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Abstract

Large Vision Language Models (LVLMs) have001
recently achieved superior performance in vari-002
ous tasks on natural image and text data, which003
inspires a large amount of studies for LVLMs004
fine-tuning and training. Despite their advance-005
ments, there has been scant research on the006
robustness of these models against hallucina-007
tion when fine-tuned on smaller datasets. In008
this study, we introduce a new benchmark009
dataset, the Medical Visual Hallucination Test010
(MedVH), to evaluate the hallucination of011
domain-specific LVLMs. MedVH comprises012
five tasks to evaluate hallucinations in LVLMs013
within the medical context, which includes014
tasks for comprehensive understanding of tex-015
tual and visual input, as well as long textual re-016
sponse generation. Our extensive experiments017
with both general and medical LVLMs reveal018
that, although medical LVLMs demonstrate019
promising performance on standard medical020
tasks, they are particularly susceptible to hallu-021
cinations, often more so than the general mod-022
els, raising significant concerns about the re-023
liability of these domain-specific models. For024
medical LVLMs to be truly valuable in real-025
world applications, they must not only accu-026
rately integrate medical knowledge but also027
maintain robust reasoning abilities to prevent028
hallucination. Our work paves the way for fu-029
ture evaluations of these studies.1030

1 Introduction031

Recent advancements in large language mod-032

els (LLMs) have stimulated the development of033

domain-specific LLM applications in various sec-034

tors(Fu et al., 2024; Tran et al., 2024; Bayer et al.,035

2024), including healthcare(Singhal et al., 2023).036

Building on this, researchers have further intro-037

duced large vision language models (LVLMs) that038

combine the robust capabilities of LLMs with the039

1Our dataset is available at https://anonymous.4open.
science/r/MedVH-01B7

processing of visual inputs(Li et al., 2023b; Liu 040

et al., 2023). However, despite the promising per- 041

formance, both LLMs and LVLMs encounter this 042

critical issue known as “hallucination”, where they 043

produce seemingly correct yet unverified responses 044

with great confidence(Bang et al., 2023; Liu et al., 045

2024). Numerous studies have been trying to iden- 046

tify, evaluate, and mitigate the occurrence of hal- 047

lucinations of large-scale models(Wu et al., 2024; 048

Manakul et al., 2023; Shuster et al., 2021; Li et al., 049

2023c; Ye et al., 2023). 050

However, despite the recent emergence of med- 051

ically specialized LVLMs(Moor et al., 2023; Li 052

et al., 2023a), research specifically targeting hal- 053

lucinations in the medical context remains limited. 054

On the one hand, the fine-tuning of LVLMs for 055

domain-specific tasks, such as interpreting chest 056

X-ray images, has demonstrated significant per- 057

formance improvements (Lee et al., 2024; Chen 058

et al., 2024). These advances suggest the poten- 059

tial for a more accessible image analysis system 060

that could not only empower patients with vital 061

information about their health conditions but also 062

provide physicians with a reliable second opinion 063

to support more informed clinical decisions. On 064

the other hand, the susceptibility of these systems 065

to hallucinations poses a serious risk, potentially 066

leading to adverse effects on healthcare decisions, 067

diagnoses, and treatment plans. Developing a test 068

to assess this would necessitate extensive domain 069

expertise and the creation of specifically curated 070

input data, such as images with hard negative di- 071

agnostic results. This underscores the urgent need 072

for focused research to evaluate and enhance the 073

robustness and proficiency of medical LVLMs. 074

This paper aims to bridge this gap by introduc- 075

ing a novel benchmark dataset, Medical Visual 076

Hallucination Test (MedVH), to evaluate LVLMs’ 077

capabilities in dealing with hallucinations in the 078

medical context from two facets. We demonstrate 079

the overall evaluation framework in Figure 1 and 080
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Figure 1: Overall evaluation framework.

