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ABSTRACT

Recently, several large-scale text-to-image diffusion models have been released,
showing unprecedented performance. Since the shift from learning a task-specific
model from scratch to leveraging pre-trained large-scale models is an inevitable
trend in deep generative modeling, it is necessary to develop methods to bet-
ter utilize these models. In this paper, we propose a method dubbed Diffusion
model for Your Own Data (DYOD) that can effectively utilize a pre-trained text-
to-image diffusion model to approximate the implicit distribution of a custom
dataset. Specifically, we first obtain a text prompt that can best represent the
custom dataset through optimization in the semantic latent space of the diffusion
model. In order to be able to better control generative image content, in particular
geometry of the objects, we show that the text prompt alone is not sufficient, but
rather an informative initialization that can guide the pre-trained diffusion model
is necessary. As representative examples, we demonstrate that learned distribu-
tion initialization from user’s data set or an image initialization by user’s sketch,
photo, etc. serves the goal for customizing diffusion model for user’s own data.
Experiments show that the customized DYOD outperforms the Stable Diffusion
baselines both qualitatively and quantitatively with accelerated sampling speed.

1 INTRODUCTION

Imagine that you want to train a generative model on a custom dataset (maybe you are a designer
of a company and want to generate the images of your company’s products), but all you have is a
single Geforce 1080 Ti. With such limited computational resources, training or fine-tuning a modern
generative model is often infeasible. Alternatively, you may want to apply the publicly available pre-
trained models to your dataset, but how?

Over the last decade, deep generative modeling has rapidly advanced in image synthesis (Karras
et al., 2019; Brock et al., 2018; Child, 2020; Vahdat & Kautz, 2020; Kingma & Dhariwal, 2018). In
particular, diffusion models (Ho et al., 2020; Song et al., 2020b; Sohl-Dickstein et al., 2015) have
arisen as a powerful class of generative models, achieving remarkable performance in generating
images (Dhariwal & Nichol, 2021), videos (Ho et al., 2022), and beyond. Diffusion models are
parameter-efficient, trained on a stationary objective function, and scale well. Moreover, thanks
to their great modularity, even unconditional diffusion models can serve as generative prior for in-
painting, super resolution, colorization, text-guided synthesis, etc (Song et al., 2020b; Chung et al.,
2022; Avrahami et al., 2022). Since the authors of GLIDE (Nichol et al., 2021) showed that dif-
fusion models could even scale to hundreds of millions of text and image pairs, several large-scale
text-to-image diffusion models have been proposed, showing unprecedented performance (Ramesh
et al., 2022; Saharia et al., 2022). Recently, Rombach et al. (2022) greatly benefited the commu-
nity by releasing the model called Stable Diffusion, a latent diffusion model trained on the subset
of the LAION-5B dataset (Schuhmann et al.). Since the shift from learning a task-specific model
from scratch to leveraging pre-trained large-scale models is an inevitable trend in deep generative
modeling, it is necessary to develop methods to better utilize these models.

To utilize the pre-trained models for generating the custom dataset, one can simply try to fine-tune
the pre-trained generative model on a custom dataset, but this approach does not scale well with the
model size. Another possible approach is to select the text prompt carefully by trial and error so
that a text-to-image model generates the desired samples. This is possible but limited to datasets
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Figure 1: Overview of the proposed DYOD. (a) We first obtain the dataset representative text prompt
that we will use to condition the reverse process by optimizing reconstruction loss. (b) Next, we
guide the pre-trained text-to-image diffusion model by initializing its reverse process with either
an image or the perturbed distribution of the custom generator. Image initialization can be used to
transform a stroke, photo, etc. into the target domain, and distribution initialization is for uncondi-
tional synthesis.

that can be fully described with a single sentence. For example, with a text prompt “A photo of
a celebrity’s face,” a text-to-image model may reliably generate images that resemble the images
of the CelebAHQ dataset (Karras et al., 2017). However, in most cases, it is difficult to model
the dataset by solely adjusting a text prompt when the characteristics of the target dataset are not
described in a single sentence. Moreover, text-to-image diffusion models such as Stable Diffusion
tend to have difficulty in controlling the geometry of objects, such as locations, numbers, etc.

