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Abstract

While tabular classification has traditionally relied on from-scratch training, a
recent breakthrough called prior-data fitted networks (PFNs) challenges this ap-
proach. Similar to large language models, PFNs make use of pretraining and
in-context learning to achieve strong performance on new tasks in a single for-
ward pass. However, current PFNs have limitations that prohibit their widespread
adoption. Notably, TabPFN achieves very strong performance on small tabular
datasets but is not designed to make predictions for datasets of size larger than
1000. In this work, we overcome these limitations and substantially improve
the performance of PFNs via context optimization. We introduce TuneTables, a
parameter-efficient fine-tuning strategy for PFNs that compresses large datasets
into a smaller learned context. We conduct extensive experiments on nineteen
algorithms over 98 datasets and find that TuneTables achieves the best perfor-
mance on average, outperforming boosted trees such as CatBoost, while optimizing
fewer than 5% of TabPFN’s parameters. Furthermore, we show that TuneTables
can be used as an interpretability tool and can even be used to mitigate biases
by optimizing a fairness objective. We open-source our code and raw results at
https://github.com/penfever/TuneTables.

1 Introduction

Tabular data, or data organized into rows and columns consisting of distinct features, are the oldest
and one of the most ubiquitous types of data in machine learning in practice [10, 67]. Tabular data
has numerous applications across medicine [41, 71], online advertising [33, 52, 64], finance [7, 18],
and other areas [11, 12, 72].

Competitive classification algorithms for tabular data include gradient-boosted decision trees [16, 61]
and deep neural networks [31, 42, 69]. Both approaches fit their respective models on a labeled dataset
containing samples from a distribution reflecting the task at hand. A recent breakthrough, prior-data
fitted networks (PFNs) [35, 55], are are a specific type of neural process which learn to perform
approximate Bayesian inference in a single forward pass using in-context learning [50]. PFNs do
not require optimizing parameters or fitting a model on downstream training data, instead feeding
training data into the context and conditioning on it. In particular, TabPFN achieved state-of-the-art
classification on small tabular datasets [35, 51].

The in-context learning approach of PFNs parallels that of large language models (LLMs) [82].
Both approaches can be viewed as approximate Bayesian inference, whether implicitly [79] or
explicitly [55]. While researchers have successfully used various context optimization strategies for
enhancing LLM performance [49], no prior work has studied context optimization strategies for PFNs.
Furthermore, although TabPFN achieves very strong performance on small datasets, its limitations
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Figure 1: TuneTables: a novel prompt-tuning technique for prior-data fitted networks. TuneTa-
bles performs prompt tuning on a pre-trained prior-fitted network (TabPFN) to distill real-world
datasets into learned embeddings, allowing for stronger performance and faster inference time than
TabPFN in many cases. TuneTables also expands the capabilities of pre-trained PFNs; by way of
example, we demonstrate its effectiveness for bias mitigation, and as an interpretability tool.

currently prohibit its widespread adoption: it only runs on datasets whose number of training samples,
number of features, and number of classes are at most 1000, 100, and 10, respectively.

In this work, we perform the first investigation into context optimization strategies for PFNs, allowing
us to substantially improve their performance when scaled to large datasets. Specifically, we introduce
TuneTables, a novel parameter-efficient fine-tuning technique for PFNs that compresses large datasets
into a smaller learned context (Figure 1). We conduct an extensive empirical investigation into
TuneTables’ performance on the TabZilla Benchmark Suite, the largest benchmark considered by
recent tabular data literature [51]. Over 98 datasets and 19 algorithms, we find that TuneTables
achieves the best average performance and is the best-performing method on 30 of them.

Because TuneTables effectively compresses the contents of large tabular datasets into the tuned
prompt, no training data is needed in the context during inference, significantly speeding up inference
time (similar to works on neural processes; see Section 6). We also show that the learned prompt can
be used as a tool for interpretability. Finally, we show how to use TuneTables for multi-objective
optimization, such as optimizing both accuracy and fairness simultaneously, allowing users to mitigate
biased predictions of a pretrained PFNs with just a lightweight tuning procedure. We open-source
our code and raw results at https://github.com/penfever/TuneTables.

Our contributions. We describe our main contributions below.

• We introduce TuneTables, a parameter-efficient fine-tuning technique for PFNs. TuneTables
achieves the highest number of wins (30) when compared to 19 algorithms over 98 datasets, while
requiring less inference time than TabPFN.

• We show how to use prompt tuning for multi-objective optimization, such as optimizing both
accuracy and fairness simultaneously, allowing users to mitigate biased predictions of a pretrained
PFNs with just a lightweight tuning procedure.

• We show that TuneTables’ condensed representations can be used as an interpretability tool.
• We conduct an extensive study on context optimization strategies for PFNs by performing an

ablation study on TuneTables, as well as studying sketching and feature selection techniques.
• In order to better manage the limitations of our method, we introduce TuneTables-medium and

TuneTables-light, which achieve strong tradeoffs between precision and speed.
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2 Background

PFNs: review and limitations. In this section, we give a background on PFNs and discuss their
limitations. For a complete description, see [35, 55, 58]. Assume that we have a classification
problem with features X ⊆ Rd and labels Y . Given a dataset D = Dtrain ∪ Dtest, where Dtrain =
{(x1, y1), . . . , (xn, yn)} and Dtest = {(xtest, ytest)}, our goal is to predict the conditional class
probabilities p(· | xtest). In the Bayesian framework for supervised learning, the mechanism for
generating the data distribution is a hypothesis φ, drawn from Φ, the space of all hypotheses. Φ
encodes our prior beliefs on the system before observing data. In this framework, datasets D are
generated by first drawing φ ∼ Φ, and then drawing i.i.d. samples according to φ. The posterior
predictive distribution (PPD) for a test sample xtest is the label distribution p(· | xtest, Dtrain) that
follows from our prior. We can obtain the PPD by integrating over the space of hypotheses Φ:

p(y | x,D) ∝
∫
Φ

p(y | x, φ)p(D | φ)p(φ)dφ. (1)

A PFN is a transformer-based architecture trained to approximate the PPD via synthetic prior-fitting.
Given a prior, we first sample hypotheses φ ∼ p(φ) and then synthetic datasets D ∼ p(D | φ).
We optimize the parameters of the PFN by predicting the class labels of Dtest ⊆ D, conditioned on
Dtrain = D \Dtest. We compute the loss by:

LPFN = ED∼p(D) [− log qθ(ytest | xtest, Dtrain)] , (2)

for simplicity assuming all training and test sets are size n and 1, respectively. We then approximately
solve this optimization problem, θ̂ = argminθ LPFN, allowing qθ to approximate Equation (1):

qθ(ytest | xtest, Dtrain) ≈ p(ytest | xtest, Dtrain). (3)

Scaling challenges. While PFNs, specifically TabPFN, have shown remarkable success in classifica-
tion by in-context learning, several important obstacles constrain their more widespread adoption:

1. PFNs only accept a fixed number of features. The current design of PFNs fixes the quantity of
features at the time of pretraining. This quantity cannot be changed without retraining the PFN.

