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Abstract

Randomized smoothing is the current state-of-the-art method for producing provably robust
classifiers. While randomized smoothing typically yields robust ℓ2-ball certificates, recent
research has generalized provable robustness to different norm balls as well as anisotropic
regions. This work considers a classifier architecture that first projects onto a low-dimensional
approximation of the data manifold and then applies a standard classifier. By performing
randomized smoothing in the low-dimensional projected space, we characterize the certified
region of our smoothed composite classifier back in the high-dimensional input space and
prove a tractable lower bound on its volume. We show experimentally on CIFAR-10 and
SVHN that classifiers without the initial projection are vulnerable to perturbations that are
normal to the data manifold and yet are captured by the certified regions of our method.
We compare the volume of our certified regions against various baselines and show that our
method improves on the state-of-the-art by many orders of magnitude. 1.

1 Introduction

Despite their state-of-the-art performance on a variety of machine learning tasks, neural networks are
vulnerable to adversarial inputs—inputs with small (often human-imperceptible) noise that is maliciously
crafted to induce failure (Biggio et al., 2013; Szegedy et al., 2014; Nguyen et al., 2015). This sensitive behavior
is unacceptable in contemporary safety-critical applications of neural networks, such as autonomous driving
(Bojarski et al., 2016; Wu et al., 2017) and the operations of power systems (Kong et al., 2017). The works
Eykholt et al. (2018) and Liu et al. (2019a) highlight the validity and eminence of these threats, wherein both
physical and digital adversarial perturbations are shown to cause image classification models to misclassify
vehicle traffic signs.

Heuristics have been proposed to defend against various adversarial attacks, only to be defeated by stronger
attack methods, leading to an “arms race” in the literature (Carlini & Wagner, 2017; Kurakin et al., 2017;
Athalye et al., 2018; Uesato et al., 2018; Madry et al., 2018). This has motivated researchers to consider
certifiable robustness—theoretical proof that models perform reliably when subject to arbitrary attacks of a

1Source code for reproducing our results is available on GitHub.
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bounded norm (Wong & Kolter, 2018; Weng et al., 2018; Raghunathan et al., 2018; Anderson et al., 2020;
Ma & Sojoudi, 2021). Randomized smoothing, popularized in Lecuyer et al. (2019); Li et al. (2019); Cohen
et al. (2019), remains one of the state-of-the-art methods for generating classifiers with certified robustness
guarantees. Instead of directly classifying a given input, randomized smoothing intentionally corrupts the
input with random noise and returns the most probable class, which, intuitively, “averages out” any potential
adversarial perturbations in the data.

The seminal work Cohen et al. (2019) certifies that no adversarial perturbation within a certain ℓ2-ball can
cause the misclassification of a smoothed model using isotropic Gaussian noise of a fixed variance. Recent
works have attempted to certify larger regions of the input space by turning to randomized smoothing with
optimized variances (Zhai et al., 2020), input-dependent variances (Alfarra et al., 2020; Wang et al., 2021),
anisotropic distributions (Eiras et al., 2021), and semi-infinite linear programming (Anderson et al., 2022).
However, for a fixed variance, the certified radius is upper-bounded by a constant in the dimension d of
the input (Kumar et al., 2020), implying that the volume of the certified ℓ2-ball degrades factorially fast
as O(KdΓ( d

2 + 1)−1), where Γ is Euler’s gamma function and K is some positive constant (Folland, 1999).
Current input-dependent and anisotropic smoothing approaches have similarly been shown to suffer from the
curse of dimensionality (Súkeník et al., 2021).

The small certified regions of randomized smoothing in high dimensions corroborate empirical findings
that show increased robustness when precomposing classifiers with dimensionality reduction, e.g., principal
component analysis projections (Bhagoji et al., 2018) and autoencoders (Sahay et al., 2019). These findings
align with the manifold hypothesis, which posits that real datasets lie on a low-dimensional manifold in
a high-dimensional feature space (Fefferman et al., 2016), and related results showing that perturbation
directions most useful to an adversary are ones normal to this manifold (Jha et al., 2018; Zhang et al., 2020b).
Thus, projecting inputs onto the manifold, or at least a low-dimensional subspace containing the manifold,
should increase classification robustness. Methods taking this approach, such as Mustafa et al. (2019) and
Alemany & Pissinou (2022), have worked well as heuristics, but lack theoretical robustness guarantees.
Motivated by these works, we aim to enlarge the certifiably robust regions of randomized smoothing by
performing the smoothing in a low-dimensional space in which adversarial access to the data’s statistically
insignificant yet vulnerable features has been eliminated.

1.1 Contributions

We propose projected randomized smoothing, whereby inputs are projected onto a low-dimensional linear
subspace in which randomized smoothing is applied before classification. Our method combines the empirical
successes of dimension-reducing projection methods with the theoretical guarantees of randomized smoothing
to achieve the following contributions:

1. We theoretically characterize the geometry of the certified region in the input space and prove a
tractable lower bound on the volume of this certified region.

2. We empirically demonstrate that classifiers can be attacked along subspaces spanned by statistically
insignificant features that contribute nothing to classification accuracy, which are vulnerabilities that
projected randomized smoothing certifiably eliminates.

3. Experiments on CIFAR-10 (Krizhevsky et al., 2009) and SVHN (Netzer et al., 2011) show that our
method yields certified regions with order-of-magnitude larger volumes than prior smoothing schemes.

1.2 Related works

Robustification via dimensionality reduction. The work Bhagoji et al. (2018) was the first to consider
linearly projecting inputs onto the top principal components of the training data before classification as
a means to improve empirical (not certified) robustness. The authors of Sahay et al. (2019) nonlinearly
preprocess test data using denoising and dimension-reducing autoencoders, and find a substantial increase in
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classification accuracy when the inputs are subject to the popular fast gradient sign method attack. The
work Bafna et al. (2018) projects an input onto its top-k discrete cosine transform components to defend
against “ℓ0”-attacks, but this empirical defense was later broken using adapative “ℓ0”-attacks (Tramèr et al.,
2020), which directly motivates our approach for certified projection-based robustness. The work Sanyal
et al. (2018) introduces a low-rank regularizer to encourage neural network feature representations to reside
in a low-dimensional linear subspace, which is found to enhance empirical robustness. In Mustafa et al.
(2019), the authors use super-resolution to project images onto the natural data manifold and obtain high
empirical robustness for convolutional neural networks. Alemany & Pissinou (2022) shows that decreasing
the codimension of data, i.e., decreasing the difference between the intrinsic dimension of the data manifold
and the dimension of the input space in which it is embedded, generally leads to increased robustness of
models defined on that input space.

