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Abstract001

This paper presents a novel approach named002
Contextually Relevant Imputation leveraging003
pre-trained Language Models (CRILM) for004
handling missing data in tabular datasets, com-005
plementing existing numeric-estimation meth-006
ods. Instead of relying on traditional numerical007
estimations, CRILM uses pre-trained language008
models (LMs) to create contextually relevant009
descriptors for missing values. This method010
aligns datasets with LMs’ strengths, allowing011
large LMs to generate these descriptors and012
small LMs to be fine-tuned on the enriched013
datasets for enhanced downstream task perfor-014
mance. Our evaluations demonstrate CRILM’s015
superior performance and robustness across016
MCAR, MAR, and challenging MNAR scenar-017
ios, with up to a 10% improvement over the018
best-performing baselines. By mitigating bi-019
ases, particularly in MNAR settings, CRILM020
improves downstream task performance and021
offers a cost-effective solution for resource-022
constrained environments.023

1 Introduction024

‘Well! I’ve often seen a cat without a grin,’025

thought Alice; ‘but a grin without a cat!026

It’s the most curious thing I ever saw in027

all my life!’028

Lewis Carroll, Alice’s Adventures in Won-029

derland (1865)030

Missing data in tabular datasets is a ubiquitous031

problem often arising from real-life data collection032

processes (Kumar et al., 2017). Handling missing033

data is crucial for downstream machine learning034

(ML) tasks, necessitating data imputation to fill in035

missing entries with plausible values. However,036

imputation that overlooks the data context can037

introduce unintended biases, leading to aberrant038

model behavior (Schelter et al., 2018, 2021; García-039

Laencina et al., 2010; Stoyanovich et al., 2020; Yang040

et al., 2020; Abedjan et al., 2018).041

Data may be missing because it was never col- 042

lected or because collected data was lost. These 043

causes are driven by domain-specific contexts. 044

For example, in the medical domain, data might 045

not be collected due to various reasons, such as a 046

patient’s characteristics not being recorded during 047

a visit, some tests not being performed, intentional 048

omissions by patients, or the difficulty and danger 049

of acquiring certain information (Yoon et al., 2017; 050

Alaa et al., 2018; Yoon et al., 2018b). Data loss can 051

occur through application or transmission errors 052

or due to data integration errors. 053

Typically, imputation methods estimate missing 054

values based on observed data, such as a patient’s 055

blood pressure and heart rate (Yoon et al., 2018c). 056

However, missing data do not always depend on 057

the observed data. Rubin’s widely used categoriza- 058

tion of missingness mechanisms identifies three 059

cases (Rubin, 1976): missing completely at random 060

(MCAR), missing at random (MAR), and missing 061

not at random (MNAR). In MCAR, the missing- 062

ness is independent of the data, whereas in MAR, 063

the probability of being missing depends only on 064

observed values. In MNAR, the probability of miss- 065

ingness depends on unobserved values, and impu- 066

tation in this case can introduce significant biases 067

to the data. Therefore, to achieve accurate impu- 068

tation, it is crucial for methods to account for the 069

specific context of the missingness. 070

Existing imputation methods use various nu- 071

meric estimation techniques to capture the data 072

context, preserving joint and marginal distribu- 073

tions of the imputed data. Many methods, in- 074

cluding traditional statistical approaches and ma- 075

chine/deep learning methods, aim to learn the 076

joint distribution of the data either implicitly or ex- 077

plicitly (Van Buuren et al., 2006; Yoon et al., 2018a; 078

Gondara and Wang, 2018; Mattei and Frellsen, 079

2019; Nazabal et al., 2020; Zhao et al., 2023). How- 080

ever, these methods have several limitations: often 081

requiring fully observed training data, being chal- 082
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lenging to implement, needing separate models083