2. PFNs scale poorly with the dataset size. While PFN accuracy can improve with more real-data
samples at inference time [35, 58], the memory requirements scale with the context length, making
extensions beyond a certain number of samples impractical.

3. PFNs only select from a fixed number of classes. The MLP decoder head co-trained with the
PFN fixes the number of classes that can be identified at test time.

A motivating example. In Figure 3 (left), we present a comparison between CatBoost and
TabPFNs3000 from [51], a version of TabPFN that, for datasets above 3000 data points, uses a
random subset of 3000 data points, for fitting; this version also evaluates 30 feature subsets based
on mutual information (requiring 30× more time). We ablate our feature and sample subselection
strategies for TabPFNs3000 in Appendix Table 13. Although TabPFNs3000 performs very well on
datasets with fewer than 1000 datapoints and 100 features, it significantly underperforms CatBoost
beyond those constraints.

Approach. We propose sketching, feature selection, and fine-tuning as an attempt to remedy (1)
and (2). Then in Section 3, we describe novel prompt-tuning and class-extension strategies to create
TuneTables, a robust classifier which remedies (1)-(3).

2.1 Classical sketching and feature selection

Sketching. The number of samples that a PFN can handle is limited to around 3000 by conventional
GPU sizes. However, in the real world, datasets are often much larger. Going forward, we refer the
maximum allowable context size of the PFN as n, and to the size of the real-world dataset as N .

Given a training dataset Dtrain of size N >> n, one option is to select a representative subset of the
dataset, Dcompact ⊆ Dtrain, to use as the context. In general, researchers have studied a variety of data
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summarization techniques, often called sketching, for tabular data [56]. In the context of a pretrained
PFN qθ, the goal is to find a sketching function s : RN×d 7→ Rn×d such that

ED∼p(D) [− log qθ(ytest | xtest, s(Dtrain))] (4)

≈ ED∼p(D) [− log qθ(ytest | xtest, Dtrain)] .

Here, we consider three sketching methods for TabPFN: random, in which we select a random subset
of n datapoints from the full training set; k-means, in which we compute the n-means clustering [3]
of Dtrain and select the n centers; and CoreSet, in which we compute a core-set of size n [2].

Feature selection. In addition to the limitation on dataset size, PFNs, such as TabPFN, also impose
a limitation on the number of features d. Similar to sketching, given a dataset with D >> d features,
we can perform feature selection or summarization in order to adhere to the constraint (formally,
finding a function that reduces the feature dimension and approximates an expression similar to
Equation (4)). Feature selection is a critical part of tabular classification, and there are several popular
feature selection methods [13, 17]. We investigate three different methods: random, in which we
randomly select a set of d features; mutual information, in which we select d features with the highest
mutual information of the target dataset [75]; and principal component analysis (PCA), in which we
take the d first principal components. In Section 4, we find that all sketching and feature selection
methods plateau in performance well before approaching parity with GBDTs, which motivates our
investigation of new scaling techniques.

2.2 Fine-tuning

We conclude this section with a discussion of another potential approach for scaling PFNs: fine-
tuning. In this approach, given a dataset of size N >> n, we use gradient descent to continue training
all parameters of the PFN. However, we show in Section 4 that fine-tuning takes up considerable
memory resources while still not achieving competitive accuracy on large datasets; we postulate
that for most datasets, the synthetic prior of TabPFN is more robust to overfitting than the actual
training data; fine-tuning overfits to the validation set. This is borne out by the observation that when
fine-tuning TabPFN, validation accuracy continues to improve even as test accuracy declines. To
remedy this, we present new parameter-efficient solutions for scaling PFNs in the next section.

3 TuneTables

Motivated by the strong performance of prompt tuning, we introduce TuneTables, a new tabular classi-
fication algorithm. Using a pretrained PFN (TabPFN, in our experiments) as a base model, TuneTables
overcomes the limitations of PFNs, allowing them to be applied to any tabular classification problem.

For the full details of the algorithm, please refer to Appendix D. We summarize here: (a) if a dataset
is small enough to run with the original zero-shot version of TabPFN, we include it in our search,
as the TabPFN is already highly optimized for such datasets; The reason why we do not only use
TabPFN is that the exact size at which TuneTables outperforms TabPFN is dataset-dependent (with
an average transition of around 800 samples). (b) if there are more than 100 features, we perform
grid search over a set of feature subselection methods and select the one which performs best on the
validation set; (c) orthogonally, if there are too many labels, we fit a new decoder to a frozen TabPFN;
(d) we optimize over a search space of tuned prompts, both with and without real-data context during
training, fitted to the dataset; (e) we report the best-performing model according to accuracy.

Prompt tuning as a scalable context for PFNs. Motivated by the limitations of sketching for large
contexts, we explore soft prompt tuning as an alternative. In soft prompt tuning [46], given a dataset
D = Dtrain ∪Dtest, a parameterized matrix Dp×e

tune is prepended to the input embedding Dn×e
train , where

e is the transformer embedding dimension and p is a hyperparameter–the size of the tuned prompt.

The paper [46] demonstrates the effectiveness of soft prompt tuning for NLP tasks by prepending
a small task-specific prompt (p ≈ 5). These task-specific learned tokens prove effective at the
extremely large model scales commonly encountered in NLP. Somewhat surprisingly, we show that
prompt tuning is effective at similar scales of p even for the much smaller tabular data models (see
Appendix D and Appendix F). However, prompt tuning increases in effectiveness when p is larger.
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Figure 2: TuneTables and state-of-the-art tabular models. A critical difference plot according to
mean accuracy rank across the 98 datasets in Table 1 of [51]. Algorithms which are not significantly
different (p > 0.05) are connected with a horizontal black bar. TuneTables achieves the highest mean
rank of any algorithm.

Soft prompt tuning for tabular data. Unlike in NLP, transformers for tabular data, including PFNs,
generally accept two input embeddings; a continuous-valued embedding DtrainX , and a categorically-
valued Dtrainy which is passed through directly. We adapt the method of [46] by fitting the parameters
of Dp×e

tune X to DtrainX and randomly initializing Dp×1
tune y with an equal number of labels from each class

in Dtrain. These synthetic datapoints are optimized on the entire labeled set, and therefore give PFNs
access to a much larger training set not accessible by existing methods.