Shamir et al. (2021) posits that learned decision boundaries tend to align with and “dimple” around the
natural data manifold, and that adversarial perturbations are normal to this manifold. This finding supports
our approach for certifiably eliminating off-manifold perturbations by projecting onto a low-dimensional
approximation of the data manifold. The authors of Awasthi et al. (2021) reformulate principal component
analysis to find projections that are robust with respect to projection error—a method that naturally
complements our framework—and give robustness guarantees for the Bayes optimal projection-based classifier
in the special case of binary Gaussian-distributed data. The work Zeng et al. (2021) precomposes classifiers
with orthogonal encoders and performs randomized smoothing in the encoder’s low-dimensional latent space
as a means to speed up the sample-based smoothing procedure. To the best of our knowledge, Zeng et al.
(2021) is the only work that provides certified robustness guarantees for general models and data distributions
when using dimensionality reduction at the input—all of the other referenced works are heuristic—and their
choice of orthogonal encoders ensures that the certified ℓ2-ball in the input space has the same radius as that
in the latent space. Notably, their approach is highly conservative in estimating the input-space certified set
as it relies on Lipschitzness of the orthogonal encoding layers, and is thus employed primarily as a means to
speed up randomized smoothing. On the other hand, the method we propose uses a robustification-motivated
projection for which we prove more general (anisotropic) certicates that capture off-manifold perturbations.

Certification via randomized smoothing. The work Cohen et al. (2019) develops randomized smoothing
using an isotropic Gaussian distribution with input-independent variance to obtain certified ℓ2-balls. A
subsequent line of works attempts to generalize randomized smoothing to other classes of certified regions,
e.g., Wasserstein, “ℓ0”-, ℓ1-, and ℓ∞-balls (Levine & Feizi, 2020; Lee et al., 2019; Teng et al., 2020; Yang
et al., 2020). Various approaches have been taken to enlarge the certified regions. For example, Salman et al.
(2019) unifies adversarial training with randomized smoothing to obtain state-of-the-art certified ℓ2-radii.
The authors of Zhai et al. (2020) incorporate the certified ℓ2-radius into the model’s training objective as
a means to enlarge certified regions. The method in Zhang et al. (2020a) optimizes over base classifiers to
increase the size of more general ℓp-balls. Li et al. (2022) employs a second smoothing distribution to tighten
robustness certificates.

Optimizing the certified region pointwise in the input space has also been considered, but generally these
methods require locally constant smoothing distributions to ensure that the resulting certificates are mathe-
matically valid (Alfarra et al., 2020; Wang et al., 2021; Súkeník et al., 2021; Anderson & Sojoudi, 2022). To
further strengthen the robustness guarantees of randomized smoothing, the recent works Eiras et al. (2021);
Erdemir et al. (2021); Tecot (2021) have turned to certifying anisotropic regions of the input space. For
example, Eiras et al. (2021) maximizes the volume of certified ellipsoids and generalized cross-polytopes of the
form {x ∈ Rd : ∥Ax∥p ≤ b} for p ∈ {1, 2}, allowing for the certification of perturbations that are potentially
larger in magnitude than the minimum adversarial perturbation. We show in Section 4 that our proposed
method is able to outperform these methods by leveraging dimensionality reduction. As is standard practice
in the randomized smoothing literature (Cohen et al., 2019; Yang et al., 2020; Jeong et al., 2021; Zhai et al.,
2020; Lee et al., 2019), our emphasis is on certified robustness and not empirical robustness—we refer the
reader to Maho et al. (2022) for connections between certified and empirical robustness under randomized
smoothing, and in particular the difficulty in constructing and evaluating suitable empirical attacks.
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We also emphasize that volume (Lebesgue measure) is the natural scalar measure for the size of anisotropic
certified regions of the input space and is the standard notion considered by prior works (Liu et al., 2019b;
Eiras et al., 2021; Tecot, 2021).

1.3 Notation

We denote the set of real numbers by R. The ℓ2-norm of a vector x ∈ Rn is denoted by ∥x∥, whereas the
general ℓp-norm is given an explicit subscript ∥x∥p. The range and nullspace of a matrix U ∈ Rm×n are
denoted by R(U) ⊆ Rm and N (U) ⊆ Rn, respectively. The n × n identity matrix is written as In. For a
random variable X with distribution D and a measurable function f , the expectation of f(X) is denoted
by EX∼D f(X). The multivariate normal distribution with mean µ ∈ Rn and covariance Σ ∈ Rn×n is given
by N(µ, Σ). The cardinality of a set S is written as |S|. For a Lebesgue-measurable set S ⊆ Rn contained
in a k-dimensional affine subspace, we write V– k(S), termed the k-dimensional volume of S, to mean the
Lebesgue measure of S within that affine subspace. For sets S, T ⊆ Rn, we denote their Minkowski sum by
S + T = {x + y : x ∈ S, y ∈ T}. Euler’s gamma function is denoted by Γ. Recall that Γ(n) = (n− 1)! when
n is a positive integer.

2 Classifier architecture

Consider the task of classifying inputs from a zero-centered cube Cd = [−1/2, 1/2]d ⊆ Rd into c distinct
classes Y = {1, 2, . . . , c}.2 Under the randomized smoothing framework, we begin with a given classifier
fθ : Rd → [0, 1]c, parameterized by θ, that maps into the probability simplex over c classes. The problem at
hand is to increase the robustness of fθ with certifiable guarantees.

Vanilla randomized smoothing. We give a brief overview of how this would be accomplished using
vanilla randomized smoothing (Cohen et al., 2019). Randomized smoothing takes the base classifier fθ and
smooths it with Gaussian noise on the input to yield the associated smoothed soft and hard classifiers

fs(x) = E
ϵ∼N(0,σ2Id)

fθ(x + ϵ), g(x) = arg max
y∈Y

fs(x)y,

where fs(x)y denotes the yth component of the vector fs(x) and σ is a hyperparameter. Cohen et al. (2019,
Theorem 1) then gives, under certain conditions, a certified ℓ2-ball for a particular input x ∈ Rd; namely, that
g(x + δ) = g(x) for all ∥δ∥ < R, where R > 0 is determined by the confidence of the smoothed classifier at x.
We leverage this result for our approach and refer interested readers to Cohen et al. (2019) for additional
details on the computation of the smoothing expectation and precise formula for R.

Projected randomized smoothing. Motivated by the relationships between robustness and dimensionality
described in Section 1, we consider p < d and let P : Rd → Rp be a projection into Rp defined by P (x) = U⊺x,
where U ∈ Rd×p is a semi-orthogonal matrix satisfying U⊺U = Ip. Similarly, we let the reconstruction
P̃ : Rp → Rd be defined by P̃ (x̃) = Ux̃. Throughout, we let v1, . . . , vd−p ∈ Rd be an orthonormal basis for
N (U⊺) and let vd−p+1, . . . , vd ∈ Rd denote the orthonormal columns of U . In practice, we instantiate the
columns of U as the first p principal components of a random subset of the training dataset, although our
method and theory hold for any orthonormal set of vectors. With the dimension-reducing projection P in
place, we consider the classifier architecture consisting of the composition

f = fθ ◦ P̃ ◦ P.

In particular, f first uses P to project inputs into the low-dimensional space Rp and then reconstructs the
inputs in a lossy way using P̃ before feeding them through the classifier fθ. We generally finetune fθ to
account for the slight image corruption associated with the projection step.