a comparison of MedVH with the existing hallu-081

cination benchmark datasets in Table 1. We first082

examine the model’s capability of comprehensive083

understanding of both visual information and tex-084

tual input. Following Umapathi et al. (2023), we085

conduct our test through multi-choice visual ques-086

tion answering (MC-VQA), with multimodal input087

comprising an image, a textual question, and multi-088

ple potential answers. These tasks do not require089

models to generate long responses, but to consider090

the information gathered from the image, together091

with its own medical knowledge, and the input092

textual information. The difficulties lie in distin-093

guishing correct medical findings from misleading094

inputs that could lead to hallucinations, such as095

unrelated images or clinically incorrect premises096

in the questions. Furthermore, we also examine097

the models’ capability to resist the lure to halluci-098

nate when they generate long textual responses. As099

noted by Yifan Li and Wen (2023), hallucinations100

can stem from the high likelihood of co-occurring101

objects, which, in a medical setting, might become102

co-appearing medical terms or diagnoses. Imag-103

inably, the longer the generated content, the more104

likely it will fall into the pitfall of probabilities. We105

conduct this test with medical report generation106

and false confidence justification with MC-VQA,107

both requiring long responses.108

In this work, we focus on the visual task re-109

lated to the chest X-ray (CXR) images, which110

is one of the most studied medical imaging do-111

mains(Çallı et al., 2021; Al-Waisy et al., 2023;112

Alshmrani et al., 2023). As shown in Figure 1,113

we construct the novel MC-VQA benchmark114

dataset by synthesizing a line of publicly available115

datasets, including RAD-VQA(Lau et al., 2018),116

SLAKE(Liu et al., 2021), PMC-VQA(Zhang et al.,117

2023), Path-VQA(He et al., 2020), VQA-Med-118

2021(Ben Abacha et al., 2021), and MIMIC-Diff-119

VQA(Hu et al., 2023), while the report gener-120

ation input samples are randomly drawn from 121

MIMIC-CXR. We conduct experiments with three 122

types LVLMs: general models(ChatGPT-4V2, 123

MiniGPT(Chen et al., 2023), LLaVA(Liu et al., 124

2023)), medical LVLMs (LLaVA-Med(Li et al., 125

2023a), Med-Flamingo(Moor et al., 2023)), and 126

CXR fine-tuned LVLMs (CheXAgent(Chen et al., 127

2024), LLM-CXR(Lee et al., 2024)). Experimen- 128

tal results reveal that, despite the improved per- 129

formance of domain-specific fine-tuned LVLMs in 130

standard medical tasks, they are even more suscep- 131

tible to hallucinations compared to the models in 132

the general domain, raising serious concerns about 133

the reliability of these fine-tuned models in med- 134

ical applications. Through this study, we aim to 135

contribute to the development of more reliable and 136

trustworthy language models within the medical 137

context and promote the practical application of 138

such AI models in real-life healthcare scenarios. 139

The contributions of our study are outlined as 140

follows: 141

• We construct the first benchmark dataset for 142

evaluating the hallucination of LVLMs in the 143

medical context, which evaluates medical vi- 144

sual hallucination through textual-visual un- 145

derstanding and long text generation. 146

• We propose to evaluate LVLMs with five di- 147

verse domain-specific tasks, and a characteri- 148

zation evaluation metric measuring the com- 149

bined capability of reasoning and utilization 150

of medical knowledge. 151

• We perform comprehensive experiments with 152

three types, seven in total state-of-the-art 153

LVLMs, revealing the lack of robustness of ex- 154

isting domain-specific fine-tuned expert mod- 155

els, indicating space for improvement before 156

further integration in real-life applications. 157

2https://openai.com/index/gpt-4/
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Multimodalilty Medical Knowledge Test Diagnosis Level Test Question Type
CHAIR Open
POPE MC
MME MC

Med-Halt MC/Open
SourceCheckup Open

MedVH MC/Open

Table 1: Comparison with existing hallucination benchmarks. Open stands for opentext generation. MC stands
multi-choice question answering.