We further adjust the method of [46] to allow for the possibility that Dtune has learned, in essence, a
distilled version of Dtrain; at test time, we evaluate two settings, hereafter referred to as C (‘context’)
and NC (‘no context’). In the C setting, following [46], we have Dp×e

tune prepended to the input
embedding Dn×e

train . In the NC setting, we provide only Dp×e
tune at test time. In Section 4, we empirically

evaluate both approaches. We ablate specifics of our implementation choices in Appendix D. Unlike
prompt tuning for NLP, we show that the NC setting is often competitive with, if not better than, the
C setting. We also ablate this choice during training; see Appendix D for implementation specifics.

Extending the number of predicted classes. TabPFN uses a pretrained transformer, with a
two-layer MLP as a final classifier. The pretraining procedures limit the naïve use of TabPFN to
classification tasks with at most 10 classes. Yet, in many cases, datasets of interest might contain a
larger number of classes, which would require pretraining a new PFN from scratch.

Following the method of last-layer retraining [44, 45], for such datasets, we fit a PFN to new posteriors
given by real-world classification datasets with more than 10 classes, freezing all weights except for
those of the decoder MLP and the tuned prompt (see Appendix D for more implementation details).
Even after this modification, our method remains highly parameter-efficient, optimizing fewer than
5% of TabPFN’s parameters.

4 Experiments

Algorithms and datasets used. We compare TuneTables to nineteen algorithms, including three
GBDTs: CatBoost [61], LightGBM [43], and XGBoost [16]; 11 neural networks: DANet [14],
FT-Transformer [31], two MLPs [31], NODE [60], ResNet [31], SAINT [69], STG [80], TabNet
[6], TabPFN [35], VIME [81], and ExcelFormer [15]; and five baselines: Decision Tree [62], KNN
[21], Logistic Regression [22], Random Forest [48], and SVM [20]. For all algorithms, we use their
official implementation; see Appendix C for more details. We also compare to TabPFNs3000. We
run the algorithms on the TabZilla Benchmark Suite introduced in [51]. This suite consists of 98
classification datasets from OpenML [74] with a diversity of sizes and number of features [51]. See
Table 4 in Appendix C for a list of all datasets with their statistics.

Experimental setup. For all algorithms other than TuneTables, we perform light hyperparameter
tuning by running one default setting and 29 iterations of random search using Optuna [4]); see
Appendix C for details. Following [51], all of the algorithms come with their default set of hyperpa-
rameters used in the official implementation, and we used all of these settings. For TuneTables, we
optimize via a grid search described in Appendix D.
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Figure 3: TuneTables addresses TabPFN’s limitations. (Left) Motivating example (using the
subset of [51]on which both CatBoost and TabPFNs3000 report results): TabPFNs3000 is best on
small datasets, but when scaled past 3000 datapoints and 100 features, TabPFNs3000 significantly
underperforms. (Middle) CatBoost vs. TuneTables on LARGESCALETABLES : By contrast, TuneTa-
bles is competitive with CatBoost on all datasets, mitigating the limitations of TabPFN. (Right)
TabPFNs3000 vs. TuneTables on LARGESCALETABLES : TuneTables outperforms TabPFNs3000
on datasets with a high number of datapoints or features. The colorbar on the y axis represents
the comparative change in per-dataset accuracy between two algorithms (A: blue, B: red). Positive
numbers represent the absolute gain in accuracy of B w.r.t. A, negative numbers represent the absolute
gain in accuracy of A w.r.t. B.

We fit for up to 100 epochs with early stopping. For all algorithms, we report the test performance of
the hyperparameter set with the best performance on the validation set and cross-validate on three
train/test folds from OpenML. We conduct our experiments on an NVIDIA L4 TPU with 24GB
VRAM. We summarize our results across datasets by reporting mean accuracy as well as the mean
normalized accuracy (after Z-score normalization) for each algorithm.

Algorithm comparison. We compute statistically significant performance differences among
algorithms averaged across all datasets, as done in prior work [42]. We first use a Friedman test to
check whether performance differences between all algorithms are significant [30]. We reject the null
hypothesis for p < 0.05. Then we use a Wilcoxon signed-rank test to check which pairs of algorithms
have significant performance differences [19]. We use a Holm-Bonferroni correction to account for
multiple comparisons [36]. See Figure 2. We find that TuneTables achieves the highest average rank,
although the difference among the top three algorithms is not statistically significant. In Table 1, we
present the accuracy, rank, and Z-score of all algorithms, averaged across all datasets, and find that
TuneTables performs very well on all metrics but runtime.

Large datasets. One limitation of the TabZilla Benchmark Suite is that even the largest dataset
in the comparison contains only 45,211 samples. This scale is modest by the standards of mod-
ern tabular problems. In order to better understand the performance of TuneTables on extremely
large datasets, we curate from [51] a novel benchmark, LARGESCALETABLES , consisting of 29
datasets with up to 1 900 000 samples, and 7200 features. We curate the datasets from OpenML,
omitting image classification datasets. Since TabPFN generally outperforms boosted trees on these
smaller datasets, and TuneTables extends TabPFN, we also heuristically select smaller datasets to
LARGESCALETABLES so as not to favor either TabPFN or boosted trees. TuneTables achieves the
highest average accuracy of any algorithm, and achieves the best performance on poker-hand, a
dataset of size 1 025 009. The complete results can be found in Appendix Table 8 and Figure 3 (right).
In order to assess the performance of TuneTables on datasets with many classes, we curate another
subset of [51], presenting results on fifteen datasets with up to 100 classes. In appendix Table 7 we
show that despite the large divergence from the PFN’s pretraining, TuneTables achieves a mean rank
of 2.52, ahead of CatBoost and a ResNet, second only to XGBoost, whose mean rank is 2.0.

Runtime comparison. We divide our consideration of runtime into inference and training. At
inference time, TuneTables is around 9x faster than TabPFNs3000, on average; see Appendix Table 10
for the per-dataset details. However, the end-to-end runtime of TuneTables is over 7x that of CatBoost
and XGBoost, and also slower than TabPFNs3000, because of the increased training time.

In order to better understand the trade-off between accuracy and runtime, we introduce efficient
variants of our method. TuneTables-medium utilizes a more efficient adaptive sequence size (i.e., the
number of real data points received at train time) which scales with the size of the dataset, validates
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Table 1: TuneTables matches SOTA algorithms on 98 datasets. In this table, we compare
algorithms over the 98 datasets in the TabZilla benchmark suite from [51]. For each algorithm, we
compute its mean accuracy and mean rank in terms of accuracy. We also compute the mean Z-score,
computed by normalizing the set of results on each dataset (by mean 0 std. 1), so that each dataset has
the same weight, and averaging each algorithm’s normalized performances. Std. Z-Score is computed
with respect to random splits and averaged across datasets. Num. wins values are averaged over three
splits per dataset.

