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Abstract

Covariate-adjusted response-adaptive randomization (CARA) designs are gain-
ing increasing attention. These designs combine the advantages of randomized
experiments with the ability to adaptively revise treatment allocations based on
data collected across multiple stages, enhancing estimation efficiency. Yet, CARA
designs often assume that primary outcomes are immediately observable, which is
not the case in many clinical scenarios where there is a delay in observing primary
outcomes. This assumption can lead to significant missingness and inefficient
estimation of treatment effects. To tackle this practical challenge, we propose a
CARA experimental strategy integrating delayed primary outcomes with immedi-
ately observed surrogate outcomes. Surrogate outcomes are intermediate clinical
outcomes that are predictive or correlated with the primary outcome of interest.
Our design goal is to improve the estimation efficiency of the average treatment
effect (ATE) of the primary outcome utilizing surrogate outcomes. From a method-
ological perspective, our approach offers two benefits: First, we accommodate
arm and covariates-dependent delay mechanisms without imposing any parametric
modeling assumptions on the distribution of outcomes. Second, when primary
outcomes are not fully observed, surrogate outcomes can guide the adaptive treat-
ment allocation rule. From a theoretical standpoint, we prove the semiparametric
efficiency bound of estimating ATE under delayed primary outcomes while incor-
porating surrogate outcomes. We show that the ATE estimator under our proposed
design strategy attains this semiparametric efficiency bound and achieves asymp-
totic normality. Through theoretical investigations and a synthetic HIV study, we
show that our design is more efficient than the design without incorporating any
surrogate information.

1 Introduction

1.1 Motivation

In recent years, covariate-adjusted response-adaptive randomization (CARA) designs have become
increasingly prominent in clinical research for evaluating the effects of treatment plans or drugs on
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primary outcomes of interest [43, 36, 49]. Specifically, CARA designs are experiment strategies
that adaptively revise treatment allocation based on observed outcomes and covariate information
accumulated during multi-stage clinical trials [22]. Inheriting the advantage of traditional clinical
trial designs, CARA designs can also help with providing reliable causal evidence to support clinical
discoveries. Nevertheless, different from traditional clinical trial designs, CARA designs offer several
major benefits. On the one hand, CARA designs enhance the precision of medicine by improving
the statistical power to estimate treatment effects. On the other hand, CARA designs allow for
adaptive modifications of treatment allocation based on intermediate findings. As highlighted in the
recent Food and Drug Administration (FDA)’s adaptive design clinical trials for drugs and biologics
guidance for industry [43], the key advantage of adaptive clinical trial designs is their ability to
adapt to new information that emerges during the trial. This fundamental characteristic fosters more
flexible and efficient clinical trials. In sum, CARA designs can utilize clinical trial data efficiently by
performing sequentially adaptive subgroup-specific optimization.

While CARA designs are beneficial, they face a practical challenge when outcomes are observed
with delays. Such delays make it impossible to sequentially revise the randomization probability to
optimize trial objectives. Delayed outcomes are common in clinical practice, as treatments may take
time to show their effects, especially for chronic conditions or diseases with slow progression. For
instance, consider an HIV study conducted in Tanzania that investigates the effect of cash incentives
on viral load suppression [15]. The primary outcome is the viral load measured six months after
starting antiretroviral therapy (ART) because achieving viral suppression (below 1000 copies per
mL) is critical for preventing HIV transmission [33, 31]. However, measuring viral load depends on
regular clinic visits by study subjects, which are often delayed due to factors such as limited access to
care, poverty, or social stigma [19]. These delays lead to significant missingness in primary outcome
data, which undermines the efficiency of estimating treatment effects on the primary outcome.

In situations where primary outcomes are delayed, surrogate outcomes–intermediate or substitute
biomarkers that can be measured immediately and are predictive of primary outcomes–emerge as a
natural remedy [20, 29, 5]. As mentioned in the FDA’s surrogate endpoint resources for drug and
biologic development, from 2010 to 2012, the FDA granted approval to 45% of new drugs based
on a surrogate endpoint [44]. Using surrogate outcomes provides early indicators of a treatment’s
efficacy, which accelerates the decision-making process and can lead to faster delivery of beneficial
treatments to patients. Surrogate outcomes are particularly useful in CARA designs because they
enable modifications of treatment allocation without waiting for delayed primary outcomes during
the interim stages.

As such, there is a pressing need to develop new CARA designs to answer the following questions:
How can both delayed primary outcomes and immediately observed surrogate outcomes be used
simultaneously to guide treatment allocation revisions, optimizing the estimation efficiency of the
primary outcome’s treatment effect? In this manuscript, we propose a multi-stage CARA design with
the goal of improving the estimation efficiency of primary outcome treatment effects by utilizing
surrogate outcomes in the presence of delayed primary outcomes.

Our contributions can be summarized as follows:

1. From a methodological perspective, we propose a novel CARA design strategy that signifi-
cantly improves the estimation efficiency of the primary outcome’s ATE by incorporating
surrogate outcomes. First, our approach uniquely integrates both primary and surrogate
outcomes synergistically, unlike traditional clinical trial designs that depend exclusively
on one or the other. Second, diverging from some adaptive experimental strategies that
incorporate both surrogate and primary outcomes, we explore strategies that tackle the
arm-dependent delay mechanism of primary outcomes and optimize the statistical efficiency
in the presence of temporary or permanent missingness.

2. From a theoretical perspective, we prove the semiparametric efficiency bound under arm-
dependent delayed primary outcomes while incorporating surrogate outcomes for estimating
the ATE (Theorem 3). We show that our proposed design strategy converges to the oracle de-
sign, which represents the optimal design assuming perfect knowledge of the data-generating
distribution. We also prove the statistical validity of our inference procedure by establishing
the asymptotic normality of our proposed ATE estimator (Theorem 1). Furthermore, the
proposed ATE estimator attains the semiparametric efficiency bound (Theorem 2), which
verifies the efficiency gain of adopting the proposed design. Theorem 1 further provides
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practical guidance for the general setup of the design in terms of the number of experimenta-
tion stages and the portion of enrolled units within each stage to achieve optimality. Lastly,
we illustrate that our design largely enhances statistical efficiency compared to the design
that only uses delayed primary outcomes.

1.2 Related literature

CARA designs. When covariate information is available to experimenters, CARA design can utilize
both outcome information and covariate information to optimize for the experimental goals [37, 47].
CARA designs originate from response-adaptive randomization designs, yet they further utilize
covariate information to assist the design [34, 21, 45]. [22] introduced a family of CARA designs
that consider both efficiency and ethics. Generalizations of CARA to incorporate semiparametric
estimates are discussed by [49]. Related CARA designs are also explored in studies such as [35, 1, 48].
However, unlike conventional CARA designs that assume immediate observation of outcomes, our
approach accommodates delayed outcomes.

Criteria of surrogacy. [32] proposes the statistical surrogacy criterion, which states that the observed
primary outcome should be conditionally independent of the assigned treatment given the observed
value of the post-treatment variable (surrogate outcome). The proposal is further extended by [17] and
[9]. [16] argues that [32]’s proposal does not satisfy the causal necessity properties and proposes to
study the principal surrogate. [27] introduces the notion of a strong surrogate using a graphical model,
which states that treatment serves as an instrument for the effect of the surrogate on the primary
outcome. [12] makes a detailed comparison of different notions of surrogacy. The authors propose
(strictly) consistent surrogacy to avoid the surrogacy paradox and evaluate several conditions for the
criteria to hold. [24] studies criteria of surrogacy based on distributional average causal effects.

Surrogates in randomized experiments. Existing literature focuses on using surrogates can be
roughly divided into two lines of work. The first line of work utilizes surrogates from a data fusion
perspective. [4] proposes to use the surrogate index to estimate long-term causal effects when primary
outcomes are missing in experimental data and only observed in observational data. This work relies
on the statistical surrogacy assumption. [3] proposes a data combination framework to incorporate
surrogate outcomes under the assumption of latent unconfoundedness. [23] proposes methods to
use surrogate outcomes as proxy variables for persistent confounders. The second line of work
uses surrogates as supplements for the primary outcomes. [13] investigates using surrogate data
to improve efficiency when inferring parameters from estimating functions. [25] proposes to view
surrogates as supplements instead of replacements for the primary outcome and investigates how this
proposal can improve the efficiency of treatment effect estimation. [10] proposes to combine primary
data and auxiliary data where both datasets are assumed to satisfy ignorability. [2] uses surrogate
outcomes to assist with the design of adaptive clinical trials and show their relative and absolute
benefits. Diverging from the usage of surrogate outcomes in randomized experiments, we explicitly
model the arm and covariates delay mechanisms of primary outcomes while incorporating surrogates.

2 Problem setup

Suppose we are designing an adaptive experiment with a total of T stages. Let Xit denote the
covariates, Sit denote the surrogate outcome, and Yit denote the primary outcome for subject i at
stage t = 1, . . . , T . Let Ait denote the treatment assignment status, where Ait = 1 corresponds
to the treatment arm, while Ait = 0 corresponds to the control. Following the Neyman-Rubin
causal inference framework [30, 38], we let Yit(a) and Sit(a) represent the primary potential
outcome and surrogate potential outcomes under treatment a, where a ∈ {0, 1}. Assume that
(Yit(1), Yit(0), Sit(1), Sit(0)) are i.i.d. copies of a population tuple (Y (1), Y (0), S(1), S(0)). Our
parameter of interest is the average treatment effect corresponding to the primary outcome:

τ = E[Y (1)− Y (0)].

We are in a setting where, at the end of Stage t, we cannot observe the primary outcome for all subjects
due to possible delay in the data collection process, but we can observe the surrogate outcomes for all
subjects. The surrogate outcomes can inform the primary outcomes. We assume the primary outcome
is observed after Dit stages and denote the conditional cumulative distribution function of Dit as

ρa(d|x) = P(Dit ≤ d|Ait = a,Xit = x), d = {0, 1, 2, . . . , T − 1} ∪ {∞}, a ∈ {0, 1}.
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Dit represents the number of stages for which an observation is delayed at stage t. For example, in
a two-stage experiment, Di1 = 0 means no delay for the i-th observation. Di1 = 1 means that the
i-th primary outcome will be observed at stage 2. When Di1 = ∞, we never collect the i-th primary
outcome back. A primary outcome can only be observed by the end of the experiment if Dit ≤ T − t.
Moreover, we allow Dit = ∞, which means that the primary outcome Yit is missing (censored) at
the end of the experiment.

The observed primary outcome can be written as

Yit =

{
AitYit(1) + (1−Ait)Yit(0), Dit ≤ T − t;

missing, Dit > T − t.

The observed surrogate outcome can be written as Sit = AitSit(1) + (1 − Ait)Sit(0). Therefore,
our observed data has the following structure:

{(Xit, Ait, Sit, Yit, Dit)
nt
i=1}

T
t=1.

In our designs, experimenters can sequentially revise the treatment assignment based on the historical
data. We define the treatment assignment probability for subjects in stage t as

et = P(Ait = 1|Xit,Ht−1), t = 1, . . . , T,

where Ht−1 = {(Xis, Ais, Dis, Sis, Yis)
ns
i=1}

t−1
s=1 is the historical information collected up to Stage

t− 1. In our manuscript, we consider a multi-stage clinical trial setting where T < ∞ and nt → ∞
for t = 1, . . . , T .