for each feature, and lacking support for column-084

specific modeling. See Section 3 for more details.085

Moreover, most approaches, with notable excep-086

tions (Kim and Ying, 2018; Mohan and Pearl, 2019),087

primarily address MCAR and MAR data, strug-088

gling with the more challenging yet prevalent089

MNAR case (Muzellec et al., 2020).090

Parallel to numeric estimation-based imputa-091

tion, we explore alternative methods for capturing092

data context to handle missing values. Specifi-093

cally, we examine whether it is possible to bypass094

modeling the data distribution entirely. In sce-095

narios where numeric-estimation methods may096

introduce bias, such as in MNAR settings, or prove097

inadequate, we develop an approach that avoids098

direct estimation of missing values. Instead of es-099

timating missing values directly, we investigate100

whether an artificial intelligence (AI) model can101

implicitly handle missingness through its prior102

general knowledge.103

To address these challenges, we explore the po-104

tential of utilizing general-purpose pre-trained lan-105

guage models (LMs) (Brown et al., 2020; Chowd-106

hery et al., 2022; Touvron et al., 2023a; OpenAI,107

2023) for handling diverse missingness in tabular108

datasets. These models possess expansive knowl-109

edge (Raffel et al., 2020; Roberts et al., 2020), rea-110

soning capabilities (Chowdhery et al., 2022; Wei111

et al., 2023; Bhatia et al., 2023), and extensive lin-112

guistic expertise (Petroni et al., 2019; Mahowald113

et al., 2024), and have demonstrated exceptional114

performance across various downstream natural115

language processing (NLP) tasks (Bubeck et al.,116

2023; Raffel et al., 2020; Yang et al., 2024a). Our117

aim is to leverage the advanced capabilities of LMs118

to enhance the performance of downstream tasks119

on tabular data with missing values.120

To achieve this goal, we approach the down-121

stream task by treating it as an NLP problem and122

harnessing the capabilities of LMs to handle miss-123

ing values. We propose a novel method named124

Contextually Relevant Imputation leveraging pre-125

trained LanguageModels (CRILM), which oper-126

ates through a dual-phase process. Initially, large127

LMs (LLMs), such as those with more than 10 bil-128

lion parameters, generate contextually relevant129

natural language descriptors for missing values.130

For instance, in the UCI Wine dataset (Aeberhard131

and Forina, 1991), a contextually relevant descrip-132

tor for missing values in the feature malic acid133

could be: Malic acid quantity missing for this wine134

sample. These descriptors replace missing values, 135

transforming numeric datasets into natural lan- 136

guage contextualized formats, thereby aligning 137

the data with the strengths of LMs and augment- 138

ing their processing capabilities. 139

Subsequently, these missingness-aware textual 140

datasets are used for solving downstream tasks 141

such as classification, modeled as NLP tasks. The 142

textual datasets serve as the foundation for fine- 143

tuning smaller pre-trained LMs such as those 144

with less than 10 billion parameters, showcasing 145

a unique and effective use of language models be- 146

yond their conventional applications. By incor- 147

porating contextually relevant descriptors for 148

missing data, CRILM addresses variability and 149

specificity across different domains and navigates 150

the complexities of various missingness mecha- 151

nisms. 152

Recently, Transformer-based (Vaswani et al., 153

2017) methods have been proposed to handle miss- 154

ing values in tabular data, such as masked Trans- 155

former for generating synthetic tabular data (Gu- 156

lati and Roysdon, 2023) and pre-training LMs using 157

enriched tabular data (Yang et al., 2024b). How- 158

ever, these approaches overlook diverse missing- 159

ness patterns, raising questions about their ability 160

to address the biases introduced by the imputation 161

methods and whether downstream task perfor- 162

mance improves as a result. Through the innova- 163

tive integration of LMs into the data imputation 164

process, CRILM aims to deliver a more nuanced, 165

accurate, and reliable method for handling miss- 166

ing data in a context-aware fashion, essential for 167

improving the quality of downstream NLP tasks. 168

Our approach offers a cost-effective solution 169

by leveraging publicly available LLMs for zero- 170

shot inference and employing smaller LMs for 171

downstream tasks, which can be efficiently fine- 172

tuned in low-resource environments. This feasi- 173

bility is demonstrated through experiments using 174

accessible resources like ChatGPT-3.5 for infer- 175

ence and smaller LM-based fine-tuning, ensuring 176

efficient implementation. 177

To evaluate CRILM’s effectiveness, we analyze 178

its performance across three missing data mech- 179

anisms—MCAR, MAR, and MNAR (Rubin, 1976). 180

CRILM is compared against various existing impu- 181

tation methods, investigating different phrasing 182

choices for missingness descriptors in LM-based 183

tasks. We also explore the influence of decoder- 184

only and encoder-decoder pre-trained LMs on 185

downstream transfer learning, assessing their im- 186
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pact on task performance. Our empirical studies187

address two key research questions (RQs):188

• [RQ1]: To what extent does CRILM effectively189

perform in imputing missing values across dis-190

tinct missingness mechanisms (MCAR, MAR,191

and MNAR), compared to existing methods, in192

terms of accuracy and robustness on varied193

datasets?194

• [RQ2]: How do feature-specific versus generic195

missingness descriptors impact the performance196

of LM-based downstream tasks?197

The contributions of this work are multifaceted.198

Firstly, CRILM introduces an innovative impu-199

tation approach for missing values in tabular200

datasets, running parallel to existing numeric-201

estimation-based methods. By utilizing LMs to202

generate context-specific descriptors for missing203

data, CRILM sets a new benchmark in data im-204

putation, departing from traditional numerical205

methods. Secondly, our empirical evaluation high-206

lights CRILM’s superior performance over existing207

methods across varied datasets and missingness208

patterns, particularly excelling in MNAR settings209

where biases introduced by numeric-estimation-210

based techniques can be significant. Specifically,211

CRILM demonstrates a substantial performance212

lead of up to 10% over the best-performing base-213

line imputation method in the challenging MNAR214

scenarios. Thirdly, we advance the understand-215

ing of the NLP capabilities of pre-trained LMs by216

demonstrating their potential in handling com-217

plex data imputation tasks. Additionally, the cost-218

effectiveness of our approach, achieved by leverag-219

ing smaller LMs for transfer learning, enhances its220

practicality and accessibility. Lastly, our analysis221

comparing feature-specific and generic descriptors222

offers insights into optimizing LM performance223

for imputation tasks, emphasizing contextual ac-224

curacy. These contributions advance data prepro-225

cessing techniques and open novel pathways for226

leveraging LMs in addressing complex data science227

challenges.228

2 Method229

2.1 Problem Formulation230

Consider a tabular dataset represented by a matrix231

X consisting of a collection of n instances (rows)232

where each instance Xi is a d-dimensional ran-233

dom variable: Xi = (Xi
1, ..., X

i
d) (thus d columns).234

These variables are continuous and/or categorical.235

The datasetX has an observed portion denoted by236

XO and a missing portion denoted by XM. The 237

missingness pattern in X is denoted by M, which 238

is a matrix of the same dimensions as X in which 239

cells have a value of 1 if missing and 0 otherwise. 240

CRILM takes X and transforms it into a 241

missingness-aware contextualized natural lan- 242

guage dataset Xmissingness_aware by replacing 243

the missing values by contextually relevant de- 244

scriptors. Our goal is to demonstrate the effi- 245

cacy of CRILM via the performance of a down- 246

stream classification task by fine-tuning an LM 247

usingXmissingness_aware. 248

2.2 Generating Missing Values 249

We construct synthetic datasets with up to 30% 250

missing values by applying the following three 251

missingness mechanisms on complete datasets: 252

MCAR, MAR and MNAR. The implementations of 253

these mechanisms are modified from (Jäger et al., 254

2021). 255

MCAR. It is introduced by randomly removing 256

30% of the observations from each feature. 257

MAR. First, we select all observations within the 258

30th percentile range of an independent feature, 259

typically the first column in the dataset. Then, we 260

randomly remove 60% of the values from each cor- 261

responding (dependent) feature within this subset, 262

ensuring that missingness is related to the inde- 263

pendent feature but random within the dependent 264

features. 265

MNAR. We remove the observations of a feature 266

if the observations fall within the 30th percentile 267

range of the feature value. 268

2.3 Description of CRILM 269

Figure 1 illustrates the CRILM process, which en- 270

compasses four stages: (1) constructing a contex- 271

tualized natural language dataset, (2) generating 272

suitable descriptors for missing values, (3) creat- 273

ing a missingness-aware contextualized dataset, 274

and (4) adapting an LM for downstream tasks. We 275

detail these stages below. 276

Constructing a Contextualized Natural Lan- 277

guage Dataset. We construct a contextualized 278

natural language dataset from a numeric dataset 279

X containing missing values. The objective is to 280

generate contextually suitable description of each 281

attribute and its measures in natural language. For 282

instance, a record from the UCI Wine dataset (Ae- 283

berhard and Forina, 1991) with numeric input and 284

output attributes is contextualized as follows: “The 285
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Figure 1: An overview of CRILM.

