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Abstract

Physics-based numerical models have been the bedrock of atmospheric sciences for decades,
offering robust solutions but often at the cost of significant computational resources. Deep
learning (DL) models have emerged as powerful tools in meteorology, capable of analyz-
ing complex weather and climate data by learning intricate dependencies and providing
rapid predictions once trained. While these models demonstrate promising performance
in weather prediction, often surpassing traditional physics-based methods, they still face
critical challenges. This paper presents a comprehensive survey of recent deep learning
and foundation models for weather prediction. We propose a taxonomy to classify existing
models based on their training paradigms: deterministic predictive learning, probabilistic
generative learning, and pre-training and fine-tuning. For each paradigm, we delve into the
underlying model architectures, address major challenges, offer key insights, and propose
targeted directions for future research. Furthermore, we explore real-world applications
of these methods and provide a curated summary of open-source code repositories and
widely used datasets, aiming to bridge research advancements with practical implemen-
tations while fostering open and trustworthy scientific practices in adopting cutting-edge
artificial intelligence for weather prediction. The related sources are anonymously available
at https://anonymous.4open.science/r/Survey.

1 Introduction

Global climate change has increased the frequency of extreme weather events, such as heatwaves, extreme
cold spells, intense rainfall, storms, and hurricanes, leading to disasters such as droughts, floods, and air
pollution (Rummukainen, 2012). These changes have profound implications across multiple domains, affect-
ing human health and activities (Flandroy et al., 2018), compromising environmental sustainability (Abbass
et al., 2022), disrupting economic stability (Carleton & Hsiang, 2016), and altering ecosystem dynamics (De-
scombes et al., 2020). In this context, developing accurate and timely weather prediction is critical to
mitigating these impacts and supporting adaptive strategies.

Physics-based models, including General Circulation Models (GCMs) (Ravindra et al., 2019) and Numer-
ical Weather Prediction (NWP) models (Coiffier, 2011), have been the cornerstone of weather prediction.
These models simulate future weather scenarios by numerically approximating solutions to the differential
equations that govern the complex physical dynamics of interconnected atmospheric, terrestrial, and oceanic
systems (Nguyen et al., 2023a). Despite significant advancements, these models face notable limitations.
Firstly, they are computationally intensive due to the high-dimensional and nonlinear nature of the govern-
ing equations (Ren et al., 2021). Secondly, the underlying equations often rely on simplified assumptions
about atmospheric dynamics, which can limit their ability to capture intricate, uncommon processes (Palmer
et al., 2005). Lastly, these physics-based models typically produce deterministic forecasts based on initial
conditions, falling short of explicitly capturing model uncertainties in weather evolution even though per-
turbation of initial conditions has been used to represent the input uncertainty (Biilte et al., 2024).

ARIMA (AutoRegressive Integrated Moving Average) is a statistical model widely used for weather prediction
(Box et al., 2015). Non-seasonal ARIMA models analyze patterns in historical data but cannot handle
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seasonality, while seasonal ARIMA extends this framework to account for regular cycles, making it effective
for variables like rainfall or temperature (Lai & Dzombak, 2020; Khan et al., 2023). However, ARIMA
models have limitations, including difficulty capturing nonlinear relationships, sensitivity to outliers, and
the need for careful parameter selection. The Bayesian nonparametric nonhomogeneous hidden Markov
model is a statistical approach designed for time-varying applications where underlying processes evolve over
time. In climate and weather systems, it has been used for tasks such as predicting daily rainfall (Cao
et al., 2024a) and analyzing El Nifio-Southern Oscillation (ENSO) impacts (Zhang et al., 2024b). However,
these methods are typically limited to low-dimensional data and often struggle with generalization to more
complex, high-dimensional scenarios.

In recent years, data-driven machine learning (ML) and deep learning (DL) models have been increasingly
applied to weather and climate modeling, demonstrating remarkable advances in precision, computational
efficiency, and uncertainty quantification (Chen et al., 2023d; Nguyen et al., 2023b). They have proven
increasingly adept at capturing complex atmospheric dynamics in an end-to-end fashion, eliminating the
reliance on explicit prior knowledge of physical relationships. For example, deterministic models such as
Pangu (Bi et al., 2023) and GraphCast (Lam et al., 2022) have achieved state-of-the-art performance in
medium-range (10-day) global weather prediction, surpassing or matching traditional methods in accuracy
while dramatically reducing computational costs (up to three orders of magnitude). However, their pre-
dictions are often blurry since they are trained by minimizing point-wise loss functions. To overcome this
limitation, probabilistic generative models have emerged as powerful tools for weather prediction while
achieving uncertainty quantification in those predictions. They consider weather prediction as probabilistic
sampling (i.e., generation) conditioning on necessary constraints. Models like CasCast (Gong et al., 2024)
and Gencast (Price et al., 2023) leverage probabilistic diffusion techniques for tasks such as precipitation
nowcasting and weather prediction, delivering both high-quality predictions and calibrated uncertainty es-
timates. More recently, foundation models have gained traction in climate and weather modeling as an
emerging paradigm (Bodnar et al., 2024; Schmude et al., 2024). These models are pre-trained on massive
historical weather datasets to learn generalizable and comprehensive knowledge, which can then be fine-
tuned for diverse downstream tasks, e.g., weather forecasting and climate downscaling (Chen et al., 2023f).
Foundation models offer two key advantages: (1) the ability to learn robust and transferable weather rep-
resentations from large-scale data, and (2) the flexibility to adapt to downstream applications without the
need for task-specific models trained from scratch (Miller et al., 2024; Zhu et al., 2024b).

With the rapid advancement of deep learning (DL) in weather and climate science, a systematic and up-to-
date survey is essential for consolidating knowledge and guiding future research. While several surveys have
been published in recent years, each addresses a distinct aspect of the field. Ren et al. (2021) reviewed DL
models for weather prediction, with a focus on their architectural designs. Molina et al. (2023) explored DL
applications in climate modeling, including feature detection, extreme weather prediction, downscaling, and
bias correction. Other surveys, such as those by Fang et al. (2021) and Materia et al. (2024), concentrated
on DL techniques for specific scenarios, such as forecasting extreme weather events. Additionally, Mukkavilli
et al. (2023) highlighted state-of-the-art DL models across diverse meteorological applications, emphasizing
their performance across various spatial and temporal scales. Moreover, Chen et al. (2023f) categorized DL
models for weather and climate science based on data modalities (e.g., time series, text) and their respective
applications. Distinct from the existing surveys, our work provides a novel perspective by reviewing the
literature through the lens of training paradigms. We also discuss the advantages and limitations of each
training paradigm and offer broader possibilities for future work. Our contributions are:

e Novel Taxonomy. We introduce a systematic categorization of existing DL models for weather pre-
diction based on their training paradigms: deterministic predictive learning, probabilistic generative
learning, and pre-training and fine-tuning.

e« Comprehensive Overview. We present a detailed survey of the state-of-the-art models, analyzing
their strengths, limitations, and applications in weather prediction.

o Extensive Resources. We compile an extensive repository of resources, including benchmark
datasets, open-source codes, and real-world applications to support further research.

e Future Directions. We outline a forward-looking roadmap, highlighting ten critical research di-
rections across five key avenues to advance DL methods for weather prediction.
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2 Background and Preliminaries

2.1 Weather Data Representation

There are two primary types of weather data commonly used: station-based observation data and gridded
reanalysis data. Each offers unique advantages and limitations and both play critical roles in advancing
weather and climate research.

Station-Based Observation Data. It originates from weather stations distributed across the globe,
collecting high-resolution meteorological measurements at specific locations. These stations provide precise
monitoring data, for example, temperature, humidity, wind speed and direction, precipitation, atmospheric
pressure, and more. Station-based observations are typically of high temporal resolution, with data recorded
hourly or daily, enabling detailed insights into local weather patterns and trends. However, station coverage
is often uneven, with a high concentration in populated or economically significant areas and sparse coverage
in remote regions such as the oceans, mountains, and deserts. This uneven distribution can limit global-scale
analyses, though it remains invaluable for localized forecasting, trend analysis, and model validation.

Gridded Reanalysis Data. It offers a global view by dividing the Earth’s surface into a grid, with each
cell assigned values representing averaged weather conditions over its area. It is often called reanalysis data,
derived from a combination of sources, including station observations, satellite measurements, and numerical
weather prediction (NWP) models. Gridded data provide consistent spatial coverage, including remote areas
and oceans, where station-based observations are sparse or nonexistent. Gridded data are typically available
at varying resolutions, with common grid sizes ranging from 1° x 1° to 0.25° x 0.25° (each degree corresponds
to about 100 km). Temporal resolution can also vary, offering hourly or daily intervals, allowing for detailed
temporal analysis.
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Figure 1: Perspectives of weather forecasting.

2.2 Weather Prediction Formulation

As shown in Figure 1, we discuss four types of weather forecasting. (1) Temporal: forecasts predict atmo-
spheric variables of interest for future time point(s), ¢t + At, given observation(s) from the recent past. It
includes weather and climate forecasts based on the lead time At = {hours, days, weeks, months, years}
and encompasses nowcast, medium-range forecast, sub-seasonal, and seasonal forecast. (2) Spatial: methods
predict global and regional weather forecasts for any given time point. (3) Applications: focus on predict-
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ing weather variables of interest. (4) Fvent Type: Weather forecasts may be for extreme events, such as
heatwaves, snowstorms, hurricanes, and tropical cyclones. Forecasts could also be for regular, non-extreme
periods.