We have the following unconfounded assumption for arm-dependent delayed outcomes: A ⊥⊥
(Y (1), Y (0), S(1), S(0)) | X . We also assume the delay is arm and covariates dependent:
D ⊥⊥ (Y (1), Y (0), S(1), S(0)) | X,A. As we are in the randomized experiment setting, the
unconfoundedness assumption holds by design. The delay mechanism says that the delay variable is
independent of potential primary outcomes and potential surrogate outcomes when conditional one
covariates and treatment arms. This rules out the arrow between the delay and the outcome, which
simplifies the technical discussion of the paper. Moreover, such a setup aims to reflect real-world
randomized experiments where the delay is mainly due to protocol or structural factors instead of the
realized outcome (such as the severity of some diseases). For example, if we are testing the effect
of a vitamin supplement on blood vitamin levels and ask patients for regular check-ins, the delay is
less likely to depend on the outcome since the outcome does not cause severe symptoms that affect
patient check-in.

3 Design objective

In this section, we shall formulate our design objective. Our goal of the CARA design is to improve
the estimation efficiency of the ATE. Heuristically, we aim to find the optimal treatment allocation
that minimizes the semiparametric efficiency bound (SPEB) of estimating the ATE.

The formulation of the design objective relies on the derivation of the SPEB of the ATE un-
der the delayed outcome setting while incorporating surrogate information. In Theorem 3 of
the Appendix, we establish the SPEB for estimating τ . If we introduce the following notations
on the conditional expectation of the outcomes: τ(a, x, s) = E[Y |A = a,X = x, S = s],
τ(a, x) = E[τ(A,X, S)|A = a,X = x], our design objective can be formally defined as follows:

min
e∈[δ,1−δ]T

VSPEB

= min
e∈[δ,1−δ]T

{
E

[
(Y − τ(1, X, S))2∑T

t=1 rtet(X)ρ1(T − t|X)
+

(Y − τ(0, X, S))2∑T
t=1 rt(1− et(X))ρ0(T − t|X)

]

+ E

[
(τ(1, X, S)− τ(1, X))2∑T

t=1 rtet(X)
+

(τ(0, X, S)− τ(0, X))2∑T
t=1 rt(1− et(X))

]}
.

The SPEB is a theoretical result derived from the work of [28]. Our design objective says that we aim
to find the sequence of optimal treatment allocation that minimizes the semiparametric efficiency
bound. Furthermore, we require that the treatment allocation should be bounded by δ and 1− δ for
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δ ∈ (0, 1/2). Note that our design objective depends on the conditional expectation of the primary
outcome on covariates and surrogates and the delay mechanism. However, in practical settings, both
the conditional expectations and the delay mechanisms are unknown to practitioners. Therefore, we
propose to use CARA designs that allow us to adaptively learn the unknown parameters based on
sequentially collected data. We shall introduce our proposed design strategy in the following section.

4 Proposed CARA design strategy

In this section, we shall formally introduce our proposed design strategy. We consider a delay
variable D with finite support: D = {0, 1, . . . , D∗} ∪ {∞}, where D∗ is pre-specified based on
domain knowledge. Also, we allow D to take ∞, meaning the outcome is permanently missing. For
simplicity, we assume that the enrollment proportion at each stage is rt = 1/T , for t = 1, . . . , T ,
T < ∞. We assume both X and S take discrete values to avoid unnecessary technical complexity.

From a high level, our proposal consists of four steps. Step 1 consists of D⋆ + 1 stages and serves as
an exploration step that learns parameters like the delay distribution, outcome model, etc. Step 2 is
a policy optimization step after Stage D⋆ + 1, to compute the optimal allocation with the learned
parameters. Step 3 is a policy calibration step from Stage D⋆ + 1 to T , where we calibrate the
allocation to match the optimal strategy. Step 4 constructs point and variance estimators based on the
data. The full procedure is summarized in Algorithm 1.

Algorithm 1 Surrogate-enhanced adaptive experiment with delayed outcomes
Stage 1 (Initialization):

1: Enroll n1 participants, and assign treatments with e1 = 1
2

;
2: Estimate ρ̂

(1)
a (0|x) and let ρ̂(1)a (l|x) = ρ̂

(1)
a (0|x), l = 1, . . . , T − 1.

Stage 2 to D∗ + 1 (Learn delay mechanism):
3: for t → 2 to D∗ + 1 do
4: Enroll nt subjects and assign treatment with probability et =

1
2

;
5: Update ρ̂

(t)
a (l|x) for l ≤ t− 1.

6: end for
7: Obtain the sequence of optimal treatment allocation ê(D∗+1) by solving (1).

Stage D∗ + 2 to T (Calibration of treatment allocation):
8: for t → D∗ + 2 to T do
9: Enroll subjects and assign treatments with calibrated probability ẽ∗t .

10: end for
After Stage T (Inference):

11: Update τ̂ and V̂.
12: Construct a two-sided α-level confidence interval for τ̂ .

Below we take a deeper dive into the details and motivations for each step in Algorithm 1.

Stage 1. In line 1 -2, we initialize the experiment by assigning treatments with probability ê1 = 1
2 .

After Stage 1, we are able to observe all the surrogate outcomes for n1 subjects and part of the
primary outcomes. One can estimate arm-dependent delay with ρa(0|x) by counting the portion of
the observed sample:

ρ̂(1)a (0|x) =
∑n1

i=1 1(Di1≤0) · 1(Xi1=x)1(Ai1=a)∑n1

i=1 1(Xi1=x)1(Ai1=a)

As we only observe outcomes whose delay variable Di1 ≤ 0 at the end of Stage 1, we let ρ̂(1)a (l|x) =
ρ̂
(1)
a (0|x), l ≥ 1. We then estimate τ̂ (1)(a, x, s) and τ̂ (1)(a, x) by taking a sample average of the

observed outcome stratified by (a, x, s) and (a, x), respectively:

τ̂ (1)(a, x, s) =

∑n1

i=1 1(Di1≤0)Yi11(Ai1=a)1(Xi1=x)1(Si1=s)∑n1

i=1 1(Di1≤0)1(Ai1=a)1(Xi1=x)1(Si1=s)
,

τ̂ (1)(a, x) =

∑n1

i=1 1(Di1≤0)Yi11(Ai1=a)1(Xi1=x)∑n1

i=1 1(Di1≤0)1(Ai1=a)1(Xi1=x)
.
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Stage 2 to D∗ + 1. In line 4 to 5, we keep enrolling subjects and assign subjects to the treatment
arm with probability êt = 1/2. Update the estimates of the delay mechanism by counting portions of
the observed sample up to the current stage:

ρ̂(t)a (l|x) =
∑t−1

s=1

∑ns

i=1 1(Dis≤l) · 1(Xis=x)1(Ais=a)∑t−1
s=1

∑ns

i=1 1(Xis=x)1(Ais=a)

, for l = 0, . . . , t− 1,

and let ρ̂(t)a (l|x) = ρ̂
(t)
a (t− 1|x) for l ≥ t. Then update the estimates τ̂ (t)(a, x, s) and τ̂ (t)(a, x) as

the new stratified sample averages:

τ̂ (t)(a, x, s) =

∑t−1
l=1

∑nl

i=1 Yil1(Dis≤t−1)1(Ail=a)1(Xil=x)1(Sil=s)∑t−1
l=1

∑nl

i=1 1(Dis≤t−1)1(Ail=a)1(Xil=x)1(Sil=s)

,

τ̂ (t)(a, x) =

∑t−1
l=1

∑nl

i=1 Yil1(Dis≤t−1)1(Ail=a)1(Xil=x)∑t−1
l=1

∑nl

i=1 1(Dis≤t−1)1(Ail=a)1(Xil=x)

.

At the end of Stage D∗ + 1, we can obtain estimates of all the delay mechanisms:
ρ̂
(D∗+1)
a (0|x), . . . , ρ̂(D

∗+1)
a (D∗|x). We then solve the following optimization problem to find the

optimal sequence of ẽ = (ẽ1, . . . , ẽT ):

min
e∈[δ,1−δ]T

{
1∑D∗+1

s=1 ns

D∗+1∑
s=1

ns∑
i=1

{ (Yis − τ̂ (t)(1, Xis, Sis))
2∑T

t=1 rtet · ρ̂
(t)
1 (T − t|Xit)

+
(Yis − τ̂ (t)(0, Xis, Sis))

2∑T
t=1 rt(1− et) · ρ̂(t)0 (T − t|Xit)

+
(τ̂ (t)(1, Xis, Sis)− τ̂ (t)(1, Xis))

2∑T
t=1 rtet

+

(
τ̂ (t)(0, Xis, Sis)− τ̂ (t)(0, Xis)

)2∑T
t=1 rt(1− et)

+ λN∥e∥22
}}

.

(1)

In particular, confronted with the possibility that multiple minima could exist for the oracle optimiza-
tion program, we introduced the penalty term λN∥e∥22, which regularizes the solution. In Theorem 2,
we will showcase that, theoretically, if we choose the penalty level to be λN = C

√
logN/N , ẽ will

converge in probability to an oracle minima of the population program. In practice, we propose to
choose the tuning parameter based on cross-validation, where we split the collected data into multiple
folds to tune the best scaling factor C for λN = C

√
logN/N .

Stage (D∗ +2) to T . In line 7 to 9, we calibrate the treatment allocation based on the derived Stage
D∗ + 1 optimal treatment allocation strategy. From Stage (D∗ + 2) to Stage (T −D∗), we assign
treatments with calibrated probability êl, where

êl =

∑T−D⋆

s=1 ns · ẽs −
∑D∗+1

s=1 ns · ês∑T−D∗

s=D∗+2 ns

, for l = D∗ + 2, . . . , T −D∗.

and ês is the actual treatment allocation at each Stage s. Then, from Stage s = (T −D∗ + 1) to
T , we assign treatments with probability ês = ẽs, where s = T −D∗ + 1, . . . , T . After Stage T
(line 11 to 12), we update the delay mechanism and the treatment assignment probability using data
collected from the whole experiment.

After Stage T . We obtain the final ATE estimate τ̂ based on the efficient influence curve derived in
Theorem 3 as

τ̂ =
1

N

T∑
t=1

nt∑
i=1

{
Ait1(Dit≤T−t)∑T

t=1 rt · êt(Xit)ρ̂t,1(Dit ≤ T − t|X)

(
Yit − τ̂(1, Xit, Sit)

)
−

(1−Ait)1(Dit≤T−t)∑T
t=1 rt · (1− êt(Xit)ρ̂t,0(Dit ≤ T − t|X)

(
Yit − τ̂(0, Xit, Sit)

)
+

Ait∑T
t=1 rt · êt(Xit)

(
τ̂(1, Xit, Sit)− τ̂(1, Xit)

)
− (1−Ait)∑T

t=1 rt · (1− êt(Xit)

(
τ̂(0, Xit, Sit)− τ̂(0, Xit)

)
+ τ̂(1, Xit)− τ̂(0, Xit)

}
,
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and the variance estimates as

V̂ =
1

N

T∑
t=1

nt∑
i=1

1(Dit≤T−t)Ait(Yit − τ̂(1, Xit, Sit))
2

{
∑T

t=1 rt · êt(Xit)ρ̂1(T − t|Xit)}2
+
1(Dit≤T−t)(1−Ait)(Yit − τ̂(0, Xit, Sit))

2

{
∑T

t=1 rt ·
(
1− êt(Xit)

)
ρ̂0(T − t|Xit)}2

+
1

N

T∑
t=1

nt∑
i=1

Ait(τ̂(1, Xit, Sit)− τ̂(1, Xit))
2

{
∑T

t=1 rt · êt(Xit)}2
+

(1−Ait)(τ̂(0, Xit, Sit)− τ̂(0, Xit))
2

{
∑T

t=1 rt ·
(
1− êt(Xit)

)
}2

+
1

N

T∑
t=1

nt∑
i=1

(
τ̂(1, Xit)− τ̂(0, Xit)− τ̂

)2
.