Model Mean Acc. Mean Rank Mean Z-Scores Std Z-Scores Med Z-Scores Num. Wins
TuneTables 0.860 7.435 0.494 0.624 0.490 30
CatBoost 0.856 7.514 0.496 0.669 0.566 13
XGBoost 0.854 7.991 0.411 0.783 0.533 16
ExcelFormer 0.847 9.349 0.212 0.863 0.384 7
LightGBM 0.845 9.122 0.284 0.894 0.431 20
RandomForest 0.843 9.713 0.206 0.776 0.374 4
SAINT 0.840 9.619 0.132 0.985 0.337 10
DANet 0.840 9.646 0.209 0.763 0.345 3
rtdl_ResNet 0.839 9.691 0.175 0.798 0.356 5
rtdl_FTTransformer 0.838 9.782 0.198 0.786 0.273 8
NODE 0.838 9.335 0.224 0.695 0.357 3
SVM 0.835 9.847 0.121 0.812 0.318 12
DecisionTree 0.823 12.192 -0.308 1.215 -0.038 4
rtdl_MLP 0.813 10.825 -0.019 0.907 0.223 1
STG 0.810 12.196 -0.290 1.051 -0.057 5
TabNet 0.804 11.643 -0.216 1.104 0.075 5
MLP 0.802 12.220 -0.232 0.845 -0.105 1
LinearModel 0.793 13.069 -0.520 1.233 -0.345 5
KNN 0.781 14.101 -0.727 1.187 -0.608 0
VIME 0.756 14.711 -0.849 1.192 -0.694 5

Table 2: TuneTables-medium and TuneTables-light are substantially faster with only a modest
decrease in accuracy. We compare the average accuracy and runtime (in seconds) of three versions
of TuneTables and find that the medium and light versions of the algorithm are substantially faster on
large datasets; we also find that TuneTables-medium sacrifices little accuracy.

TuneTables TuneTables-medium TuneTables-light
Avg. acc (LARGESCALETABLES , size < 50K) 0.831 0.830 0.810
Avg. runtime (LARGESCALETABLES , size < 50K) 1325 1026 450

Avg. acc (LARGESCALETABLES , all datasets) 0.830 0.828 0.787
Avg. runtime (LARGESCALETABLES , all datasets) 6975 1908 486

Avg. acc (TabZilla, all datasets) 0.861 0.855 0.854
Avg. runtime (TabZilla, all datasets) 573 305 196

on a subset of the available validation set when the validation set is large, employs lower patience
for early stopping, omits a zero-shot TabPFN grid search over 30 random seeds which TuneTables-
standard uses to find more optimal feature selection subsets, and, most impactfully, omits ensembling
for datasets larger than a cutoff hyperparameter (which we fix at 150 000 samples). TuneTables-light
includes all of the efficiency modifications of TuneTables-medium, trains for just one epoch, and
uses TabPFN zero-shot to preselect the feature selection method rather than performing a grid search
using TuneTables itself. In Table 2, we compare these lighter methods to TuneTables-standard on
the LARGESCALETABLES benchmark. TuneTables-medium decreases runtime by 72% compared to
TuneTables-standard, while the accuracy decreases by less than a quarter of a percent. Furthermore,
the runtime of TuneTables-light is comparable to CatBoost; however, performance also degrades by
5% when going from TuneTables-medium to TuneTables-light. Still, TuneTables-light shows stronger
performance than TabPFNs3000 (78.7% vs. 78.1% accuracy) while having a lower inference time.

Ablations. In order to better understand the significance of the changes we introduce in our method,
we separately ablate the tuned prompt size and the use of ensembles in Table 12 and Table 13, finding
that smaller datasets pair well with smaller prompts and rarely benefit from ensembling.

We also compare TuneTables with and without keeping the real data as additional context (referred to
as C and NC, respectively, in Section 3); see Appendix Table 12. We find that smaller datasets cannot
always be fully learned by the tuned prompt, but for larger datasets, the tuned prompt alone suffices,
and in some cases even outperforms the real data.
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Table 3: TuneTables significantly improves accuracy and demographic parity. In these multi-
objective optimization experiments, we consider prompt tuning for mitigating predictive bias, com-
paring TabPFN to TuneTables, tuning for accuracy alone vs. accuracy and demographic parity.
TuneTables improves over TabPFN with respect to both objectives.

Adult Speeddating Compas NLSY Average

Acc ↑ DP ↓ Acc ↑ DP ↓ Acc ↑ DP ↓ Acc ↑ DP ↓ Acc ↑ DP ↓
TabPFN 0.832 0.174 0.86 0.012 0.688 0.22 0.986 0.326 0.842 0.183

TuneTables (Acc) 0.845 0.13 0.865 0.006 0.688 0.209 0.974 0.302 0.843 0.162
TuneTables (Acc + DP) 0.837 0.034 0.863 0.003 0.693 0.121 0.965 0.277 0.840 0.109

Sketching and feature selection Finally, in Appendix Table 6 we give a study on the three sketching
and three feature selection techniques described in Section 2. As described earlier, TabPFNs3000’s
performance when relying on feature selection plateaus well before approaching parity with CatBoost,
a top-performing GBDT, on seven very large datasets.

5 TuneTables Extensions

Mitigating bias with prompt tuning. Many real-world applications of machine learning involve
a set of protected attributes (such as race or gender) that partition the dataset into groups, in which
some have higher model performance than others. Removing the sensitive attributes does not fix the
algorithmic bias, because the sensitive attributes are often non-trivially correlated with other attributes
in the dataset. Due to this issue, researchers have put in significant effort into mitigating the bias of
ML models, with the majority of techniques devising new training strategies [9, 53].
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Figure 4: Dataset with high accuracies from just
two datapoints. Shown is a two-example prompt
dataset for the breast cancer dataset [78]. Malign
class example has higher values for all features
than benign class.

Given TabPFN’s pretrained nature and consider-
able retraining cost, the only options for mit-
igating biased predictions are to run a post-
processing routine on the output predictions,
which generally do not perform as well as in-
processing strategies [66]. We show how to use
prompt tuning to substantially reduce the bias
of predictions while also improving accuracy.

We conduct experiments on four datasets widely
used for research in fairness: the Adult Census
Income database (with sex as the sensitive at-
tribute) [8], speed dating (with same race as the
sensitive attribute) [83], COMPAS (with sex as
the sensitive attribute) [5], and National Lon-
gitudinal Survey (with gender as the sensitive
attribute) [73]. To quantify bias, we use de-
mographic parity [25, 76], which measures the
difference in probability of a positive outcome
among the protected and unprotected groups.
Formally, given protected group G1, unpro-
tected group G0, and protected attribute x·,a, it can be computed as

P(xi,yi)∈G0
(yi = 1 | xi,a)− P(xi,yi)∈G1

(yi = 1 | xi,a).