alcohol content in the wine is 12.47. The level of286

malic acid in the wine is 1.52 ... The class of the wine287

is classified as class 1 wine.”1 This step converts nu-288

meric values into detailed descriptions, preparing289

the dataset for embedding missing value descrip-290

tors.291

Generating Suitable Descriptors for Missing292

Values. Unlike conventional imputation methods293

that estimate missing values from observed data294

using numerical methods, we utilize contextually295

relevant descriptors of missing values for imputa-296

tion. We generate these descriptors by a conversa-297

tional LLM (e.g., OpenAI’s ChatGPT-3.5 (Achiam298

et al., 2023)). We prompt the LLMwith a dataset de-299

scription and instruct it to generate missing value300

descriptors, such as: “For any missing attribute val-301

ues, suggest contextually relevant descriptors to fill302

in the missing data.” This method relies on LLM’s303

extensive knowledge base and linguistic capabili-304

ties to produce appropriate missing value descrip-305

tors. A list of feature-specific contextually relevant306

missing-value descriptors for selected datasets are307

provided in Appendix A.4.308

Creating a Missingness-Aware Contextual-309

ized Dataset. We construct the missingness-310

aware contextualized natural language dataset,311

denoted as Xmissingness_aware, by replacing the312

missing values with generated descriptors. This313

process ensures that each data instance is “aware”314

of its missing attributes, thereby enhancing the315

downstream LM’s ability to learn from incomplete316

data by providing explicit context. Additionally,317

we use distinct descriptors for different features in318

the dataset that contain missing values. This ap-319

proach implicitly informs the downstream LM to320

handle the missingness of each feature in a contex-321

tually appropriate manner, ultimately improving322

the performance of the downstream task.323

1The Python script used for contextualization is provided
in the Supplementary Material.

Adapting an LM for Solving Downstream 324

Tasks. The final step involves fine-tuning a pre- 325

trained small LM with the missingness-aware, 326

contextually-rich dataset. During the fine-tuning 327

process, we incorporate specific task instructions 328

and strategies for handling missing data. For in- 329

stance, in classification tasks, we include instruc- 330

tions such as: “Predict the class based on the given 331

measurements. Use the context provided by the miss- 332

ing value descriptors to inform the prediction.” This 333

approach ensures that an LM effectively utilizes 334

the contextual information embedded in the de- 335

scriptors, thereby enhancing its predictive perfor- 336

mance despite the presence of missing data. Using 337

smaller LMs for fine-tuning not only makes the 338

process cost-effective but also allows for efficient 339

adaptation to the specific characteristics of the 340

dataset and task at hand. 341

3 Related Work 342

The challenge of missing data in tabular datasets 343

has led to the development of numerous imputa- 344

tion methods, broadly categorized into those mod- 345

eling feature distribution and those that do not. 346

The latter category includes methods such as dis- 347

tribution matching and traditional non-parametric 348

methods. In the former category, two distinct 349

types of imputation methods exist: those treat- 350

ing features separately and those treating them 351

jointly. Separate feature treatment methods, like 352

Multivariate Imputation by Chained Equations 353

(MICE) (Van Buuren et al., 2006; van Buuren and 354

Groothuis-Oudshoorn, 2011), which is an itera- 355

tive method as well as a discriminative method, 356

specify a univariate model for each feature based 357

on others, with other notable iterative methods 358

also existing (Heckerman et al., 2000; Raghunathan 359

et al., 2001; Gelman, 2004; Liu et al., 2014; Zhu 360

and Raghunathan, 2015). Joint treatment meth- 361

ods aim to learn a joint distribution of all fea- 362

tures, with recent developments including deep 363

learning-based generative methods like GAIN 364

(Yoon et al., 2018a), utilizing Generative Adversar- 365

ial Nets (Goodfellow et al., 2014), although their 366

effectiveness varies compared to traditional meth- 367

ods (Jäger et al., 2021). Other types of genera- 368

tive models that are based on Denoising Autoen- 369

coders (Vincent et al., 2008), have been proposed 370

(Gondara and Wang, 2018; Rezende et al., 2014; 371

Mattei and Frellsen, 2018; Nazabal et al., 2020; 372

Ivanov et al., 2019; Richardson et al., 2020a; Mattei 373
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and Frellsen, 2019), though most of these models374