2 Related Work158

With the advent of LLMs, researchers have ad-159

vanced to developing multimodal large-scale mod-160

els, or LVLMs(Liu et al., 2023; Chen et al.,161

2023). Several efforts have also been made to162

adapt such LVLMs for use in the medical field,163

such as LLaVA-med(Li et al., 2023a) and CheX-164

agent(Chen et al., 2024). However, numerous ef-165

forts have highlighted the risk of hallucinations166

in large models, casting doubt on their reliabil-167

ity in critical fields such as healthcare. Mündler168

et al. (2024) have identified and suggested methods169

to address self-contradiction in LLMs. Umapathi170

et al. (2023) introduced Med-Halt to assess reason-171

ing and memory-based hallucinations with medical172

entrance exams, finding that no model achieved sat-173

isfactory accuracy across most tasks. Yifan Li and174

Wen (2023) developed POPE to evaluate visual hal-175

lucinations in object detection in general images,176

noting LVLMs often identify objects that frequently177

appear or co-occur in their training datasets. De-178

spite these efforts, research into hallucinations in179

medical vision-language tasks is still limited.180

3 Hallucination Evaluation181

In this section, we introduce our evaluation frame-182

work for assessing hallucinations in LVLMs within183

the medical domain. The overview of this frame-184

work is illustrated in Figure 1. We have developed a185

new benchmark dataset, MedVH, designed to eval-186

uate the models across two distinct facets through187

five tasks that probe key functionalities. The fol-188

lowing sections will offer a detailed explanation of189

the framework, the tasks associated with each facet190

of evaluation, and the metrics used for assessment.191

3.1 Overall Evaluation Framework192
As demonstrated in Figure 1, we evaluate seven193

state-of-the-art LVLMs from two facets, each corre-194

sponding to a different type of hallucination in the195

medical context. The first facet examines the mod-196

els’ robustness against hallucinations in compre-197

hensive understanding of medical visual informa-198

tion and textual input through MC-VQA tasks, such 199

as disease identification and severity assessment. 200

The second facet focuses on hallucinations occur- 201

ring in long text generation, particularly with false 202

confidence justification and medical report genera- 203

tion. We detail each task within the MedVH dataset 204

in Figure 2, and provide examples of prompts used 205

in these tasks in Figure 9 of Appendix E. The 206

models’ robustness against hallucinations will be 207

evaluated considering their ability to leverage the 208

medical knowledge base and their model size. 209

3.2 Medical Visual and Text Understanding 210

We begin by assessing the presence of hallucina- 211

tions in LVLMs with visual and textual comprehen- 212

sion. Specifically, we evaluate the models’ capa- 213

bility to discern irrelevant or incorrect inputs and 214

detect misleading instructions. To achieve this, we 215

introduce three MC-VQA tasks, which involves 216

multi-modal input comprising both an image and 217

a textual question. The models are tested in the 218

following settings. 219

Wrongful Image This task is designed to evalu- 220

ate the model’s capability to recognize inconsisten- 221

cies between the image content and the associated 222

question, in which we replace the corresponding 223

images with unrelated ones. We either randomly 224

select a wrongful medical image from a different 225

genre or choose an adversarial X-ray image of a 226

different organ. For instance, in the task of disease 227

identification using chest X-ray images, a randomly 228

chosen image could be a retinal image or a picture 229

of cells, while an adversarial image would be an 230

X-ray image of another organ that does not exhibit 231

the targeted disease. 232

None Of The Above In this task, models are 233

presented with a multi-choice question where the 234

correct answer is explicitly listed as ’None of the 235

above’. This setup requires the model to recognize 236

and select this option, effectively testing its ability 237

to discern irrelevant or incorrect options presented 238

in the choices. 239
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Figure 2: Detailed illustration of evaluation tasks in MedVH.

Clinically Incorrect Questions This task as-240

sesses the ability of LVLMs to correctly align the241

specific clinical findings visible in images with242

the descriptions provided in the questions. In this243

scenario, the proposed question inquires about a244

specific feature that, contrary to what is suggested,245

does not appear in the corresponding image. This246

task not only tests the model’s capability for in-247

terpreting medical images with domain-specific248

knowledge but also demands a strong reasoning249

ability to identify the contradiction.250

3.3 Medical Text Generation251

We also evaluate the appearance of hallucination in252

the long textual response of the LVLMs under the253

following two settings.254

False Confidence Justification This task255

presents a question and a randomly suggested256

wrong answer to the language model, and then257

asks the model to provide detailed explanations258

for its correctness or incorrectness. The model259

is supposed to suggest an alternative answer if it260

decides the suggested answer is incorrect. This261

test specifically examines the language model’s262

propensity to express answers with unwarranted263

certainty in the input text. 264

General Report Generation In this task, we 265

prompt the LVLMs to generate medical reports 266

based on CXR images. The objective is for the 267

models to accurately identify diseases visible in 268

the image. Any mention of diseases not present in 269

the image will be considered a hallucination. This 270

setup evaluates the models’ precision in recogniz- 271

ing and reporting medical conditions from visual 272

inputs while generating long textual responses. 273

3.4 Data Synthesis and Statistics 274

For each of the MC-VQA tasks and the False Con- 275

fidence Justification task with multi-choice ques- 276

tions, we establish our benchmark by randomly 277

sampling 500 questions from four publicly avail- 278

able medical VQA datasets: RAD-VQA, SLAKE, 279

PMC-VQA, and MIMIC-Diff-VQA. As for the un- 280

related medical images and adversarial X-ray im- 281

ages in the Wrongful Imgae task, we randomly 282

select the images Path-VQA and Med-VQA-2021 283

respectively. Among these datasets, RAD-VQA, 284

SLAKE, and PMC-VQA mainly focus on medical 285

knowledge-based questions, with only a small por- 286

tion of general diagnosis-level questions like “What 287

is abnormal about the lung?”. On the other hand, 288
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MIMIC-Diff-VQA, derived from de-identified pa-289