2The zero-centered cube is used without loss of generality instead of [0, 1]d for notational convenience and compatibility with
results from the mathematical literature.
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Figure 1: (a) Projected randomized smoothing architecture. Inputs x are projected into low-dimensional
space by P , smoothed with Gaussian noise, and then reconstructed by P̃ and classified by fθ. (b) Illustration
of projected randomized smoothing for a binary classification task (circles vs. squares). The base classifier
decision regions are shown in green and red. The white circle represents the smoothed decision boundary in
Rp, p = 1, with the projected subspace depicted by the dotted line and projected points depicted as solid
dots. The blue area represents the certified region around x in Rd of the projected randomized smoothing
classifier g.

We now propose projected randomized smoothing, wherein randomized smoothing is performed in the
compressed space Rp. To do so, we define f̃θ : Rp → [0, 1]c by f̃θ = fθ ◦ P̃ so that f = f̃θ ◦ P , and we smooth
f̃θ by adding Gaussian noise in its low-dimensional input space to obtain a new classifier f̃s

θ : Rp → [0, 1]c
defined by

f̃s
θ (x̃) = E

ϵ∼N(0,σ2Ip)
f̃θ(x̃ + ϵ). (1)

The new overall smoothed soft classifier is then given by

fs = f̃s
θ ◦ P, (2)

and its structure is illustrated in Figure 1a. The corresponding hard classifier is then given by the arg max of
the soft classifier:3

g(x) = arg max
y∈Y

fs(x)y. (3)

A graphical illustration of our approach for d = 2 is shown in Figure 1b. To summarize, classifying an input
x ∈ Rd using projected randomized smoothing amounts to applying the mapping x 7→ g(x) defined by (1)
through (3), and it is for g that we seek to derive certified regions of the input space.

3 Robustness certificates

In this section, we construct certified regions for g around arbitrary inputs x in the high-dimensional space
Rd. The key idea is that f̃s

θ is ℓ2-ball robust in the low-dimensional space Rp, and the preimage of this ball
in the original input space is then “large” as it includes the inputs in N (U⊺). We formalize the geometry of
the certified region in Section 3.1 and introduce our metric of interest as the volume of the certified region
restricted to the unit cube of feasible inputs. In Section 3.2, we provide a lower bound on this volume

3For ease of exposition, we assume throughout that all arg max yield singleton sets and therefore equality signs may be used
unambiguously.
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in high-dimensional spaces that involves solving an ℓ∞-norm linear regression. Section 3.3 compares the
asymptotic behavior of the volume of the certified region of g with the standard ℓ2-ball certificates as the
input dimension grows large. Finally, we discuss runtime and limitations in Section 3.4. For ease of exposition,
all proofs are deferred to the appendices.

3.1 Characterizing the certified region geometry

In the following two propositions, we characterize the geometry of the projected randomized smoothing
classifier g in the high-dimensional input space Rd based on the certified ℓ2-robustness of the classifier f̃s

θ in
the low-dimensional projected space Rp.

Definition 1. Let x̃ ∈ Rp and R ≥ 0. The classifier f̃s
θ : Rp → [0, 1]c is said to be certified at x̃ with radius

R if
arg max

y∈Y
f̃s

θ (x̃ + δ̃)y = arg max
y∈Y

f̃s
θ (x̃)y

for all δ̃ ∈ Rp satisfying ∥δ̃∥ ≤ R.

Proposition 1. Let x ∈ Rd and R ≥ 0. If f̃s
θ is certified at P (x) = U⊺x with radius R, then g(x + δ) = g(x)

for all δ ∈ ∆U (R) ⊆ Rd, where
∆U (R) := {δ ∈ Rd : ∥U⊺δ∥ ≤ R}

Proposition 2. Let R ≥ 0. The certified region ∆U (R) can be expressed as the Minkowski sum ∆U (R) =
BU

p (R) +N (U⊺), where BU
p (R) ⊆ Rd is a p-dimensional ball embedded into R(U):

BU
p (R) := {β1vd−p+1 + · · ·+ βpvd : ∥β∥ ≤ R, β ∈ Rp} .

Propositions 1 and 2 characterize the geometry of the certified region of our classifier g. Proposition 1 provides
an easy-to-check condition for an input to lie in the certified region, while Proposition 2 formalizes the same
geometry as a hypercylinder consisting of a low-dimensional sphere that is “extruded” along the nullspace of
the projection P , allowing us to certify adversarial off-manifold inputs of potentially very large magnitude
that are projected back onto the natural data manifold. Intuitively, the certified region ∆U (R) is potentially
much larger than an ℓ2-ball of radius R in Rd, as it captures perturbations in the nullspace of U⊺ whose
dimensionality is large when p≪ d.

We note that the above characterization of the decision region geometry holds analogously for other norm ball
certificates in the projected space (i.e., the ℓ1-ball certificates of Levine & Feizi (2021)). While the following
theory is presented for the concrete case of ℓ2-ball certificates, it also applies to this more general setting.
Concrete experiments with other certificates is an exciting line of future work.

3.2 Lower-bounding the certified region volume

To compare a standard ℓ2-ball certificate with our certified region ∆U (R), which does not immediately come
equipped with a notion of “radius,” we adopt the perspective of recent works, e.g., Liu et al. (2019b); Eiras
et al. (2021); Tecot (2021), by considering our metric of interest to be the volume of the certified region.
One immediate issue is that the volume of ∆U (R) is infinite since N (U⊺) is an unbounded subspace. To
enable meaningful comparisons, we restrict ourselves to measuring the volume of ∆U (R) contained in the
cube Cd = [−1/2, 1/2]d of possible inputs. This amounts to computing the volume

V– d

(
Cd ∩∆U

x (R)
)

, (4)

where we recall that V– d measures d-dimensional volume in Euclidean space, and ∆U
x (R) := {x+δ : δ ∈ ∆U (R)},

with R chosen such that f̃s
θ is certified at P (x) with radius R so that g(x′) = g(x) for all x′ ∈ ∆U

x (R) by
Proposition 1. Computing the volume in (4) is highly nontrivial, especially in high-dimensional input spaces.
Instead, we develop a tractable lower bound on V– d(Cd ∩∆U

x (R)) throughout the remainder of this section.
Since ∆U

x (R) contains affine subspaces, this derivation rests heavily on theory regarding cube-subspace
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intersections in high dimensions. The most important result for our purposes comes from Vaaler (1979),
which showed the following.

Theorem 1. Let Sk be a k-dimensional linear subspace of Rd. Then V– k(Cd ∩ Sk) ≥ 1.

This result proved Good’s conjecture and generalized a previous result for the k = d− 1 case (Hensley, 1979).
We begin with an extension of Theorem 1 to cubes of non-unit side length, and then to intersections with
affine subspaces which do not necessarily contain the origin.

Corollary 1. Let Sk be a k-dimensional linear subspace of Rd and rCd be a zero-centered cube of side length
r > 0. Then V– k(rCd ∩ Sk) ≥ rk.

Corollary 2. Let x ∈ Rd and let Sk(x) ⊆ Rd be the k-dimensional affine subspace

Sk(x) =
{

x +
k∑

i=1
αivi : α ∈ Rk

}
spanned by arbitrary vectors v1, . . . , vk and passing through x. Let t ≥ 0 be the minimal ℓ∞-norm of a point
in Sk(x):

t := inf
x′∈Sk(x)

∥x′∥∞ = inf
α∈Rk

∥∥∥∥x +
∑k

i=1
αivi

∥∥∥∥
∞

. (5)

Then, for all r > 2t, it holds that V– k(rCd ∩ Sk(x)) ≥ (r − 2t)k.