To address this, here we propose a method dubbed Diffusion model for Your Own Data (DYOD)
that can effectively utilize a pre-trained text-to-image diffusion model to approximate the implicit
distribution of a custom dataset. As shown in Fig. 1, DYOD is comprised of three steps. First, we
obtain a dataset representative text prompt via optimizing the text embedding (Gal et al., 2022). As
we directly explore the semantic latent space instead of the text space, the resulting text prompt
can faithfully depict the characteristics of the dataset. Second, to generate the samples of the target
distribution, we manipulate the implicit distribution of the diffusion generative prior by replacing the
initial distribution of the reverse diffusion process with a learned one from user’s data or an image
initialization using user’s stroke, photos, etc. Finally, by refining the initializations through the
prompt conditioned pre-trained diffusion model, we can customize pre-trained diffusion generative
models for our own data.

Our contributions are as follows:

• We present DYOD, a novel method of applying pre-trained text-to-image diffusion models
for generative modeling to a custom dataset. This is enabled by guiding the reverse process
of the diffusion model with the dataset representative text prompt and user-oriented initial
distribution.

• In contrast to Gal et al. (2022) that mainly focuses on prompt engineering, we demonstrate
the importance of initialization in customizing a pre-trained model to user-specific data set.

• Experimental results confirm that customized DYOD outperforms the Stable Diffusion
baseline both qualitatively and quantitatively with accelerated sampling speed.

2 BACKGROUND

Diffusion models (Ho et al., 2020) are hierarchical latent variable models defined as

pϕ(x0:T ) = pϕ(xT )

T∏
t=1

pϕ(xt−1|xt), (1)

where x0 = x is an observed variable we are interested in, pϕ(xt−1|xt) is parameterized as a Gaus-
sian distribution, and p(xT ) is set to N (0, I). The joint distribution pϕ(x0:T ) is called the reverse
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process and can be conditioned on c for conditional generative modeling, i.e., pϕ(x0:T |c). Since a
marginal density pϕ(x) =

∫
pϕ(x0:T )dx1:T is intractable, we introduce a variational posterior, the

forward process

q(x1:T |x0) =

T∏
t=1

q(xt|xt−1), (2)

where q(xt|xt−1) is defined as

q(xt|xt−1) = N (xt;
√

1− βtxt−1, βtI), (3)

with a pre-defined noise schedule {βt}Nt=1. Notably, we can directly obtain xt from x0 for an
arbitrary t:

qt|0(xt|x0) = N (xt;
√
ᾱtx0, (1− ᾱt)I), (4)

with αt = 1 − βt and ᾱt =
∏t

i=1 αi. For image synthesis, diffusion models are usually trained by
minimizing the re-weighted variant of variational bound objective as follows:

L = Ex0∼p(x),ϵ∼N (0,I),t∼U{1,T}[||ϵ− ϵϕ(xt, t)||22], (5)

where p(x) is a data distribution, ϵϕ is a diffusion network, and ϵ is a Gaussian noise added to the
data to sample xt. As Eq. (4) allows us to efficiently sample xt for any t, T can be an arbitrarily
large number without sacrificing the tractability of training. In fact, diffusion models can even
be extended into a continuous time in the limit of T → ∞, where Song et al. (2020b) found an
interesting connection between stochastic differential equations. After training, a reverse process of
diffusion models are initialized into a standard Gaussian distribution, gradually removing the noise
starting from t = T to generate data:

xt−1 =
1

√
αt

(
xt −

1− αt√
1− ᾱt

ϵϕ(xt, t)
)
+ σtϵ̄, (6)

where ϵ̄ ∼ N (0, I), and σt is the standard deviation of the reverse process that can be either learned
or fixed to constant.

3 CUSTOMIZING DIFFUSION MODELS FOR YOUR OWN DATA

Since training a modern generative model from scratch is not easy with the limited computational
resources and training data, our goal is to model the underlying distribution p̃(x) of a custom dataset
using a pre-trained text-to-image diffusion model pϕ(x|c). In this section, we provide a detailed
description of DYOD that is designed to address this issue. We first describe the procedure to obtain
the dataset representative text prompt c∗ via textual inversion (Gal et al., 2022) such that pϕ(x|c∗)
is close to p̃(x) (Sec 3.1). Next, we propose to further guide the diffusion model by adjusting the
initial distribution of its reverse process (Sec 3.2). This procedure is summarized in Fig. 1.