tient data in MIMIC-CXR, includes a larger pro-290

portion of specific diagnostic-level questions, like291

“Where in the image is the pleural effusion located?”292

The details and statistics of these datasets are pre-293

sented in Table 4 of subsection C.1.294

Except for PMC-VQA, the other three datasets295

do not provide options for each question. For296

MedVH, we therefore generate answer choices297

for the MC-VQA questions by randomly sampling298

from the answers associated with the same ques-299

tions. In this manner, all the datasets would be300

eligible being the source of the Wrongful Imgae301

task and the False Confidence Justification task.302

However, due to the limited number of repeated303

questions in RAD-VQA and SLAKE, excluding304

the ground truth answer to create a None Of The305

Above option would often leave only one plausible306

answer, reducing it to a true-or-false question. In307

this case, only PMC-VQA and MIMIC-Diff-VQA308

are utilized in the None Of The Above task. Sim-309

ilarly, due to the limited availability of diagnosis-310

level questions and the absence of hard-negative im-311

ages related to the specified diseases, only MIMIC-312

Diff-VQA is included in the Clinically Incorrect313

Question task. We demonstrate the distribution314

of question sources in Figure 8 of subsection C.1.315

As for the medical report generation, we randomly316

sampled 200 CXR images from MIMIC-CXR.317

3.5 Evaluation318

Multi-choice VQA. For each multi-choice ques-319

tion, there is a designated correct answer. We quan-320

tify the model’s success rate in selecting this an-321

swer using the metric acch. A higher acch score322

indicates greater resistance of the model to halluci-323

nations. Additionally, we also assess the model’s324

performance on regular MC-VQA tasks as baseline325

experiments, which involve standard CXR images,326

correct answers among the options, and questions327

based on accurate clinical assumptions, serving to328

evaluate the model’s medical knowledge. We repre-329

sent the models’ accuracy on this baseline task with330

accb. Ideally, an LVLM should demonstrate both331

a broad medical knowledge base and the ability to332

generate responses free from hallucinations.333

Characterization score. In this study, we intro-334

duce the characterization score as a comprehensive335

evaluation metric, which is designed to effectively336

balance the requirements of robustness against hal-337

lucinations with the accuracy of medical knowl-338

edge. Analogous to the way precision and recall339

are combined in the Micro-F1 metric, the charac- 340

terization score, char_score, is calculated as the 341

weighted harmonic mean of acch and accb: 342

char_score =
wh + wb
wh
acch

+ wb
accb

=
(wh + wb)× acch × accb
wh × acch + wb × accb

, 343

344
where wh, wb ∈ [0, 1] are weights for hallucination 345

test accuracy acch and baseline test accuracy accb 346

respectively, satisfying wh+wb = 1. Naturally, the 347

characterization score, with assigned equal weights 348

to acch and accb, typically exhibits a low value 349

when either of these scores is low, as demonstrated 350

in Figure 7 within Appendix A. This observation 351

underscores the significant concurrent dependence 352

of the characterization score on both metrics. More- 353

over, the weights can be tailored to suit the specific 354

requirements of different applications, allowing for 355

flexibility in adapting the model to varied use cases. 356

False Confidence Justification. For evaluation, 357

we will measure the propensity of LVLMs to dis- 358

agree with a suggested incorrect answer, denoted as 359

rdisagree. Additionally, we will calculate rcorrect, 360

the ratio indicating how often the alternative an- 361

swer proposed by the LVLMs is correct. We will 362

also establish a baseline, rbaseline, which repre- 363

sents the accuracy of the LVLMs when responding 364

to the same set of questions without any suggested 365

incorrect answers. 366

General Report Generation. We incorporate 367

CHAIR(Rohrbach et al., 2018) to calculate the 368

proportion of diseases that appear in the report 369

but not the CXR image. Specifically, we utilize 370

CheXpert(Irvin et al., 2019) to label the generated 371

reports, and measure both instance-level hallucina- 372

tion CHAIRI and the sentence-level hallucination 373