Corollary 2 generalizes Corollary 1 to affine subspaces. If Sk(x) contains the origin, t = 0 and the bound
from Corollary 1 is recovered. We are now ready to present the main result of this section.

Theorem 2. Let x ∈ Cd, let t be defined as in (5) with k = d− p, and let R ∈ [0, 1/2− t]. If f̃s
θ is certified

at P (x) = U⊺x with radius R, then

V– d(Cd ∩∆U
x (R)) ≥ πp/2

Γ( p
2 + 1)Rp(1− 2R− 2t)d−p. (6)

Notice that the lower bound given in Theorem 2 does not monotonically increase with the certified radius R
from the randomized smoothing performed in Rp. Therefore, if the certified radius R is large enough, we
may be able to improve our lower bound on the volume V– d(Cd ∩∆U

x (R)) by using a smaller certified radius
(which is of course still valid), and in particular, we may choose the optimal such radius to use according to
the following closed-form expression.

Proposition 3. Let t and R be as in Theorem 2. The lower bound (6) is maximized as follows:

r∗ := min
{

R,
p(1− 2t)

2d

}
∈ arg max

r∈[0,R]

πp/2

Γ
(

p
2 + 1

)rp (1− 2r − 2t)d−p
. (7)

The overall certification procedure derived in this section is summarized in Algorithm 1. We note that our
method inherits its ABSTAIN behavior from the original randomized smoothing Monte Carlo sampling
scheme (Cohen et al., 2019); namely, we evaluate the certification confidence using many Gaussian-perturbed
samples, and if the prediction or certification procedures do not resolve with a user-specified confidence,
ABSTAIN is returned.

3.3 Asymptotic behavior of the volume bound

We briefly compare the volume lower bound (6) of the projected randomized smoothing certified region to
that of a standard certified ℓ2-ball. The volume of a d-dimensional ℓ2-ball Bd(R) := {x ∈ Rd : ∥x∥ ≤ R} of
radius R ≥ 0 is well-known (e.g., see Folland (1999, Theorem 2.44, Corollary 2.55)) to be

V– d (Bd(R)) = πd/2

Γ( d
2 + 1)

Rd. (8)
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While the numerator of (8) scales exponentially in d, the denominator Γ( d
2 + 1) scales factorially, leading to

tiny ℓ2-ball certified volumes in high-dimensional input spaces. By contrast, the denominator in our bound
(6) scales factorially in the projected dimension p, where p ≪ d. This suggests dramatic improvements in
the volume of our certified regions: while the numerator in (6) might be exponentially smaller than that of
(8), the denominator is smaller by a factorial factor. We thus expect the volumes of projected randomized
smoothing to dominate at higher dimensions. We verify our analysis experimentally in Section 4.2 and
illustrate some simulated certified volume ratios over a range of values for p and d in Appendix A.1.

Algorithm 1 Prediction and certification
def Predict, Certify as in Cohen et al. (2019)

function ProjectPredict(fθ, U , σ, x, n, α)
def P (x) = U⊺x, P̃ (x̃) = Ux̃
return Predict(fθ ◦ P̃ , σ, P (x), n, α)

function ProjectCertify(fθ, U , σ, x, n0, n, α)
def P (x) = U⊺x, P̃ (x̃) = Ux̃, (d, p)← shape(U)
ABSTAIN, ĉA, R← Certify(fθ ◦ P̃ , σ, P (x), n0, n, α)
if ABSTAIN then return ABSTAIN
compute orthonormal basis v1, . . . , vd−p for N (U⊺)
solve the optimization

t← inf
α∈Rd−p

∥∥∥∥∥x +
d−p∑
i=1

αivi

∥∥∥∥∥
∞

(Alg1)

assign R← min{R, p(1− 2t)/(2d)}
compute the certified volume lower bound

V ← πp/2

Γ( p
2 + 1)Rp(1− 2R− 2t)d−p

return prediction ĉA and volume bound V

3.4 Runtime and limitations

Our certification strategy has two additional computational steps outside of the Predict and Certify
subroutines from the conventional randomized smoothing method of Cohen et al. (2019). The first is a
one-time computation of the principal components of the data that occurs at the beginning of training. The
second is computing the ℓ∞-regression in (Alg1), which we solve as a linear program using the standard
epigraph formulation. For the CIFAR-10 and SVHN datasets considered in this work, the added runtime
is comparable to the certification sampling step from Cohen et al. (2019). Namely, we found that the
ℓ∞-regression averaged around 16 seconds for CIFAR-10 and 19 seconds for SVHN.4

The number of variables and constraints in the optimization (Alg1) scales linearly with d− p. Since generally
p ≪ d, this makes the volume approximation of the certified region computationally intensive in high-
dimensional spaces. We remark that it is still trivial to check whether any particular perturbation lies in the
certified region using Proposition 1—it is just that computing a lower bound on the volume of this region for
comparison purposes becomes more challenging. For a natural image dataset such as ImageNet, the analysis
of Section 3.3 suggests that the certified region volume improvements would in fact be substantially larger
than those for CIFAR-10. The main challenge to computationally verifying this conjecture lies in holding
the optimization problem (Alg1) in memory, which is infeasible on our hardware for ImageNet-scale inputs.

4All experiments were run on a Ubuntu 20.04 virtual machine with 6 VCPUs, 56 GiB RAM, and a Tesla K80 GPU. Complete
reproduction takes roughly 0.06 GPU years.
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Further research in this vein would likely leverage techniques from the large-scale ℓ∞-regression literature,
e.g., Shen et al. (2014), and is outside the scope of this work.

4 Experiments

This section reports our experiments on the CIFAR-10 and SVHN datasets. We first demonstrate in Section 4.1
that networks are vulnerable to ℓ∞-bounded attacks in the subspace of low-variance principal components, to
which our architecture is provably robust. Section 4.2 then presents results comparing the volume of the
projected randomized smoothing certified regions to a variety of baseline certified classifiers.

4.1 Vulnerability to low-variance PCA attacks

Consider perturbations δ ∈ N (U⊺) contained in the span of a dataset’s low-variance principal components,
where we take U to contain sufficient components to account for 99% of the dataset variance for CIFAR-10
and 95% for SVHN, which is more robust to low-variance subspace attacks due to its increased compressibility.
Such a perturbation is known to be essentially orthogonal to the true data manifold, and therefore it is
reasonable to expect a truly robust classifier to be invariant to small perturbations in N (U⊺). Our method is
directly robust to such perturbations under the simple condition that we use fewer components in our initial
projection step, as demonstrated in Proposition 2.

We now investigate whether this theoretical guarantee adds a degree of robustness over a typical neural
network classifier. The answer is affirmative. Namely, we show that our subspace attack can attain a
comparable attack success rate to a standard ℓ∞-bounded projected gradient descent (PGD) attack, with
roughly a four-fold increase in the size of the admissible ℓ∞-ball.