either rely on fully-observed training data or are375

suitable only for the MCAR data. Another recent376

approach, Distribution Matching (DM) (Muzellec377

et al., 2020), bypasses direct modeling of data dis-378

tributions. A notable DM method is Transformed379

Distribution Matching (Zhao et al., 2023), which is380

suitable for real-world data with complex geome-381

try. Non-parametric methods like k-nearest neigh-382

bors (k-NN) imputation (Troyanskaya et al., 2001),383

which is a discriminative method, and MissForest384

(Stekhoven and Bühlmann, 2012), which is an it-385

erative and discriminative method, have shown386

effectiveness compared to sophisticated methods387

(Emmanuel et al., 2021; Jäger et al., 2021), particu-388

larly in the MAR setting (Jarrett et al., 2022). Addi-389

tionally, simple imputation approaches like mean390

substitution (Hawthorne and Elliott, 2005) provide391

basic alternatives. More details are provided in392

Appendix A.1.393

4 Experiments394

We systematically assess CRILM’s efficacy in ad-395

dressing the research questions outlined in Sec-396

tion 1 through a series of experiments. Utiliz-397

ing two types of LMs—decoder-only and encoder-398

decoder—we evaluate the performance of LMs399

fine-tuned with missingness-aware contextual400

datasets in downstream classification tasks post-401

imputation. Specifically, we investigate three402

types of missingness mechanisms: MCAR, MAR,403

and MNAR. For comparison with the baseline404

methods, we first impute the numeric datasets us-405

ing existing methods (described further below).406

Then, the datasets are transformed into contextu-407

alized natural language datasets using the method408

described in Section 2.3, which are used for fine-409

tuning the LMs.410

Datasets. We evaluate CRILM’s performance us-411

ing six real-life multivariate classification datasets412

from the UCI repository (Dua and Graff, 2017),413

which are selected based on their prior usage in414

existing numeric imputation-based studies (Muzel-415

lec et al., 2020; Yoon et al., 2018a; Camino et al.,416

2019; Gondara and Wang, 2018; Lu et al., 2020;417

Hallaji et al., 2021; Nazabal et al., 2018; Zhao et al.,418

2023). This selection ensures a fair comparison419

with previous research efforts. Dataset statistics420

are provided in Appendix A.3.421

Baseline Imputation Methods. We compare422

CRILM against a diverse set of imputation ap-423

proaches by focusing on the following six base- 424

line methods: (1) Mean substitution (Hawthorne 425

and Elliott, 2005) (simple imputation method), 426

(2) k-NN (Troyanskaya et al., 2001; Batista and 427

Monard, 2002) (non-parametric and discriminative 428

method), (3)MissForest (Stekhoven and Bühlmann, 429

2012) (non-parametric, discriminative, and itera- 430

tive method), (4) MICE (Van Buuren et al., 2006; 431

van Buuren and Groothuis-Oudshoorn, 2011) (dis- 432

criminative and distribution modeling iterative 433

approach that treats each feature separately), (5) 434

GAIN (Yoon et al., 2018a) (generative and distribu- 435

tion modeling iterative approach that treats fea- 436

tures jointly), and (6) Transformed Distribution 437

Matching (TDM) (Zhao et al., 2023) (distribution 438

matching method). 439

LMs for Downstream Tasks. We utilize two 440

types of smaller pre-trained LMs for transfer learn- 441

ing: decoder-only Llama 2 (Touvron et al., 2023b) 442

and encoder-decoder FLAN-T5 (Chung et al., 2022) 443

with 7 billion (7B) and 770 million (770M) parame- 444

ters, respectively. 445

Experimental Settings. The hyperparameter set- 446

tings for the various imputation methods and the 447

LMs used in our experiments are detailed below. 448

Hyperparameters for Baseline Imputation Meth- 449

ods. For GAIN, we adhere to the hyperparameters 450

specified in the original publication, setting α to 451

100, the batch size to 128, the hint rate at 0.9, and 452

the number of iterations to 1000 for optimal perfor- 453

mance. MissForest and MICE are configured with 454

their respective default parameters as provided 455

in their PyPI implementations2, i.e., MissForest: 456

maxiter = 10, ntree = 100, and MICE: m = 5 for 457

the number of multiple imputations. The PyPI 458

MICE implementation utilizes random forests for 459

efficiency. For k-NN, we determine the optimal 460

values for k for each dataset through hyperparam- 461

eter tuning based on the downstream classification 462

task. For a list of optimal k values, refer to the Ap- 463

pendix A.5. Regarding TDM, we use the original 464

implementation with the reported settings (Zhao 465

et al., 2023). 466

Pre-trained LMs for Transfer Lerning. The Llama 467

model is fine-tuned with the parameter-efficient 468

QLoRA method (Dettmers et al., 2023). The set- 469

tings are r = 16, α = 64, dropout = 0.1 with the 470

task type set to “CAUSAL_LM”. The learning rate 471

is 2e-4, using the “paged_adamw_32bit” optimizer. 472

2https://pypi.org/
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(a) MCAR (Llama) (b) MCAR (FLAN-T5)

(c) MAR (Llama) (d) MAR (FLAN-T5)

(e) MNAR (Llama) (f) MNAR (FLAN-T5)
Figure 2: [RQ1]: Comparison of CRILM and baseline imputation methods across MCAR, MAR, and MNAR miss-
ingness patterns using Llama and FLAN-T5 models. Evaluation involves post-imputation LM-based downstream
task performance, with CRILM fine-tuned on missingness-aware contextual datasets and baseline methods on
contextual datasets. “No Imputation” cases show LM performance on complete datasets without missing values.

The FLAN-T5 model (Chung et al., 2022) is fine-473

tuned using an AdamW optimizer (Loshchilov and474

Hutter, 2019) with a learning rate set to 3e-4.475

Experiments are conductedwith a batch size of 4476

across 50 epochs, considering memory constraints477

during fine-tuning. Two Tesla A40 GPUs are used478

for distributed training, ensuring efficient pro-479

cessing, with each experiment completing in less480

than twenty minutes, except for the Breast Cancer481

dataset with more than 500 instances, which takes482

about an hour. An estimated training time on a483

single GPU would require between 45 minutes to 2484

hours to complete all experiments. For evaluation,485

20% of instances are randomly sampled from each 486

dataset. Models are evaluated five times, and both 487

the average performance and standard deviation 488

are reported for comprehensive analysis. 489

4.1 Results 490

Figure 2 displays experimental outcomes using 491

two types of downstream LMs across six datasets, 492

benchmarking CRILM against existing imputation 493

methods. Performance metrics for LMs fine-tuned 494

on complete datasets (without missing values, thus 495

no imputation needed) are included for compari- 496

son. This approach highlights CRILM’s effective- 497
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ness by providing a reference baseline, offering a498

clear view of its advantages over traditional impu-499

tation methods.500

[RQ1]: To what extent does CRILM effectively per-501

form in imputingmissing values across distinct miss-502

ingness mechanisms (MCAR, MAR, and MNAR),503

compared to existing methods, in terms of accuracy504

and robustness on varied datasets?505

MCAR: CRILM demonstrates superior accuracy506

in imputing missing values across all datasets com-507

pared to baseline imputation methods. Both the508

Llama and FLAN-T5 performed well, with Llama509

showing a slight advantage (1 to 8% higher ac-510

curacy). CRILM’s performance under the MCAR511

assumption, where missingness is independent of512

any data, suggests that it efficiently leverages con-513

textual information for imputation. This efficacy514

is particularly evident in its ability to significantly515

close the gap toward the performance of fully com-516

plete datasets, showcasing its effectiveness.517

MAR: CRILM’s adaptability is further high-518

lighted under MAR, where missingness depends519

on observed data. It outperforms other methods by520

a considerable margin, indicating its proficiency521

in utilizing available data points to predict missing522

values accurately. The Llama consistently exhibits523

superior performance, similar to the MCAR case524

(2 to 5% higher accuracy).525

MNAR: The MNAR scenario, characterized by526

missingness that depends on unobserved data,527

poses the most significant challenge. Here,528

CRILM’s performance remains notably superior to529

traditional imputation methods. This robustness530

in the face of the most difficult missingness mech-531

anism illustrates CRILM’s potential to effectively532

mitigate biases introduced by MNAR missingness,533

utilizing the LMs’ capacity to infer missing infor-534

mation from complex patterns. Similar to the pre-535

vious cases, Llama exhibits better performance (2536

to 4% higher accuracy)537

To further demonstrate CRILM’s superior per-538

formance over traditional baseline imputation539

methods, particularly in theMNAR setting, we540

assess its efficacy on three challenging datasets:541

Glass Identification, Seeds, and Wine. These542

datasets are selected due to the observed lower543

performance of LMs when utilizing fully com-544

plete versions (refer to Figure 2), highlighting their545

complexity and serving as a rigorous evaluation546

benchmark for CRILM. According to the results547

(see Table 1), CRILM consistently outperforms the548

best baseline methods. The performance gains 549

are 10.0%, 6.0%, and 10.0% for Glass Identification, 550

Seeds, and Wine, respectively, using Llama, and 551

13.6%, 5.6%, and 8.2% using FLAN-T5. This sig- 552

nificant improvement underscores CRILM’s effec- 553

tiveness in addressing the intricacies of MNAR 554

missingness, confirming its position as a robust 555

tool for managing various missing data scenarios. 556

Additional analysis details on MCAR and MAR are 557

provided in Appendix A.2. 558

Table 1: Comparison of CRILMwith leading imputation
methods on MNAR missingness across three datasets.
LM Data Best Baseline CRILM Gain