During prompt tuning, we employ a demographic parity regularizer that aims to minimize the
difference in positive outcome probabilities between the two groups:∣∣∣∣∣∣

∑
(xi,yi)∈G0

P (yi = 1 | xi,a)−
∑

(xi,yi)∈G1

P (yi = 1 | xi,a)

∣∣∣∣∣∣
We use the same experimental setup as in Section 4, except that we report one shift rather than the
average of three, and TuneTables is fitted to a single prompt rather than ensembled. We compare
the default TabPFN to TuneTables, fine-tuning for accuracy alone vs. accuracy and demographic
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parity. The latter significantly improves demographic parity, compared to the default TabPFN and
TuneTables fine-tuned for accuracy, and enhances accuracy relative to the default TabPFN across all
datasets but one; see Table 3.

Summarizing and understanding datasets with prompt tuning. While we have demonstrated
that TuneTables scales and improves the performance of PFNs, now we show that it can also help
understand the discriminative features in a dataset. Often, besides a good predictive model for a
dataset, users want to gain further insights into the dataset. In prompt tuning, the tuned smaller
dataset can be seen as a summary of the complete dataset that emphasizes discriminative features
for the given task. As an example, in Figure 4 we show that on the Breast Cancer dataset [78], a
prompt with just two synthetic examples is enough to reach high accuracies and at the same time
allows an understanding of the predictive features. For example, in the Breast Cancer dataset, the
malign example has higher values for all features compared to the benign example, suggesting high
feature values indicate malignancy. We give further examples in Appendix F.

6 Related work

Neural Processes and Prior-Data Fitted Networks. Prior-data Fitted Networks (PFNs) [35, 55]
are a recently-proposed paradigm for machine learning, which show that fast approximate Bayesian
inference is possible by training a neural network to mimic the posterior predictive distribution
(PPD) in a single forward pass using in-context learning [54, 55, 58]. PFNs were shown to yield
state-of-the-art empirical performance on small tabular datasets [35, 51]. PFNs have been used in
other applications, including Bayesian optimization [54] learning curve extrapolation [1], and as
foundation models for hypernetworks [57].

PFNs are neural processes (NPs) [55]. Recent advances in NP are similar in nature to our work,
especially recent works that aim to scale attention-based methods to larger contexts. Feng et al.
[27] propose Latent Bottlenecked Attentive Neural Processes (LBANPs), a transformer-based neural
process which overcomes the quadratic complexity of transformers by encoding the context dataset
into a constant number of latent vectors. Guo et al. [34] propose Versatile Neural Processes (VNP),
which increases the capability of NPs to handle compex signals by using a new bottleneck encoder.
[63] introduces semi-parametric inducing point networks (SPIN), which can attend to a training set at
inference time with linear complexity via inducing point methods. [28] introduce Constant Memory
Attention Block (CMAB), an attention block that is permutation-invariant and has constant memory
complexity when computing the output, as well as Constant Memory Attentive Neural Processes
(CMANPs), a NP that requires constant memory. For additional related work, see Appendix B.

7 Conclusions, limitations, and future work

In this work, we gave the first investigation into context optimization techniques for PFNs, allowing us
to substantially improve their performance when scaled to large datasets. In particular, we introduced
TuneTables, which uses a novel prompt-tuning technique to achieve strong performance on large
datasets. We demonstrate that TuneTables mitigates the constraints of TabPFN on the dataset size,
number of features, and number of class labels. Additionally, we use prompt tuning to mitigate bias
without retraining TabPFN and as an interpretability tool. We open-source our code, results, and all
other materials needed to reproduce our work. As PFN models improve, the context optimization
techniques explored in our work will allow researchers to further optimize and scale. For example, a
next-generation TabPFN might have a longer total context length, and prompt tuning will allow us to
push the dataset size even further.

Limitations. No current TuneTables is on par with GBDTs in terms of both accuracy and runtime
simultaneously. We therefore emphasize that while we achieve strong performance metrics, we do not
claim practical superiority of our method over gradient boosting, when taking into account training
time. However, given the novelty of our method, we expect future research to further improve the
accuracy-runtime tradeoff of TuneTables. It also does not improve on TabPFN for small datasets
(fewer than 1000 samples, 100 features and 10 classes); we postulate that this is a result of overfitting.

Future work. Parameter-efficient fine-tuning can be used with PFNs to ensure high-quality, differ-
entially private predictions, given that the pretraining is done on purely synthetic data, and prompt
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tuning only updates a small number of parameters. Low-rank adaptation (LoRA) [37] and quantized
low-rank adaptation (QLoRA) [23] have been used successfully for large language models and
would be a promising technique for parameter-efficient fine-tuning of PFNs. Designing a sparse
mixture-of-experts PFN using router networks is another promising technique, due to its success in
the field of large language models [39].
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A Broader Societal Impact Statement

The goal of our work is to investigate context optimization strategies for PFNs, such as prompt-tuning
and sketching, which we use to scale and improve the performance of TabPFN. We do not see any
negative broader societal impacts of our work that do not already exist in other classification methods.
In fact, our work may further facilitate the adoption of TabPFN, which has the benefit of being
pretrained and therefore having a lower carbon footprint compared to most deep learning approaches
that must be trained from scratch.

Furthermore, we demonstrate that our prompt-tuning strategy makes it possible to mitigate the bias of
TabPFN while only fine-tuning a small set of embedding vectors; the authors of TabPFN mentioned
that it is critical to study and improve TabPFN under the lens of algorithmic fairness and other
dimensions of trustworthy AI [35]. This may allow practitioners to use TabPFN in sensitive settings
for the first time, in which the original TabPFN would lead to biased preditions. Overall, our hope is
that our work will have a positive impact for both practitioners and researchers, by facilitating the
adoption of a model with a low carbon footprint, and by providing the tools to mitigate the bias of
PFNs. Likewise, we hope that the possibility to summarize datasets with prompt tuning will add to
the toolbox of machine learning practitioners aiming to analyze and interpret their data better, and
therefore may have a positive impact on the trustworthieness of machine learning.

B Additional Related Work

Tabular classification. Tabular datasets are the oldest and among the most widely used dataset
types in machine learning [10, 67]. GBDTs [29] build an ensemble of decision trees, with each tree
fitting the residual of the loss from the previous tree. XGBoost [16] and CatBoost [61] are two of the
most widely-used and highest-performing GBDTs. Researchers have also explored many methods
based on neural nets [31, 38, 42].

There is an active debate in the community on which family of methods perform best on tabular data:
neural nets [6, 42, 47, 60, 65] or GBDTs [10, 31, 32, 67], with the exception of small datasets, on
which TabPFN performs the best [35, 51]. Finally, sketching and feature selection methods have been
extensively studied in prior works [13, 56].

Neural Processes and Prior-Data Fitted Networks. Prior-data Fitted Networks (PFNs) [35, 55]
are a recently-proposed paradigm for machine learning, which show that fast approximate Bayesian
inference is possible by training a neural network to mimic the posterior predictive distribution
(PPD) in a single forward pass using in-context learning [54, 55, 58]. PFNs were shown to yield
state-of-the-art empirical performance on small tabular datasets [35, 51]. PFNs have been used
in other applications, including Bayesian optimization [54], forecasting [24], and learning curve
extrapolation [1].