Formally, consider a particular hard classifier g, to which we assume that our adversaries have white-box
access, and take a specific input x that g classifies correctly. We first consider the standard projected gradient
descent attack strategy PGD(x, ϵ) which seeks to construct a perturbation ∥δ∥∞ ≤ ϵ such that x + δ ∈ Cd

and g(x + δ) ̸= g(x). As x + δ ∈ Cd if and only if ∥x + δ∥∞ ≤ 1/2, satisfying both ℓ∞-norm constraints
on δ is easily accomplished using clipping. Our routine SubspacePGD(x, ϵ) adds the additional constraint
δ ∈ N (U⊺). Note that finding a perturbation that satisfies δ ∈ N (U⊺), ∥δ∥∞ ≤ ϵ, and x+δ ∈ Cd is nontrivial,
as projection onto one set generally removes an input from the other set. The precise details of our attack
strategy are detailed in Appendix B.2.

For reference, we also consider RandMax and RandUniform, which generate perturbations randomly on
the boundary of and uniformly in the attack ℓ∞-ball, respectively. We instantiate g as the Wide ResNet
considered in Yang et al. (2020) with the default hyperparameters and σ = 0.15 Gaussian noise augmentation
during training. See Appendix B.5.1 for the attack hyperparameters.

Figure 2 demonstrates that unprotected classifiers are indeed vulnerable to adversarial perturbations in the
subspace of low-variance principal components. Enlargements of the attack radius do not invalidate that
these are true adversarial attacks, as the perturbed images in the third row of Figure 2b are still easily
classified by a human. Furthermore, SubspacePGD adversarial examples are substantially less perceptible
than PGD attacks of the same magnitude, which tend to produce stronger visual distortions of the image,
paralleling results from Shamir et al. (2021); take as a representative example the area around the frog’s
head in the second row of the third column in Figure 2b, compared with the same image perturbed by
SubspacePGD in the third row. The results for the SVHN dataset in Figure 2d are even more striking.
This is likely because PGD attacks have access to high-variance principal components which convey the
dataset information content. Despite visually appearing random, we establish in Figures 2a and 2c that the
SubspacePGD attack is significantly more successful than random-noise attacks of the same magnitude.
These results suggest that undefended classifiers can be attacked in the subspace of low-variance principal
components, to which projected randomized smoothing is provably robust by Proposition 2.
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Figure 2: (a) CIFAR-10 adversarial attack success rates for the PGD, SubspacePGD, and random attack
strategies. (b) Perturbation examples for CIFAR-10 with an attack radius of ϵ = 32/255. The top row
represents the original image. (c) SVHN aversarial attack success rates for the PGD, SubspacePGD, and
random attack strategies. (d) Perturbation examples for SVHN with an attack radius of ϵ = 32/255.

4.2 Certified region comparison

Having established that the certified region of projected randomized smoothing provides a meaningful
robustness improvement against low-variance principal component attacks, we now compare the volume of
our certified region with several baselines. Namely, we evaluate the ℓ2-balls of Cohen et al. (2019) (denoted
RS), the ℓ1- and ℓ∞-balls of Yang et al. (2020) (denoted RS4A− ℓ1 and RS4A− ℓ∞, respectively), and the
anisotropic ellipsoids of Eiras et al. (2021) (denoted ANCER), without use of the associated memory module.

Some additional remarks on the inclusion of Eiras et al. (2021) are warranted. As noted in Súkeník et al.
(2021), without the inclusion of the memory module, the local certificate optimization technique in Eiras et al.
(2021) yields overly optimistic and mathematically incorrect certificates as the smoothing distribution varies
between inputs. The work Eiras et al. (2021) corrects this with the use of a memory module that records
previous inputs to ensure compatibility of the smoothing certificates. However, this results in a classifier that
is dependent on the input order and adds ambiguity about what classifier is actually being certified, as the
smoothed classifier is modified at test time after each input. We therefore discard the memory module and
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report the certified volume at each point as if the locally optimized smoothing distribution were being used
globally. This yields an upper bound on the certified volume of any data-dependent anisotropic ellipsoidal
smoothing method and is thus a very strong baseline to compare against.

Our results are summarized in Figure 3 and Table 1. We achieve state-of-the-art median certified volumes,
easily outperforming standard randomized smoothing and even the optimistic ANCER baseline by 706
and 2453 orders of magnitude on CIFAR-10 and SVHN, respectively. The larger improvement on SVHN
is attributable to the higher compressibility of the dataset. Figure 6 in Appendix B.3 suggests that our
performance derives from the added robustness of our method against low-variance features, as the radii of
the projected-space certified balls are similar to those of standard randomized smoothing in the input space.
This further validates the asymptotic dimension analysis in Section 3.3. Note that although the ANCER
baseline achieves higher accuracy at smaller volumes, its certificates are mathematically invalid (Súkeník
et al., 2021), and our method significantly outperforms ANCER at larger volumes.

Figure 3b examines the CIFAR-10 certified accuracy curves over a range of choices for the dimensionality p
of the compressed space. For large p, image reconstruction is near-perfect as p = 620 covers 99% of variance
in the CIFAR-10 dataset. Thus, methods with p ≥ 300 have comparable accuracy at small regions, with
the certified volumes increasing as the dimensionality of the projected space decreases, corroborating the
discussion in Section 3.3. We are therefore able to increase the robustness of our classifier to disturbances that
are normal to the manifold with only a 2% drop in accuracy (Table 1a). Figure 3d presents similar results for
the SVHN dataset. Note that the due to the compressibility of the dataset, fewer principal components are
required to achieve high accuracy.

The hyperparameter p introduces a mild tradeoff between clean accuracy and certified volume; if p is chosen
to be very small, the projected images may be too corrupted to classify, while if p is chosen to be very
large, certified volume may suffer. However, as Figures 3b and 3d suggest, our method’s certified volumes
comfortably outperform those of standard randomized smoothing for a large range of p, indicating that this
choice is not particularly sensitive. A practical heuristic for choosing p involves making p just large enough to
reconstruct images with high fidelity—roughly corresponding to PCA components that explain 95% to 99% of
the dataset variance. If desired, a small, localized sweep of p around this initial choice can be used to further
optimize the hyperparameter depending on the experimentalist’s target metrics (e.g., clean accuracy, median
certified volume, other metrics, or some combination). In any case, we emphasize that the parameter choice
is quite robust and any additional tuning is likely to result in minimal gains as compared to the practical
heuristic. We select p = 450 for the CIFAR-10 experiment in Figure 3a and p = 150 for SVHN.

Table 1: Quantitative representation of the data in Figure 3. The first column reports the smoothed classifier
clean accuracy for each method and the second column reports the median certified volume for correctly
classified samples. We use the median instead of the mean due to the log-scaled nature of our data.

(a) CIFAR certification performance.

Accuracy Median cert.
vol. (log10)

ProjectedRS 85.8% −3175
RS 87.8% −4377

ANCER 87.4% −3881
RS4A− ℓ1 83.8% −9573
RS4A− ℓ∞ 85.4% −6102

(b) SVHN certification performance.