CHAIRS as defined in the following equations: 374

CHAIRI =
|{hallucinated diseases}|
|{all mentioned diseases}|

, 375

CHAIRS =
|{sentences with hallucinated diseases}|

|{all sentences}|
. 376

4 Main Results 377

4.1 Visual and Textual Cross-understanding 378

We visualize the evaluation results of the Medical 379

Visual and Text Understanding test in the left plots 380

of Figure 3, which includes three MC-VQA tasks 381

along with their averaged performance in the sub- 382

plots. Additionally, the numeric results are detailed 383

in Table 5 of Section D. It is observed that CheX- 384

agent excels in the baseline test—where the input 385
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Figure 3: Results on MedVH dataset. (left) Accuracy of hallucination VQA tasks compared with accuracy of regular
MC-VQA tasks. (right) Performance on characterization score considering the model size.

Wrong Suggested Answer Correct Suggested Answer No Suggested Answer
LVLM rdisagree rcorrect rdisagree rcorrect rbaseline

GPT-4V 0.746 0.366 0.534 0.466 0.378
LLaVa 0.562 0.250 0.504 0.496 0.360

MiniGPT 0.938 0.490 0.950 0.050 0.326
LLaVa-Med 0.308 0.172 0.540 0.460 0.244
LLM-CXR 0.376 0.220 0.310 0.690 0.256
CheXagent 0.964 0.094 0.768 0.232 0.462

Table 2: Performance on False Confidence Justification. We suggest the incorrect answer to the model in the first
two columns. For baselines, we suggest the correct answer to the model in the middle two columns, and do not
suggest an answer in the prompt in the last column. We highlight the highest accuracy in each scenario.

image accurately matches the question and the cor-386

rect answer is provided among the options—yet it387

lacks robustness when faced with inputs that could388

lead to hallucination. In contrast, Chat-GPT4V389

exhibits the most robustness against misleading390

inputs but falls short in displaying medical knowl-391

edge, particularly for diagnosis-level queries in the392

Clinically Incorrect Question task. It shows excep-393

tional performance in handling wrongful images,394

likely because this task primarily tests the model’s395

ability to differentiate between images of various396

organs and modalities, which demands minimal397

medical knowledge. The overall characterization398

scores of the LVLMs are also evaluated against399

their model size. The right plot of Figure 3 shows400

that CheXagent, despite having a smaller parame-401

ter size, performs comparably to ChatGPT-4V by402

achieving higher scores in both the None Of The403

Above and Clinically Incorrect Question tasks.404

As for the rest of the models, LLaVa ap-405

pears somewhere in the middle of CheXagent and406

ChatGPT-4V in terms of average performance (left407

subplot) and third in characterization score (right408

subplot). This is attributed to its strong perfor-409

mance in the None Of The Above task, a result of 410

its propensity to select “None of the above”. This 411

behavior will be discussed further in Section E. Al- 412

though LLaVa achieves the second highest accb 413

scores in all tasks, this is primarily due to its ten- 414

dency to ignore distractor options such as "This 415

is not a suitable question for the image", opting 416

instead for a random choice among the remaining 417

options. In contrast, models like MiniGPT find all 418

options equally reasonable due to a lack of medical 419

knowledge. Both LLaVa-Med and LLM-CXR also 420

fail to show competitive performance, underscoring 421

that instruction tuning based solely on general med- 422

ical knowledge, or a limited amount of tasks and 423

fine-tuning data, does not just compromise robust- 424

ness against hallucination but also fails to establish 425

a solid medical knowledge base. Note that we ex- 426

clude the performance of Med-Flamingo from this 427

analysis, as it cannot process MC-VQA tasks in 428

a zero-shot setting, and its performance under the 429

few-shot learning is highly dependent on the pro- 430

vided content, which could be unfair competition 431

for the other models. 432
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CHAIRI CHAIRS F1

GPT-4V 0.665 0.107 0.338
LLaVa 0.760 0.001 0.194

MiniGPT 0.938 0.149 0.040
LLaVa-med 0.737 0.293 0.218

Med-Flamingo 0.831 0.695 0.133
LLM-CXR 0.570 0.362 0.401
CheXagent 0.461 0.252 0.506

Table 3: Performance on report generation.