Glass 44.80% (TDM) 54.80% +10.0%
Llama Seeds 76.40% (TDM) 82.40% +6.0%

Wine 75.60% (MissForest) 85.60% +10.0%

Glass 39.20% (MICE) 52.80% +13.6%
FLAN-T5 Seeds 73.80% (TDM) 79.40% +5.6%

Wine 74.20% (TDM) 82.40% +8.2%

Discussion on RQ1. CRILM’s consistent supe- 559

riority across diverse missingness patterns and 560

datasets confirms its effectiveness, addressing 561

RQ1. This underscores the advantages of integrat- 562

ing contextualized natural language models into 563

imputation, particularly in challenging MNAR sce- 564

narios where traditional numeric-estimation meth- 565

ods may introduce biases. The robust performance 566

of CRILM across MCAR, MAR, and MNAR miss- 567

ingness mechanisms highlights its broad applica- 568

bility, distinguishing it from conventional meth- 569

ods. This generalizability can be attributed to 570

CRILM’s missingness-aware data contextualiza- 571

tion approach, which effectively taps into the prior 572

knowledge of the pre-trained LMs to implicitly 573

handle missing cases in the data. Notably, Llama 574

(7B) performs slightly better than FLAN-T5 (770M), 575

likely due to its larger model size, which enhances 576

its ability to capture and utilize complex patterns 577

in the data. Furthermore, minimal performance 578

variation across iterations underscores CRILM’s 579

stability and reliability, crucial for real-world appli- 580

cations. Its ability to maintain a consistently low 581

error margin highlights its potential as a reliable 582

solution for data imputation. 583

[RQ2]: How do feature-specific versus generic miss- 584

ingness descriptors impact the performance of LM- 585

based downstream tasks? Initially, we utilize con- 586

textually relevant, feature-specific descriptors for 587

missing values, leading to unique phrases for dif- 588

ferent features within a dataset. To address RQ2, 589

we aim to determine whether using a uniform, 590

7



(a) MCAR (Llama) (b) MCAR (FLAN-T5)
Figure 3: [RQ2]: Impact of feature-specific vs. generic (“NaN”, “Missing value”, and “Value not recorded”)
missingness descriptors on LM Performance in MCAR scenario.

yet contextually relevant, descriptor for all fea-591

tures would offer comparable benefits. To this end,592

we experiment with three consistent descriptors:593

“NaN”, “Missing value”, and “Value not recorded”.594

These experiments, focusing on the MCAR sce-595

nario, sought to ascertain whether it is more ben-596

eficial to use contextually nuanced descriptors or597

whether a generic descriptor is adequate to har-598

ness LMs’ general knowledge for managing miss-599

ing values in datasets.600

The experimental findings (Figure 3) illuminate601

the influence of missing data phrasing on the effec-602

tiveness of LMs in addressing such situations. The603

results reveal a distinct pattern across both types604

of LMs: generic descriptors, such as “NaN”, consis-605

tently performworse than context-specific descrip-606

tors designed for each feature and dataset. Among607

the three fixed descriptors tested, there are some608

variations in performance. Both “NaN” and “Miss-609

ing value” outperformed “Value not recorded”,610

with “Missing value” achieving the best results611

in most cases among the static descriptors.612

Discussion on RQ2. The findings on RQ2 high-613

light the importance of context in LMs’ handling of614

missing data. The superior performance of feature-615

specific descriptors shows that LMs better manage616

missing data when it is described in a way that617

accurately reflects the context of the missing in-618

formation. For example, a descriptor like “Malic619

acid quantity missing for this wine sample” allows620

an LM to interpret and address the missing data621

point more effectively than a generic descriptor622

like “The level of malic acid in the wine is NaN”. This623

preference for context-specific descriptors stems624

from LMs’ extensive linguistic capability. When625

missing data aligns with the specific context of a626

feature, an LM can better utilize its knowledge to627

handle the missing values. However, effectiveness 628

drops when generic labels are used, as they pro- 629

vide minimal contextual information for the LM 630

to draw upon. 631

Cost-Effective Implementation of CRILM. 632

Our method provides an economically viable solu- 633

tion by utilizing publicly available LLMs for zero- 634

shot inference and smaller LMs for downstream 635

tasks, allowing for efficient fine-tuning even in 636

resource-constrained settings. This feasibility is 637

demonstrated through experiments employing ac- 638

cessible resources like ChatGPT-3.5 for inference 639

and single GPU fine-tuning, ensuring experiments 640

are completed within an hour on average, thereby 641

highlighting its cost-effectiveness. 642

5 Conclusion 643

CRILM demonstrates robust handling of missing 644

data across MCAR, MAR, and notably MNAR 645

mechanisms, consistently outperforming tradi- 646

tional methods. Our experiments highlight 647

CRILM’s remarkable effectiveness in MNAR sce- 648

narios, achieving up to a 10% performance margin 649

over baseline methods, underscoring its efficacy in 650

themost challengingmissingness setting. By lever- 651

aging contextualized LMs, CRILM offers a novel 652

imputation method alongside numeric-estimation 653

approaches, particularly beneficial in mitigating 654

biases and enhancing reliability in MNAR case. 655

Its cost-effective implementation, using publicly 656

available LLMs for inference and smaller LMs 657

for downstream tasks, enhances practicality in 658

resource-constrained settings. 659

Future work will explore extending CRILM to 660

diverse data types such as time-series, images, and 661

unstructured text. 662
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6 Limitations663