Deterministic weather and climate forecasting can be formulated as follows:

F(O
[Xi—aerys s X ] T Vigr, . Vagal, (1)

where X and Y are sets of input and output variables; a and 8 are the temporal lengths of the input
and output windows; F () represents the model with the learnable parameters 6. F(-) can also denote a
probabilistic function, i.e., Y ~ P(Y]X).

2.3 Preliminaries
We introduce three types of weather prediction models and provide a brief comparison.

Definition 2.1 (General-Purpose Large Models) They are typically trained on large, diverse global
datasets that include information on multiple meteorological variables of interest, enabling global weather
prediction across a broad spectrum of applications.

Definition 2.2 (Domain-Specific Models) They focus on predicting a single variable, applied to regional
weather prediction.

Definition 2.3 (Foundation Models) They are large models pre-trained on diverse, massive datasets,
allowing for subsequent fine-tuning or adaptation for various downstream tasks.

Based on the modeling algorithm, we have deterministic and probabilistic training paradigms. Both general-
purpose large models and domain-specific models can be trained with deterministic predictive learning (Sec-
tion 3.1) or probabilistic generative learning (Section 3.2). Foundation Models are pre-trained and then
fine-tuned (Section 3.3).
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Figure 2: The illustration of various frameworks of training deep learning models on weather prediction. For
clarity, this visualization focuses exclusively on single-step predictions for a single variable.

3 Overview and Taxonomy

This section provides an overview and categorization of deep learning (DL) models for weather forecasts.
Our survey mainly focuses on three aspects: modeling paradigm, model backbone, and application domain.
The modeling paradigm includes deterministic predictive learning, probabilistic generative learning, and pre-
training and fine-tuning (see Figure 2). Weather and climate models can be categorized based on model
backbones, such as Recurrent Neural Networks, Transformers, Graph Neural Networks, Mamba, Generative
Adversarial Networks, and Diffusion Models. The theoretical details of these models are listed in Appendix
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FourCastNet (Pathak et al., 2022), FuXi (Chen et al., 2023c),
FengWu (Chen et al., 2023a), FengWu-4DVar (Xiao et al., 2023),
Transformer —SwinVRNN (Hu et al., 2023), SwinRDM (Chen et al., 2023b),
Pangu-Weather (Bi et al., 2023), Stormer (Nguyen et al., 2023c),
HEAL-VIiT (Ramavajjala, 2024), TianXing (Yuan et al., 2025)

General-Purpose
Large Models GNN GraphCast (Lam et al., 2022), GnnWeather (Keisler, 2022),
AIFS (Lang et al., 2024), GraphDOP (Alexe et al., 2024)

ClimODE (Verma et al., 2024), WeatherODE (Liu et al., 2024b),
Neural GCM (Kochkov et al., 2024), Conformer (Saleem et al., 2024)
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Deterministic Predictive SwinUnet (Bojesomo et al., 2021), Earthformer (Gao et al., 2022),
Learning (Section 3.1) Transformer Rainformer (Bai et al., 2022), U-STN (Chattopadhyay et al., 2022),
OMG-HD (Zhao et al., 2024a), PFformer (Xu et al., 2024)
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HiSTGNN (Ma et al., 2023a), w-GNN (Chen et al., 2024),
WeatherGNN (Wu et al., 2024), MPNNs (Yang et al., 2024a)

Domain-Specific MetNet (Senderby et al., 2020; Espeholt et al., 2022),
Models N&CNN MetNet-3 (Andrychowicz et al., 2023), PredRNN (Wang et al., 2022),
MM-RNN (Ma et al., 2023b), ConvLSTM (Shi et al., 2015)
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NowcastNet (Zhang et al., 2023b), PhysDL (De Bézenac et al., 2019),
PhyDNet (Guen & Thome, 2020), DeepPhysiNet (Li et al., 2024b)

GANrain (Ravuri et al., 2021), MultiScaleGAN (Luo et al., 2022), ]
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Figure 3: A comprehensive taxonomy of deep learning and foundation models for weather prediction from
the perspectives of training paradigms (dark yellow), model scopes (purple), and model architectures (pink).

B. At the application level, the existing models are divided into general-purpose and domain-specific models.
We present a detailed comparison and summary in Table 1 and Figure 3.

Table 1: General-Purpose Large Models vs Domain-Specific Models.

‘ General-Purpose Large Models ‘ Domain-Specific Models

Scope Global, multi-variable Regional forecasts, single-variable
Spatial Coarse (0.25° ~ 5.625°) High (< 0.1°)

Temporal Coarse (6 12 hours) High (5 mins ~ 1 hour)

Training Data | > 10 Years Days, Months, Years

Architectures | Transformer, GNN Transformer, GNN, RNN, CNN, Mamba

3.1 Predictive Learning

Predictive learning methods are usually deterministic, where models aim to predict future states of weather
variables (like temperature, humidity, wind speed, and precipitation) based on past and present observations.
These models are typically built to recognize weather patterns or dependencies in historical data by mini-
mizing a point-wised loss function (e.g., mean absolute errors). We systematically categorize these predictive
models into general-purpose large models and domain-specific models. Each categorization is discussed with
various model architectures.
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3.1.1 General-Purpose Large Models

Large Language Models (LLMs) (Zhao et al., 2023) have garnered significant attention in recent years.
Similarly, large-scale weather models have been developed to address global weather prediction tasks across
multiple meteorological variables, leveraging deterministic predictive frameworks.

Transformer-based models. Transformer models (Vaswani, 2017) are widely used as a backbone.
FourCastNet (Pathak et al., 2022) is developed for global data-driven weather forecasting by employing
a Fourier transform-based token-mixing scheme (Guibas et al., 2021) with a vision transformer (ViT) (Doso-
vitskiy et al., 2020). The multiple-time step prediction is achieved by using trained models in autoregressive
inference mode. FengWu (Chen et al., 2023a) processes each weather variable separately, using multiple en-
coders to extract individual feature embeddings. Then, an elaborately designed transformer network fuses
these embeddings to capture the interaction among all variables. As with FourCastNet, Fengwu also autore-
gressively forecasts multiple steps over a long range. FengWu-4DVar (Xiao et al., 2023) integrates FengWu
with the Four-Dimensional Variational (4DVar) assimilation algorithm (Rabier et al., 1998), accomplish-
ing both global weather forecasting and data assimilation. SwinVRNN (Hu et al., 2023) utilizes the Swin
Transformer (Liu et al., 2022) and RNN for weather prediction, but with a perturbation module to generate
ensemble forecasts. SwinRDM (Chen et al., 2023b) uses SwinRNN for prediction and a diffusion model for
super-resolution output. HEAL-ViT (Ramavajjala, 2024) explores Vision Transformers on a spherical mesh,
benefiting from both spatial homogeneity inherent in graphical models and efficient attention mechanisms.
The TianXing model (Yuan et al., 2025) proposes a variant attention mechanism with linear complexity for
global weather prediction, significantly diminishing GPU resource demands, with only a marginal compro-
mise in accuracy.

While these models have achieved impressive performance, any iterative inference process accumulates er-
rors as the length of the prediction window increases. The Pangu-Weather (Bi et al., 2023) model uses a
hierarchical temporal aggregation algorithm to alleviate cumulative forecast errors. They train four indi-
vidual models for lead times of 1, 3, 6, and 24 hours. In the testing stage, the greedy algorithm is used
to guarantee the minimal number of iterations of the trained models for a forecast window. Furthermore,
they design a 3D Earth Specific Transformer (3DEST) architecture that formulates the height (pressure
level) information into cubic data, capturing more intricate spatiotemporal dynamics. Similarly, the FuXi
model (Chen et al., 2023¢) employed a combination of FuXi-Short, FuXi-Medium, and FuXi-Long models
to produce 15-day forecasts, where each model generates 5-day forecasts. Its backbone is a U-transformer,
coupling U-Net (Ronneberger et al., 2015), and a Swin Transformer (Liu et al., 2022). In addition to the
integration of direct and iterative forecasting, the Stormer model (Nguyen et al., 2023¢) needs the explicit
time point, ¢ + At to guide the models for predictions.

GNN-based models. Keisler (2022) introduced an approach to global weather prediction using graph
neural networks (GNNs) (Wu et al., 2020). By modeling the Earth as a graph with nodes representing
spatial locations and edges encoding their relationships, the model captures spatial dependencies in weather
patterns. This GNN-based method effectively integrates local and global weather dynamics. Another GNN-
based model, GraphCast (Lam et al., 2022), forecasts hundreds of weather variables with a longer forecast
range (up to 10 days ahead) at a higher spatial resolution (0.25 degree) after training with reanalysis
gridded ERA5 data (Rasp et al., 2023). It also provides better support for severe weather compared to
the European Centre for Medium-Range Weather Forecasts (ECMWF')’s High-RESolution forecast (HRES),
a component of the Integrated Forecast System (IFS). More recently, ECMWF also proposed GNN-based
models, AIFS (Lang et al., 2024) and GraphDOP (Alexe et al., 2024). The latter is a model that operates
solely on inputs and outputs in observation space, with no gridded climatology and/or NWP (re)analysis
inputs or feedback.