PFNs are neural processes (NPs) [55]. Recent advances in NP are similar in nature to our work,
especially recent works that aim to scale attention-based methods to larger contexts. Feng et al.
[27] propose Latent Bottlenecked Attentive Neural Processes (LBANPs), a transformer-based neural
process which overcomes the quadratic complexity of transformers by encoding the context dataset
into a constant number of latent vectors. Guo et al. [34] propose Versatile Neural Processes (VNP),
which increases the capability of NPs to handle compex signals by using a new bottleneck encoder.
[63] introduces semi-parametric inducing point networks (SPIN), which can attend to a training set at
inference time with linear complexity via inducing point methods. [28] introduce Constant Memory
Attention Block (CMAB), an attention block that is permutation-invariant and has constant memory
complexity when computing the output, as well as Constant Memory Attentive Neural Processes
(CMANPs), a NP that requires constant memory.

For additional related work, see Appendix B.

Prompt tuning. Researchers have extensively studied prompting techniques for large language
models (LLMs) [49]. In such methods, one modifies the input into a prompt, and the LLM predicts the
subsequent tokens, from which it derives the output predictions. Prompt tuning techniques typically
start with a pretrained LLM and use the training data of a downstream task to find the best prompt
for this task. ‘Hard’ prompt tuning involves finding the best natural language prompts using discrete
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search techniques [40, 77], while ‘soft’ prompt tuning optimizes a prompt directly in the embedding
space of the model [46, 84]. Soft prompt tuning has also been applied to multi-modal models such as
vision-language models [70, 85, 86].

C Additional experimental details

Hyperparameter settings for baselines. For the baselines, we use the same hyperparameter
search space as in prior work [51] (which is itself similar to other works [42]). We choose the
best configuration among the default parameter sets and the additional 29 sets, using k-fold cross-
validation with 10 folds. We follow the best configurations of [51] with exceptions; for CatBoost
and XGBoost, we increase the range of tree depth by a factor of 10, since a high depth is often more
appropriate for very large datasets. We find that this improves performance on large datasets, but
sometimes harms performance on small datasets, and increases the runtime – see Appendix G for the
raw results. For each dataset, each algorithm is allowed a maximum runtime of 10 hours for the entire
search process. For ExcelFormer, we decrease the number of dimensions and depth of the default
transformer, as we find that without this modification, it times out on even medium-sized datasets.

Hyperparameter settings for TuneTables. Consistent with the experimental design in [51], we
perform hyperparameter optimization of TuneTables for up to 30 variants; however, we utilize a grid
search rather than Optuna. We use a batch size of 1 and no gradient aggregation. The space over which
we conduct grid search in TuneTables is conditioned on metadata; number of features, number of
samples, number of classes. The feature and class splits are set by the limits of the particular TabPFN
checkpoint we optimize. When we reach a leaf node, TuneTables-standard and TuneTables-medium
conduct a grid search over a fixed range of configurations. The size of our search space is always <
30, and usually < 10. For feature-large datasets, TuneTables-light conducts additional optimization in
the feature space prior to grid search. Further details on our search algorithm can be found in the
repository associated with the paper. TuneTables hyperparameter settings can be found in chart form
in Table 5.

C.1 Memory Efficiency

In our experiments, we find that we exceed hardware limitations around 3000 samples with a batch
size of 1 when using TabPFN on a GPU with 48GB of VRAM. While FlashAttention, a popular
optimization, is memory-linear in sequence length, but it has not yet been implemented in the public
release of TabPFN, which relies on an older version of PyTorch. Flash attention may be integrated
into a future release, in which case any benefits will carry over to our method. Even so, inference
time continues to be quadratic, and there are other overheads on GPU memory. Overall, there remains
a considerable need for new algorithmic methods which can be scaled up to the sequence lengths
required by large tabular datasets.

C.2 Feature selection and sketching

We ablate strategies for both sketching (subsampling) and feature selection for scaling TabPFN.
We consider three sketching methods (random, k-means, and CoreSet) and three feature selection
methods (random, PCA, mutual information) as described in Section 2. In addition to sketching, we
consider two different methods for sampling class labels: equal and proportional.

For efficient coreset selection, we use a variant of Farthest Point Sampling [26]; after selecting an
initial set of n=5 random points, we compute the distance of each point in the dataset to the set of
already selected points. Next, we add to the set of selected points the point whose distance to the
selected points is maximal. Finally, we update the distances of all the points according to the updated
selected set; and continue iteratively.

We limit our algorithmic comparison to TabPFN to CatBoost, which is the overall best-performing
model in [51]. We compare all combinations of sketching and feature selection with both CatBoost
and TabPFN; see Table 6. Interestingly, we find that random sketching performs just as well as the
more involved algorithms, k-means and CoreSet. On the other hand, PCA significantly outperforms
mutual information and random feature selection methods, when the original number of features is
large.
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Figure 5: TuneTables is competitive with state-of-the-art tabular models. A critical difference
plot according to mean accuracy rank across all LARGESCALETABLES datasets with fewer than
50 000 samples. Algorithms which are not significantly different (p > 0.05) are connected with a
horizontal black bar. TuneTables achieves the highest mean rank of any algorithm. This plot is similar
to Figure 2, but the search spaces for XGBoost and CatBoost are expanded to include more trees.
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Figure 6: We present a critical difference plot according to mean accuracy rank on LARGESCALETA-
BLES . Algorithms which are not significantly different (p > 0.05) are connected with a horizontal
black bar. Across these datasets, TuneTables achieves performance that is not significantly different
from CatBoost or XGBoost.

C.3 Additional results

First, we present the large class table from Section 4. See Table 7.

In Table 1, we gave aggregate statistics for TuneTables and baselines across all datasets of size less
than 50 000. Now, in Table 8, we present results for TuneTables, CatBoost, and XGBoost on all
datasets individually, including datasets of size nearly two million. Note that we report the end-to-end
runtime of all methods, including 30 iterations of search (for example, TabPFNs3000 takes about 30×
more time than TabPFN as reported in prior work [51]). In Figure 6, we present a critical difference
diagram similar to Figure 2 but over all 29 datasets. Across these 29 datasets, TuneTables achieves
performance that is not statistically different from CatBoost or XGBoost.

Neural net comparison. In Table 1 and Table 8, we compared TuneTables to GBDTs and two other
neural nets. Now, we compare TuneTables to two additional neural nets: MLP and TabTransformer
[38] (for four total neural net baselines). Since transformer-based methods have a higher memory
consumption, we obtained full results on 17 total datasets. See Table 9. We find that TuneTables
substantially outperforms all other neural nets on average across all datasets, achieving the lowest
average rank at 1.93, and achieving the highest average Z-Score of 0.85, far above the second-place
neural net’s value of 0.18.