4.2 Long Text Generation433
We present the models’ performance on the False434

Confidence Justification in Table 2. CheXagent435

once again showcases the most reliable medical436

knowledge base in baseline experiments of the437

False Confidence Justification task without sug-438

gested answers. However, it exhibits a significantly439

higher tendency to disagree when an answer is sug-440

gested. Notably, the probability of disagreement441

drops when the correct answer is suggested, indi-442

cating that it can recognize the correct answer to a443

certain degree. MiniGPT also shows a consistent444

pattern of disagreement across all suggested an-445

swers, but with no reduction in disagreement when446

the correct answer is provided. This performance,447

coupled with an incompatible rbaseline, indicates448

a lack of both medical knowledge and reasoning449

capabilities. In contrast, LLM-CXR performs opti-450

mally when the correct answer is suggested. How-451

ever, its performance drops with incorrect or no452

suggested answers, which indicates that it may pos-453

sess the requisite medical knowledge, but lacks the454

reasoning capabilities to independently identify the455

correct answer, possibly due to the limited num-456

ber of parameters and fine-tuning tasks. Notably,457

LLaVa-Med displays an even higher propensity to458

disagree with the correct answer and achieves the459

lowest scores when no answer is suggested, even460

falling below LLaVA’s performance. This indicates461

that its fine-tuning not only failed to develop a co-462

herent medical knowledge base but also impaired463

its original reasoning abilities.464

The performance of the Report Generation task465

is demonstrated in Table 3. General LVLMs, in-466

cluding chat-GPT4V, fail to achieve meaningful467

performance with a compatible F1 score, indicat-468

ing that this is indeed the task that requires the469

most medical knowledge and domain fine-tuning.470

On the other hand, since there is no misleading471

input in this task, CheXagent again outperforms472

the others, but still has a nearly 50% instance-level473

hallucination. In the meantime, LLM-CXR can474

also generate meaningful reports with a compatible 475

F1 score, but with a much higher CHAIR score. 476

4.3 Instruction Fine-tuning 477

Based on our experimental findings, there is still 478

significant potential for improvement in the ro- 479

bustness of LVLMs against hallucinations within 480

the medical domain. Our experiments illustrate 481

a notable trade-off between the reasoning capa- 482

bilities developed from extensive general-domain 483

training and the specialized knowledge obtained 484

through domain-specific fine-tuning. The reason- 485

ing ability of a model is critical for its robustness 486

against inputs that may induce hallucinations. Po- 487

tential enhancements include increasing the model 488

size and conducting comprehensive training with 489

a wide variety of general images. Additionally, 490

the source and volume of medical training data 491

are crucial factors. Specifically, LLaVA-Med does 492

not demonstrate competitiveness in any task, in- 493

dicating that reliance solely on general PMC data 494

to capture medical concepts is insufficient. On 495

the other hance, the inclusion of diverse domain- 496

specific training tasks and data sources is vital for 497

enriching the medical knowledge base of LVLMs. 498

This point is exemplified by CheXagent, whose 499

superior performance highlights the benefits of 500

instruction-based fine-tuning in endowing models 501

with the necessary knowledge. However, despite its 502

strong performance in regular medical tasks, CheX- 503

agent’s tendency to produce hallucinated outputs 504

poses significant concerns for its deployment in 505

real-life settings. Future research should aim to 506

preserve the model’s reasoning ability throughout 507

the fine-tuning process, thus developing a more 508

reliable expert system. 509

5 Exploratory Analysis 510

5.1 Effects of Temperature Parameter 511

We examine the impact of the hyperparame- 512

ters, temperature, on model-induced hallucinations. 513

Specifically, we employed the Chat-GPT4V and 514

assessed its performance over various temperature 515

settings on the False Confidence Justification task, 516

which did not provide a suggested answer. The 517

results, depicted in Figure 4, show minimal varia- 518

tion in accuracy across different temperature values. 519

These findings suggest that while temperature ad- 520

justments do influence the model’s accuracy, their 521

overall effect is relatively minor, which underscores 522

the importance of other factors in mitigating hallu- 523

cinations within medical vision language tasks. 524
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Figure 4: Variation in accuracy for different temperature
values of Chat-GPT4V.

Figure 5: Variation in performance against hallucination
for different wording of choices. Original means the
ideal extra choice for the question, which should have
been “This is not a suitable question for the image” for
the Wrongful Image task and “The question contains a
clinically incorrect premise” for the Clinically Incorrect
Question task, respectively. NOTA indicates we substi-
tute that choice with “None of the above”.