5 Theoretical investigation

In this section, we investigate the theoretical properties of our proposed design strategy. In Theorem
1, we demonstrate the asymptotic normality of the ATE estimator with any sequence of propensity
scores that are generated sequentially from history and converge to some fixed scores. Furthermore,
we show that our design strategy asymptotically converges to the oracle design strategy in Theorem
2, which suggests that the constructed estimator is semi-parametrically efficient.
Theorem 1 (Asymptotic normality). Assume the delays are conditionally independent of the surrogate
and potential outcomes, given covariates and historical data. Assume the following conditions hold:

1. Bounded conditional moments: max{m4(0, s, x),m4(1, s, x)} ≤ M4, where

m4(a, s, x) = E
{
|Y (a)|4 | S(a) = s,X = x

}
, a = 0, 1.

2. Convergent scores: there exists a set of propensity scores e, such that

max
t∈[T ],x∈X

|êt(x)− et(x)| = op(1). (2)

Let nt = rtN with rt > 0,
∑

t rt = 1. Then when N → ∞, we have
√
N(τ̂ − τ) → N (0,V(e)).

Moreover, the variance estimator satisfies

V̂(e)− V(e) = Op(
1√
N

).

Theorem 1 is a general theoretical result that works for any sequence of historic-dependent treatment
allocation strategy ê, as long as ê converges to an oracle policy in probability asymptotically. For
example, one can apply complete randomization through the experiment, which corresponds to
êt,cr = et,cr = 1/2 and establish the asymptotic normality of τ̂ with variance V(ecr). In particular,
if the proposed adaptive designing strategy (Algorithm 1) is implemented, the treatment allocation
probability will converge to one set of optimal policies that minimizes the semiparametric efficiency
bound (4), which is established in Theorem 2 below.
Theorem 2 (Convergence of the proposed design strategy). Let nt = rtN with rt > 0,

∑
t rt = 1.

Assume the bounded conditional moments hold as in Theorem 1. Assume sufficient enrollment at the
first (T −D⋆) (non-delayed) stages:

T−D∗∑
t=1

rt ≥
1

1− δ
·
max

{√
σ2
0/ρ0,∞ + σ2

0,
√
σ2
1/ρ1,∞ + σ2

1

}
√

σ2
1/ρ1,∞ + σ2

1 +
√

σ2
0/ρ0,∞ + σ2

0

. (3)

Set λN = C
√

logN/N . When N → ∞, we have

(a) ẽ− e∗ = op(1), where e∗ = limλ→0 e
∗(λ), and

e∗(λ) = argmin
e∈[δ,1−δ]T

L(e) + λ∥e∥22.
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(b) ê− e∗∗ = op(1), where e∗∗ is a minima of L(e) defined as follows:

e∗∗t =


1/2, t ≤ D∗ + 1;∑T−D⋆

s=1 rs·e∗s−
∑D∗+1

s=1 rs·1/2∑T−D∗
s=D∗+2

rs
, D∗ + 2 ≤ t ≤ T −D∗;

e∗t , t ≥ T −D∗ + 1.

Theorem 2 formally established the convergence property of the propensity scores generated by
Algorithm 1. More concretely, Theorem 2 showed that two sets of estimated treatment allocation
probability converge to the minima of the population optimal variance: one is the scores ẽ generated
by the optimization program (1), and the other is the sequence of propensity scores ê upon calibration
which is implemented through the experiment. Therefore, Theorem 1 and Theorem 2 together imply
that the point estimator based on the proposed treatment strategy attains the semiparametric efficient
bound asymptotically.

Theorem 2 imposes an additional condition (3), which requires a sufficient number of enrollment in
the non-delayed stages. This is an important sufficient condition for the optimality of the adaptive
allocation strategy, which ensures the optimization program has multiple global minima and enables
experimenters to calibrate the propensity scores based on the history to achieve optimality. In practice,
Condition (3) can also provide guidance on the design of the experiment to decide the length of the
study and the portion of units to recruit in the initial stages.

6 Synthetic case study: HIV trial

In this synthetic case study, we calibrate our data-generating process using data collected from an HIV
randomized controlled trial (RCT) conducted in Tanzania [15]. In this study, n = 530 participants
are initially enrolled and randomized to one of the three treatment arms: (1) receive no cash, (2)
receive 10,000 TZS, and (3) receive 22,500 TZS. In our case study, we combine the latter two arms
and define the control arm A = 0 as "receive no cash transfer" and the treatment arm A = 1 as
"receive any cash transfer." For the treatment arm, the cash incentives were administered six times
from May 21, 2018, to May 31, 2019. In our case study, we consider June 1, 2019, as the starting
point of our trial because all the delays observed after June 1, 2019, are not due to the delay in cash
transfer administration. After all the cash incentives were administered, n = 511 subjects were still
alive on June 1, 2019, with n = 177 subjects in the control arm and n = 334 in the treatment arm.
As the very last test was taken on June 29, 2021, we consider June 29, 2021, as the last time point
where we gathered outcome data.

Motivated by the original HIV trial, we also consider a multi-stage trial where each stage consists
of six months, with the primary outcome Y being the viral load measured at the end of a stage.
The viral load can be delayed to be measured because HIV patients may miss their scheduled test
appointments. Therefore, we consider the World Health Organization (WHO) stage as the surrogate
outcome S ∈ {1, 2, 3} because the WHO stage is a clinical indicator of HIV infection progression
and it is measured without delay, where S = 1, 2, 3 indicates the asymptomatic, mild, and advanced
symptoms respectively. We use “sex" as the covariate X in our study, where X = 1 indicates male
and X = 0 indicates female. We further observe that the delay mechanism depends on both the
treatment arm and the covariate. We summarize the delay mechanism observed from the real data in
Table B. We summarize the expectation and standard deviation of the primary outcome under arm A
given X and S in Table 2.

In our synthetic data generation, we generate the surrogate outcome from a multinomial distribution.
The delay mechanism is also generated following multinomial distribution using the parameters
in Table B. We generate X as Xit ∼ Bernoulli(0.64), and the primary outcome variable Y as
Yit|Ait = a,Xit = x, Sit = s ∼ N (τ(a, x, s)). The true average treatment effect of the primary
outcome is τ = 0.04. Following our proposed design strategy, we set the total number of experimental
stages as T = 2(D∗+1) = 8. In this case study, We compare three designs: (1) Our proposed design
strategy; (2) the complete randomization design which sets et = 1/2 for t = 1, . . . , T ; (3) CARA
design that only utilizes primary outcomes but not surrogate outcomes.

We present the case study results in Figure 1. In terms of bias, Figure 1(A) suggests that the
point estimators from all three designs have a vanishing bias as the sample size grows, validating the
asymptotic unbiasedness of all strategies. Nevertheless, in terms of variance, Figure 1(B) demonstrates
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that our proposed design yields smaller standard deviations and thus higher estimation efficiency for
estimating the ATE. The synthetic case study results verify our efficiency comparison in Section 5
and demonstrate the efficiency gain of our proposed design strategy.

Figure 1: Bias and standard deviation comparison of the three design strategies.

7 Discussion

In this work, we proposed a CARA design strategy that improves the efficiency of ATE estimation in
the presence of delay by incorporating surrogate outcomes. The strategy leads to a point estimator
that achieves semiparametric efficiency under the arm-covariate-dependent delay setting. It also
demonstrates efficiency gain compared with the strategy that uses only primary endpoints. There
are some future directions to explore. First, we mainly considered an arm-dependent delay setting
[18, 41]. A more general setup is to consider the delay mechanism that is also dependent on the
outcomes [42]. Another possible framework is to consider outcomes that are also impacted by
delays, for which the delay variable serves as a special set of surrogate variables [11]. Moreover, the
objective of this work focuses on statistical efficiency gain for ATE estimation. It is also important
to incorporate realistic constraints for practical implementation, such as fairness among subgroups
[46], safety concerns [6], the discrepancy between algorithmic results and human knowledge [14],
etc. More generally, it is also interesting to draw connection to other relevant problems in causal
inference and adaptive experiments, such as dealing with many treatment arms [26, 39, 40], targeting
other causal parameters [7], incorporating instrumental variables [8], among others. We leave these
questions as future research work.
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Technical Appendix

A Additional results and theoretical proofs

A.1 Derivation of the semi-parametric efficiency bound

We use Ri ∈ {1, . . . , T} to record the stage at which the subject i is enrolled, such that P(Ri = t) =

rt,
∑T

t=1 rt = 1.

Theorem 3. Under the unconfoundedness assumption and the arm-dependent delay assumption:

(a) The efficient influence function for estimating τ is

φ(X,A, S, Y,R,D)

= τ(1, X)− τ(0, X)− τ

+
A
∑T

t=1 1(R=t)∑T
t=1 rtet(X)

(
τ(1, X, S)− τ(1, X)

)
−

(1−A)
∑T

t=1 1(R=t)∑T
t=1 rt(1− et(X))

(
τ(0, X, S)− τ(0, X)

)
+

A
∑T

t=1 1(R=t)1(D≤T−t)∑T
t=1 rtet(X)ρ1(T − t|X)

(
Y − τ(1, X, S)

)
−

(1−A)
∑T

t=1 1(R=t)1(D≤T−t)∑T
t=1 rt(1− et(X))ρ0(T − t|X)

(
Y − τ(0, X, S)

)
.