Accuracy Median cert.
vol. (log10)

ProjectedRS 91.4% −1578
RS 92.6% −4280

ANCER 91.2% −4031
RS4A− ℓ1 93.0% −9573
RS4A− ℓ∞ 92.6% −6171

5 Conclusion

Motivated by the manifold hypothesis, we consider a classifier architecture that first projects onto a principal
component approximation of the data manifold and then applies randomized smoothing in the low-dimensional
projected space. This yields a precise characterization of the input-space certified region as capturing
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Figure 3: (a) Certified region volumes for CIFAR-10, with our method highlighted by an asterisk. Here
α ≈ 3465 is a scaling constant corresponding to the d-dimensional unit ball volume; i.e. V– d(Bd(1)) = 10−α.
(b) CIFAR-10 certified region volumes while varying the projected space dimension p for our method. (c)
Certified region volumes for SVHN. (d) SVHN certified region volumes while varying p.

disturbances in the projection nullspace. We interpret this as a certifiable robustification against vulnerable
features that are irrelevant to the dataset information content as they are normal to the data manifold.
We show that unprotected classifiers, unlike our method, are vulnerable to such perturbations by explicitly
constructing adversarial examples in the span of the low-variance principal components. We prove a volumetric
lower bound on the intersection of our certified region with the unit cube of feasible inputs and derive two
additional ways to tighten the bound: one which involves solving an ℓ∞-regression problem and another
which is a closed-form radius adjustment.

Comparing against state-of-the-art ℓ1-, ℓ2-, ℓ∞-, and anisotropic baselines shows that our classifier produces
certified regions with many orders of magnitude greater volume. This confirms an asymptotic analysis
that shows that our method’s certified volumes decay factorially in the low dimension of the projected
space, while competing methods decay factorially in the high dimension of the input space. Future research
directions include examining more sophisticated dimensionality reduction techniques while maintaining
certified guarantees for projected points in the original input space.
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A Supplementary material for Section 3 (Robustness certificates)

Proposition 1. Let x ∈ Rd and R ≥ 0. If f̃s
θ is certified at P (x) = U⊺x with radius R, then g(x + δ) = g(x)

for all δ ∈ ∆U (R) ⊆ Rd, where
∆U (R) := {δ ∈ Rd : ∥U⊺δ∥ ≤ R}

Proof. Let δ ∈ ∆U (R). Then

g(x + δ) = arg max
y∈Y

f̃s
θ (P (x + δ))y = arg max

y∈Y
f̃s

θ (P (x) + U⊺δ)y.

Since ∥U⊺δ∥ ≤ R by definition of ∆U (R) and f̃s
θ is certified at P (x) with radius R, we have that

g(x + δ) = arg max
y∈Y

f̃s
θ (P (x))y = g(x).

Proposition 2. Let R ≥ 0. The certified region ∆U (R) can be expressed as the Minkowski sum ∆U (R) =
BU

p (R) +N (U⊺), where BU
p (R) ⊆ Rd is a p-dimensional ball embedded into R(U):

BU
p (R) := {β1vd−p+1 + · · ·+ βpvd : ∥β∥ ≤ R, β ∈ Rp} .

Proof. Let y = y1 + y2 with y1 ∈ BU
p (R) and y2 ∈ N (U⊺). Then

∥U⊺y∥ = ∥U⊺y1∥ = ∥β∥ ≤ R,

so y ∈ ∆U (R).

On the other hand, let y ∈ ∆U (R) as defined in Proposition 1. We can decompose y = y1 + y2 for y1 ∈ R(U)
and y2 ∈ N (U⊺). Then there exists β ∈ Rp such that y1 = Uβ =

∑n
i=d−p+1 βi−d+pvi, so ∥U⊺y1∥ = ∥β∥ and

therefore ∥β∥ ≤ R.

Corollary 1. Let Sk be a k-dimensional linear subspace of Rd and rCd be a zero-centered cube of side length
r > 0. Then V– k(rCd ∩ Sk) ≥ rk.

Proof. Note that

rCd ∩ Sk = {x ∈ Rd : ∥x∥∞ ≤ r/2, x ∈ Sk}
= {rx ∈ Rd : ∥rx∥∞ ≤ r/2, rx ∈ Sk}
= {rx ∈ Rd : ∥x∥∞ ≤ 1/2, x ∈ Sk},

since x ∈ Sk if and only if rx ∈ Sk, by linearity of Sk. This is now equivalent to the set r(Cd ∩ Sk), and we
have scaled our k-dimensional subset by a uniform factor r. Therefore, V– k(rCd ∩ Sk) = V– k(r(Cd ∩ Sk)) =
rkV– k(Cd ∩ Sk) by Folland (1999, Theorem 2.44). Thus, by Theorem 1, we have V– k(rCd ∩ Sk) ≥ rk.

Corollary 2. Let x ∈ Rd and let Sk(x) ⊆ Rd be the k-dimensional affine subspace

Sk(x) =
{

x +
k∑

i=1
αivi : α ∈ Rk

}
spanned by arbitrary vectors v1, . . . , vk and passing through x. Let t ≥ 0 be the minimal ℓ∞-norm of a point
in Sk(x):

t := inf
x′∈Sk(x)

∥x′∥∞ = inf
α∈Rk

∥∥∥∥x +
∑k

i=1
αivi

∥∥∥∥
∞

. (5)

Then, for all r > 2t, it holds that V– k(rCd ∩ Sk(x)) ≥ (r − 2t)k.
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Proof. First, notice that the infimum in (5) is attained since ∥ · ∥∞ is continuous and coercive, and Sk(x) is
closed in the standard topology on Rd (Bertsekas, 2016). Let x∗ ∈ Sk(x) be a point that attains the infimum
in (5) so that ∥x∗∥∞ = t. If r > 2t, then x∗ is contained in the interior of rCd. In this case, we can construct
a nonempty cube centered at x∗ with side lengths r − 2t > 0 that is contained in rCd. Now, the plane Sk(x)
passes through x∗, and therefore Corollary 1 yields the result since volume is preserved under translation
(Folland, 1999, Theorem 2.42).

Theorem 2. Let x ∈ Cd, let t be defined as in (5) with k = d− p, and let R ∈ [0, 1/2− t]. If f̃s
θ is certified

at P (x) = U⊺x with radius R, then

V– d(Cd ∩∆U
x (R)) ≥ πp/2

Γ( p
2 + 1)Rp(1− 2R− 2t)d−p. (6)

Proof. The characterization of ∆U (R) in Proposition 2 yields

∆U
x (R) = BU

p (R) + S
N (U⊺)
d−p (x),

where
S

N (U⊺)
d−p (x) := {x}+N (U⊺)

is the affine subspace of Rd spanned by N (U⊺) and passing through x, which has dimension d− p. Therefore,
the following is an inner-approximation of ∆U

x (R):

∆̃U
x (R) := BU

p (R) +
(

(1− 2R)Cd ∩ S
N (U⊺)
d−p (x)

)
⊆ BU

p (R) + S
N (U⊺)
d−p (x) = ∆U

x (R).