Physics-Al-based models. Although data-driven methods have demonstrated high accuracy and effi-
ciency, they operate as black-box models that frequently overlook underlying physical mechanisms, such as
turbulence, convection, and atmospheric airflow. C1im0ODE (Verma et al., 2024) implements a key principle
of advection to model a spatiotemporal continuous-time process, namely, weather changes due to the spatial
movement over time. It aims to precisely describe the value-conserving dynamics of weather evolution with
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continuity ODE (Marchuk, 2012), learning global weather transport as a neural flow. It also includes a Gaus-
sian emission network for predicting uncertainties and source variations. To solve the advection equation
more accurately, WeatherODE (Liu et al., 2024b) adopts wave equation theory (Evans, 2022) and a time-
dependent source model and designs the CNN-ViT-CNN sandwich structure, facilitating efficient learning
dynamics tailored for distinct yet interrelated tasks with varying optimization biases. NeuralGCM (Kochkov
et al., 2024) employs a differentiable dynamical core for solving more primitive equations, including momen-
tum equations, the second law of thermodynamics, a thermodynamic equation of state, continuity equation,
and hydrostatic approximation. It also develops a learned physics module that parameterizes physical pro-
cesses with a neural network, predicting the effect of unresolved processes such as cloud formation, radiative
transport, precipitation, and subgrid-scale dynamics. Conformer (Saleem et al., 2024) is a spatiotemporal
Continuous Vision Transformer for weather forecasting, learning the continuous weather evolution over time
by implementing continuity in the multi-head attention mechanism.

3.1.2 Domain-Specific Models

We present domain-specific predictive models for regional or single-variable weather predictions.

Transformer-based models. SwinUnet (Bojesomo et al., 2021) employs the hybrid model of Swin Trans-
former and U-Net for regional weather forecasts in Europe. Earthformer (Gao et al., 2022) proposes a
generic, flexible, and efficient space-time attention block (Cuboid Attention) Earth system forecasting, which
can decompose the data into cuboids and apply cuboid-level self-attention in parallel. Rainformer (Bai et al.,
2022) combines CNN and Swin Transformer for precipitation nowcasting. PFformer (Xu et al., 2024) uti-
lizes i-Transformer (Liu et al., 2023a) to learn spatial dependencies among multiple observation stations
for short-term precipitation forecasting. Vision transformer (Dosovitskiy et al., 2020) has been applied to
estimate lightning intensity in Ningbo City, China (Lu et al., 2022). NowcastingGPT (Meo et al., 2024)
develops Transformer-based models with Extreme Value Loss (EVL) regularization (von Bortkiewicz, 1921)
for extreme precipitation nowcasting. The U-STN model (Chattopadhyay et al., 2022) integrates data assim-
ilation with a deep spatial-transformer-based U-NET to predict the global geopotential while the OMG-HD
model (Zhao et al., 2024a) leverages the Swim Transformer for regional high-resolution weather forecast
trained with multiple observational data, including stations, radar, and satellite.

GNN-based models. HiSTGNN (Ma et al., 2023a) incorporates an adaptive graph learning module com-
prising a global graph representing regions and a local graph capturing meteorological variables for each
region. The w-GNN model (Chen et al., 2024) leverages Graph Neural Networks coupled with physical fac-
tors for precipitation forecast in China. WeatherGNN (Wu et al., 2024) proposes a fast hierarchical Graph
Neural Network (FHGNN) to extract the spatial dependencies. The MPNN model (Yang et al., 2024a) exploits
heterogeneous GNNs for both station-observed and gridded weather data, where the node at the prediction
location aggregates information from its heterogeneous neighboring nodes by message passing.

RNN- & CNN-based models. The ConvLSTM model (Shi et al., 2015) couples CNNs and LSTMs as
the model backbone for precipitation nowcasting, usually with a lead time between 1 to 3 hours. Similar
works include MetNet-1 (Sgnderby et al., 2020) and MetNet-2 models (Espeholt et al., 2022) for precipitation
forecasting for lead times of 8 and 12 hours. MetNet-3 (Andrychowicz et al., 2023) significantly extends both
the lead times (up to 24 hours) and variables (precipitation, wind, temperature, and dew point) by learning
from both dense and sparse data sensors. MM-RNN (Ma et al., 2023b) introduces knowledge of elements to
guide precipitation prediction and learn the underlying atmospheric motion laws using RNNs. Based on
the original LSTMs, PredRNN (Wang et al., 2022) proposes a zigzag memory flow that propagates in both
a bottom-up and top-down fashion across all layers, enabling the dynamic communication at various levels
of RNNs. Other variants of ConvLSTM for precipitation nowcasting include TrajGRU (Shi et al., 2017) and
Predrnn++ (Wang et al., 2018).

Mamba-based models. MetMamba (Qin et al., 2024) exploits Mamba’s selective scan to achieve token
(spatial, temporal) mixing and channel mixing to capture more complex spatiotemporal dependencies in
weather data. MambaDS (Liu et al., 2024g) attempts to use the selective state space model (Mamba) for the
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meteorological field downscaling. VMRNN (Tang et al., 2024) develops an innovative architecture tailored for
spatiotemporal forecasting by integrating Vision Mamba and LSTM, surpassing established vision models
in both efficiency and accuracy.

Physics-AI-based models. NowcastNet (Zhang et al., 2023b) is a nonlinear nowcasting model for extreme
precipitation that unifies physical-evolution schemes and conditional-learning methods into a neural network
framework. PhysicsAI (Das et al., 2024) has evaluated NowcastNet model with a case study on the Tennessee
Valley Authority (TVA) service area, outperforming the High Resolution Rapid Refresh (HRRR) model.
PhysDL (De Bézenac et al., 2019) presents how physical knowledge (advection and diffusion) could be used
as a guideline for designing efficient deep-learning models, exemplifying sea surface temperature predictions.
PhyDNet (Guen & Thome, 2020) is a two-branch deep learning architecture that explicitly disentangles known
PDE dynamics from unknown complementary information. DeepPhysiNet (Li et al., 2024b) incorporates
atmospheric physics into the loss function of deep learning methods as hard constraints for accurate weather
modeling.

More generally, we provide state-of-the-art predictive models for time series forecasting across various do-
mains. While these models are not specific for weather modeling, they offer insightful modeling advance-
ments since weather data is often represented as time series. Representative models include but not limited to
iTransformer (Liu et al., 2023a), PatchTST (Nie et al., 2022), FEDformer (Zhou et al., 2022), DLinear (Zeng
et al., 2023), Autoformer (Chen et al., 2021a). More recently, Han et al. (2024b) collected worldwide me-
teorological monitoring data, created a benchmark dataset, and completed a comprehensive evaluation with
those advanced models above.

3.2 Generative Models

Generative models can be used for weather prediction by treating them as generative processes conditioned on
observations from the past. More significantly, since these generative models are probabilistic, they are well
suited to generate ensemble forecasts that can help quantify the uncertainty in the predictions, facilitating
informed decision-making.

3.2.1 General-Purpose Large Models

Diffusion-based models. Some researchers have developed generative models for global weather predic-
tion. GenCast (Price et al., 2023) uses diffusion models for probabilistic weather forecasts conditioning on
the past two observations, generating an ensemble of stochastic 15-day global forecasts, at 12-hour steps and
0.25° latitude-longitude resolution, for over 80 surface and atmospheric variables. As a variant of GenCast,
CoDiCast (Shi et al., 2024a) leverages a pre-trained encoder to learn embeddings from observations from
the recent past and a cross-attention mechanism to guide the generation process to predict future weather
states. Similar work includes SEEDs (Li et al., 2023a) for the global weather forecast. The three methods
above are trained on a single forecasting step and rolled out autoregressively. However, they are com-
putationally expensive and accumulate errors for high temporal resolution due to the many rollout steps.
ContinuousEnsCast (Andrae et al., 2024) addresses these limitations by proposing a continuous forecasting
diffusion model that takes lead time as input and forecasts the future weather state in a single step while
maintaining a temporally consistent trajectory for each ensemble member.

3.2.2 Domain-Specific Models

In this subsection, we discuss domain-specific models for generative learning with generative adversarial
networks (GANs) (Goodfellow et al., 2014; Mirza, 2014) and diffusion models (Ho et al., 2020).

GAN-based models. GANrain (Ravuri et al., 2021) employs a conditional generative adversarial network
(GAN) for the precipitation prediction problem, where the generator generates future precipitation frames
and the discriminator learns to distinguish whether a sample is coming from the original training data or was
generated by the generator. MultiScaleGAN (Luo et al., 2022) evaluates GANs (Goodfellow et al., 2014) and
Wasserstein-GAN (Arjovsky et al., 2017) for precipitation nowcasting in Guangdong province, China, and
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indicates that GAN-based models outperform the traditional ConvGRU, ConvLSTM, and multiscale CNN
models. STGM (Wang et al., 2023b) introduces a task-segmented, synthetic-data generative model (STGM) for
heavy rainfall nowcasting by utilizing real-time radar observations in conjunction with physical parameters
derived from the Weather Research and Forecasting (WRF) model. PCT-CycleGAN (Choi et al., 2023) extends
the idea of the cycle-consistent adversarial networks (CycleGAN) (Zhu et al., 2017) and proposes a paired
complementary temporal CycleGAN for radar-based precipitation nowcasting.