(b) The semiparametric efficiency bond for estimating τ is

VSPEB = E[
(
τ(1, X)− τ(0, X)− τ

)2
]

+ E
[ (τ(1, X, S)− τ(1, X))2∑T

t=1 rtet(X)
+

(τ(0, X, S)− τ(0, X))2∑T
t=1 rt(1− et(X))

]
+ E

[ (Y − τ(1, X, S))2∑T
t=1 rtet(X)ρ1(T − t|X)

+
(Y − τ(0, X, S))2∑T

t=1 rt(1− et(X))ρ0(T − t|X)

]
. (4)

Proof. (a) Proof of Efficient influence function

Step 1. First, we write out the joint density the observed sample as fη(x, a, d, v, s, y), indexed by η.

fη(x, a, d, v, s, y)

= fX,η(x)

T∏
t=1

{
rt,η[et,η(x)gS(1)|X,η(s|x)

(
ρa,η(T − t|x)fY (1)|S,X,η(y|s, x)

)1(d≤T−t) ]

(1− ρa,η(T − t|x))1(d>T−t) ]a

· [(1− et,η(x)) gS(0)|X,η(s|x)
(
ρ1−a,η(T − t|x)fY (0)|S,X,η(y|s, x)

)1(d≤T−t) ]

(1− ρ1−a,η(T − t|x))1(d>T−t) ]1−a
}1(v=t)

,

= fX,η(x)×
(
r
∑T

t=1 1(v=t)

t,η

)
×

T∏
t=1

(et,η(x))
a1(v=t) (1− et,η(x))

(1−a)1(v=t)

×
(
gS(1)|X,η(s|x)

)∑T
t=1 a1(v=t)

(
gS(0)|X,η(s|x)

)∑T
t=1(1−a)1(v=t)

×
T∏

t=1

(ρa,η(T − t|x))a1(d≤T−t)1v=t (1− ρa,η(T − t|x))a1(d>T−t)1(v=t)

×
T∏

t=1

(ρ1−a,η(T − t|x))(1−a)1(d≤T−t)1(v=t) (1− ρ1−a,η(T − t|x))(1−a)1(d>T−t)1(v=t)

×
(
fY (1)|S,X,η(y|s, x)

)∑T
t=1 a1(d≤T−t)1(v=t)
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×
(
fY (0)|S,X,η(y|s, x)

)∑T
t=1(1−a)1(d≤T−t)1(v=t) .

Step 2. Next, we derive the tangent spaces. We use f(·), g(·), et(·), pt(·) to denote ∂
∂η log f(·),

∂
∂η log g(·), ∂

∂η log e(·), and ∂
∂η log ρ(·).

TX = {fX(x) : E[fX(Xi)] = 0} ,

TY (1) =

{
T∑

t=1

a1(d≤T−t)1(v=t) · f1(y|s, x) : E[f1(Yi(1)|Si, Xi)|Si, Xi] = 0

}
,

TY (0) =

{
T∑

t=1

(1− a)1(d≤T−t)1(v=t) · f0(y|s, x) : E[f0(Yi(0)|Si, Xi)|Si, Xi] = 0

}
,

TS(1) =
{ T∑

t=1

a1(v=t)g1(s|x) : E[g1(Si(1)|Xi)|Xi] = 0
}

TS(0) =
{ T∑

t=1

(1− a)1(v=t)g0(s|x) : E[g0(Si(0)|Xi)|Xi] = 0
}

TA,t =
{
a1(v=t)et(x) + (1− a)1(v=t)

(
1− et(x)

)
= 1(v=t)

( a

et(x)
− 1− a

1− et(x)

)
e′t(x)

}
,

TD,a,t =
{
a1(v=t)

(
1(d≤T−t)pa(T − t|x) + 1(d>T−t)

(
1− pa(T − t|x)

))
= a1(v=t)

( 1(d≤T−t)

ρa(T − t|x)
−

1(d>T−t)

1− ρa(x)

)
ρ′a(T − t|x)

}
,

TD,1−a,t =
{
(1− a)1(v=t)

(
1(d≤T−t)p1−a(T − t|x) + 1(d>T−t)

(
1− p1−a(T − t|x)

))
= (1− a)1(v=t)

( 1(d≤T−t)

ρ1−a(T − t|x)
−

1(d>T−t)

1− ρ1−a(x)

)
ρ′1−a(T − t|x)

}
.

Therefore, the tangent space is

T = TX ⊕ TY (1) ⊕ TY (0) ⊕ TS(1) ⊕ TS(0) ⊕ (TA,1 ⊕ TD,A,1 ⊕ T1−D,A,1)⊕ . . .⊕ (TA,T ⊕ TD,A,T ⊕ T1−D,A,T ).

Step 3. We consider the estimation of the target parameter E[Y (1)] via a parametric submodel
indexed by η. Under identifiability assumptions, the target parameter can be written as

Eη[Y (1)] = Eη

[
Eη

[
Eη[Y |A = 1, V = t,D ≤ T − t, S,X]|X

]]
.

Taking pathwise derivative of Eη[Y (1)] at η = 0, we have

∂Eη[Y (1)]

∂η
|η=0

=
∂

∂η
Eη

[
E
[
E[Y |A = 1, V = t,D ≤ T − t, S,X]|X

]]∣∣∣∣∣
η=0︸ ︷︷ ︸

(I)

+ E

[
∂

∂η
Eη

[
E[Y |A = 1, V = t,D ≤ T − t, S,X]|X

]∣∣∣
η=0

]
︸ ︷︷ ︸

(II)

+ E

[
E
[ ∂

∂η
Eη[Y |A = 1, V = t,D ≤ T − t, S,X]|η=0|X

]]
︸ ︷︷ ︸

(III)
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Let s(X,A,D, V, S, Y ) denote the score function of f(x, a, d, v, s, y).

(I) = E

[
τ(1, X)fX(X)

]

= E

[
(τ(1, X)− τ1)fX(X)

]

= E

[
(τ(1, X)− τ1)s(X,A,D, V, S, Y )

]
,

where τ(1, X) = E
[
E[Y |A = 1, V = t,D ≤ T − t, S,X]|X

]
.

(II) = E

[
E
[
τ(1, X, S)g(S|X,A = 1)|X

]]

= E

[
E
[(
τ(1, X, S)− τ(1, X)

)
g(S|X,A = 1)|X

]]

= E

[
E
[(
τ(1, X, S)− τ(1, X)

)
s(X,A,D, V, S, Y )|X

]]

= E

[
A · 1(V=t)

et(X) · rt
(
τ(1, X, S)− τ(1, X)

)
s(X,A,D, V, S, Y )

]
,

where τ(1, S,X) = E[Y |A = 1, V = t,D ≤ T − t, S,X].

(III) = E

[
E
[
E[Y fY (Y |A = 1, S,X, V,D)|A = 1, V = t,D ≤ T − t, S,X]|X

]]

= E

[
E
[
E[
(
Y − τ(1, S,X)

)
fY (Y |A = 1, S,X, V,D)|A = 1, V = t,D ≤ T − t, S,X]|X

]]

= E

[
A · 1(V=t) · 1(D≤T−t)

et(X)rtρa(T − t|X)

(
Y − τ(1, S,X)

)
fY (Y |A = 1, S,X, V,D)

]

= E

[
A · 1(V=t) · 1(D≤T−t)

et(X) · rt · ρa(T − t|X)

(
Y − τ(1, S,X)

)
s(Y,A, S,X, V,D)

]
.

As a result,

∂Eη[Y (1)]

∂η
|η=0

= E

[((
τ(1, X)− τ1

)
+

A · 1(V=t)

et(X)rt

(
τ(1, X, S)− τ(1, X)

)
+

A · 1(V=t) · 1(D≤T−t)

et(X)rtρa(T − t|X)

(
Y − τ(1, S,X)

))

s(Y,A, S,X, V,D)

]

= E

[(
φ1(X) + φ2(A,S,X, V ) + φ3(Y,A, S,X, V,D)

)
s(Y,A, S,X, V,D)

]
,

where

φ1(X) = τ(1, X)− τ1,

φ2(A,S,X, V ) =
A · 1(V=t)

et(X)rt

(
τ(1, X, S)− τ(1, X)

)
,
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φ3(Y,A, S,X, V,D) =
A · 1(V=t) · 1(D≤T−t)

et(X)rtρa(T − t|X)

(
Y − τ(1, S,X)

)
.

Step 4. Now we project the score functions to the corresponding tangent spaces. First, we project
φ1(X) onto TX .

E

[(
φ1(X)− f(X)

)
× f(X)

]
= 0.

We obtain

f(X) = φ1(X).

Next, we project φ2(A,S,X, V ) onto TS(1).

E

[(
φ2(A,S,X, V )−

(
A

T∑
t=1

1(V=t)

)
f(S|X)

)
×
(
A

T∑
t=1

1(V=t)

)
f(S|X)

]
= 0.

E

[
φ2(A,X, V,D)×

(
Ai

T∑
t=1

1(V=t)

)
f(S|X)

]

= E

[
A · 1(V=t)

et(X)rt

(
τ(1, S,X)− τ(1, X)

)
×
(
A

T∑
t=1

1(V=t)

)
f(S|X)

]

= E

[
E
[A · 1(V=t)

et(X)rt

(
τ(1, S,X)− τ(1, X)

)
×
(
A

T∑
t=1

1(V=t)

)
f(S|X)|X

]]

= E

[(
τ(1, S,X)− τ(1, X)

)
f(S|X)

]
.

Then,

E

[(
A

T∑
t=1

1(V=t)

)
f(S|X)

)
×
(
A

T∑
t=1

1(V=t)

)
f(S|X)

]

= E

[(
A

T∑
t=1

1(V=t)

)
f(S|X)2

]

= E

[
E
[(

A

T∑
t=1

1(V=t)

)
f(S|X)2|X

]]

= E

[
T∑

t=1

et(X)rtE
[
f(S|X)2|X

]]
.

Because

E

[(
τ(1, S,X)− τ(1, X)

)
f(S|X)

]
= E

[
T∑

t=1

et(X)rtE
[
f(S|X)2|X

]]
,

we obtain

f(Y |X,S) =
τ(1, S,X)− τ(1, X)∑T

t=1 et(X)rt
.

Lastly, we project φ3(X) onto TY (1).

E

[(
φ3(Y,A, S,X, V,D)−

(
A

T∑
t=1

1(V=t)1D≤T−t

)
f(Y |X,S)

)
×
(
A

T∑
t=1

1(V=t)1D≤T−t

)
f(Y |X,S)

]
= 0.
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E

[
φ3(Y,A, S,X, V,D)×

(
Ai

T∑
t=1

1(V=t)1(D≤T−t)

)
f(Y |X,S)

]

= E

[
A · 1(V=t) · 1(D≤T−t)

et(X)rtρa(T − t|X)

(
Y − τ(1, S,X)

)
×
(
A

T∑
t=1

1(V=t)1(D≤T−t)

)
f(Y |X,S)

]

= E

[
E
[A · 1(V=t) · 1(D≤T−t)

et(X)rtρa(T − t|X)

(
Y − τ(1, S,X)

)
×
(
A

T∑
t=1

1(V=t)1D≤T−t

)
f(Y |X,S)|X

]]

= E

[(
Y − τ(1, S,X)

)
f(Y |X,S)

]
.

E

[(
A

T∑
t=1

1(V=t)1D≤T−t

)
f(Y |X,S)

)
×
(
A

T∑
t=1

1(V=t)1D≤T−t

)
f(Y |X,S)

]

= E

[(
A

T∑
t=1

1(V=t)1D≤T−t

)
f(Y |X,S)2

]

= E

[
E
[(

A

T∑
t=1

1(V=t)1D≤T−t

)
f(Y |X,S)2|X

]]

= E

[
T∑

t=1

et(X)rtρ1(T − t|X)E
[
f(Y |X,S)2|X

]]
.