Inference Time We give the full details for inference time; see Table 10.

Full results for TuneTables-medium and TuneTables-light Recall at the end of Section 4, we
introduced TuneTables-medium and TuneTables-light, showing that they can substantially decrease
the runtime of the standard TuneTables with just a small reduction in accuracy. While we presented
summary results in Table 2, now we present the full results in Table 11. For descriptions of TuneTables
variants, see Section 4.

C.4 Ablation study

We report our results ablating the core components of our methods: the prompt length, its use during
training and inference, the use of ensembles, and the prompt tuning procedure itself (against regular
finetuning). Beginning with the prompt length, we see in Table 12 that while some dataset results
are not sensitive to the prompt length, others vary significantly, and generally enjoy longer prompts.
Ablating the importance of having real-data context during inference (same table) we find that it is
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important for smaller datasets. On the larger datasets, the variant with no real data at all is better in
specific cases. However, having no such data during inference, a model would perform better not
having it during training as well. Introducing real data first during inference is usually harmless,
but significantly deteriorates the results on specific cases. Fine tuning the entire model is not only
significantly more memory-intensive but also underperforms TuneTables in terms of accuracy.

In Table 13 we show the results of our method with or without ensembles, and with or without
context (in training and inference). Our ensembling strategy is beneficial in both cases. When
using ensembles, the results with or without context are generally similar, although one variant may
outperform the other on specific datasets.

D TuneTables additional details

Tuned prompt implementation details. We implement our tuned prompts by prepending ran-
domly initialized vectors of identical dimension to the TabPFN encoder to the real data points fed to
TabPFN as context during training.

In the CT (‘context in training’) setting, we continue to provide real data points as part of the training
context; the quantity of real data provided for each batch is drawn with uniform probability from a
random variable which ranges from zero to a fixed upper bound, which is passed to the model as a
hyperparameter. Usually that upper bound is 1152, the default setting for TabPFN, unless the dataset
is extremely small, in which case we select it according to the limitations of that dataset.

In the NCT (‘no context in training’) setting, no real data is provided as part of the training context;
all data in the training set is used to fit the randomly initialized prompt. There are always a fixed
number of data points provided, and it is the same for every batch. Usually that number is 128, unless
the dataset is extremely small, in which case we select it according to the limitations of that dataset.

We note that it is also possible to evaluate models trained in either setting either with context (C) or
without (NC). In our experiments, we always evaluate all models on both, and report the setting with
higher validation accuracy at test time.

We find that on smaller datasets, the setting with context (C) sometimes outperforms the setting
without context (NC), even after the prompt has been fitted, perhaps because the tuned prompt overfits
on a small amount of available training data. However, when using ensembling, for datasets with
more than 3000 samples in the training set, the NC setting is as good or better than the C setting. See
Table 13. We leave further investigation of this phenomenon to future work.

Loss function. Most TuneTables experiments are optimized using the cross-entropy loss between
the labels assigned to the training data (P) and TuneTables’s outputs (Q):

H(P,Q) = −
∑
x

P (x) logQ(x) (5)

To reduce the effects of overfitting on datasets with fewer samples, we extend our grid search to
include the choice of loss function. We find that many such datasets benefit from fitting the tuned
prompt via the KL divergence loss between the PFN’s outputs (P) and TuneTables (Q).

KL(P ||Q) =
∑
x

P (x) log

(
P (x)

Q(x)

)
(6)

Compute. We conduct all of our prompt tuning experiments on Google Cloud Platform (GCP),
using a single NVIDIA L4 TPU with 24GB VRAM for each experiment.

Size of tuned prompts. We ablate the size of tuned prompts in Table 12 and find that the larger
tuned prompts generally perform better on datasets with more samples, while smaller tuned prompts
excel on datasets with few samples. For this reason, the experimental results in Section 4 are reported
on prompts of size 10 or 1000, conditioned on the number of samples in the input dataset.
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Duration of training. Our experiments run for up to 100 epochs. We employ early stopping if our
key metric (Accuracy) fails to improve after a fixed number of epochs.

Evaluation of tuned prompts. We validate our tuned prompts every epoch on a subset of the
entire validation set if the validation set is large. At a fixed interval, we run the entire validation and
test sets. After the experiment concludes, we report results from the epoch with the best key metric
score.

Fine-tuned setting. In the fine-tuned setting, our parameters are the same, except that we use a
lower fixed learning rate of 1e− 3.

Ensembling over tuned prompts. While individual tuned prompts are already a substantial
improvement on TabPFN for sample-large datasets, we find that these improvements sometimes
compound when we ensemble over multiple tuned prompts.

We draw the inspiration for our ensembling approach from the internal ensembling used in TabPFN,
which averages predictions over permutations of feature indices and label indices[35]. For the results
presented in Section 4, we ensemble over ten permutations of each dataset, averaging the top two
ensemble member predictions (as measured by NC accuracy on the validation set in the NCT setting,
or C accuracy in the CT setting).

In a TuneTables ensemble, each ensemble member fits its own tuned prompt to the data. Variance in
the ensemble members is introduced by differences in the random initialization of the tuned prompt,
as well as permuting the order of features and labels, a la TabPFN, one time before each tuned prompt
is fitted.

See Table 13 for ablation studies of the effectiveness of ensembling.

E Regression experiments

In this section, we show that using prompt tuning, we are also able to extend PFNs to perform well
on regression datasets, further highlighting the flexibility of our approach.

E.1 Adapting TuneTables to regression problems.

Adapting TuneTables to regression problems introduces new challenges, as TabPFN was not designed
for use with such problems. In particular, we find that end-to-end fine-tuning outperforms prompt
tuning in this setting, and that the most effective grid search for regression problems utilizes a space
of PFN base models. Put another way, TuneTables-regression does not use prompt tuning, and does
not always use TabPFN as its foundation model. Rather, it searches a space of foundation models to
find the best performer for a particular regression problem. We search over three foundation models;
TabPFN, the checkpoint released in [55] and a new PFN we train from scratch for 10 epochs on a
synthetic prior of regression-specific datasets.

E.2 Details on the datasets used for the experiments and baseline experimental design

Similar to [51], each algorithm is tuned for each dataset by maximizing the R-squared (R2) metric.
Each dataset corresponds to an OpenML task, and can be preprocessed exactly like the classifi-
cation datasets used in other experiments. The 15 datasets used in these experiments are “Bank-
Note-Authentication- UCI” (OpenML task 361002), “EgyptianSkulls” (5040), “Wine” (190420),
“Wisconsin-breast- cancer-cytology-features” (361003), “bodyfat” (5514), “california” (361089),
“chscase-foot” (5012), “cleveland” (2285), “colleges” (359942), “cpu-small” (4883), “liver-disorders”
(52948), “meta” (4729), “mv” (4774), “pbc” (4850), and “veteran” (4828). Unlike prior work, we
report non-normalized averages, as we believe it gives a more realistic indication of real-world
performance at a glance.