Diffusion-based models. LDMRain (Leinonen et al., 2023) uses the architecture of latent diffusion
model (Rombach et al., 2022) for precipitation nowcasting — short-term forecasting based on the latest
observational data. Similar works include SRNDif (Ling et al., 2024b) and GEDRain (Asperti et al., 2023b).
DiffCast (Yu et al., 2024a) models the precipitation process from two perspectives: the deterministic com-
ponent accounts for predicting a global motion trend by a coarse forecast, while the stochastic component
aims to learn local stochastic variations with the residual mechanism. CasCast (Gong et al., 2024) devel-
ops a cascaded framework consisting of a deterministic predictive model to output blurry predictions, and a
probabilistic diffusion model with inputs as both past observations and deterministic predictions beforehand.
Because the deterministic predictions are the future frames, such frame-wise guidance in the diffusion model
can provide a frame-to-frame correspondence between blurry predictions and latent vectors, resulting in a
better generation of small-scale patterns. However, directly applying diffusion models might generate physi-
cally implausible predictions. To tackle these limitations, Prediff (Gao et al., 2023b) proposes a conditional
latent diffusion model for probabilistic forecasts and then aligns forecasts with domain-specific physical con-
straints. This is achieved by estimating the deviation from imposed constraints at each denoising step and
adjusting the transition distribution accordingly.

TimeDiff (Shen & Kwok, 2023), TimeDDPM (Dai et al., 2023), LTD (Feng et al., 2024b), TimeGrad (Rasul
et al., 2021), and Dyffusion (Rihling Cachay et al., 2024) are examples that have applied diffusion models
to general time series modeling, which could be adapted to weather time series. Yang et al. (2024b) provides
a comprehensive survey of such methods for time series and spatiotemporal modeling.

3.3 Foundation Models

Foundation Models (FMs) have garnered significant research interest due to their powerful prior knowledge
acquired through pre-training on massive data and their remarkable adaptability to downstream tasks with
fine-tuning strategies (He et al., 2024c). While foundation models may be large language models (LLMs), a
few foundation models in the weather domain have been proposed.

ClimaX (Nguyen et al., 2023a) is a versatile and generalizable deep-learning model developed for weather
and climate science. It is trained on heterogeneous datasets encompassing diverse variables, spatiotemporal
coverage, and physical principles with CMIP6 datasets and it can be fine-tuned for a wide range of weather
and climate applications, including those involving atmospheric variables and spatiotemporal scales not
encountered during pre-training. W-MAE (Man et al., 2023) is pre-trained with similar data, but using
reconstruction tasks with the Masked Autoencoder model (He et al., 2022). The pre-trained model can be
fine-tuned for various tasks, e.g., multi-variate forecasting. Aurora (Bodnar et al., 2024) is a large-scale
foundation model pre-trained on over a million hours of diverse weather and climate data. Unlike the two
foundation models above, Aurora can be fine-tuned in one of two ways: short-time fine-tuning (i.e., fine-
tuning the entire architecture through one or two roll-out steps) and rollout fine-tuning for long-term multi-
step predictions with low-rank adaption (LoRA) (Hu et al., 2021a). Prithvi WxC (Schmude et al., 2024)
is a foundation model with 2.3 billion parameters developed using 160 variables. It is essentially a scalable
and flexible 2D vision transformer with varying sizes of tokens or windows. During the pre-training, the
Masked Autoencoder model (He et al., 2022) is pre-trained by masking different ratios of tokens and windows
to capture both regional and global dependencies in the input data. It can be fine-tuned for nowcasting,
forecasting, and downscaling tasks. More recently, AtmosArena (Nguyen et al., 2024) benchmarks foundation
models for atmospheric sciences across various atmospheric variables.

Furthermore, time series foundation models designed for diverse domains may be flexibly adapted for weather
forecasting. Representative examples include TimeFM (Das et al., 2023), Moment (Goswami et al., 2024),
Timer (Liu et al., 2024e), Moirai (Woo et al., 2024), and Chronos (Ansari et al., 2024).
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4 Applications and Resources

This section introduces the diverse applications of deep learning models in weather and climate science. We
provide an overview of the available datasets, summarized in detail in Table 3 in Appendix A.

4.1 Precipitation

Precipitation prediction has witnessed significant advances driven by deep learning (DL) applications, fo-
cusing mainly on precipitation nowcasting (Gao et al., 2020; 2021; Ashok & Pekkat, 2022; Verma et al.,
2023; Salcedo-Sanz et al., 2024; An et al., 2024). CNN-based architectures, particularly U-Net, have been
widely utilized for their ability to extract local features through convolutional layers, effectively capturing
high-dimensional spatio-temporal dynamics of precipitation (Lebedev et al., 2019; Ayzel et al., 2020b; Han
et al., 2021; Ehsani et al., 2022; Seo et al., 2022; Kim et al., 2022a; Zhang et al., 2023b). RNN-based mod-
els, Transformers, and their hybrid designs combining convolutions represent another dominant approach,
optimized for long-term dependency modeling (Shi et al., 2015; Wang et al., 2017; Park et al., 2022; Gao
et al., 2022; Bai et al., 2022; Geng et al., 2024; Bodnar et al., 2024; Zhao et al., 2024b; Schmude et al.,
2024). Generative models have also played a critical role, with adversarial models (e.g., GANs) (Jing et al.,
2019; Liu & Lee, 2020; Ravuri et al., 2021; Wang et al., 2023c; She et al., 2023; Choi et al., 2023; Yin
et al., 2024; Franch et al., 2024) contributing to precipitation synthesis. Moreover, probabilistic generative
diffusion models have gained attention for their superior stability, controllability, and fine-grained synthesis
capabilities (Leinonen et al., 2023; Gao et al., 2023b; Yu et al., 2024a; Gong et al., 2024).

4.2 Air Quality

Air quality prediction is of critical importance to society. Zheng et al. (2013) employ artificial neural network
(ANN) with spatially-related features to predict the air quality in Beijing, Waseem et al. (2022) employed
a CNN-Bi-LSTM architecture for air quality prediction in Xi’an, China, and Yi et al. (2018) propose a
model combining a spatial transformation component and a deep distributed fusion network to predict air
quality in nine major cities in China. More recently, Shi et al. (2022) evaluate various deep learning models,
including RNNs, LSTMs, GRUs, and Transformers, for air quality prediction in Beijing. Nationwide air
quality forecasting in China has leveraged advanced architectures such as hierarchical group-aware graph
neural networks (GAGNN) (Chen et al., 2023¢), spatiotemporal graph neural networks (STGNNs) (Wang
et al., 2020), and Transformer-based models (Liang et al., 2023; Yu et al., 2025). Additionally, RNNs have
been utilized for air quality prediction in India (Arora et al., 2022) and Pakistan (Waseem et al., 2022), while
hybrid CNN-LSTM architectures have been applied for predictions in Barcelona and Turkey (Gilik et al.,
2022).

4.3 Sea Surface Temperature

The change in Sea Surface Temperature can cause El Nino/Southern Oscillation (ENSO) and La Nifia
phenomena, largely impacting the global extreme climate, such as increasing the chances of floods, droughts,
heat waves, and cold seasons (Wang et al., 2023a). Nifo 3.4 index, an important indicator for ENSO
prediction, has been predicted using different deep learning (DL) models, such as RNN-based (Huang et al.,
2019; Geng & Wang, 2021), CNN-based (Ham et al., 2019; Liu et al., 2021), residual CNNs (Hu et al.,
2021b), ConvLSTM (He et al., 2019), GNN-based (Cachay et al., 2020), and Transformer-based models (Ye
et al., 2021; Zhou & Zhang, 2023; Song et al., 2023). More recently, an adaptive graph spatial-temporal
attention network (AGSTAN) has been proposed for longer lead (i.e., 23 months) ENSO prediction (Liang
et al., 2024). Mu et al. (2021) evaluates multiple DL models for the Nifio 3 index, Nifno 3.4 index, and Nifo 4
index with a multivariate air—sea coupler. Similar evaluation work involves comparing deep learning models
for ENSO forecasting and presenting ENSO dataset (Mir et al., 2024). Moreover, some researchers directly
predict the sea surface temperature using spatiotemporal graph attention networks (Gao et al., 2023¢) and
physical knowledge-enhanced generative adversarial networks (Meng et al., 2023). ENSO impacts have also
been studied, including river flows (Liu et al., 2023b), rainfall (He et al., 2024Db), and heatwaves (He et al.,
2024a).
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4.4 Flood

Accurate flood prediction is essential for mitigating the adverse impacts of flooding. Recent advances in deep
learning (DL) have led to the development of various models tailored for flood forecasting and mapping, such
as CNN-based (Adikari et al., 2021), RNN-based and LSTM (Nevo et al., 2022; Ruma et al., 2023), and CNN-
RNN hybrid models such as ConvLSTM (Li et al., 2022; Moishin et al., 2021), and LSTM-DeepLabv3+ (Situ
et al., 2024a). Situ et al. (2024b) employs the attention mechanism for urban flood damage and risk assess-
ment with improved flood prediction and land use segmentation. Furthermore, graph-based models have
also gained attention for flood prediction (Kirschstein & Sun, 2024). FloodGNN-GRU combines GNNs
and Gated Recurrent Units (GRUs) for spatiotemporal flood prediction by incorporating vector features
like velocities (Kazadi et al., 2024) while Graph Transformer Network (FloodGTN) integrates GNNs and
Transformers to learn spatiotemporal dependencies in water levels (Shi et al., 2023; 2024b). Additionally,
physics-guided models further enhance flood prediction by embedding physical laws into model training. For
instance, the DK-Diffusion model incorporates flood physics into its loss function to align predictions with
hydrological principles (Shao et al., 2024). DRUM leverages diffusion model for operational flood forecasting
and long-term risk assessment (Ou et al., 2024). Moreover, conditional GANs have been explored for flood
predictions across untrained catchments (do Lago et al., 2023), demonstrating their versatility in diverse
hydrological conditions.