Despite the notable advancements presented by664

CRILM in addressing missing data within tabular665

datasets, this work has several limitations. Firstly,666

CRILM’s efficacy depends heavily on the qual-667

ity and diversity of the training data used to de-668

velop the underlying LLMs. In scenarios where669

LLMs lack exposure to data similar to the specific670

domain or context of missing information, their671

ability to generate accurate imputations may be672

compromised. Additionally, the approach assumes673

that the descriptive context provided for missing674

values sufficiently informs the LLM, which may675

not always be the case. Furthermore, processing676

large datasets with CRILM, even though we utilize677

smaller LMs for fine-tuning with contextualized678

missingness-aware data, may pose scalability chal-679

lenges, as the fine-tuning process could increase in680

duration. Moreover, while CRILM performs well681

across various missingness mechanisms, its appli-682

cation in highly specialized domains where expert683

knowledge heavily influences data interpretation684

requires further exploration. Lastly, it is important685

to note that our evaluation focused on classifying686

downstream tasks, leaving its efficacy in other task687

types for future investigation.688
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A Appendix1103

In this section, we begin with a comprehensive1104

discussion of the related work. Following this, we1105

conduct a comparative analysis of CRILM’s effec-1106

tiveness on a selected set of challenging down-1107

stream tasks. Next, we provide a summary of the1108

datasets, along with a list of feature-specific con-1109

textually relevant missing-value descriptors for1110

three selected datasets. Lastly, we present the opti-1111

mal values of k obtained through hyperparameter1112

tuning for k-NN imputation across three missing-1113

ness patterns—MCAR, MAR, and MNAR—using1114

the Llama and FLAN-T5 models on the six datasets.1115

A.1 Related Work1116

The challenge posed by missing data in tabular1117

datasets has led to the development of numerous1118

imputation methods, broadly classified into two1119

categories: those modeling feature distribution1120

and those that do not model distributions. The lat-1121

ter category includes methods such as distribution1122

matching and traditional non-parametric methods.1123

In the former category, where the focus is on mod-1124

eling feature distribution, methods aim to model1125

the distribution of missing values while maximiz-1126

ing the observed likelihood (Muzellec et al., 2020).1127

Within this line of approach, two distinct types1128

of imputation methods exist (Zhao et al., 2023):1129

methods that treat features separately and those1130

that treat them jointly.1131

For methods treating features separately, an1132

iterative approach is employed, specifying a1133

univariate model for each feature based on all1134

others. A prominent example is the Multivari-1135

ate Imputation by Chained Equations (MICE)1136

method (Van Buuren et al., 2006; van Buuren and1137

Groothuis-Oudshoorn, 2011), which adopts a dis-1138

criminative approach for imputation. MICE se-1139

quentially imputes missing values for each vari-1140

able based on the others, cycling through the vari-1141

ables iteratively until predictions stabilize. MICE1142

is particularly effective for handling MCAR and1143

MAR data (Jarrett et al., 2022). Other notable it-1144

erative methods include (Heckerman et al., 2000;1145

Raghunathan et al., 2001; Gelman, 2004; Liu et al.,1146

2014; Zhu and Raghunathan, 2015). Given the po-1147

tential variation in the conditional distribution of1148

each feature, these methods necessitate the speci-1149

fication of separate models for each feature. This1150

approachmay prove ineffective, especially in cases1151

where the nature of the missing values remains1152

uncertain. 1153

On the other hand, methods that treat features 1154

collectively aim to learn a joint distribution of all 1155

features, either explicitly or implicitly. A classi- 1156

cal approach for explicit joint modeling assumes 1157

a Gaussian distribution for the data, with param- 1158

eters estimated using EM algorithms (Dempster 1159

et al., 1977). Recent developments have seen 1160

the utilization of deep learning-based generative 1161

methods such as Denoising Autoencoders (DAE) 1162

(Vincent et al., 2008) and Generative Adversarial 1163

Nets (GAN) (Goodfellow et al., 2014). Generative 1164

methods can be categorized into implicit and ex- 1165

plicit modeling. Implicit models include imputers 1166

trained as generators in GAN-based frameworks 1167

(Yoon et al., 2018a; Li et al., 2019; Yoon and Sull, 1168

2020; Dai et al., 2021; Fang and Bao, 2022). How- 1169

ever, these models produce imputations that are 1170

only valid for the MCAR data (Yoon et al., 2018a; Li 1171

et al., 2019; Yoon and Sull, 2020). A notable GAN- 1172

based method is GAIN (Yoon et al., 2018a), specifi- 1173

cally designed for imputing missing data without 1174

the need for complete datasets. In GAIN, the gener- 1175

ator outputs the imputations, while the discrimina- 1176

tor classifies the imputations on an element-wise 1177

basis. However, GAIN can be quite difficult to im- 1178

plement in practice (Muzellec et al., 2020). More- 1179

over, it often falls short compared to more tradi- 1180

tional machine learning methods such as the non- 1181

parametric k-nearest neighbors (k-NN) in terms 1182

of performance (Jäger et al., 2021). Explicit gener- 1183

ative models refer to deep latent-variable models 1184

trained to approximate joint densities using varia- 1185

tional bounds. Most of these models either rely on 1186

fully-observed training data (Gondara and Wang, 1187

2018; Rezende et al., 2014; Mattei and Frellsen, 1188

2018) or are suitable only for the MCAR data (Naz- 1189

abal et al., 2020; Ivanov et al., 2019; Richardson 1190

et al., 2020a). MIWAE (Mattei and Frellsen, 2019) 1191

is an exception in this category that adapts the 1192

importance-weighted autoencoders (Burda et al., 1193

2015) objective to approximate maximum likeli- 1194

hood in MAR settings. However, its accuracy de- 1195

pends on the assumption of infinite computational 1196

resources. Additionally, with the exception of 1197

methods that use separate decoders for each fea- 1198

ture (Nazabal et al., 2020), generative methods gen- 1199

erally do not support column-specific modeling. 1200

Other approaches in the category of methods that 1201

learn a joint distribution include those based on 1202

matrix completion (Mazumder et al., 2010; Hastie 1203

et al., 2015), graph neural networks (You et al., 1204

13



2020; Vinas et al., 2021; Chen et al., 2022; Huang1205

et al., 2022; Morales-Alvarez et al., 2022; Gao et al.,1206

2023), normalizing flows (Richardson et al., 2020b;1207

Ma and Ghosh, 2021; Wang et al., 2022), and Gaus-1208

sian processes (Dai et al., 2022).1209

Distribution Matching (DM) methods repre-1210

sent a recent alternative approach that bypasses1211

the need for modeling data distributions directly1212

(Muzellec et al., 2020; Zhao et al., 2023). The core1213

idea behind DM is that any two batches of data (in-1214