If we can show that ∆̃U
x (R) ⊆ Cd, then ∆̃U

x (R) ⊆ Cd ∩ ∆U
x (R), in which case the volume of ∆̃U

x (R) will
lower-bound the volume of Cd ∩∆U

x (R). To prove that this holds, let y = y1 + y2 ∈ ∆̃U
x (R) with y1 ∈ BU

p (R)
and y2 ∈ (1− 2R)Cd ∩ S

N (U⊺)
d−p (x). Then

∥y∥∞ ≤ ∥y1∥∞ + ∥y2∥∞ ≤ R + 1− 2R

2 = 1
2 ,

by the fact that ∥y1∥∞ ≤ ∥y1∥ = ∥Uβ∥ = ∥β∥ for some β ∈ Rp with ∥β∥ ≤ R due to the semi-orthogonality of
U , and by the fact that y2 ∈ (1−2R)Cd. Therefore, indeed it holds that ∆̃U

x (R) ⊆ Cd. Thus, all that remains
is to lower-bound V– d(∆̃U

x (R)). To this end, notice that BU
p (R) ⊆ R(U) and (1 − 2R)Cd ∩ S

N (U⊺)
d−p (x) ⊆

{x}+N (U⊺), so BU
p (R) and (1−2R)Cd∩S

N (U⊺)
d−p (x) are contained in orthogonal affine subspaces, and therefore

V– d(∆̃U
x (R)) = V– p(BU

p (R))V– d−p((1− 2R)Cd ∩ S
N (U⊺)
d−p (x)). The p-dimensional volume of the embedded ball

ℓ2-ball BU
p (R) is well-known (e.g., see Folland (1999, Theorem 2.44, Corollary 2.55)) to be

V– p(BU
p (R)) = πp/2

Γ( p
2 + 1)Rp.

On the other hand, since 2R < 1 − 2t, it holds that 1 − 2R > 2t. Hence Corollary 2 gives that the
(d− p)-dimensional volume of (1− 2R)Cd ∩ S

N (U⊺)
d−p (x) is lower-bounded as

V– d−p((1− 2R)Cd ∩ S
N (U⊺)
d−p (x)) ≥ (1− 2R− 2t)d−p.

Therefore,

V– d(∆̃U
x (R)) ≥ πp/2

Γ( p
2 + 1)Rp(1− 2R− 2t)d−p,

which concludes the proof.

Proposition 3. Let t and R be as in Theorem 2. The lower bound (6) is maximized as follows:

r∗ := min
{

R,
p(1− 2t)

2d

}
∈ arg max

r∈[0,R]

πp/2

Γ
(

p
2 + 1

)rp (1− 2r − 2t)d−p
. (7)

18



Published in Transactions on Machine Learning Research (09/2023)

Proof. It suffices to maximize h(r) := rp (1− 2r − 2t)d−p over r ∈ [0, R]. The gradient of h vanishes at points
satisfying

dh

dr
(r) = prp−1 (1− 2r − 2t)d−p − 2(d− p)rp (1− 2r − 2t)d−p−1

= rp−1 (1− 2r − 2t)d−p−1 (
p (1− 2r − 2t)− 2(d− p)r

)
= rp−1 (1− 2r − 2t)d−p−1 (p− 2pt− 2dr)
= 0.

The set of all critical points satisfying this polynomial equation is
{

0, p(1−2t)
2d , 1/2− t

}
. Notice that 0 <

p(1−2t)
2d < p(1−2t)

2p = 1/2 − t, and that dh
dr (r) ≥ 0 for all r ∈

[
0, p(1−2t)

2d

]
whereas dh

dr (r) ≤ 0 for all r ∈[
p(1−2t)

2d , 1/2− t
]
. Hence, h is unimodal on [0, 1/2− t] with the maximizer p(1−2t)

2d . Therefore, if R < p(1−2t)
2d ,

then h is monotone increasing on the feasible interval [0, R], which implies that the right endpoint r∗ = R is
a maximizer of (7). On the other hand, if R ≥ p(1−2t)

2d , then p(1−2t)
2d is contained in the feasible interval [0, R],

and thus r∗ = p(1−2t)
2d is a maximizer of (7).

As an aside, we note that the certified region of our method contains an ℓ2-ball of radius usually comparable
to that of standard randomized smoothing, although in general the certified region of Propositions 1 and 2
will be much larger as it captures the null space of the projection operator. We nevertheless include the
following simple result for completeness.

Proposition 4. Let x ∈ Rd and R ≥ 0. If f̃s
θ is certified at P (x) = U⊺x with radius R, then g(x + δ) = g(x)

for all δ ∈ Bd(R) := {x ∈ Rd : ∥x∥ ≤ R}.

Proof. Let δ ∈ Bd(R). Then, since U⊺ is a semi-orthogonal matrix, its ℓ2-induced operator norm ∥U⊺∥ is less
than or equal to 1. Thus, ∥U⊺δ∥ ≤ ∥U⊺∥∥δ∥ ≤ R. Therefore, Bd(R) ⊆ ∆U (R).

A.1 Finite-dimensional volume analysis

We complement our asymptotic certified volume comparison in Section 3.3 with a simple finite-dimensional
sweep over input dimension d and projected dimension p, the results of which are shown in Figure 4.

Here, we fix R = 0.5 and t = 0.4 as typical values for natural image datasets and sweep over a range of
choices of p and d. We assume that the low-dimensional and high-dimensional certified radii are similar, as
indicated by Figure 6. The plotted values provide the ratio of our certified volume from Theorem 2 to the
volume of a standard ℓ2-ball, as given in Section 3.3, e.g., a value of ×30000 indicates that the volume of our
certified region is 30000 times greater. This ratio grows rapidly as d increases due to the factorial growth
noted in Section 3.3.
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Figure 4: Ratio of projected randomized smoothing certified volume versus standard randomized smoothing
certified volume for simulated values.

B Supplementary material for Section 4 (Experiments)

B.1 Random projections ablation

We compare the PCA projections used in our experiments with projection onto a random subspace for
CIFAR-10. As reconstruction fidelity is much poorer for random subspaces, we expect to need many more
components to achieve a comparable clean accuracy to PCA projections. We correspondingly adjust the
number of components to p = 1500 in Figure 5 for random projections, and retain p = 450 PCA components.
As with the hyperparameter sweeps, we use n = 104 smoothing samples. Figure 5 shows that projecting onto
the PCA basis generally provides superior certificates. We also plot standard randomized smoothing for
reference.
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Figure 5: Ablation test comparing PCA basis projections with projection onto a random orthonormal set of
vectors.
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B.2 Subspace attack procedure

A typical PGD attack constructs adversarial examples by iteratively perturbing the image along the gradient
of the loss and projecting onto the unit cube of feasible inputs:

x(i+1) = PCd

(
x + PCd

ϵ

(
α sign

(
∇δL(x(i) + δ, y)− x(i)

)))
,

where x(i) is the ith iterate of the PGD attack, L is the loss function, sign(·) is the element-wise sign operator,
α is the step size hyperparameter, PCd projects a point in Rd onto Cd by simple clipping, and PCd

ϵ
is defined

similarly for the zero-centered cube of sidelength 2ϵ. We initialize x(1) = x, where (x, y) are the original input
and label from the dataset.