5.2 Sensitivity to Prompt525

In Figure 5, we replaced the original options in526

the Wrongful Image and Clinically Incorrect Ques-527

tion tasks with “None of the above”, which orig-528

inally were “This is not a suitable question for529

the image” and “The question contains a clinically530

incorrect premise”, respectively. As the revised531

choices are integral to the input textual prompts for532

these models, our objective is to evaluate LVLMs’533

sensitivity to the nuances of prompt wording. Al-534

though both the substituted and original options535

serve to negate the correctness of other available536

choices, they do not convey the same message.537

Consequently, the observed decrease in accuracy538

for Chat-GPT4V is both understandable and antic-539

ipated. Conversely, the notable performance im-540

provement in LLaVA once again underscores its541

propensity to select ’None of the above’. Addition-542

ally, the slight improvement in CheXagent suggests543

that simpler expressions of incorrectness are more544

easily interpreted by this model, which also points545

to a limitation in its reasoning ability.546

However, this sensitivity to prompt wording547

should not be viewed exclusively as a negative at-548

tribute. In Figure 6, we incorporated a hint within549

Figure 6: Variation in performance against hallucination
for the False Confidence Justification task.

the prompt that suggests the possibility of an in- 550

correct response, which led to improved perfor- 551

mance across all models, except MiniGPT. This 552

indicates that careful prompt design can enhance 553

model robustness—a critical aspect in real-world 554

applications involving both patients and physicians. 555

By incorporating user-specific information either 556

in the prompt or even during training, the model 557

can be tailored to handle misleading inputs more 558

effectively. For example, while there is a poten- 559

tial for a patient to upload an incorrect image, the 560

likelihood of such an error by a physician is signif- 561

icantly lower. Acknowledging these user-specific 562

scenarios during model training or in the prompt 563

structure could substantially increase the model’s 564

resilience and accuracy in practical settings. 565

6 Conclusion 566

This research investigates hallucination phenomena 567

in domain-specific large vision-language models 568

(LVLMs) after fine-tuning on small datasets. We 569

introduce the MedVH benchmark dataset, which 570

includes five types of tasks designed to evaluate 571

hallucinations, and we compare the performance 572

of both general and medical LVLMs using this 573

dataset. The experimental results indicate that med- 574

ical LVLMs experience more hallucinations than 575

general LVLMs, despite achieving better perfor- 576

mance on standard medical tasks. This inconsis- 577

tency between hallucination and medical task per- 578

formance raises significant concerns about the relia- 579

bility of these domain-specific models, particularly 580

in critical settings like the medical field. By re- 581

leasing MedVH, we aim to encourage extensive ex- 582

ploration of hallucination tasks in future research, 583

ultimately advancing the development of reliable 584

medical LVLMs. 585
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Limitations586

Despite the comprehension of our proposed bench-587

mark dataset, there are still some limitations.588

Firstly, even though our benchmark dataset incorpo-589

rates multiple public datasets from various sources,590

there may still be potential for data bias. This is591

a prevalent challenge in the medical field due to592

the naturally unbalanced distribution of diagnosis593

results. Secondly, all datasets used to construct594

MedVH are publicly available, which may result595

in an overlap with the training data of some Large596

Vision-Language Models (LVLMs), such as Chat-597

GPT, which could affect the fairness and accuracy598

of our evaluations. Future studies could benefit599

from assessing these models on a private dataset600

that more closely mirrors real-world scenarios.601

Ethics Statement602

In this study, we introduce an evaluation frame-603

work for hallucination in Large Vision Language604

Models (LVLMs) within the medical domain and605

develop a benchmark dataset. Our framework aims606

to enhance the understanding of LVLMs’ capabil-607

ities and improve their evaluation prior to imple-608

mentation in real-world medical applications. We609

constructed our dataset from multiple publicly ac-610

cessible sources, including MIMIC-Diff-VQA and611

MIMIC-CXR. To adhere to the Health Insurance612

Portability and Accountability Act (HIPAA) stan-613

dards, all protected health information has been614

thoroughly anonymized. Consistent with strict pri-615

vacy protocols, we refrained from directly sharing616

raw data with the OpenAI API and instead con-617

ducted our experiments via Azure OpenAI, per the618

recommendations by PhysioNet3. Furthermore, we619

will not distribute the raw data from MIMIC-CXR620

through any unauthorized channels, such as GitHub.621

The benchmark dataset will be made available on622

PhysioNet following the publication of this work.623
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A Visualization of Characterization Score 782