Because

E

[(
Y − τ(1, S,X)

)
f(Y |X,S)

]
= E

[
T∑

t=1

et(X)rtρ1(T − t|X)E
[
f(Y |X,S)2|X

]]
,

we obtain

f(Y |X,S) =
Y − τ(1, S,X)∑T

t=1 et(X)rtρ1(T − t|X)

In sum, the efficient influence function is

φ(Y,A, S,X, V,D) =
A ·
∑T

t=1 1(V=t) · 1(D≤T−t)∑T
t=1 et(X)rtρ1(T − t|X)

(
Y − τ(1, S,X)

)
−

(1−A) ·
∑T

t=1 1(V=t) · 1(D≤T−t)∑T
t=1(1− et(X))rtρ0(T − t|X)

(
Y − τ(0, S,X)

)
+

A ·
∑T

t=1 1(V=t)∑T
t=1 et(X)rt

(
τ(1, X, S)− τ(1, X)

)
−

(1−A) ·
∑T

t=1 1(V=t)∑T
t=1(1− et(X))rt

(
τ(0, X, S)− τ(0, X)

)
+ (τ(1, X)− τ(0, X)− τ).

(b) Proof of semiparametric efficiency bound

Proof.

V[φ(X,A, S, Y,R,D)]

= V
[
τ(1, X)− τ(0, X)− τ
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+
A
∑T

t=1 1(R=t)∑T
t=1 rtet(X)

(
τ(1, X, S)− τ(1, X)

)
−

(1−A)
∑T

t=1 1(R=t)∑T
t=1 rt(1− et(X))

(
τ(0, X, S)− τ(0, X)

)
+

A
∑T

t=1 1(R=t)1(D≤T−t)∑T
t=1 rtet(X)ρ1(T − t|X)

(
Y − τ(1, X, S)

)
−

(1−A)
∑T

t=1 1(R=t)1(D≤T−t)∑T
t=1 rt(1− et(X))ρ0(T − t|X)

(
Y − τ(0, X, S)

)]
= V

[
τ(1, X)− τ(0, X)− τ

]
︸ ︷︷ ︸

(A)

+ V

[
A
∑T

t=1 1(R=t)∑T
t=1 rtet(X)

(
τ(1, X, S)− τ(1, X)

)
−

(1−A)
∑T

t=1 1(R=t)∑T
t=1 rt(1− et(X))

(
τ(0, X, S)− τ(0, X)

)]
︸ ︷︷ ︸

(B)

+ V

[
A
∑T

t=1 1(R=t)1(D≤T−t)∑T
t=1 rtet(X)ρ1(T − t|X)

(
Y − τ(1, X, S)

)
−

(1−A)
∑T

t=1 1(R=t)1(D≤T−t)∑T
t=1 rt(1− et(X))ρ0(T − t|X)

(
Y − τ(0, X, S)

)]
︸ ︷︷ ︸

(C)

+ 2Cov

[(
τ(1, X)− τ(0, X)− τ

)
,

(A∑T
t=1 1(R=t)∑T

t=1 rtet(X)

(
τ(1, X, S)− τ(1, X)

)
−

(1−A)
∑T

t=1 1(R=t)∑T
t=1 rt(1− et(X))

(
τ(0, X, S)− τ(0, X)

))]
︸ ︷︷ ︸

(D)

+ 2Cov

[(
τ(1, X)− τ(0, X)− τ

)
,

( A
∑T

t=1 1(R=t)1(D≤T−t)∑T
t=1 rtet(X)ρ1(T − t|X)

(
Y − τ(1, X, S)

)
−

(1−A)
∑T

t=1 1(R=t)1(D≤T−t)∑T
t=1 rt(1− et(X))ρ0(T − t|X)

(
Y − τ(0, X, S)

))]
︸ ︷︷ ︸

(E)

+ 2Cov

[(A∑T
t=1 1(R=t)∑T

t=1 rtet(X)

(
τ(1, X, S)− τ(1, X)

)
−

(1−A)
∑T

t=1 1(R=t)∑T
t=1 rt(1− et(X))

(
τ(0, X, S)− τ(0, X)

))
,

( A
∑T

t=1 1(R=t)1(D≤T−t)∑T
t=1 rtet(X)ρ1(T − t|X)

(
Y − τ(1, X, S)

)
−

(1−A)
∑T

t=1 1(R=t)1(D≤T−t)∑T
t=1 rt(1− et(X))ρ0(T − t|X)

(
Y − τ(0, X, S)

))]
︸ ︷︷ ︸

(F )

.

We work with each term separately.

(A) = V
[
τ(1, X)− τ(0, X)− τ

]
= E

[(
τ(1, X)− τ(0, X)− τ

)2]
.

(B) = V

[
A
∑T

t=1 1(R=t)∑T
t=1 rtet(X)

(
τ(1, X, S)− τ(1, X)

)
−

(1−A)
∑T

t=1 1(R=t)∑T
t=1 rt(1− et(X))

(
τ(0, X, S)− τ(0, X)

)]

= V

[
A
∑T

t=1 1(R=t)∑T
t=1 rtet(X)

(
τ(1, X, S)− τ(1, X)

)]
+ V

[
(1−A)

∑T
t=1 1(R=t)∑T

t=1 rt(1− et(X))

(
τ(0, X, S)− τ(0, X)

)]

− 2Cov

[(A∑T
t=1 1(R=t)∑T

t=1 rtet(X)

(
τ(1, X, S)− τ(1, X)

))
,

( (1−A)
∑T

t=1 1(R=t)∑T
t=1 rt(1− et(X))

(
τ(0, X, S)− τ(0, X)

))]
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= E

[(A∑T
t=1 1(R=t)∑T

t=1 rtet(X)

(
τ(1, X, S)− τ(1, X)

))2]
+ E

[( (1−A)
∑T

t=1 1(R=t)∑T
t=1 rt(1− et(X))

(
τ(0, X, S)− τ(0, X)

))2]

− 2E

[(A∑T
t=1 1(R=t)∑T

t=1 rtet(X)

(
τ(1, X, S)− τ(1, X)

))]
· E

[( (1−A)
∑T

t=1 1(R=t)∑T
t=1 rt(1− et(X))

(
τ(0, X, S)− τ(0, X)

))]

= E

[
A
∑T

t=1 1(R=t)∑T
t=1 rtet(X)

(
τ(1, X, S)− τ(1, X)

)2]
+ E

[
(1−A)

∑T
t=1 1(R=t)∑T

t=1 rt(1− et(X))

(
τ(0, X, S)− τ(0, X)

)2]
.

(C) = V

[
A
∑T

t=1 1(R=t)1(D≤T−t)∑T
t=1 rtet(X)ρ1(T − t|X)

(
Y − τ(1, X, S)

)
−

(1−A)
∑T

t=1 1(R=t)1(D≤T−t)∑T
t=1 rt(1− et(X))ρ0(T − t|X)

(
Y − τ(0, X, S)

)]

= V

[
A
∑T

t=1 1(R=t)1(D≤T−t)∑T
t=1 rtet(X)ρ1(T − t|X)

(
Y − τ(1, X, S)

)]

+ V

[
(1−A)

∑T
t=1 1(R=t)1(D≤T−t)∑T

t=1 rt(1− et(X))ρ0(T − t|X)

(
Y − τ(0, X, S)

)]

− 2Cov

[( A
∑T

t=1 1(R=t)1(D≤T−t)∑T
t=1 rtet(X)ρ1(T − t|X)

(
Y − τ(1, X, S)

))
,

( (1−A)
∑T

t=1 1(R=t)1(D≤T−t)∑T
t=1 rt(1− et(X))ρ0(T − t|X)

(
Y − τ(0, X, S)

))]

= E

[( A
∑T

t=1 1(R=t)1(D≤T−t)∑T
t=1 rtet(X)ρ1(T − t|X)

(
Y − τ(1, X, S)

))2]

+ E

[( (1−A)
∑T

t=1 1(R=t)1(D≤T−t)∑T
t=1 rt(1− et(X))ρ0(T − t|X)

(
Y − τ(0, X, S)

))2]

− 2E

[( A
∑T

t=1 1(R=t)1(D≤T−t)∑T
t=1 rtet(X)ρ1(T − t|X)

(
Y − τ(1, X, S)

))]

E

[( (1−A)
∑T

t=1 1(R=t)1(D≤T−t)∑T
t=1 rt(1− et(X))ρ0(T − t|X)

(
Y − τ(0, X, S)

))]

= E

[
A
∑T

t=1 1(R=t)1(D≤T−t)∑T
t=1 rtet(X)ρ1(T − t|X)

(
Y − τ(1, X, S)

)2]

+ E

[
(1−A)

∑T
t=1 1(R=t)1(D≤T−t)∑T

t=1 rt(1− et(X))ρ0(T − t|X)

(
Y − τ(0, X, S)

)2]
.

(D) = 2Cov

[(
τ(1, X)− τ(0, X)− τ

)
,

(A∑T
t=1 1(R=t)∑T

t=1 rtet(X)

(
τ(1, X, S)− τ(1, X)

)
−

(1−A)
∑T

t=1 1(R=t)∑T
t=1 rt(1− et(X))

(
τ(0, X, S)− τ(0, X)

))]

= 2Cov

[(
τ(1, X)− τ(0, X)− τ

)
,
(A∑T

t=1 1(R=t)∑T
t=1 rtet(X)

(
τ(1, X, S)− τ(1, X)

))]
︸ ︷︷ ︸

D1

− 2Cov

[(
τ(1, X)− τ(0, X)− τ

)
,
( (1−A)

∑T
t=1 1(R=t)∑T

t=1 rt(1− et(X))

(
τ(0, X, S)− τ(0, X)

))]
︸ ︷︷ ︸

D2
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= D1 −D2.

D1 = 2E

[(
τ(1, X)− τ(0, X)− τ

)(A∑T
t=1 1(R=t)∑T

t=1 rtet(X)

(
τ(1, X, S)− τ(1, X)

))]

− 2E

[(
τ(1, X)− τ(0, X)− τ

)]
E

[(A∑T
t=1 1(R=t)∑T

t=1 rtet(X)

(
τ(1, X, S)− τ(1, X)

))]

= 2E

[(
τ(1, X)− τ(0, X)− τ

)(A∑T
t=1 1(R=t)∑T

t=1 rtet(X)

(
τ(1, X, S)− τ(1, X)

))]
,

D2 = 2E

[(
τ(1, X)− τ(0, X)− τ

)( (1−A)
∑T

t=1 1(R=t)∑T
t=1 rt(1− et(X))

(
τ(0, X, S)− τ(0, X)

))]

− 2E

[(
τ(1, X)− τ(0, X)− τ

)]
E

[( (1−A)
∑T

t=1 1(R=t)∑T
t=1 rt(1− et(X))

(
τ(0, X, S)− τ(0, X)

))]

= 2E

[(
τ(1, X)− τ(0, X)− τ

)( (1−A)
∑T

t=1 1(R=t)∑T
t=1 rt(1− et(X))

(
τ(0, X, S)− τ(0, X)

))]
.

Therefore,

(D) = D1 −D2

= 2E

[(
τ(1, X)− τ(0, X)− τ

)(A∑T
t=1 1(R=t)∑T

t=1 rtet(X)

(
τ(1, X, S)− τ(1, X)

))]

− 2E

[(
τ(1, X)− τ(0, X)− τ

)( (1−A)
∑T

t=1 1(R=t)∑T
t=1 rt(1− et(X))

(
τ(0, X, S)− τ(0, X)

))]
= 0.