We desire a final perturbation δ such that x + δ ∈ Cd, δ ∈ Cd
ϵ , and δ ∈ N (U⊺). We first parameterize our

perturbation in terms of the vectors v1, . . . , vd−p spanning N (U⊺). Stacking these vectors columnwise to
yield V ∈ Rd×d−p, we can express our pertubation as δ = V δV with δV ∈ Rd−p. We then iterate over our
parameterized perturbations δ

(i)
V , first solving for our “target” perturbation(

δ
(i+1)
V

)∗
= δ

(i)
V + α sign

(
∇δ′L(x + V (δ(i)

V + δ′), y)
)

.

We then project the perturbation to satisfy the ℓ∞-constraints, which takes the form of a quadratic program:

minimize
δV ∈Rd−p

∣∣∣∣∣∣V (
δ

(i+1)
V

)∗
+ V δV

∣∣∣∣∣∣2

2
subject to ∥V δV ∥∞ ≤ ϵ,

∥x + V δV ∥∞ ≤ 1/2.

This program is always feasible with δV = 0, and its solution satisfies our requirements for each iteration of
the attack procedure.

B.3 CIFAR-10 additional results

Here we present an additional plot comparing the radii of the low-dimensional projected randomized smoothing
balls to the radii of standard randomized smoothing balls in the high-dimensional space. These are very
similar, suggesting that the increase in the volume of the certified region comes from the “extrustion” of
the ball, which amounts to added robustness against unnecessary features that are removed in the initial
projection step. For the anisotropic ANCER method, we report the geometric mean of the radii along each
coordinate axis, which Eiras et al. (2021) defines to be the “proxy radius.” We only compare methods with
ℓ2-based certified regions in this plot.
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Figure 6: Certified radii on the CIFAR-10 dataset.
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B.4 Empirical manifold-perpendicular robustness

While the focus of our work is certified robustness, for expository purposes we briefly compare the empirical
performance of our model against that of standard randomized smoothing on an approximately manifold-
perpendicular threat model. Specifically, following a projected gradient descent iteration, we clamp the
high-variance components of the perturbation to have norm at most R, where R is a parameter that we sweep
over in the table below. An R of zero corresponds to a manifold-perpendicular attack, and as R increases
perturbations are allowed a larger on-manifold component. We also range over the perturbation magnitude ϵ.
The reported numbers are CIFAR-10 empirical accuracies in percentages, with our method highlighted in
bold.

Table 2: CIFAR-10 empirical robust accuracy percentages subject to an approximately manifold-perpendicular
threat model, with randomized smoothing in non-bold font and our method in bold.

ϵ
R 0.0 0.25 0.5 1.0

8/255 76− 79 65− 69 54− 58 34− 35
16/255 71− 79 60− 69 50− 58 28− 35
32/255 59− 79 50− 69 39− 58 20− 35

We evaluate over 500 test images and execute smoothing for 100 samples at each input; while this is fewer
than what is typically used for certification, it is a standard number of samples for the prediction problem
(Cohen et al., 2019).

As seen in Table 2, our method consistently attains higher empirical robust accuracy than conventional
randomized smoothing across all ϵ-R pairs tested. The advantages of our projection-based method are
most apparent for small R, where the underlying geometry of the data distribution—which conventional
randomized smoothing is naive to—is most influential, as well as for large ϵ, where an attacker is able to
create large off-manifold perturbations of the input data. As our theory suggests, we find that the empirical
robust accuracy of our model remains constant over increasing ϵ for a fixed value of R, indicating that our
model is not sensitive to increases in the off-manifold components of an attack. On the contrary, we see that,
for fixed R, as ϵ increases, the empirical robust accuracy of conventional randomized smoothing decreases,
meaning that conventional randomized smoothing is empirically sensitive to moving further away from the
natural data manifold, an attack strategy that we have now shown our method to be both theoretically and
empirically robust to.

B.5 Hyperparameter selection

To maintain consistency, all networks we consider are Wide ResNets pretrained with various noise distributions
using the code provided by Yang et al. (2020). For networks composed with an initial projection, we finetune
the network with a learning rate or 0.001, momentum of 0.9, and weight decay of 0.0005 for 20 epochs,
decaying the learning rate by a multiplicative factor of 0.95 per epoch.

B.5.1 Attack hyperparameters

We kept the attack hyperparameters fixed across both CIFAR-10 and SVHN. For the PGD attack, we use
the torchattacks library with 40 steps and step size α = 2/255 Kim (2020). We lowered this to 5 steps with
α = ϵ/4 for SubspacePGD due to the solve time of the projection step.

B.5.2 CIFAR-10 certification hyperparameters

We include the results of our hyperparameter sweeps for CIFAR-10 in Figure 7. For the RS4A− ℓ1 method,
we used uniform noise and stability training to reproduce the state-of-the-art result from Yang et al. (2020).
The RS4A− ℓ∞ sweep used Guassian noise, which we found to perform better in practice. Our sweep over
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the ANCER learning rate held the number of steps and regularization weight fixed at their defaults of 900
and 2, respectively. All sweeps were performed over 500 random test samples besides ANCER which was run
over 100 samples due to the method’s high computational burden.

The results from these sweeps informed the choice of hyperparameters in Figure 3a. Namely, we choose
σ = 0.25 for our RS4A − ℓ1 baseline and σ = 0.15 for our RS4A − ℓ∞ baseline, as the clean accuracy
drops substantially for higher variances without approaching comparable certified volume to the other
methods considered. We choose a learning rate of 0.01 for ANCER and p = 450 components for projected
randomized smoothing. All experiments in the hyperparameter sweeps were performed with the smoothing
hyperparameters of n0 = 100 samples to guess the smoothed class, n = 104 samples to lower-bound the
smoothed class probability, and a confidence of α = 0.001. For reproducing the final results in Figure 3a we
increased n to 106 as is standard (Cohen et al., 2019) and used 500 test samples to generate the plots. The
attack experiment illustrated in Figure 2a was conducted over 100 test samples.
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Figure 7: Hyperparameter sweeps for the CIFAR-10 dataset. Here α ≈ 3465 is a scaling constant corresponding
to the d-dimensional unit ball volume; i.e. V– d(Bd(1)) = 10−α.

B.5.3 SVHN certification hyperparameters

The SVHN hyperparameter sweep, shown in Figure 8, is similar to that for CIFAR-10, besides the use of
fewer principal components in the projected randomized smoothing sweeps due to the higher compressibility
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of the data. Our final plots in Figure 3c use σ = 0.25 for the ℓ1-baseline, σ = 0.15 for the ℓ∞-baseline, an
ANCER learning rate of 0.01, and p = 150 for projected randomized smoothing.
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Figure 8: Hyperparameter sweeps for the SVHN dataset. Here α ≈ 3465 is a scaling constant corresponding
to the d-dimensional unit ball volume; i.e. V– d(Bd(1)) = 10−α.

B.6 Licenses

The CIFAR-10 dataset is covered by the MIT license, and the SVHN dataset is covered by the GPL 3
license.
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