4.5 Drought

Drought, driven by a complex interplay of meteorological, agricultural, hydrological, and socio-economic
factors, manifests across diverse spatial and temporal scales (Wilhite, 2016; Gyaneshwar et al., 2023). We
focus on DL methods that consider meteorological drivers, such as precipitation deficits, wind patterns, and
temperature anomalies, to predict various drought indices. LSTMs have been widely used to predict spatial
precipitation patterns (dry-wet) (Gibson et al., 2021) and drought indices related to precipitation, such as
the standardized precipitation index (SPI) (Poornima & Pushpalatha, 2019; Dikshit & Pradhan, 2021) and
the standardized precipitation evapotranspiration index (SPEI) (Tian et al., 2021; Dikshit et al., 2021; Xu
et al., 2022), excelling at capturing long-term dependencies. Beyond SPI and SPEI (Adikari et al., 2021;
Dhyani & Pandya, 2021; Hao et al., 2023), CNNs have been applied for predicting other indices, such as
the soil moisture index (SMI) (Dhyani & Pandya, 2021) and soil moisture condition index (SMCI) (Zhang
et al., 2024c), aiding agricultural drought prediction. Hybrid models like ConvLSTM and CNN-LSTM have
demonstrated significant improvements in multi-temporal predictions for SPEI (Danandeh Mehr et al., 2023;
Nyamane et al., 2024) and SPI (Park et al., 2020), as well as indices like the scaled drought condition index
(SDCI) (Park et al., 2020), composite drought index (CDI) (Zhang et al., 2023a), and Palmer drought
severity index (PDSI) (Elbeltagi et al., 2024). Specifically, the CNN-GRU model has effectively forecasted
daily reference evapotranspiration (ET) (Ahmed et al., 2022). Swin Transformer was used for drought
prediction across multiple scales (Zhang et al., 2024a). Meanwhile, GANs have emerged as robust tools for
drought prediction, with applications spanning vegetative drought prediction (Shukla & Pandya, 2023), and
SMI (Ferchichi et al., 2024).

4.6 Tropical Storms/Cyclones and Hurricanes

Accurate forecasting of tropical storms, cyclones, and hurricanes is crucial for mitigating their devastating
impacts. CNN-based models have been increasingly employed to predict various aspects of these phenomena,
focusing on targets such as storm formation (Zhang et al., 2021; Nguyen & Kieu, 2024), intensity (Kim
et al., 2024), track (Giffard-Roisin et al., 2020; Lian et al., 2020), and associated rainfall (Kim et al., 2022b).
Hybrid models, such as CNN-LSTM, further improve the accuracy of intensity prediction (Alijoyo et al.,
2024), extend lead times up to 60 hours (Kumar et al., 2022), and effectively capture landfall in terms of
location and time (Kumar et al., 2021). GANs have also proven valuable in downscaling tropical cyclone
rainfall to hazard-relevant spatial scales (Vosper et al., 2023) and in multitask frameworks for simultaneously
forecasting cyclone paths and intensities (Wu et al., 2021). Recent approaches like diffusion models have
been explored for forecasting cyclone trajectories and precipitation patterns (Nath et al., 2023). GNNs
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integrated with GRUs have been utilized to model storm surge dependencies across observation stations,
offering improvements in spatial and temporal forecasting (Jiang et al., 2024).

4.7 Wildfire

Accurate wildfire prediction is critical for disaster management and mitigation. CNN-based models have
demonstrated strong capabilities in wildfire spread prediction (Khennou et al., 2021; Shadrin et al., 2024), in-
cluding forecasting fire weather with high spatial resolution (Son et al., 2022), generating spread maps (Huot
et al., 2022), and modeling large-scale fire dynamics using multi-kernel architectures (Marjani & Mesgari,
2023). RNNs, including GRUs and LSTMs, excel in modeling wildfire risk and predicting spread, with GRU-
LSTM showing superior performance in longer time series data (Perumal & Van Zyl, 2020; Dzulhijjah et al.,
2023; Gopu et al., 2023). Hybrid CNN-LSTM models further enhance prediction accuracy, offering near-
real-time daily wildfire spread forecasting (Marjani et al., 2024) and incorporating multi-temporal dynamics
for prediction (Marjani et al., 2023). ConvLSTM models capture a wide range of temporal scales in wildfire
prediction, from short-term intervals of 15 minutes (Burge et al., 2023) to longer-term forecasts extending
up to 10 days (Masrur & Yu, 2023; Masrur et al., 2024). Other advancements include GANs, which have
been utilized for wildfire risk prediction through conditional tabular data augmentation (Chowdhury et al.,
2021), and GNNs, which simulate wildfire spread in variable-scale landscapes, effectively addressing land-
scape heterogeneity (Jiang et al., 2022). Additionally, researchers have also explored Transformer models for
wildfire prediction (Miao et al., 2023; Cao et al., 2024b).

5 Challenges and Future Directions

In this section, we introduce primary challenges and suggest promising future research opportunities from
the perspectives of DL models (Subsections 5.1-5.4) and data (Subsections 5.4-5.5).

5.1 Trustworthy Al

Robustness: Weather data is often subject to observational or collection biases, leading to significant
performance degradation in AT models. These biases may stem from inconsistent data collection methods,
non-uniformity or limited spatial or temporal coverage, and inaccuracies in sensor measurements. As a
result, Al models trained on such biased data sets may struggle to generalize effectively. Opportunities:
(1) Bias correction with statistical adjustments (Durai & Bhradwaj, 2014) and data assimilation (Berry &
Harlim, 2017) can be applied to reduce biases in the data. (2) Adversarial training (Wang et al., 2024),
a technique originally developed to defend against adversarial attacks in machine learning, can mitigate
vulnerabilities by exposing models to challenging or perturbed examples during training, allowing them to
generalize better to real-world biases or anomalies. It involves creating perturbed versions of weather data
representing scenarios with systematic biases and incorporating adversarial examples alongside clean data
during training to improve its robustness to biased data sets (Schmalfuss et al., 2023).

Generalization: Al models often fail to perform effectively on rare extreme weather or anomalous events
that fall outside the distribution (OOD) of the training samples. Opportunities: (1) Physical laws repre-
sent precious wisdom from domain pioneers, but they are rarely explicitly incorporated into AI models (Feng
et al., 2023). Leveraging physics-informed or physics-guided AI approaches can increase reliability and con-
sistency with the physical world (Chen et al., 2021b; Meng et al., 2021; Yin et al., 2023), particularly while
addressing extreme or unseen scenarios. Although significant progress has been made in the integration of
physics and AI (see “Physics-Al” in Section 3), further exploration is needed to optimize and refine these
approaches. (2) DL models perform poorly in extreme weather events due to their rarity and limited rep-
resentation in the training data. Effective data augmentation with generative diffusion models (Trabucco
et al., 2023; Mardani et al., 2023) is a promising method to address or alleviate this challenge. By augment-
ing the training set with more extreme samples, DL models are better equipped to understand these rare
events comprehensively, enhancing their generalizability. Therefore, it is worth exploring how to effectively
augment data with extreme samples.

12



Under review as submission to TMLR

Explainablity: Neural networks are frequently referred to as “black boxes” due to the opacity of their
internal processes, making it challenging to interpret how they produce outputs (Guidotti et al., 2018). In the
weather and climate domains, understanding the underlying mechanisms of these models is of paramount
importance and a necessity to ensure reliability and trustworthiness. Opportunities: Explainable AT
tools, such as SHAP (Shapley Additive Explanations) (Lundberg, 2017), LIME (Local Interpretable Model-
Agnostic Explanations) (Ribeiro et al., 2016), Grad-CAM (Selvaraju et al., 2017), and causal analysis (Zhang
et al., 2011) have gained prominence in addressing this challenge. Furthermore, the principle of information
bottleneck (IB) has been used for explainable learning in the time series domain (Feng et al., 2024a; Liu et al.,
2024f). Given that weather data inherently constitute time series, we advocate exploring how the information
bottleneck method can enhance the explainability of weather modeling. Leveraging these techniques can
help determine whether DL models are producing meaningful results based on legitimate patterns or merely
fabricating outputs, reinforcing trustworthiness and accountability in model predictions.

Varying Resolution: In weather and climate science, is it common to deal with varying data resolutions.
For example, weather data have differing temporal and spatial resolutions across modalities. Meteorological
observations might have an hourly temporal resolution from sparse sensors, radar echo data could feature
six-minute temporal intervals and a spatial resolution of 1-4 km, and satellite imagery might exhibit a
temporal resolution of 30 minutes with a spatial resolution of 5-12 km. These discrepancies complicate
the task of harmonizing information across modalities for robust model development (Chen et al., 2023f).
Opportunities: Therefore, an important challenge is to build models that can handle training data of
varying resolutions and also reliably predict at a different resolution. Such models could revolutionize how
we integrate data from various sources, including observations, satellite imagery, and numerical simulations,
which often differ in granularity and format. Aurora processes input data with varying patch sizes (Bodnar
et al., 2024), and IPOT (Inducing-point operator transformer) uses a smaller number of inducing points,
flexibly handling any discretization formats of input (Lee & Oh, 2024).