(E) = 2Cov

[(
τ(1, X)− τ(0, X)− τ

)
,

( A
∑T

t=1 1(R=t)1(D≤T−t)∑T
t=1 rtet(X)ρ1(T − t|X)

(
Y − τ(1, X, S)

)
−

(1−A)
∑T

t=1 1(R=t)1(D≤T−t)∑T
t=1 rt(1− et(X))ρ0(T − t|X)

(
Y − τ(0, X, S)

))]

= 2Cov

[(
τ(1, X)− τ(0, X)− τ

)
,
( A

∑T
t=1 1(R=t)1(D≤T−t)∑T

t=1 rtet(X)ρ1(T − t|X)

(
Y − τ(1, X, S)

))]
︸ ︷︷ ︸

E1

− 2Cov

[(
τ(1, X)− τ(0, X)− τ

)
,
( (1−A)

∑T
t=1 1(R=t)1(D≤T−t)∑T

t=1 rt(1− et(X))ρ0(T − t|X)

(
Y − τ(0, X, S)

))]
︸ ︷︷ ︸

E2

= E1 − E2.

E1 = 2E

[(
τ(1, X)− τ(0, X)− τ

)( A
∑T

t=1 1(R=t)1(D≤T−t)∑T
t=1 rtet(X)ρ1(T − t|X)

(
Y − τ(1, X, S)

))]

− 2E

[(
τ(1, X)− τ(0, X)− τ

)]
E

[( A
∑T

t=1 1(R=t)1(D≤T−t)∑T
t=1 rtet(X)ρ1(T − t|X)

(
Y − τ(1, X, S)

))]
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= 0.

E2 = 2E

[(
τ(1, X)− τ(0, X)− τ

)( (1−A)
∑T

t=1 1(R=t)1(D≤T−t)∑T
t=1 rt(1− et(X))ρ0(T − t|X)

(
Y − τ(0, X, S)

))]

− 2E

[(
τ(1, X)− τ(0, X)− τ

)]
E

[( (1−A)
∑T

t=1 1(R=t)1(D≤T−t)∑T
t=1 rt(1− et(X))ρ0(T − t|X)

(
Y − τ(0, X, S)

))]
= 0.

Therefore, (E) = E1 − E2 = 0.

(F ) = 2Cov

[(A∑T
t=1 1(R=t)∑T

t=1 rtet(X)

(
τ(1, X, S)− τ(1, X)

)
−

(1−A)
∑T

t=1 1(R=t)∑T
t=1 rt(1− et(X))

(
τ(0, X, S)− τ(0, X)

))
,

( A
∑T

t=1 1(R=t)1(D≤T−t)∑T
t=1 rtet(X)ρ1(T − t|X)

(
Y − τ(1, X, S)

)
−

(1−A)
∑T

t=1 1(R=t)1(D≤T−t)∑T
t=1 rt(1− et(X))ρ0(T − t|X)

(
Y − τ(0, X, S)

))
= 2E

[(A∑T
t=1 1(R=t)∑T

t=1 rtet(X)

(
τ(1, X, S)− τ(1, X)

)
−

(1−A)
∑T

t=1 1(R=t)∑T
t=1 rt(1− et(X))

(
τ(0, X, S)− τ(0, X)

))
·
( A

∑T
t=1 1(R=t)1(D≤T−t)∑T

t=1 rtet(X)ρ1(T − t|X)

(
Y − τ(1, X, S)

)
−

(1−A)
∑T

t=1 1(R=t)1(D≤T−t)∑T
t=1 rt(1− et(X))ρ0(T − t|X)

(
Y − τ(0, X, S)

))]

− 2E

[(A∑T
t=1 1(R=t)∑T

t=1 rtet(X)

(
τ(1, X, S)− τ(1, X)

)
−

(1−A)
∑T

t=1 1(R=t)∑T
t=1 rt(1− et(X))

(
τ(0, X, S)− τ(0, X)

))
· E

[( A
∑T

t=1 1(R=t)1(D≤T−t)∑T
t=1 rtet(X)ρ1(T − t|X)

(
Y − τ(1, X, S)

)
−

(1−A)
∑T

t=1 1(R=t)1(D≤T−t)∑T
t=1 rt(1− et(X))ρ0(T − t|X)

(
Y − τ(0, X, S)

))]

= 2E

[(A∑T
t=1 1(R=t)∑T

t=1 rtet(X)

(
τ(1, X, S)− τ(1, X)

)
·
( A

∑T
t=1 1(R=t)1(D≤T−t)∑T

t=1 rtet(X)ρ1(T − t|X)

(
Y − τ(1, X, S)

)
+ 2E

[( (1−A)
∑T

t=1 1(R=t)∑T
t=1 rt(1− et(X))

(
τ(0, X, S)− τ(0, X)

))
( (1−A)

∑T
t=1 1(R=t)1(D≤T−t)∑T

t=1 rt(1− et(X))ρ0(T − t|X)

(
Y − τ(0, X, S)

))]
= 0.

In sum, terms (D) = (E) = (F ) = 0, V[φ(X,A, S, Y,R,D)] = (A) + (B) + (C):

V[φ(X,A, S, Y,R,D)]

= E
[(
τ(1, X)− τ(0, X)− τ

)2]
+ E

[
A
∑T

t=1 1(R=t)∑T
t=1 rtet(X)

(
τ(1, X, S)− τ(1, X)

)2]

+ E

[
(1−A)

∑T
t=1 1(R=t)∑T

t=1 rt(1− et(X))

(
τ(0, X, S)− τ(0, X)

)2]
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+ E

[
A
∑T

t=1 1(R=t)1(D≤T−t)∑T
t=1 rtet(X)ρ1(T − t|X)

(
Y − τ(1, X, S)

)2]

+ E

[
(1−A)

∑T
t=1 1(R=t)1(D≤T−t)∑T

t=1 rt(1− et(X))ρ0(T − t|X)

(
Y − τ(0, X, S)

)2]
.

A.2 Proof of Theorem 1

Proof. Our proposed ATE estimator is

τ̂ =
1

N

T∑
t=1

nt∑
i=1

{
Ait1(Dit≤T−t)∑T

t=1 rt · êt(Xit)ρ̂t,1(Dit ≤ T − t|X)

(
Yit − τ̂(1, Xit, Sit)

)
−

(1−Ait)1(Dit≤T−t)∑T
t=1 rt · (1− êt(Xit)ρ̂t,0(Dit ≤ T − t|X)

(
Yit − τ̂(0, Xit, Sit)

)
+

Ait∑T
t=1 rt · êt(Xit)

(
τ̂(1, Xit, Sit)− τ̂(1, Xit)

)
− (1−Ait)∑T

t=1 rt · (1− êt(Xit))

(
τ̂(0, Xit, Sit)− τ̂(0, Xit)

)
+ τ̂(1, Xit)− τ̂(0, Xit)

}
.

Denote

(1) τ̂1 =
1

N

T∑
t=1

nt∑
i=1

{
Ait1(Dit≤T−t)∑T

t=1 rt · êt(Xit)ρ̂t,1(Dit ≤ T − t|X)

(
Yit − τ̂(1, Xit, Sit)

)
+

Ait∑T
t=1 rt · êt(Xit)

(
τ̂(1, Xit, Sit)− τ̂(1, Xit)

)
+ τ̂(1, Xit)

}
,

(2) τ̂0 =
1

N

T∑
t=1

nt∑
i=1

{
(1−Ait)1(Dit≤T−t)∑T

t=1 rt · (1− êt(Xit))ρ̂t,0(Dit ≤ T − t|X)

(
Yit − τ̂(0, Xit, Sit)

)
+

(1−Ait)∑T
t=1 rt · (1− êt(Xit))

(
τ̂(0, Xit, Sit)− τ̂(0, Xit)

)
+ τ̂(0, Xit)

}
.

Step 0. A basic decomposition.

τ̂1 − τ1 =
1

N

T∑
t=1

nt∑
i=1

{
Ait1(Dit≤T−t)∑T

t=1 rt · êt(Xit)ρ̂1(Dit ≤ T − t|X)

(
Yit − τ(1, Xit, Sit)

)
︸ ︷︷ ︸

(A.1)

+

(
Ait1(Dit≤T−t)∑T

t=1 rt · êt(Xit)ρ̂1(Dit ≤ T − t|X)
− 1

)(
τ(1, Xit, Sit)− τ̂(1, Xit, Sit)

)
︸ ︷︷ ︸

(A.2)

+
Ait∑T

t=1 rt · êt(Xit)

(
τ(1, Xit, Sit)− τ(1, Xit)

)
︸ ︷︷ ︸

(B.1)

+

(
Ait∑T

t=1 rt · êt(Xit)
− 1

)(
τ̂(1, Xit, Sit)− τ(1, Xit, Sit)− (τ̂(1, Xit)− τ(1, Xit))

)
︸ ︷︷ ︸

(B.2)
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+ τ(1, Xit)− τ1︸ ︷︷ ︸
(C.1)

}
.

Note that for τ̂2, we have a similar decomposition; we omit the presentation for conciseness.

Step 1. Asymptotics for the nuisance terms.

Step 1.1. Convergence of weighted propensity scores. Under Condition (2), we prove the
following results:

T∑
t=1

rtêt(Xit)ρ̂1(Dit ≤ T − t|X) =

T∑
t=1

rtet(Xit)ρ1(Dit ≤ T − t|X) + op(1),

T∑
t=1

rt(1− êt(Xit))ρ̂0(Dit ≤ T − t|X) =

T∑
t=1

rt(1− et(Xit))ρ0(Dit ≤ T − t|X) + op(1),

T∑
t=1

rtêt(Xit) =

T∑
t=1

rtet(Xit) + op(1),

T∑
t=1

rt(1− êt(Xit)) =

T∑
t=1

rt(1− et(Xit)) + op(1).

WLOG, we only prove the first one.

T∑
t=1

rtêt(Xit)ρ̂1(Dit ≤ T − t|X)

=

T∑
t=1

rt(êt(Xit)− et(Xit))ρ̂1(Dit ≤ T − t|X) +

T∑
t=1

rtet(Xit)(ρ̂1(Dit ≤ T − t|X)− ρ1(Dit ≤ T − t|X)
)

+

T∑
t=1

rtet(Xit)ρ1(Dit ≤ T − t|X).

By Condition (2), we have∣∣∣∣∣
T∑

t=1

rt
(
êt(Xit)− et(Xit)

)
ρ̂1(Dit ≤ T − t|X)

∣∣∣∣∣
≤max

t,x
|êt(x)− et(x)| ·

T∑
t=1

rtρ̂1(Dit ≤ T − t|X) = op(1).

Meanwhile,

T∑
t=1

rtêt(x)(ρ̂1(Dit ≤ T − t|x)− ρ1(Dit ≤ T − t|x))

=

T∑
t=1

1

n̂t(x)

nt∑
i=1

rtêt(x)

(
1(Dit≤T−t)Ait

êt(x)
− ρ1(Dit ≤ T − t|x)

)
1(Xit=x).

The summands in the outer layer, indexed by the t, form a martingale difference sequence. Hence, its
variance is given by

T∑
t=1

r2t
nt

· E
{(

1(Dit≤T−t)At − ρ1(Dit ≤ T − t|x)êt(x)
)2 | Xt = x

}
p(x) · E

{
nt

n̂t(x)

}

≤C ·max
t

r2t ·
T∑

t=1

p(x)

nt
· nt

p(x)(nt + 1)
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(
where we applied E

{
1

1 + Bin(n, p)

}
≤ 1

(1 + n)p

)
=O(

1

n
).