3.1 OBTAINING DATASET REPRESENTATIVE TEXT PROMPT

To apply pϕ(x|c) to approximate p̃(x), we first need to find c that brings pϕ(x|c) as close as
possible to p̃(x). Although one can attempt to tune the text prompt manually, this is suboptimal as
1) searching is performed on the text space rather than the text embedding space, and 2) the quality
of c is bounded by the user’s proficiency with prompt engineering. Recently, Gal et al. (2022)
proposed a novel textual inversion technique to find the word embedding v that represents the given
3-5 examples. We find that textual inversion can also be applied to a larger number of images, the
entire dataset. To do so, we use the context texts to construct the text prompt c like “A photo of S∗, ”
where S∗ is a pseudo word that corresponds to v. Formally, we minimize the following objective to
obtain the word embedding v∗ that best represents the characteristics of p̃(x):

v∗ = argmin
v

Ex0∼p̃(x),ϵ∼N (0,I),t∼U{1,T}[||ϵ− ϵϕ(xt, t, c(v))||22], (7)

which is equivalent to find the word embedding v∗ using reconstruction loss such that

v∗ = argmin
v

Ex0∼p̃(x),ϵ∼N (0,I),t∼U{1,T}

∥∥∥∥x0 −
1√
ᾱt

(
xt −

√
1− ᾱtϵϕ(xt, t, c(v))

)∥∥∥∥2
2

, (8)
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Figure 2: Generated samples by VAE, DYOD, and Stable Diffusion conditioned on c∗. Samples
from Stable Diffusion do not comply with the characteristics of the datasets, such as the number of
objects, background, and object size (right).

where xt =
√
ᾱtx0 +

√
1− ᾱtϵ. After finding v∗, we obtain the dataset representative text prompt

c∗ using v∗ and the context texts. This procedure is illustrated in Fig. 1(a).

In addition to the fact that we provide a more systematic way rather than manually tuning the c by
trial and error, exploring the semantic latent space allows us to find the c∗ that is not obtainable by
searching the text space.

3.2 INITIALIZING THE REVERSE PROCESS

Even though c∗ represents the characteristics of the custom dataset, as shown in the rightmost panel
of Fig. 2, Stable Diffusion with a text prompt alone cannot provide sufficient guidance to reliably
model p̃(x) in many cases. In particular, the number of the objects, locations, and other geometric
configurations are difficult to control in Stable Diffusion. To settle the issue, we propose to guide
the diffusion model by adjusting the initial distribution of its reverse process, as shown in Fig. 1(b),
where two methods are considered: distribution initialization and image initialization.

Distribution initialization For the unconditional generation, we first train a small custom genera-
tive model on p̃(x) and use its perturbed distribution as an initial distribution of the reverse process.
Although our method is agnostic to the choice of the generative model, we train VAEs (Kingma &
Welling, 2013) as they are easy to train and have good mode coverage. Furthermore, disentangling
important geometric features are relatively easier in VAE and its variants.

Formally, we define our generative model as

pθ,ϕ,t0|c∗(z,x′,x0:t0) = p(z)pθ(x
′|z)qto|0(xt0 |x′)pϕ(x0:t0−1|xt0 , c

∗) (9)
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t0 0.3T 0.4T 0.5T 0.6T 0.7T 0.8T Stable Diffusion VAE

Apple-orange 4.73 4.14 3.39 2.67 2.40 2.58 9.58 10.18
Lego-face 5.21 2.68 1.34 1.11 1.11 1.03 7.22 19.74

Simpsons-faces 29.52 26.02 18.88 7.90 1.94 1.45 3.65 37.48

Speed (T/t0) ×3.3 ×2.5 ×2 ×1.6 ×1.4 ×1.25 ×1 -

Table 1: KID × 100 and sampling speed of DYOD. The results of Stable Diffusion and VAE are
provided as a baseline.

with the prior distribution p(z) = N (0, I), VAE likelihood pθ(x
′|z), noise distribution

qt0|0(xt0 |x′), and the reverse process pϕ(x0:t0−1|xt0 , c
∗) starting from t = t0. The marginal den-

sity of DYOD we are trying to integrate is as follows:

pθ,ϕ,t0|c∗(x) =

∫
pθ,ϕ,t0|c∗(z,x′,x0:t0)dzdx

′dx1:t0 . (10)

It is noteworthy that after training a custom generative model, the sampling speed of DYOD is
faster than standard diffusion models since we start the reverse process at t0 < T using the CCDF
(come-closer-diffuse-faster) procedure in Chung et al. (2022).