Uncertainty Quantification: Given the chaotic nature of the atmosphere, quantifying uncertainty in
weather predictions is essential to allow informed decision-making. Approaches such as initial conditions
perturbation and Monte Carlo dropout have been studied (Biilte et al., 2024); however, they only simulate
the aleatoric uncertainty, i.e., the inherent randomness in from weather data or the epistemic uncertainty from
the model itself due to the limited knowledge. Opportunities: Generative diffusion models address both
aleatoric and epistemic uncertainty simultaneously. Diffusion models learn the full probability distribution
of the data, capturing aleatoric uncertainty through stochastic sampling, where the spread of outcomes
reflects inherent data variability. When conditioned on the inputs, added stochastic noise incorporates input
variability, further representing data-driven uncertainty. Additionally, by initializing from different noise
points, diffusion models capture epistemic uncertainty (Du & Li, 2023; Price et al., 2023), with greater
variability in regions of sparse training data. This inherent stochasticity makes diffusion models a robust
tool for quantifying both aleatoric and epistemic uncertainties.

5.2 Retrieval-augmented Foundation Models

Retrieval-augmented generation (RAG) (Gao et al., 2023a) has emerged as a promising approach to enhance
foundation models by integrating external domain knowledge. Opportunities: While RAG has been
extensively explored in domains such as medicine (Xiong et al., 2024), its application to weather and climate
modeling remains underexplored. Depending on whether the foundation model uses diffusion models (Yang
et al., 2023) or large language models (LLMs) (Zhao et al., 2023) as its underlying architecture, different
opportunities arise for leveraging retrieval augmentation: (1) Diffusion Models for Weather Forecasting: In
the context of diffusion-based weather models (Shi et al., 2024a), retrieval augmentation can be leveraged to
fetch historical weather patterns similar to the current state, allowing it to recreate historical conditions that
may have appeared in the past and that can serve as references to refine predictions, potentially improving
accuracy and robustness (Liu et al., 2024a). It holds significant potential to enhance performance in extreme
weather scenarios by addressing the challenges posed by data rarity. (2) LLMs for Weather Text Analysis: For
tasks involving textual analysis of weather-related corpora, such as extreme weather reports or climatological
summaries (Colverd et al., 2023), retrieval augmentation can provide valuable context by identifying and
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incorporating relevant documents. This approach can significantly enhance the model’s ability to generate
informed and contextually relevant outputs (Juhasz et al., 2024). By bridging retrieval-based methodologies
with foundation models, RAG helps to maximize the power of foundation models, presenting an exciting
avenue for advancing both accuracy and interpretability in weather and climate applications.

5.3 Generative Al with Weather Constraints

Generative models have achieved enormous success in image generation. More interestingly, controllable
generative models can synthesize customized images according to conditions provided by users (Gauthier,
2014; Rombach et al., 2022). Opportunities: In the weather domain, weather prediction can be formulated
as weather generation conditioned on temporal and spatial similarities. These conditions or constraints
could come from (1) partial differential continuity equations (Broomé & Ridenour, 2014; Palmer, 2019),
which describe the weather as a flux, a spatial movement of quantities over time; (2) Tobler’s First law of
Geography (Tobler, 2004), which states that everything is related to everything else, but near things are
more related than distant things; and (3) Tobler’s Second law of Geography (Tobler, 1999), which states
that the phenomenon external to a geographic area of interest affects what goes on inside; and (4) other
modalities, such as station-based, satellite-based (Qu et al., 2024; Xiang et al., 2024), and even text data (Li
et al., 2024a). By leveraging the weather constraints as prior knowledge, these models could learn more
robust and precise representations from the complex weather data.

5.4 Multi-Modal Learning

Weather data comes from heterogeneous sources, encompassing observational data (e.g., sensors, radar,
satellite imagery), reanalysis data, and supplementary text descriptions (Li et al., 2024a). Opportunities:
These modalities can complement each other, offering a more comprehensive understanding of weather and
climate phenomena. Therefore, a promising direction is to leverage such multi-modal data to learn joint
representations of weather and climate events. However, a key challenge lies in effectively “aligning” these
multi-modal data. Mapping numerical data to textual descriptions presents an additional layer of complexity.
One possibility involves leveraging large language models (LLMs) to construct knowledge graphs that extract
information about weather and climate events from corpora of environment-focused news articles. These
extracted events can then be linked with meteorological raster data to enrich the model’s understanding and
predictive capabilities (Li et al., 2024a).

5.5 Data Processing and Management

Data Storage: The volume of weather and climate data is increasing daily - European Centre for Medium-
Range Weather Forecasts (ECMWF) archives contain about 450 PB of data to which 300 TB are added
daily (Mukkavilli et al., 2023). Opportunities: Variational Autoencoder (VAE) approaches have emerged
as powerful tools for data compression (Liu et al., 2024¢; Han et al., 2024a), converting the high-dimensional
data from the original space to a lower latent space. Liu et al. (2024c) reduce the data size from 8.61 TB
to a compact 204 GB and Han et al. (2024a) compress the ERA5 dataset (226 TB) into a CRA5 dataset
(0.7 TB). More importantly, they demonstrate that downstream experiments of global weather forecasting
models trained on the compact CRA5 dataset achieve accuracy comparable to the models trained on the
original dataset. This approach significantly reduces storage requirements for massive weather datasets.

Data Quality: The massive gridded reanalysis data are generated using mechanistic or statistical mod-
els that rely on empirical assumptions, raising concerns about the quality and reliability of the data.
Opportunities: Data assimilation (Manshausen et al., 2024) is a promising method to increase data quality
by calibrating model outputs with observational data, which could be remote sensing imagery and ground sta-
tion measurements. For example, SLAMS proposes a conditional diffusion model to assimilate in situ weather
station data and ex situ satellite imagery to effectively calibrate the vertical temperature profiles (Qu et al.,
2024), and ADAF achieves effective data assimilation using real-world observations from different locations
and multiple sources, including sparse surface weather observations and satellite imagery (Xiang et al., 2024).
Furthermore, EarthNet ia a multi-modal foundation model for global data assimilation of Earth observations
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utilizing masked autoencoders (Vandal et al., 2024). In summary, DL methods have become increasingly
popular for integrating weather data from various sources to provide more precise representations.

6 Discussion

We have introduced three categories of models in Section 3. Each approach offers unique strengths and trade-
offs, making them suitable for different scenarios depending on the nature of the task, data availability, and
computational resources. Below, we provide a detailed comparison and analysis of what works best in
different scenarios, exploring why certain models excel in specific contexts.

Deterministic Predictive Models. These models have demonstrated exceptional performance for short-,
medium- and long-range weather predictions. While Transformer-based models work well on temporal pre-
dictions, GNN-based models excel at modeling spatial relations, and hybrid models capture spatiotemporal
dependencies with greater accuracies, but may require a longer time for training. WeatherBench 2 (Rasp
et al., 2023) has benchmarked data-driven global medium-range (10 days) weather models and provides a
detailed headline scorecard'. In summary, NeuralGCM outperforms other state-of-the-art DL models, and it
is comparable with the physics-based ECMWF’s IFS regarding geopotential, temperature, and wind vari-
ables. Models like GraphCast, Pangu, and Fuxi have shown competitive or better performance compared
with ECMWEF’s High-RESolution forecast (HRES). However, three challenges remain. 1) Their output is
usually blurry because they are typically trained to minimize a deterministic loss function that uses mean
squared error (MSE). This becomes worse for extreme weather events. 2) They lack aleatoric and epistemic
uncertainty quantification. Even though there have been attempts to use traditional initial condition pertur-
bation methods to produce ensemble forecasts, modeling the uncertainty of weather evolution has not been
addressed. 3) These models need architectural changes and re-training when applied to other specific tasks.

Probabilistic generative models. These models have shown great promise for accurate weather predic-
tion. More importantly, probabilistic generative models such as GenCast, CoDiCast, and CasCast (see Figure
3) have brought unique strengths by modeling aleatoric and epistemic uncertainty due to the probabilistic
noise sampling. These are particularly valuable for predicting extreme weather events, where probabilistic
outputs can facilitate informed decision-making. GenCast has reported greater skill than IFS ENS on 97.4%
of 1320 targets they evaluated. However, these models require more computational resources for training
and inference than deterministic predictive models, though they are faster than physics-based models.

Foundation models. Foundation models like Aurora, ClimaX and Prithvi WxC represent a significant
leap in adaptability and transfer learning, offering robust performance across diverse tasks after fine-tuning.
Furthermore, current foundation models are primarily based on deterministic predictive learning for pre-
training, where latent embeddings are often obtained with predictive learning. We have not identified any
that utilize probabilistic generative architectures. However, their large parameter size and pre-training
requirements can create barriers for research groups with limited computational resources. Furthermore,
fine-tuning techniques in weather forecasting are still in their early stages and could benefit from insights
and advancements in the natural language processing domain (Zheng et al., 2023; Sun et al., 2022).

Table 2: Comparison of Predictive Learning, Generative Learning, and Pre-training & Fine-tuning Models
for global medium-range (10 days) weather prediction.

‘ Predictive Learning ‘ Generative Learning ‘ Pre-training & Fine-tuning
Accuracy NeuralGCM an.d FuXi are GenCast: 97.4% targets Aurora is vastly
. comparable with IFS ENS better than IFS ENS better than IFS HERS
Efficiency ‘ Fast training; Fast inference ‘ Slow training; Slow inference ‘ Slow training; Fast inference
Uncertainty ‘ Need perturbation ‘ Inherent -
Adaptability | Need re-training | Need re-training | Fine-tuning

Thttps://sites.research.google/weatherbench /

15



Under review as submission to TMLR

7 Conclusions

In this work, we present a comprehensive and up-to-date survey of data-driven deep learning models and
foundation models for weather prediction. We introduce a novel categorization of these models based on their
training paradigms and provide an in-depth review, analysis, and comparison of key methodologies within
each category. Additionally, we summarize available datasets, open-source codebases, and diverse real-world
applications in a GitHub repository. More importantly, we outline ten critical research directions across five
primary avenues for advancing Al-driven weather prediction, offering a roadmap for future research.