cluding those with missing values) originate from1215

the same underlying data distribution. Therefore,1216

an effective method should impute the missing1217

values to ensure that the empirical distributions of1218

the two batches are closely matched. In (Muzellec1219

et al., 2020), the authors achieve DMbyminimizing1220

the optimal transport (OT) distance, with the cost1221

function being the quadratic distance in the data1222

space between samples. Another notable method,1223

suitable for real-world data with complex geome-1224

try, is Transformed Distribution Matching (TDM)1225

(Zhao et al., 2023). TDM performs OT-based impu-1226

tation in a transformed space, where the distances1227

between transformed samples better reflect their1228

underlying similarities and dissimilarities, respect-1229

ing the data’s inherent geometry.1230

Non-parametric methods like k-NN imputation1231

(Troyanskaya et al., 2001; Batista and Monard,1232

2002) and random forest imputation, such as Miss-1233

Forest (Stekhoven and Bühlmann, 2012), have1234

demonstrated effectiveness in comparison to other1235

sophisticated imputation methods (Emmanuel1236

et al., 2021; Jäger et al., 2021). The k-NN method1237

employs a discriminative algorithm that utilizes1238

the similarity between instances, typically mea-1239

sured by Euclidean distance, to impute missing1240

values, offering flexibility in handling both contin-1241

uous and categorical data. Conversely, MissForest1242

is an iterative method harnessing the power of ran-1243

dom forests, excelling in datasets with complex1244

interactions and non-linear relationships, often1245

surpassing other methods in terms of accuracy1246

and robustness. MissForest is particularly adept1247

in the MAR setting (Jarrett et al., 2022).1248

Finally, simple imputation approaches likemean1249

substitution (Hawthorne and Elliott, 2005) and hot1250

deck imputation (Marker et al., 2002) provide basic1251

alternatives.1252

Table 2: Performance Comparison of CRILM with lead-
ing imputation methods using Llama across three chal-
lenging datasets. Best performing baseline methods are
in bold.

Dataset Best Baseline CRILM Gain

Glass Identification

MCAR 52.40% (k-NN) 59.60% 7.2%
MAR 60.20% (MICE) 62.20% 2.0%
MNAR 44.80% (TDM) 54.80% 10.0%

Seeds

MCAR 80.40% (MICE) 84.60% 4.2%
MAR 81.80% (MICE) 84.80% 3.0%
MNAR 76.40% (TDM) 82.40% 6.0%

Wine Quality

MCAR 82.00% (MICE) 84.40% 2.4%
MAR 86.60% (MICE) 87.80% 1.2%
MNAR 75.60% (MissForest) 85.60% 10.0%

A.2 Comparative Analysis of CRILM’s 1253

Effectiveness 1254

To demonstrate the superior performance of 1255

CRILM over traditional baseline imputation meth- 1256

ods, we investigate its performance on three par- 1257

ticularly challenging datasets: Glass Identifica- 1258

tion, Seeds, and Wine. These datasets were cho- 1259

sen due to the comparatively lower performance 1260

exhibited by the LMs when using fully complete 1261

versions of the datasets (i.e., no missing values), 1262

underscoring their complexity and providing a 1263

rigorous testing ground for evaluating CRILM’s 1264

effectiveness. 1265

A.2.1 Llama 1266

Table 2 presents a detailed comparative analysis 1267

based on Llama. In the MCAR setting, CRILM 1268

demonstrates substantial superiority over the best 1269

baseline method (k-NN, achieving 52.40% accu- 1270

racy) with a performance gain of 7.2%. This under- 1271

scores CRILM’s robustness in effectively handling 1272

missing data within complex datasets. The chal- 1273

lenge intensifies with the Seeds dataset, where 1274

CRILM surpasses the top-performing baseline 1275

method (MICE) by 4.2% under the MCAR setting. 1276

Similar trends are observed in the Wine dataset, 1277

where CRILM outperforms the best baseline per- 1278

formance under MCAR by 2.4%. 1279

Under MAR conditions, the performance gaps 1280

between CRILM and the best-performing baseline 1281

methods are relatively modest—2%, 3%, and 1.2% 1282

for Glass Identification, Seeds, and Wine, respec- 1283

tively. This suggests that while the predictabil- 1284
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ity of missingness from observed data in MAR1285

scenarios provides some advantage to traditional1286

imputation methods, CRILM still maintains a per-1287

formance edge.1288

The MNAR scenario, characterized by the1289

most complex pattern of missingness, highlights1290

CRILM’s distinct advantage. Across all three1291

datasets, CRILM not only outperforms the best1292

baseline methods but does so with remarkable per-1293

formance gains of 10.0%, 6.0%, and 10% for Glass1294

Identification, Seeds, and Wine, respectively. This1295

substantial improvement underscores CRILM’s ef-1296

fectiveness in navigating the intricacies of MNAR1297

missingness, further establishing its status as a1298

robust tool for handling various missing data sce-1299

narios.1300

A.2.2 FLAN-T51301

Table 3 provides a FLAN-T5-based comparative1302

analysis of CRILM against leading imputation1303

methods across the three challenging datasets,1304

echoing similar trends observed with the Llama1305

model. In the Glass Identification dataset, FLAN-1306

T5 exhibits significant improvements with CRILM.1307

Under the MCAR setting, CRILM surpasses the1308

best baseline method (TDM, achieving 45.60% ac-1309

curacy) by 6.0%, highlighting its robust capabil-1310

ity to handle missing data effectively, particularly1311

where traditional methods struggle. The Seeds1312

dataset presents a competitive landscape, where1313

CRILM outperforms the top-performing baseline1314

(MICE) by 4.0% under MCAR conditions. Similarly,1315

in the Wine Quality dataset under MCAR condi-1316

tions, CRILM achieves a 1.2% performance gain1317

over MICE, reinforcing its reliability.1318

In the MAR scenario for Glass Identification,1319

CRILM shows a pronounced advantage over the1320

best baseline method (TDM, achieving 52.40%),1321

with a notable gain of 5.4%. This underscores1322

CRILM’s efficacy in scenarios where missingness1323

can be predicted from observed data, showcasing1324

its versatility across different missing data pat-1325

terns. However, in the challenging Seeds dataset,1326

the performance gap narrows, with CRILM out-1327

performing k-NN by 1.0%, indicating its continued1328

edge despite the predictability leveraged by tradi-1329

tional methods. The Wine Quality dataset reflects1330

a similar trend, where CRILM achieves a 1.4% per-1331

formance gain over k-NN.1332

In the MNAR condition, known for its com-1333

plexity, CRILM demonstrates a significant advan-1334

tage. In the Glass Identification dataset, CRILM1335

outperforms MICE by an impressive 13.6%. This 1336

substantial improvement is mirrored in the Seeds 1337

andWine Quality datasets, where CRILM achieves 1338

gains of 5.6% and 8.2% over TDM, respectively. 1339

These results underscore CRILM’s exceptional ca- 1340

pability in handling the intricate challenges posed 1341

by MNAR missingness, firmly establishing it as a 1342

powerful tool for addressing diverse imputation 1343

challenges. 1344

Table 3: Performance Comparison of CRILM with lead-
ing imputation methods using FLAN-T5 across three
challenging datasets. Best performing baseline meth-
ods are in bold.

