aligned policies tend to produce shorter completions than their
offline counterparts; when trained on the Gemma2 completions, this is not necessarily the case.
Using humanline variants does not permit one to ignore the data, as it will always make a difference
in the quality of the aligned model.

Llama3-8B-Instruct Data Gemma2-9B-Instruct Data
Objective LC-WR ↑ WR ↑ Length LC-WR ↑ WR ↑ Length
Offline KTO 17.40 14.13 1658 18.10 15.28 1698
Offline+Humanline KTO 22.19 14.70 1407 22.18 20.30 1836
Offline DPO 18.07 16.07 1767 18.63 15.44 1690
Offline+Humanline DPO 24.82 20.18 1637 26.26 21.91 1642
Offline GRPO 15.52 12.61 1648 12.64 10.84 1696
Offline+Humanline GRPO 25.24 18.11 1488 24.24 18.99 1587

29

Published as a conference paper at ICLR 2026

Table 5: AlpacaEval2 results when Gemma2-27B-Instruct is aligned with DPO on two dif-
ferent versions of offline UltraFeedback ArmoRM (Meng et al., 2024), one where completions are
generated by Llama3-8B-Instruct (L3-8B) and another where completions are generated
by Gemma2-9B-Instruct (G2-9B). The contexts are the same in both cases. Note that using
the offline+humanline variant is only able to match the performance of the online variant when the
offline off-policy data comes from the latter of the two sources.

Objective (DPO Variants) LC-WR ↑ WR ↑ Std. Err LR β
Baseline 45.90 35.45 1.54
Offline (L3-8B Completions) 48.59 32.36 1.58 2.5e-6 0.3
Offline+Humanline (L3-8B Completions) 56.27 44.49 1.67 2.5e-6 0.3
Offline (G2-9B Completions) 56.58 45.17 1.68 2.5e-6 0.1
Offline+Humanline (G2-9B Completions) 67.45 61.37 1.64 2.5e-6 0.1
Online 66.49 74.22 1.48 2.5e-6 0.1

Table 6: AlpacaEval2 results when Llama3-8B-Instruct is aligned with humanline DPO with
different choices of humanline clipping hyperparameters ϵP , ϵR. Humanline syncing is done every
step (k = 1) and other hyperparameters are fixed. The performance of the aligned model is fairly
robust to the choice of clipping values in both directions, with most length-controlled winrates (LC-
WR) falling within the standard error of the highest one. However, the length of the outputs does
grow monotonically as the clipping range gets looser.

log ϵP log ϵR LC-WR ↑ Std. Err Length
-2.0 1.5 23.33 1.35 1663
-1.5 1.5 24.82 1.36 1637
-1.0 1.5 24.37 1.33 1588
-1.0 2.0 22.55 1.31 1619
-1.0 3.0 23.98 1.33 1636

Figure 8: When aligning Llama3-8B-Instruct with humanline GRPO, the performance on
instruction-following—measured here as the length-controlled winrate against a GPT-4-Turbo
baseline—is robust to the frequency of humanline syncing up to k = 4. Past that point, syncing less
frequently leads to a log-linear decline in performance. In other setups not shown here, such as our
mathematical reasoning experiments with Qwen2.5-1.5B-Instruct, syncing less frequently
is not only beneficial but necessary, since anything less than k = 12 introduces too much instability
and leads to reward collapse.

20 21 22 23 24 25 26 27

Syncing Frequency (log-scale)

10

15

20

25

30

LC
 W

in
ra

te
 (

%
)

GRPO (offline+humanline)
95% CI

30

Published as a conference paper at ICLR 2026

Figure 9: The performance benefits of the humanline variants of KTO/DPO/GRPO persist at
larger scale with different model families, with Gemma2-27B-Instruct seeing a 1.15–1.30x
improvement in performance. This is slightly smaller than the relative improvement seen by
Llama3-8B-Instruct, and can be ascribed to the former being a better base model.

DPO KTO GRPO

40

45

50

55

60

65

Le
ng

th
-C

on
tr

ol
le

d
W

in
ra

te
 (

%
)

(G
PT

 4
.1

-a
s-

a-
ju

dg
e) +1.16x +1.23x

+1.30x

Offline Offline + Humanline

Figure 10: Trust region-style syncing (Gorbatovski et al., 2024) performs much worse than human-
line syncing. In offline+trust region, we sync the reference model with the policy after the update
every 1024 steps, the best performing setup both in Gorbatovski et al. (2024) and in our hyperpa-
rameter sweep. This suggests that it is not enough to merely sync the reference model; the way in
which it is done matters as well.