Limitations. This survey is particularly targeting the topic of weather prediction. The research topics in
climate science are out of the scope, including climate downscaling (Ling et al., 2024a), climate emulation (Yu
et al., 2024b), and climate trend prediction (Cael et al., 2023).
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Appendix
A Datasets

We summarize widely used benchmark datasets, where each data set is presented by domain, name, coverage,
collection method, spatial and temporal resolution, time span, and the paper that introduces the dataset.

Table 3: Summary of Publicly Available Data Sets on Weather. CAM5: Community Atmospheric Model v5.

Domain ‘ Dataset ‘ Coverage Collect Spatial Temporal Time Span Paper
‘WeatherBench Global Reanalysis 1.40625°,2.8125°,5.625° 6 hours 1979-2018 Rasp et al. (2020)
‘WeatherBench 2 Global Reanalysis 0.25° 6 hours 1979-2020 Rasp et al. (2023)
General Weather | Weather2K Region in China Observation - 1 hour 2017.01-2021.08  Zhu et al. (2023)
‘Weather5K Global Observation - 1 hour 2014-2023 Han et al. (2024b)
HR-Extreme Region in U.S. Radar 3 kmx3 km 1 hour 2020-2020 Ran et al. (2024)
SEVIR Region in U.S. Radar&Satellite 1 kmx1 km 5 mins 2017-2019 Veillette et al. (2020)
OPERA Europe Radar&Satellite 2 km 15 mins 2019-2021 Herruzo et al. (2021)
Meteonet France Radar&Satellite 1 km 5-15 mins 2016-2018 Larvor e (2020)
IMERG Global Radar&Satellite 1 km 30 mins 2020-2023 Huffman et al. (2020)
HKO-7 Region in Hong Kong Radar 1 kmx1 km 6 mins 2009-2015 Shi et al. (2017)
Precipitation Shanghai Shanghai Radar 1 km 6 mins 2015-2018 Chen et al. (2020)
e JMA Japan Radar 1 km 5 mins 2015-2017 Inoue & Misumi (2022)
MRMS CONUS and S. Canada Radar 1 kmx1 km 2 mins 2017-2019 Smith et al. (2016)
RYDL Germany Radar 1 km 5 mins 2014-2015 Ayzel et al. (2020a)
RainBench - 5.625° 1 hour 2016-2019 de Witt et al. (2021)
TowaRain Towa, U.S. Radar 0.5 kmx0.5 km 5 mins 2016-2019 ot al. (2021)
PostRainBench Region in China 1 kmx1 km 3 hours 2010-2021 Tang et al. (2023)
GlobalWindTemp Global Observation - 1 hour 2019-2010 Wu et al. (2023)
Wind Digital Typhoon W.N. Pacific basin Satellite 5 km 1 hour 1978-2022 Kitamoto et al. (2023)
TropicalCyclone Global CAMS5 simulation 25 km 3 hours 1979-2005 Racah et al. (2017)
ClimateNet Global CAMS5 simulation 25 km 3 hours 1996-2010 Kashinath et al. (2021)
UrbanAir Regional, China Observation - 1 hour 2014-2015 Zheng et al. (2013)
KnowAir Regional, China Observation - 3 hours 2015-2018 Wang et al. (2020)
Air Quality ITtalianAir Ttaly Observation - 1 hour 2004-2005 Vito (2016)
BeijingAirl Regional, China Observation - 1 hour 2010-2014 Chen (2017)
BeijingAir2 Regional, China Observation - 1 hour 2013-2017 Chen (2019)
OI SST v2 Pacific Ocean Observation&Satellite 5°8-5°N, 170°W-120°W  Daily 1982-2017 Huang et al. (2019)
ZonalWinds Pacific Ocean Reanalysis 5°S-5°N, 120°E-160°E Daily 1982-2017 Huang et al. (2019)
TropicalOcean Pacific Ocean Observation 5°S-5°N, 120°E-80°W Monthly 1982-2017 Huang et al. (2019)
SODA SST Global Reanalysis 5° x 5° Monthly 1871-1973 Geng & Wang (2021)
GODAS Global Reanalysis 5° x 5° Monthly 1994-2010 Geng & Wang (2021)
CMIP5 Global Simulation 5° x 5° Monthly 1861-2004 Geng & Wang (2021)
ERA-Interim Global is - Daily 1984-2017 Ham et al. (2019)
CFSv2 Global 5% x 5° 6 hours 1981-2017 He et al. (2019)
NOAA ERSSTvH Global - Monthly 1854-2020 Cachay et al. (2020)
CMIP6 Tropical Pacific Simulation 2° x 0.5° Monthly 1850-2014 Zhou & Zhang (2023)
SST ORAS5 Tropical Pacific ysis - Monthly 1958-1979 Zhou & Zhang (2023)
NOAA/CIRE Global 7 2° % 2° 6 hours 1850-2015 Mu et al. (2021)
REMSS Global Satellite 0.25° x 0.25° Daily 1997-2020 Mu et al. (2021)
ENSO Tropical Pacific NOAA, NCEIL, NCAR - Monthly 1950-2023 Mir et al. (2024)
GHRSST South China Sea Observation 1.20° x 1.20° Daily 2007-2014 Meng et al. (2023)
HYCOM South China Sea Simulation 1.12° x 1.12° Daily 20072014 Meng et al. (2023)
Hadley-OI SST Global Observation&Satellite 1° x 1° Monthly 1870-2020 Liu et al. (2023b)
COBE SST Global Observation 1° x 1° Monthly 1891-2020 Liu et al. (2023b)
SILO SST Australia Observation - Monthly 1921-2020 He et al. (2024b)
OISST Global Observation&Reanalysis  0.25° x 0.25° Daily 1982-2020 He et al. (2024a)
ERAS Global Observation&Reanalysis  0.25° x 0.25° 1 hour 1982-2020 He et al. (2024a)
DEM Carlisle, UK Observation 5m 1 hour 2005-2015 Kabir et al. (2020)
AustraliaFlood Australia Observation - Daily 1900-2018 Adikari et al. (2021)
SekongFlood Vietnam, Laos, Cambodia Observation - Daily 1981-2013 Adikari et al. (2021)
BangladeshFlood Bangladesh (GBM river network) — Observation - Daily 1979-2014 Ruma et al. (2023)
Flood GermanyFlood Germany, Sachsen Radar 1 km 1 hour Different periods  Li et al. (2022)
ElbeRiverFlow Germany, Elbe River in Sachsen Observation - 1 hour Different periods Li et al. (2022)
FijiFlood Fiji Islands Observation - Daily 1990-2019 Moishin et al. (2021)
FloridaFlood USA, Coastal South Florida Observation - 1 hour 2010-2020 Shi et al. (2024b)
QijiangRiverBasin China, Chongqing, Qijiang River  Observation - 1 hour 1979-2020 Shao et al. (2024)
TunxiRiverBasin China, Anhui, Tunxi River Observation - 1 hour 1981-2007 Shao et al. (2024)
MODIS Regional, China Satellite 500 m Monthly 2000-2020 Zhang et al. (2023a)
CHIRPS Regional, China Satellite 0.05° Monthly  2000-2020 Zhang et al. (2023a)
ChinaDrought China - - Monthly 1980-2019 Xu et al. (2022)
IndianDrought Peninsular, India Satellite 0.25° x 0.25° Daily 1981-2021 Shukla & Pandya (2023)
AVHRR ar, India Radiometer 1 km Daily 1981-2022 Shukla & Pandya (2023)
S 0.25° x 0.25° 1 hour 1970-2020 Zhang al. (2024a)
Drought ° .
Satellite 0.25 Daily 2003-2018 Park e (2020)
EastAsiaDrought2 Satellite 0.05° 16 days 2003-2018 Park et al. (2020)
EastAsiaDrought3 East Asia Satellite 0.05° 8 days 2003-2018 Park et al. (2020)
EastAsiaDrought4 East Asia Simulation 0.5° 3 hours 2015-2018 Park et al. (2020)
EastAsiaDrought East Asia Satellite 90 m - - Park et al. (2020)
EastAsiaDrought6 East Asia Satellite 0.5° Yearly - Park et al. (2020)
LANDFIRE PROGRAM | California Satellite 128 x 128 15 mins - Burge et al. (2023)
FARSITE Regional Synthetic 30 m 15 mins - Burge et al. (2023)
NASA-MODIS Terra California Satellite 1 km 5 mins 2017-2018 Chowdhury et al. (2021)
MERRA-2 California Reanalysis 0.5° x 0.625° 1 hour 2017-2018 Chowdhury et al. (2021)
Wildfire USGS Regional Satellite 30 m - 2017-2018 Chowdhury et al. (2021)
AICC Regional, Alaska Satellite 400 x 350 Daily 2002-2018 Marjani et al. (2023)
NRC Regional, Canada Satellite 30 m Daily 2002-2018 Marjani et al. (2023)
VIIRS South Africa Satellite 375 m 1 hour 2012-2014 Perumal & Van Zyl (2020)
VIIRS California Satellite 375 m Daily 2012-2021 Masrur et al. (2024)
Percolation model Regional Synthetic 110 x 110 5 mins - Masrur et al. (2024)
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B Model Architectures

B.1 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) LeCun et al. (1995) are a specialized type of neural network designed
for processing structured grid data, such as images. The convolutional layer usually utilizes convolutional
kernels to process the input data, performing convolution operations to extract features like edges, textures,
and patterns Li et al. (2021). This is often followed by a pooling layer to reduce the spatial dimensions of
the feature maps, making the network computationally more efficient and focusing on the most important
information.