Therefore, we have
T∑

t=1

rtêt(Xit)ρ̂1(Dit ≤ T − t|X) =

T∑
t=1

rtet(Xit)ρ1(Dit ≤ T − t|X) + op(1).

Step 1.2. Convergence of the mean functionals. In this part, we prove the following results:

τ̂(1, x)− τ(1, x) = Op(
1√
N

),

τ̂(0, x)− τ(0, x) = Op(
1√
N

),

τ̂(1, x, s)− τ(1, x, s) = Op(
1√
N

),

τ̂(0, x, s)− τ(0, x, s) = Op(
1√
N

).

WLOG, we check the first result.

τ̂(1, x)− τ(1, x) =
N−1

∑T
t=1

∑nt

i=1(Yit(1)− τ(1, x))Ait1(Dit≤T−t)1(Xit=x)

N−1
∑T

t=1

∑nt

i=1 Ait1(Dit≤T−t)1(Xit=x)

.

The numerator forms a martingale difference triangular array:

W
(n)
it = (Yit(1)− τ(1, x))Ait1(Dit≤T−t)1(Xit=x), F (n)

it = σ{(Yjs(·), Sjs(·), Xjs, Ajs, Djs)s≤t,j≤i}.

For convenience we denote F (n)
0s = F (n)

ns−1(s−1), then we can verify that

E
{
W

(n)
it | F (n)

(i−1)t

}
= 0, for 1 ≤ t ≤ T, 1 ≤ i ≤ nt.

The variance of the numerator is then given by

1

N

T∑
t=1

rtσ
2(1, x)E {êt(x)} ρ⋆1(T − t | x)p(x)

=
σ2(1, x)p(x)

∑T
t=1 rtet(x)ρ

⋆
1(T − t | x) + o(1)

N
.

Therefore,

N−1
T∑

t=1

nt∑
i=1

(Yit(1)− τ(1, x))Ait1(Dit≤T−t)1(Xit=x) = Op(
1√
N

).

For the denominator, similarly, we can show that

N−1
T∑

t=1

nt∑
i=1

Ait1(Dit≤T−t)1(Xit=x) = p(x)

T∑
t=1

rtet(x)ρ
⋆
1(T − t | x) +Op(

1√
N

).

Therefore,

τ̂(1, x)− τ(1, x) = Op(
1√
N

).

Step 1.3. Concentration of propensity weights.
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We prove that

1

N

T∑
t=1

nt∑
i=1

1(Xit=x)

{
1(Dit≤T−t)Ait∑T

t=1 rtêt(x)ρ̂1(T − t|x)
− 1

}
= Op(

1√
N

),

1

N

T∑
t=1

nt∑
i=1

1(Xit=x)

{
1(Dit≤T−t)(1−Ait)∑T

t=1 rt(1− êt(x))ρ̂0(T − t|x)
− 1

}
= Op(

1√
N

),

1

N

T∑
t=1

nt∑
i=1

1(Xit=x)

(
Ait∑T

t=1 rt · êt(x)
− 1

)
= Op(

1√
N

),

1

N

T∑
t=1

nt∑
i=1

1(Xit=x)

(
1−Ait∑T

t=1 rt · (1− êt(x))
− 1

)
= Op(

1√
N

).

WLOG, we prove the first result. We can compute

1

N

T∑
t=1

nt∑
i=1

1(Xit=x)

{
1(Dit≤T−t)Ait∑T

t=1 rtêt(x)ρ̂1(T − t|x)
− 1

}

=

∑T
t=1 rtet(x)ρ

⋆
1(T − t | x)p(x) +Op(

1√
N
)∑T

t=1 rtet(x)ρ
⋆
1(T − t | x) +Op(

1√
N
)

−
(
p(x) +Op(

1√
N

)
)

=Op(
1√
N

).

Step 2. Approximate the main terms. We prove that the sum of (A.1) and (B.1) can be
approximated by the following:

1

N

T∑
t=1

nt∑
i=1

Ait1(Dit≤T−t)∑T
t=1 rt · êt(Xit)ρ̂1(Dit ≤ T − t|Xit)

(
Yit − τ(1, Xit, Sit)

)
=

1

N

T∑
t=1

nt∑
i=1

Ait1(Dit≤T−t)∑T
t=1 rt · et(Xit)ρ1(Dit ≤ T − t|Xit)

(
Yit − τ(1, Xit, Sit)

)
+ op(

1√
N

),

and

1

N

T∑
t=1

nt∑
i=1

Ait∑T
t=1 rt · êt(Xit)

(
τ(1, Xit, Sit)− τ(1, Xit)

)
=

1

N

T∑
t=1

nt∑
i=1

Ait∑T
t=1 rt · et(Xit)

(
τ(1, Xit, Sit)− τ(1, Xit)

)
+ op(

1√
N

).

The first approximation can be done by simply noticing that

1

N

T∑
t=1

nt∑
i=1

Ait1(Xit=x,Sit=s)1(Dit≤T−t)

(
Yit − τ(1, x, s)

)
·(

1∑T
t=1 rt · êt(x)ρ̂1(Dit ≤ T − t|Xit)

− 1∑T
t=1 rt · et(x)ρ̂1(Dit ≤ T − t|Xit)

)
= Op(

1√
N

) · op(1) = op(
1√
N

).

The second approximation can be done similarly.

Step 3. Compute the variance of the main part.

By Step 0-2, we have the following approximation for τ̂ − τ :

τ̂ − τ = τ̂1 − τ1 − (τ̂0 − τ0)

= τ̂1,apr − τ1 − (τ̂0,apr − τ0) + op(
1√
N

),
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where

τ̂1,apr =
1

N

T∑
t=1

nt∑
i=1

{
Ait1(Dit≤T−t)∑T

t=1 rt · et(Xit)ρ1(D ≤ T − t|Xit)

(
Yit − τ(1, Xit, Sit)

)
+

Ait∑T
t=1 rt · et(Xit)

(
τ(1, Xit, Sit)− τ(1, Xit)

)
+ τ(1, Xit)

}
,

τ̂0,apr =
1

N

T∑
t=1

nt∑
i=1

{
(1−Ait)1(Dit≤T−t)∑T

t=1 rt · (1− et(Xit))ρ0(Dit ≤ T − t|Xit)

(
Yit − τ(0, Xit, Sit)

)
+

(1−Ait)∑T
t=1 rt · (1− et(Xit))

(
τ(0, Xit, Sit)− τ(0, Xit)

)
+ τ(0, Xit)

}
.

We can verify that the variance of τ̂1,apr − τ̂0,apr is given by the following form:

V(τ̂apr) =
1

N
·

{
E

{
σ2(1, X, S)∑T

t=1 rt · et(X)ρ1(D ≤ T − t|X)
+

σ2(0, X, S)∑T
t=1 rt · (1− et(X))ρ0(D ≤ T − t|X)

+
σ2(1, X)∑T

t=1 rt · et(X)
+

σ2(0, X)∑T
t=1 rt · (1− et(X))

+ (τ(1, X)− τ(0, X)− τ)2

}}
+ o(

1

N
).

To sum up,

V(τ̂apr) =
1

N
V(e) + o(

1

N
).

Step 4. Prove the asymptotic normality of the approximation τ̂apr upon standardization.

We check that the Lyapunov condition holds:

1

N2V(e)2
T∑

t=1

nt∑
i=1

E


∣∣∣∣∣ Ait1(Dit≤T−t)∑T

t=1 rt · et(Xit)ρ1(D ≤ T − t|Xit)

(
Yit − τ(1, Xit, Sit)

)∣∣∣∣∣
4


≤ CM4

NV(e)2
E

{
1

{
∑T

t=1 rt · et(Xit)ρ1(D ≤ T − t|Xit)}3

}
≤ CM4

NV(e)2δ3
.

Similarly, we have

1

N2V(e)2
T∑

t=1

nt∑
i=1

E


∣∣∣∣∣ (1−Ait)1(Dit≤T−t)∑T

t=1 rt · (1− et(Xit))ρ0(D ≤ T − t|Xit)

(
Yit − τ(0, Xit, Sit)

)∣∣∣∣∣
4


≤ CM4

NV(e)2
E

{
1

{
∑T

t=1 rt · (1− et(Xit))ρ0(D ≤ T − t|Xit)}3

}
≤ CM4

NV(e)2δ3
,

and

1

N2V(e)2
T∑

t=1

nt∑
i=1

E


∣∣∣∣∣ Ait∑T

t=1 rt · et(Xit)

(
τ(1, Xit, Sit)− τ(1, Xit)

)∣∣∣∣∣
4
 ≤ CM4

NV(e)2δ3
,

1

N2V(e)2
T∑

t=1

nt∑
i=1

E


∣∣∣∣∣ 1−Ait∑T

t=1 rt · (1− et(Xit))

(
τ(0, Xit, Sit)− τ(0, Xit)

)∣∣∣∣∣
4
 ≤ CM4

NV(e)2δ3
,

1

N2V(e)2
T∑

t=1

nt∑
i=1

E
{
|τ(1, Xit)− τ(0, Xit)− τ |4

}
≤ CM4

NV(e)2
.
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Therefore, we have proved that the Lyapunov condition holds and
√
N(τ̂ − τ)⇝ N(0,V(e)).

Step 5. Prove the convergence of the variance estimator.

First, we can prove that

1

N

T∑
t=1

nt∑
i=1

1(Dit≤T−t)Ait(Yit − τ̂(1, Xit, Sit))
2

{
∑T

t=1 rt · êt(Xit)ρ̂1(Dit ≤ T − t|Xit)}2

=
1

N

T∑
t=1

nt∑
i=1

1(Dit≤T−t)Ait(Yit − τ(1, Xit, Sit)− (τ̂(1, Xit, Sit)− τ(1, Xit, Sit)))
2

{
∑T

t=1 rt · êt(Xit)ρ̂1(Dit ≤ T − t|Xit)}2

=
1

N

T∑
t=1

nt∑
i=1

1(Dit≤T−t)Ait(Yit − τ(1, Xit, Sit))
2

π̂1T (Xit)2

+
1

N

T∑
t=1

nt∑
i=1

1(Dit≤T−t)Ait(τ̂(1, Xit, Sit)− τ(1, Xit, Sit))
2

{
∑T

t=1 rt · êt(Xit)ρ̂1(Dit ≤ T − t|Xit)}2

− 2

N

T∑
t=1

nt∑
i=1

1(Dit≤T−t)Ait(Yit − τ(1, Xit, Sit))(τ̂(1, Xit, Sit)− τ(1, Xit, Sit))

π̂1T (Xit)2

=E

{
σ2(1, X, S)∑T

t=1 rt · et(X)ρ1(D ≤ T − t|X)

}
+Op(

1√
N

).

The results follow from the martingale structure and the approximation given in Steps 1.1 and 1.2.