DPO KTO GRPO
10

15

20

25

30

LC
 W

in
ra

te
 (

%
)

Offline
Offline + Trust Region
Offline + Humanline

31

Published as a conference paper at ICLR 2026

Figure 11: Average wall-clock time for aligning Llama3-8B-Instruct on UltraFeedback using
FSDP across 4xH100 GPUs, reported with standard error and 95% confidence intervals across 5
random seeds. Note that offline+humanline GRPO takes almost twice as long as offline GRPO
due to the syncing of the reference model weights. However, this is still less than 1/6 of the time
needed to run online GRPO (without any overlapping of training/inference) while reaching the same
performance (Figure 1).

Offline GRPO Online GRPO
0

1

2

3

4

5

6

7

W
al

l-C
lo

ck
 T

im
e

(h
r)

w/o humanline
w/ humanline

32

Published as a conference paper at ICLR 2026

Table 7: Generations from the different DPO-aligned versions of Gemma2-27B-Instruct given
a simple math question. Note that only the offline+humanline output explicitly states the weighting
idea, explains why a simple sum/divide is only valid with equal weights, and then shows the per-
quarter contributions—but without the verbosity of offline DPO.

Prompt In this math problem, we are asked to figure out the percentage of total profits that are made
in each quarter. They are 90% in the first quarter, 92% in the second quarter, 81% in the
third quarter and 88% in the fourth quarter. What is the total profit percent over a period of
time, based upon these quarters?

Baseline Here’s how to calculate the average profit percentage over the year:
1. Add up the profit percentages: 90% + 92% + 81% + 88% = 351%
2. Divide the total percentage by the number of quarters: 351% / 4 = 87.75%
Therefore, the average profit percentage over the year is 87.75%.

Offline Here’s how to calculate the total profit percentage over the year:
1. You can’t directly add percentages like this. Percentages represent parts of a whole,
and simply adding them could result in a number over 100%, which doesn’t make sense in
this context.
2. Think of it as weighted averages: Each quarter’s profit percentage reflects its contribu-
tion to the overall yearly profit. To find the total profit percentage, we need to calculate a
weighted average.
3. Here’s the formula:
* Weighted Average = (Q1% * Q1 Weight) + (Q2% * Q2 Weight) + (Q3% * Q3 Weight)
+ (Q4% * Q4 Weight)

* Where Q1%, Q2%, Q3%, and Q4% are the profit percentages for each quarter.
* The weight for each quarter is typically 1/4 (since there are four quarters in a year).

4. Calculation:
* Total Profit Percentage = (0.90 * 0.25) + (0.92 * 0.25) + (0.81 * 0.25) + (0.88 * 0.25)
* Total Profit Percentage = 0.225 + 0.23 + 0.2025 + 0.22
* Total Profit Percentage = 0.8775 or 87.75%.
Therefore, the total profit percentage over the year is 87.75%.

Offline+Humanline Here’s how to calculate the total profit percentage over the year:
1. Understand it’s not a simple sum: You can’t just add 90% + 92% + 81% + 88% = 351%
and divide by 4. Percentages represent portions of the whole, and simply adding them like
this would imply profits exceeding 100%, which isn’t possible.
2. Weighted Average Approach:
* Think of each quarter’s profit as a weighted contribution: The weight is the proportion
of the year that quarter represents (1/4 or 25%).
* Calculate the weighted profit for each quarter:

* Q1: 90% * 0.25 = 22.5%
* Q2: 92% * 0.25 = 23%
* Q3: 81% * 0.25 = 20.25%
* Q4: 88% * 0.25 = 22%

* Add the weighted profits: 22.5% + 23% + 20.25% + 22% = 87.75%
Therefore, the total profit percentage over the year is 87.75%.

Online Here’s how to calculate the average profit percentage over the year:
1. Add up the percentages: 90% + 92% + 81% + 88% = 351%
2. Divide the total by the number of quarters: 351% / 4 = 87.75%
Therefore, the average profit percentage over the year is 87.75%.
Important Note: This is an average. It doesn’t mean the company made a profit of 87.75%
overall. It shows the average across the quarters, which were individually quite variable.

33

	Introduction
	Background
	Alignment as Prospect Theoretic Optimization
	Clipping Recovers Perceptual Bias
	Humanline Variants
	Method
	Experiments
	Unverifiable Rewards
	Verifiable Rewards

	Limitations & Future Work
	Conclusion
	Related Work
	Proofs
	Algorithms
	Definitions
	Offline DPO/KTO
	Online DPO/KTO
	Offline GRPO
	Online GRPO

	Humanline Implementation
	Humanline Syncing

	Additional Experiments