Image initialization For the conditional synthesis, one can also initialize the reverse process with
an initial image y that may come from stroke, photos, etc. Then, the learned c∗ transforms an input
image y into the sample from the target distribution p̃(x). More specifically, for t′ ∈ (0, T ], we
perturb y by sampling yt′ from noise distribution qt′|0(yt′ |y) and denoise it through the reverse
process conditioned on c∗. Formally, the transformed image y0 is sampled from the following
distribution:

pϕ,t′|c∗(y0|y) =
∫

qt′|0(yt′ |y)pϕ(y0:t′−1|yt′ , c
∗)dy1:t′ , (11)

where pϕ(y0:t′−1|yt′ , c
∗) denotes a reverse process starting from t = t′.

4 EXPERIMENTS

Figure 3: Examples of the datasets we use in our experiments.

4.1 EXPERIMENTAL SETUP

We evaluate our method on five datasets. Nike-shoes dataset contains approximately 200 128 × 128
Nike shoe images from the web. Apple-orange dataset consists of 30,000 512 × 512 images synthe-
sized by randomly placing an apple and an orange image on a white background. Lego-face1 dataset
contains approximately 2,600 128 × 128 images of the faces of the lego figures. Simpsons-faces2

dataset contains approximately 10,000 200 × 200 images of the faces of The Simpsons (Wikipedia,
2022) characters that are extracted from the video files. Brain MRI is a subset of fastMRI (Zbontar

1https://github.com/iechevarria/lego-face-VAE
2https://www.kaggle.com/datasets/kostastokis/simpsons-faces
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Figure 4: Comparison with Stable Diffusion on Nike-shoes and Apple-orange datasets.

et al., 2018) dataset consisting of 30,000 images that are resized to 256 × 256 resolution. See Fig. 3
for the examples of each dataset.

We note that our aim is not to pursue state-of-the-art performance on the standard benchmark
datasets but to enable users to build the generative model on their custom datasets that are diffi-
cult to generate by simply tuning the text prompt. So, throughout our experiments, we limit our
computational resources to a single Geforce 1080 Ti. For the text-to-image diffusion model, we
use the publicly available Stable Diffusion model. We use DDIM (Song et al., 2020a) sampler with
T = 50. We employ the vanilla VAE implementation by Subramanian (2020) as it can be trained
efficiently. Training VAE takes 3 minutes, 3 minutes, 30 minutes, 30 minutes, and an hour on the
Nike-Shoes, Lego-face, Apple-orange, Simpsons-faces, and Brain MRI datasets, respectively. It is
obvious that using the modern hierarchical VAEs (Child, 2020; Vahdat & Kautz, 2020) or other
types of generative models will improve performance, but we leave it for future work. Since Stable
Diffusion does not support resolutions other than 512× 512, we upsample the input images smaller
than 512×512 before feeding into the Stable Diffusion and then downsample into the original reso-
lution. We use Lanczos interpolation, and we find that using the upsampling neural network (Wang
et al., 2021) does not yield better results.

To measure the perceptual similarity between two distributions, we use Kernel Inception Distance
(KID) (Bińkowski et al., 2018), where the squared Maximum Mean Discrepancy is measured be-
tween two sets of the feature vectors.

4.2 EXPERIMENTAL RESULTS ON INITIALIZATION

As shown in Fig. 4, Stable Diffusion fails to synthesize the images with the correct object size and
viewpoints on Nike-shoes and Apple-orange datasets. Moreover, the generated images by Stable
Diffusion do not follow the text prompt, resulting in the incorrect number of objects or object type.
The results demonstrate that a text prompt does not provide sufficient guidance to reliably model
the target distribution. By guiding the reverse process with the custom generator that learned the
statistics of the target distribution, our DYOD effectively applies the knowledge obtained from the
custom dataset to diffusion prior.

Fig. 2 demonstrates that DYOD successfully generates the samples of the target datasets. Contrarily,
the results of Stable Diffusion appear to contain some concepts from the datasets, but they do not
comply with important characteristics such as the number of objects, background, and object size,
despite using the optimized prompt. Therefore, we can conclude that it is vital to guide the diffusion
model not only by using a proper text prompt but by adjusting the initial distribution of the reverse
process. Table 1 demonstrates that our method significantly outperforms the Stable Diffusion in
KID (Bińkowski et al., 2018) for both datasets. Compared to Stable Diffusion baseline, which
corresponds to our method with t0 = T , DYOD can generate more high-quality samples with
accelerated speed. Notably, DYOD achieves lower KID than Stable Diffusion while generating
samples up to 3.3 times faster.