We visualize the characterization scores with equal 783

weights in Figure 7. It is evident from the visualiza- 784

tion that the charscore remains low if either acch 785

or accb is low, indicating a strong dependency on 786

both metrics. Consequently, this suggests that the 787

charscore can effectively function as a balancing 788

metric between robustness against hallucinations 789

and the utility of the medical knowledge base. 790

B Model Implementation 791

In our experimental setup, we utilized ChatGPT-4V, 792

accessed via the OpenAI Azure API 4, specifically 793

4https://learn.microsoft.com/en-us/azure/ai-
services/openai
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Figure 7: Characterization score for wh = wb = 0.5.

employing the turbo-2024-04-09 version with the794

temperature parameter set to 0.2. Additionally, we795

integrated several local large vision language mod-796

els (LVLMs): MiniGPT-v2, LLaVA v1.5, LLaVA-797

Med v1.5, Med-Flamingo, LLM-CXR, and CheX-798

agent, all configured according to their default set-799

tings. We conducted all model evaluations on an800

NVIDIA A100 GPU, equipped with 80GB of mem-801

ory.802

C Dataset Statistics803

C.1 Source Dataset804

In Table 4, we present the statistics for all datasets805

used to develop the MC-VQA benchmark of806

MedVH. Of these datasets, only PMC-VQA fea-807

tures multiple-choice options for its questions. For808

the other datasets, we had to generate options809

ourselves. Notably, MIMI-Diff-VQA, based on810

MIMIC-CXR, is the only one with a considerable811

amount of detailed diagnosis-level questions like812

“where in the image is the pleural effusion located?”813

or “what level is the cardiomegaly in the image?”,814

as well as hard negative CXR samples of pleural815

effusion and cardiomegaly. Thus, we specifically816

utilize MIMI-Diff-VQA to construct the Clinically817

Incorrect Question task.818

C.2 MedVH Benchmark Dataset819

We visualize the distribution of question sources820

in Figure 8 of subsection C.1. Due to the limited821

number of repeated questions in RAD-VQA and822

SLAKE, we only utilize PMC-VQA and MIMIC-823

Diff-VQA in the None Of The Above task. Sim-824

ilarly, due to the limited availability of diagnosis-825

level questions and the absence of hard-negative im-826

ages related to the specified diseases, only MIMIC- 827

Diff-VQA is included in the Clinically Incorrect 828

Question task. 829

D Numeric Results 830

We present the numeric results of MC-VQA tasks 831

in Table 5 832

E Prompts 833

We exhibit example prompts in Figure 9. We 834

change the questions, choices, and suggested an- 835

swers accordingly at runtime. 836
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Dataset Modality Source Question Type Images #QA paris
VQA-RAD Radiology MedPix® database QA 0.3k 3.5k

SLAKE Radiology MSD, ChestX-ray8, CHAOS QA 0.7k 14k
VQA-Med-2021 Radiology MedPix® database QA 5k 5k

MIMIC-Diff-VQA CXR MIMIC-CXR QA 164k 700k
PathVQA Pathology PEIR Digital Library QA 5k 32.8k

PMC-VQA Mixture PubMed Central® MC 149k 227k

Table 4: Statistics of Source Tables.

(a) Wrongful Image (b) None Of The Above

(c) Clinically Incorrect Question (d) False Confidence Justification

Figure 8: Source distribution of multi-choice questions.
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Hallucination Baseline Characterization Score
LVLM WI NOTA ID WI NOTA ID WI NOTA ID

GPT-4V 0.978 0.244 0.356 0.244 0.262 0.186 0.391 0.252 0.244
LLaVa 0.014 0.478 0.020 0.344 0.280 0.366 0.027 0.353 0.038

MiniGPT 0.024 0.108 0.006 0.326 0.124 0.030 0.045 0.115 0.010
LLaVa-med 0.110 0.028 0.004 0.216 0.164 0.168 0.146 0.048 0.008
LLM-CXR 0.104 0.094 0.046 0.220 0.130 0.244 0.141 0.109 0.077
CheXagent 0.154 0.258 0.182 0.410 0.458 0.540 0.224 0.330 0.272

Table 5: Numeric results of Medical Visual and Text Understanding test. Note that WI and ID denote wrongful
image and incorrect diagnose respectively.

13



Figure 9: Examples of the prompt.
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