Analogously, with similar ways of decomposition, we can prove that

1

N

T∑
t=1

nt∑
i=1

1(Dit≤T−t)(1−Ait)(Yit − τ̂(0, Xit, Sit))
2

{
∑T

t=1 rt · (1− êt(Xit))ρ̂0(Dit ≤ T − t|Xit)}2

=E

{
σ2(0, X, S)∑T

t=1 rt · (1− et(X))ρ0(D ≤ T − t|X)

}
+Op(

1√
N

),

1

N

T∑
t=1

nt∑
i=1

1(Dit≤T−t)Ait(τ̂(1, Xit, Sit)− τ̂(1, Xit))
2

{
∑T

t=1 rt · êt(Xit)}2

=E

{
σ2(1, X)∑T
t=1 rtet(X)

}
+Op(

1√
N

),

1

N

T∑
t=1

nt∑
i=1

1(Dit≤T−t)(1−Ait)(τ̂(0, Xit, Sit)− τ̂(0, Xit))
2

{
∑T

t=1 rt · (1− êt(Xit))}2

=E

{
σ2(0, X)∑T

t=1 rt · (1− et(X))

}
+Op(

1√
N

),

Moreover, we have

1

n

T∑
t=1

nt∑
i=1

(τ̂(1, Xit)− τ̂(0, Xit)− (τ̂1,OR − τ̂0,OR))
2

=
1

n

T∑
t=1

nt∑
i=1

(τ̂(1, Xit)− τ̂(0, Xit)− (τ(1, Xit)− τ(0, Xit)))
2

+
1

n

T∑
t=1

nt∑
i=1

(τ(1, Xit)− τ(0, Xit)− (τ1 − τ0))
2
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+
2

n

T∑
t=1

nt∑
i=1

(τ(1, Xit)− τ(0, Xit)− (τ1 − τ0))(τ̂(1, Xit)− τ̂(0, Xit)− (τ(1, Xit)− τ(0, Xit)))

−((τ̂1,OR − τ̂0,OR)− (µ1 − µ0))
2

=E
{
(τ(1, X)− τ(0, X)− τ)2

}
+Op(

1√
N

).

Summarizing the above parts, we can conclude

V̂(e)− V(e) = Op(
1√
N

).

A.3 Proof of Theorem 2

Proof. The proof is delivered in two steps:

Step 1. A sufficient condition for the existence of non-trivial oracle propensity scores in the
non-delay stages.

For the oracle optimization problem 3, by considering covariates X and S with finite discrete support
values, we are essentially solving the following program:

min
e

σ2(1, x, s)∑
t rtet(x)ρ1(T − t | x)

+
σ2(0, x, s)∑

t rt(1− et(x))ρ0(T − t | x)
+

σ2(1, x)∑
t rtet(x)

+
σ2(0, x)∑

t rt(1− et(x))
.

For simplicity, we can omit the dependence on x and s values and focus instead on the following:

min
δ≤et≤1−δ

σ2
1∑

t rtetρ1(T − t)
+

σ2
0∑

t rt(1− et)ρ0(T − t)
+

σ2
1∑

t rtet
+

σ2
0∑

t rt(1− et)
.

We want to compute how many stages it takes to obtain a nontrivial solution for the adaptive
experiment. The last D∗ stages will just come with delay; the first T − (D∗ + 1) stages will have
ρ1(T − t) = ρ1,∞ and ρ0(T − t) = ρ0,∞. We can condense the first T − (D∗ + 1) variables as a
single one by representing it as an average e:

min
δ≤et≤1−δ

σ2
1∑

t≤T−D∗−1 rteρ1,∞ +
∑

t>T−D∗−1 rtetρ1(T − t)

+
σ2
0∑

t≤T−D∗−1 rt(1− e)ρ0,∞ +
∑

t>T−D∗−1 rt(1− et)ρ0(T − t)

+
σ2
1∑

t≤T−D∗−1 rte+
∑

t>T−D∗−1 rtet
+

σ2
0∑

t≤T−D∗−1 rt(1− e) +
∑

t>T−D∗−1 rt(1− et)
.

We want to introduce a solution for e that is bounded away from the boundary. By KKT conditions,
for the optimal solution variable e⋆, we have

∂L(e; et)
∂e

∣∣∣
e=e⋆

= −
σ2
1

∑
t≤T−D∗−1 rtρ1,∞

{
∑

t≤T−D∗−1 rte
⋆ρ1,∞ +

∑
t>T−D∗−1 rtetρ1(T − t)}2

+
σ2
0

∑
t≤T−D∗−1 rtρ0,∞

{
∑

t≤T−D∗−1 rt(1− e⋆)ρ0,∞ +
∑

t>T−D∗−1 rt(1− et)ρ0(T − t)}2

−
σ2
1

∑
t≤T−D∗−1 rt

{
∑

t≤T−D∗−1 rte
⋆ +

∑
t>T−D∗−1 rtet}2

+
σ2
0

∑
t≤T−D∗−1 rt

{
∑

t≤T−D∗−1 rt(1− e⋆) +
∑

t>T−D∗−1 rt(1− et)}2
= 0.
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Note that the derivative function ∂L/∂e is continuous and monotonically increasing in e. We can
upper bound the minimum value of ∂L/∂e and set it to negative:

∂L
∂e

∣∣∣
e=δ

≤ −
(σ2

1/ρ1,∞ + σ2
1)
∑

t≤T−D∗ rt

{
∑

t≤T−D∗ rtδ +
∑

t>T−D∗ rt}2
+

(σ2
0/ρ0,∞ + σ2

0)
∑

t≤T−D∗ rt

{
∑

t≤T−D∗ rt(1− δ)}2
≤ 0.

Denote

Rf =
∑

T≤T−D∗

rt, Rd =
∑

T>T−D∗

rt.

Here Rf stands for the portion of the whole sample before and including stage T − D∗, and Rd

stands for the portion beyond stage T −D∗. After simplification, we obtain

Rfδ +Rd

Rf (1− δ)
≤ σ2

1/ρ1,∞ + σ2
1

σ2
0/ρ0,∞ + σ2

0

,

which further simplifies to

Rf ≥ 1

1− δ
·

√
σ2
0/ρ0,∞ + σ2

0√
σ2
1/ρ1,∞ + σ2

1 +
√

σ2
0/ρ0,∞ + σ2

0

.

Similarly and symmetrically, we can lower bound the maximal value of the derivative and set it to
positive, which gives

Rf ≥ 1

1− δ
·

√
σ2
1/ρ1,∞ + σ2

1√
σ2
1/ρ1,∞ + σ2

1 +
√

σ2
0/ρ0,∞ + σ2

0

.

Summarizing both parts, we obtain

Rf ≥ 1

1− δ
·
max

{√
σ2
0/ρ0,∞ + σ2

0,
√
σ2
1/ρ1,∞ + σ2

1

}
√

σ2
1/ρ1,∞ + σ2

1 +
√

σ2
0/ρ0,∞ + σ2

0

.

Step 2. Convergence of the empirical objective.

We prove that the empirical version of the objective function converges uniformly to the population
program:

EN = max
e∈[δ,1−δ]T

|L̂(e)− L(e)| = Op(
1√
N

). (5)

For the first D∗ + 1 stages, because the data collection policy is complete randomization with equal
probability, the estimates for conditional variances, conditional means, and delay distribution are all√
N -consistent. Noting that the denominators of L̂ and L are strictly bounded away from 0 and 1, (5)

can be verified.

Step 3. Convergence of the solution. Using the fact that ẽN minimizes the empirical objective, we
have

L̂(ẽN ) + λN∥ẽN∥22 ≤ L̂(e∗) + λN∥e∗∥22.
Then we have

λN∥ẽN∥22 − λN∥e∗∥22 ≤ L̂(e∗)− L̂(ẽN ) ≤ L(e∗)− L(ẽN ) + 2EN ≤ 2EN .

where the last inequality follows that e∗ minimizes L(e).
Meanwhile, using

L(e∗N ) + λN∥e∗N∥22 ≤ L(ẽN ) + λN∥ẽN∥22,
we have

λN∥e∗N∥22 − λN∥ẽN∥22 ≤ L(ẽN )− L(e∗N ) ≤ L̂(ẽN )− L̂(e∗N ) + 2EN ≤ 2EN .
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To sum up, we have proved

∥e∗N∥22 −
2EN
λN

≤ ∥ẽN∥22 ≤ ∥e∗∥22 +
2EN
λN

.

Now letting N → ∞, we know that

2EN
λN

= Op

(
1√

logN

)
.

Hence we can conclude that

∥ẽN∥22
P−→ ∥e⋆∥22. (6)

On the other hand,

L(e⋆) ≤L(ẽN )

≤L̂(ẽN ) + λN∥ẽN∥22 − λN∥ẽN∥22 + EN
≤L̂(e⋆N ) + λN∥e⋆N∥22 − λN∥ẽN∥22 + EN
≤L(e⋆N ) + λN∥e⋆N∥22 − λN∥ẽN∥22 + 2EN .

Therefore,

L(ẽN )
P−→ L(e⋆) (7)

(6) states that the distance between the ẽN and the Euclidean ball B⋆ = {e : ∥e∥2 = ∥e⋆∥2}
converges to zero: d(ẽN ,B⋆)

P−→ 0. (7) states that the distance between ẽN and the minimal point
set M⋆ converges to zero: d(ẽN ,M⋆)

P−→ 0. But, B⋆ ∩M⋆ = {e⋆}. Therefore it must be that

ẽ
P−→ e∗.

Step 4. Convergence of the implemented propensity scores.

The rest of the result, ê P−→ e∗∗, is now a direct result from Step 2 and Step 3.

B Synthetic case study details

In this section, we provide the true parameters generated from the real data adopted in our synthetic
case study. The parameters are summarized in Tables B and 2.

Table 1: Delay mechanism from the real data

T − t X ρ1(D ≤ T − t|X) ρ0(D ≤ T − t|X)
0 1 0.69 0.60
1 1 0.89 0.86
2 1 0.98 0.97
3 1 1 1
0 0 0.68 0.67
1 0 0.92 0.93
2 0 0.98 1
3 0 1 1

30



Table 2: Parameters generated from real data (Continuous outcome)

X S τ(1, x, s) τ(0, x, s) σ(1, x, s) σ(0, x, s)
0 1 2.50 2.98 0.36 2.06
1 1 2.72 2.47 0.82 0.31
0 2 3.03 3.02 2.06 1.70
1 2 2.68 2.92 0.66 0.85
0 3 2.94 2.59 1.27 0.48
1 3 3.13 2.84 2.01 0.78
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Justification: Please see Section 7.
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address problems of privacy and fairness.
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will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
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Justification: Please see Section 5.
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• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if
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by formal proofs provided in appendix or supplemental material.
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perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Please see Section 6 and Supplementary Materials.
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• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
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(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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• The answer NA means that paper does not include experiments requiring code.
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• While we encourage the release of code and data, we understand that this might not be
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• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
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• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Please see Section 6 and Supplementary Materials.
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• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Please see Section 6.
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• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
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• The factors of variability that the error bars are capturing should be clearly stated (for
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
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preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.
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figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).
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they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
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running on a MacBook Pro equipped with an 8-core CPU.
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• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research conducted in the paper conforms with the NeurIPS Code of
Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: Please see Section 7.
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• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
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being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Our paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The creators or original owners of the original dataset used in the paper have
been properly credited.
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• The answer NA means that the paper does not use existing assets.
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• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of
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• If assets are released, the license, copyright information, and terms of use in the
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has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
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asset is used.
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well as details about compensation (if any)?
Answer: [Yes]
Justification: We have included the details related to the original HIV trial. Please see
Section 6.
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