Image initialization As shown in Fig. 5, the dataset representative text prompt allows DYOD to
effectively transform the input images such as stroke or photos into the images of the Lego-face and
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Figure 5: Image initialization results. The results of Pizza-to-BrainMRI are on the top, Stroke-
to-Lego on the middle, and CelebAHQ-to-Lego on the bottom. For Pizza-to-BrainMRI, the input
sample is converted to grayscale before being fed to the model. Using the dataset representative text
prompt, our DYOD successfully transforms the input image into the samples of the target dataset.
Without using the dataset representative text prompt, a text prompt is not sufficient for Stable Diffu-
sion to depict the characteristics of the dataset, resulting in a different appearance compared to the
custom datasets (see Fig. 3). We also report KID × 100 for CelebAHQ-to-Lego results.

brain MRI data set, respectively. Without using the dataset representative text prompt, the generated
samples from Stable Diffusion do not resemble the Lego-face and brain MRI data, resulting in higher
KID (see the rightmost panel of Fig. 5).

4.3 EXPERIMENTAL RESULTS ON FLEXIBLE LATENT MANIPULATION

Latent space interpolation To investigate the learned latent space of DYOD, we linearly interpo-
late between two VAE latent variables, z1 and z2, with the interpolation parameter λ ∈ [0, 1], i.e.,
z = z1 + λ(z2 − z1). As we employ the deterministic reverse process, the remaining sources of
randomness are the VAE latent variable z and additive Gaussian noise ϵ. Fig. 6 shows that with-
out fixing ϵ, the properties such as facial expressions and beard and eyebrow shapes vary among
interpolated images. Fixing ϵ results in a smooth interpolation, demonstrating that DYOD learns
meaningful latent space.

7



Under review as a conference paper at ICLR 2023

Figure 6: Linear interpolation in the latent space of VAE. λ denotes the interpolation factor. Top
row: DYOD generated samples without fixing ϵ. Bottom row: DYOD generated samples with fixed
ϵ, resulting in smooth interpolation.

Figure 7: Manipulating the VAE latent variable of DYOD while other stochasticities are controlled.
We traverse a single dimension of latent vectors while keeping others fixed.

Disentangled latent manipulation One drawback of diffusion models is that they do not provide
the compact latent representation of data. Contrarily, thanks to the disentangled latent space of VAE,
we can manipulate the high-level attributes of images by controlling the latent vector of DYOD. As
shown in Fig. 7, DYOD successfully controls the azimuth, hair length, and gender of the generated
images.

5 RELATED WORKS

Prior to our work, several studies utilized diffusion prior to refine the images. Meng et al. (2021)
first presented an image editing method based on diffusion models where they perturb an input
stroke and transform it into a realistic image. In Chung et al. (2022), the authors refine the neural
network prediction using the pre-trained diffusion model, but in a different context of conditional
synthesis. Although these two studies employed the pre-trained diffusion model, they assumed that
the unconditional diffusion model is trained on a class-specific dataset (e.g., LSUN, FFHQ, AFHQ,
etc) and did not consider the method for guiding the text-conditional diffusion prior trained on the
more diverse dataset. Ryu & Ye (2022) recently apply diffusion prior to increase the resolution
of previous samples in their coarse-to-fine generation scheme. This particular work also can be
seen as learning the initial distribution of the reverse process, but their method requires training a
diffusion model from scratch. In Pandey et al. (2022), the authors discuss the symbiosis of VAEs
and diffusion models. They first train a VAE and subsequently a diffusion model conditioned on the
VAE samples, which can be viewed as a generator-refiner framework. We note that our work is in
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a distinct direction with a different goal, as our aim is to utilize the pre-trained diffusion model by
guiding its reverse process.

6 LIMITATIONS AND CONCLUSION

In this paper, we introduced DYOD, a method to borrow the power of a pre-trained text-to-image
diffusion model for generative modeling on a custom dataset. We proposed to guide the diffusion
prior with the dataset representative text prompt and a better initial distribution of the reverse pro-
cess. We showed that DYOD outperforms Stable Diffusion baseline by a large margin and has a
faster sampling speed while being trained within a few hours with a single GPU.

A limitation of DYOD is that its performance is bounded by textual inversion. It is hard to find the
dataset representative text prompt if the dataset is not in the support of the diffusion prior pϕ(x|c),
although we believe that this problem may be reduced as the scale of pre-trained models increases.
Fine-tuning the ϕ as Ruiz et al. (2022) might be able to settle the issue at the expense of increased
computational costs, which we leave for future work.
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