Dataset Best Baseline CRILM Gain

Glass Identification

MCAR 45.60% (TDM) 51.60% 6.0%
MAR 52.40% (TDM) 57.80% 5.4%
MNAR 39.20% (MICE) 52.80% 13.6%

Seeds

MCAR 79.80% (MICE) 83.80% 4.0%
MAR 81.20% (k-NN) 82.20% 1.0%
MNAR 73.80% (TDM) 79.40% 5.6%

Wine Quality

MCAR 81.20% (MICE) 82.40% 1.2%
MAR 82.40% (k-NN) 83.80% 1.4%
MNAR 74.20% (TDM) 82.40% 8.2%

A.3 Dataset Summary 1345

Table 4 provides a summary of the six UCI datasets. 1346

A.4 Missing-value Descriptors 1347

Table 5 reports the list of feature-specific contex- 1348

tually relevant missing-value descriptors for three 1349

selected datasets. 1350

A.5 Optimal k Values for k-NN Imputation 1351

in Various Missingness Patterns 1352

Table 6 shows the optimal values of k for k-NN im- 1353

putation across threemissingness patterns (MCAR, 1354

MAR, and MNAR) using the Llama and FLAN- 1355

T5 models on six datasets. These optimal values 1356

were determined through hyperparameter tuning, 1357

where k was varied between 3 and 9, based on 1358

the downstream classification task to achieve the 1359

best imputation performance for each dataset and 1360

missingness pattern combination. This tuning pro- 1361

cess ensures that the k-NN imputation method is 1362

tailored to the specific characteristics and require- 1363

ments of each dataset, enhancing overall perfor- 1364

mance. 1365
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Table 4: Description of the datasets. N=size of the dataset and d=number of features.

Dataset N d Description

Iris 150 4 The dataset contains 3 classes of 50 instances each, referring to
types of iris plants.

Wine 178 13 Results of a chemical analysis of wines grown in Italy, with three
types represented.

Seeds 210 7 Properties of three varieties of wheat: Kama, Rosa, and Canadian.
Glass Identification 214 9 Classification of types of glass for criminological investigation.
Ionosphere 351 34 Phased array of 16 high-frequency antennas, targeting free elec-

trons in the ionosphere.
Breast Cancer Wisconsin 569 30 Binary classification from digitized images of a fine needle aspi-

rate of breast masses.

Table 5: Feature-specific contextually relevant descriptors for three selected datasets.

Dataset Features containing Missing values Descriptors of missing values

Iris

1. Sepal Length
2. Sepal Width
3. Petal Length
4. Petal Width

1. Sepal Length: Unavailable
2. Sepal Width: Unavailable
3. Petal Length: Unavailable
4. Petal Width: Unavailable

Wine

1. Alcohol
2. Malic acid
3.Ash
4. Alcalinity of ash
5. Magnesium
6. Total phenols
7. Flavanoids
8. Nonflavanoi phenols
9. Proanthocyanins
10. Color Intensity
11. Hue
12.OD280/OD315 of diluted wines
13. Proline

1. Alcohol content not provided for this wine sample.
2. Malic acid quantity missing for this wine sample.
3. Ash content data not recorded for this wine sample.
4. Alcalinity of ash information unavailable for this wine sample.
5. Magnesium level not specified for this wine sample.
6. Total phenols data missing for this wine sample.
7. Flavanoids content not available for this wine sample.
8. Nonflavanoid phenols quantity not provided for this wine sample.
9. Proanthocyanins data missing for this wine sample.
10. Color intensity information not recorded for this wine sample.
11. Hue value not specified for this wine sample.
12. OD280/OD315 data missing for this wine sample.
13. Proline content not available for this wine sample

Seeds

1. Area
2. Perimeter
3. Compactness
4. Length of kernel
5. Width of kernel
6. Asymmetry coefficient
7. Length of kernel groove

1. Kernel area not provided.
2. Kernel perimeter information missing.
3. Kernel compactness data not recorded.
4. Length of kernel data missing.
5. Width of kernel data missing.
6. Asymmetry coefficient information missing.
7. Length of kernel groove information missing.
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Table 6: Optimal k values for k-NN imputation across
MCAR, MAR, and MNAR missingness patterns using
Llama and FLAN-T5 models on six datasets.

Dataset Missing Model k Accuracy
pattern (%)

Iris

MCAR Llama 5 84.60
FLAN-T5 5 78.80

MAR Llama 5 87.40
FLAN-T5 3 82.20

MNAR Llama 7 76.60
FLAN-T5 5 72.20

Wine

MCAR Llama 3 80.20
FLAN-T5 3 74.60

MAR Llama 5 86.20
FLAN-T5 5 82.40

MNAR Llama 5 73.20
FLAN-T5 3 71.60

Seeds

MCAR Llama 3 79.40
FLAN-T5 3 79.00

MAR Llama 3 81.60
FLAN-T5 5 81.20

MNAR Llama 3 72.20
FLAN-T5 5 71.60

Glass

MCAR Llama 5 52.40
FLAN-T5 5 44.20

MAR Llama 5 57.60
FLAN-T5 5 49.20

MNAR Llama 3 41.40
FLAN-T5 5 36.60

Ionosphere

MCAR Llama 5 86.80
FLAN-T5 5 87.20

MAR Llama 5 85.80
FLAN-T5 5 83.40

MNAR Llama 3 79.60
FLAN-T5 5 78.20

Cancer

MCAR Llama 5 85.20
FLAN-T5 3 83.00

MAR Llama 5 89.80
FLAN-T5 5 85.60

MNAR Llama 5 82.40
FLAN-T5 5 78.40
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