They are widely used in tasks related to computer vision, such as image classification He et al. (2016), object
detection Ren et al. (2016), and segmentation He et al. (2017). Moreover, CNNs could be categorized into
Conv1D, Conv2D, and Conv3D according to the sliding dimension of convolutional kernels Kiranyaz et al.
(2021).

B.2 Recurrent Neural Networks

Recurrent Neural Networks (RNNs) Medsker & Jain (2001) is a type of neural network particularly suited
for tasks involving time-dependent or sequential data, such as time series forecasting Sbrana et al. (2020),
natural language processing Mikolov et al. (2011); Zhang et al. (2017), and speech recognition Yadav et al.
(2022). The key idea behind this is to recurrently learn from a sequence of data with an internal (hidden)
state, which includes as inputs the previous hidden states and current input. The learning or update rule is:

hy = o(Waay + Wihe_1 +by),

2
Yt = J(Wyht + by)a @)

where h; is the hidden state at t-th time step, z; is the input at ¢-th time step, y; is the output at the same
time step, W, Wj,, and W, are the weight matrices, b, and b, are the biases, and o is the activation
function (e.g., tanh or ReLU).

However, RNNs often suffer from gradient vanishing and gradient explosion while modeling long sequences.
Long Short-Term Memory Hochreiter & Schmidhuber (1997) (LSTM) and Gated Recurrent Unit Chung
et al. (2014) (GRU) have been proposed to alleviate such a problem by well-designed gates to forget and
filter information.

B.3 Graph Neural Networks

Graph Neural Networks (GNNs) Scarselli et al. (2008) is designed to work on graph-structured data, G =
(V, ), consisting of a set of nodes V and a set of edges £. These nodes and edges represent the entities and
the dependent relationships among these entities, respectively. Spatio-temporal Graph Neural Networks (ST-
GNNs) Yu et al. (2017) is an extension of GNNs designed to model both spatial and temporal dependencies
in dynamic graph-structured data changing over time, G; = (V, £, t). Here, nodes V refer to spatial locations,
and edges & refer to spatial relationships. Each node v} represents the feature vector at the corresponding
location ¢ and time ¢. For each node, the message-passing technique Gilmer et al. (2017) is often employed
to capture the spatial dependencies on its neighbors. The temporal dependencies between graph snapshots
can be modeled with the sequential models aforementioned. For the message passing, hidden states hi at
each node are updated based on messages (feature vectors) vj ; according to:

U§+1 = Z Mt(hivhgﬂeij)v
JEN(3) (3)
h;+1 = o(hy, Uerl)v

where in the sum, N (i) denotes the neighbors of i*" node in graph G. After iterative updates k time steps,
the final output of the whole graph at time ¢ 4+ k can be computed with a readout function O:

Yerr = O({hi . | i € G}). (4)
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B.4 Transformer and Vision Transformer

To overcome the limitations of RNNs, which stem from their inherent sequential processing, the Transformer
model Vaswani (2017) has emerged as a powerful alternative. Its core innovation lies in the use of parallel
processing through the attention mechanism, enabling it to capture dependencies between any parts of a
sequence without the need for sequential steps Wen et al. (2022). The attention mechanism is described as
follows:
Attention(Q, K, V) = softmax <QKT) v (5)
) ) \/@ )
where the dj, denotes the dimension of the key, Q € R"*% K € R™*% and V € R™*% are the query
matrix, key matrix, and value matrix, respectively. These three matrices are computed by linear transforma-
tions from the original input sequence X € R™*¢ with learnable weight matrices W, € RIxdk W, € RE¥dk
W, € RéXdv a5
Q=XW,K=XW;,V=XW,. (6)

Vision Transformer. The Vanilla Transformer was originally proposed for dealing with sequences. Vision
Transformer (ViT) Dosovitskiy et al. (2020) is a variant tailed to process images and has shown powerful
performance compared to convolutional neural networks (CNNs). ViT models divide the input image into
a grid of smaller, non-overlapping patches. Each patch is treated similarly to a “word" in natural language
processing, and the patches are then flattened into vectors. Positional embeddings are added to these patch
embeddings to mark the relative positions of patches in the image, helping models understand the image’s
spatial layout. Subsequently, the additive embeddings are fed into the Vanilla Transformer layer to leverage
the attention mechanism. We refer readers to look into Figure 1 in Dosovitskiy et al. (2020).

B.5 Mamba and Vision Mamba

We start by introducing the State Space Models (SSMs). SSMs represent the evolution of the system’s
internal states and make predictions of what their next state could be. For sequence modeling, SSMs map
a sequence z(t) € RE s y(t) € RE through an implicit latent state h(t) € REXN:

h'(t) = Ah(t) + Bz(t), )

y(t) = Ch(t),
where A € RV*YN and B,C € RV*! are learnable matrices. The continuous sequence is discretized by a
step size A, and the discretized SSM model is represented as:

he = Ahi_1 + BJCn

8
yt:Cht7 ( )

where discretization rule can be achieved by zero-order hold Zhang & Chong (2007) A = exp(AA) and
B = (AA) '(exp(AA) —I) - AB. The structured state-space model (S4), a variant of the vanilla SSM,
improves long-range dependency modeling by utilizing the High-order Polynomial Projection Operators
(HiPPO) Gu et al. (2020).

Mamba. S4 applies the same parameters A and B to each “token” of input, which is challenging to iden-
tify the importance of each input. Selective State Space Model (Mamba) Gu & Dao (2023) incorporates a
selection mechanism such that parameters that affect interactions along the sequence are input-dependent
(parameters A, A, B are functions of the input), enabling capturing contextual information in long sequences.
Besides, Mamba possesses efficient hardware-aware designs. It utilizes three computing acceleration tech-
niques (kernel fusion, parallel scan, and recomputation) to materialize the hidden state h only in more
efficient levels of the GPU memory hierarchy.

Vision Mamba. Vision Mamba Zhu et al. (2024a) is a variant of Mamba used for image modeling. Similar
to Vision Transformer, Vision Mamba first splits the input image into patches and then projects them into

39



Under review as submission to TMLR

patch tokens, but leverages bidirectional SSMs (Mamba blocks) to replace attention mechanisms as the image
encoder to model the sequence of tokens. Therefore, Vision Mamba can be well-tailed for 2-D grid weather
data, e.g., MetMamba Qin et al. (2024).

B.6 Generative Adversarial Networks

Generative Adversarial Networks (GANs) Goodfellow et al. (2014); Mirza (2014) were originally proposed
to learn a generative model to generate realistic images via adversarial training. Specifically, GANs simul-
taneously train two neural networks adversarially: a Generator G and a Discriminator D. The Generator
learns the underlying data distribution and generates produce samples that can effectively fool the discrim-
inator, while the discriminator differentiates between the samples generated by the generator and the real
samples by outputting the corresponding probabilities. This training process can be regarded as a two-player
zero-sum game Washburn & Wood (1995), ultimately ending when the discriminator is unable to distinguish
1

between the generator-generated samples and the real samples, i.e., D(x) = 3.

GANSs have widely used for image generation Xu et al. (2018), super-resolution Harder et al. (2022), style
transferring Zheng et al. (2022), and image-based weather forecasting Chen et al. (2022); Choi et al. (2023);
Cheng et al. (2023).

B.7 Diffusion Models

Diffusion Models (DMs) Ho et al. (2020); Song et al. (2020) are the other type of generative models that
have gained significant popularity in computer vision Saharia et al. (2022); Croitoru et al. (2023), natural
language processing Hertz et al. (2022); Li et al. (2023b), due to their ability to produce high-quality, realistic
samples. Diffusion models work in two processes: forward diffusion process and reverse denoising process.
In the forward process, data (e.g., an image) is gradually “noised” by adding small amounts of Gaussian
noise over multiple steps until it becomes nearly pure noise. This process is usually fixed and non-learnable,
where each step incrementally increases the noise. The reverse process is learnable, where the model learns
how to gradually remove noise, step-by-step, to recover a realistic sample from a noisy starting point. This
iterative denoising process helps to learn the intricate, high-dimensional data distribution.

Mathematically, the forward process transforms an input xo with a data distribution of ¢(x¢) to a white
Gaussian noise vector xy in N diffusion steps. It can be described as a Markov chain that gradually adds

Gaussian noise to the input according to a variance schedule {f31,...,8n5} € (0,1):
N
q(x1:n [ %0) = [ a(xn | x0-1), (9)
n=1
where at each step n € [1,N], the diffused sample x, is obtained with ¢(x, | xp—1) =

N (Xn; V1= Bnxn_1, ﬁnI)
In the reverse process, the denoiser network, pg(-), is used to recover xq by gradually denoising x,, starting

from a Gaussian noise xy sampled from A(0,I). This process is presented as:

N
po(x0:n) = p(xn) [ po(xn—1 | %) (10)

n=1
In weather and climate domains, diffusion models have been applied to precipitation nowcasting Asperti

et al. (2023a); Gao et al. (2024), atmospheric downscaling Ling et al. (2024a); Mardani et al. (2023), weather
forecasting Shi et al. (2024a); Andrae et al. (2024).
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