We use 12 deep learning and boosted tree algorithms as baselines; VIME, TabTransformer, TabNet,
DANet, STG, MLP, LightGBM, CatBoost, XGBoost, NODE, DeepFM.
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Figure 7: TuneTables is competitive with state-of-the-art tabular models on regression.

Input Data

Tuned Points 
Decision Boundary

TabPFN Zero-Shot 
Decision Boundary

Figure 8: Decision boundaries on 2D datasets. Shown are prompt-tuned TabPFN decision bound-
aries as well as the regular zero-shot TabPFN decision boundaries. Larger dots in middle row
represent the tuned points for the two classes.

E.3 Results of regression experiments

In Table 14 results and Figure 7, we show the results of our experiments. Overall, we see that
TuneTables is competitive with top-performing algorithms across a variety of metrics; mean win rank,
average R2 score, etc. Equally importantly, TuneTables is significantly stronger on several datasets
than both boosted trees and deep baselines.

F Summarization details and decision boundaries of prompt-tuned TabPFN
on toy 2D Problems

For the experiments with prompts of only two examples, we prompt-tune one example per class for
500 epochs. The prompt is input directly into TabPFN without undergoing any preprocessing steps
that the original data went through. Therefore, the tuned feature values do not correspond directly to
the original values in the dataset. For the breast cancer dataset, it reaches 100% accuracy; for the
diabetes dataset, it reaches 78.7% accuracy.

We also show decision boundaries of TabPFN and prompt-tuned TabPFN on toy 2d classification
problems using scikit-learn [59] in Fig. 8. The prompt contains four datapoints for each class. One
can see how the points are tuned to recover the decision boundaries. Due to the very low prompt
length and the low dataset size, the prompt-tuned decision boundaries are slightly less accurate than
TabPFN (consistent with our results for small datasets in Table 12).

G Results for Deeper GBDTs

In the results in Section 4, we compare TuneTables to the GBDTs, XGBoost and CatBoost, using a
search space in which the number of trees can range from 1 to 1000. Now, we compare TuneTables
to XGBoost and CatBoost when they have expanded search spaces, where the number of trees can
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Figure 9: Diabetes dataset [68] with high accuracies from just two samples.

range from 1 to 10 000. We re-compute the critical difference plot and table results: see Figure 5,
Table 15, and Table 16.

In Figure 5 and Table 15, we see that TuneTables still performs favorably compared to CatBoost and
XGBoost on datasets of size up to 50 000. Note that the larger search space may perform better on
larger datasets, it is also more challenging to search through in 30 iterations. We present the full
results on all datasets in Table 16.
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Table 4: List of all datasets used in Section 4 and Appendix C. LARGESCALETABLES datasets are
listed in part one. Datasets in part two were used for the class extension experiments in Table 7.
Datasets in part three were used for fairness experiments in Section 5. The additional dataset in
part four was used for intepretability experiments in Section 5. Datasets in part 5 were used for the
ablations on sketching and feature selection in Appendix C. For the list of 98 used in Table 8, see
https://github.com/penfever/TuneTables/blob/main/datasets-used.csv.

Dataset num. classes num. features num. samples

click-prediction-small 2 11 1997410
poker-hand 10 10 1025009
agrawal1 2 9 1000000
BNG (labor) 2 16 1000000
airlines 2 7 539383
albert 2 78 425240
BNG (vote) 2 16 131072
connect-4 2 28 98050
higgs 3 42 67557
volkert 10 180 58310
riccardo 2 4296 20000
elevators 2 18 16599
eeg-eye-state 2 14 14980
har 6 561 10299
dilbert 5 2000 10000
robert 10 7200 10000
christine 2 1636 5418
bioresponse 2 1776 3151
kc-1 2 21 2109
car 4 6 1728
cmc 3 9 1473
blood-transfusion 2 4 748
balance-scale 3 4 625
climate 2 18 540
cylinder-bands 2 37 540
dresses-sales 2 12 500
colic 2 22 368
ecoli 8 7 336
heart-c 2 13 303
breast-cancer 2 9 286

openml__ldpa__9974 11 7 164860
openml__walking-activity__9945 22 4 149332
openml__Devnagari-Script__167121 46 1024 92000
openml__helena__168329 100 27 65196
openml__chess__3952 18 6 28056
openml__kropt__2076 18 6 28056
openml__letter__6 26 16 20000
openml__isolet__3481 26 617 7797
openml__texture__125922 11 40 5500
openml__one-hundred-plants-texture__9956 100 64 1599
openml__vowel__3022 11 12 990
openml__soybean__41 19 35 683
openml__collins__3567 15 21 500
openml__arrhythmia__5 13 279 452
openml__primary-tumor__146032 21 17 339

adult-census 2 15 32561
SpeedDating 2 121 8378
compas-two-years 2 12 4966
nlsy (national-longitudinal-survey-binary) 2 17 4908

Diabetes 322 10 442

skin-segmentation 2 3 245057
FM (Fashion-MNIST) 10 784 70000
CIFAR-10 10 3072 60000
gddc (gas-drift-different-concentrations) 6 129 13910
pendigits 10 16 10992
mfeat-factors 10 216 2000
mfeat-pixel 10 240 2000
semeion 10 256 1593
hill-valley 2 100 1212
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Table 5: TuneTables and TabPFNs3000 hyperparameter configurations based on number of samples.

Parameter TabPFN TuneTables ≤ 2000 TuneTables > 2000
Batch Size 1 - -

Real Data Qty 3000 0 {1152, 0}
Ensemble Size 32 1 10

Tuned Prompt Dimension - 10 1000
Ensemble Method - - Avg Top 2

Epochs - {7, 60} 100
Warmup - 10 10

Sequence Length Per Batch - Fixed {Variable, Fixed}
Early Stopping - {2, 6} 6
Learning Rate - 3e-2 1e-3

Validation Frequency - 2 2
Max Val Size During Training - 2000 2000

Optimizer - AdamW, Default Settings,
Weight Decay 0

AdamW, Default Settings,
Weight Decay 0

Loss - {Cross-Entropy,
KL Divergence} -

Tuned Prompt Labels - {Equal, Proportional} -

Table 6: Comparative performance of TabPFN and CatBoost with sketching, feature selection,
and sampling methods. On a distinct subset of the datasets in [51] selected to emphasize datasets
with many features or many samples, we compare CatBoost and TabPFNs3000. When both models
are limited to 3000 samples, TabPFNs3000 performs better on 12 of 17 datasets where significant
differences exist. When CatBoost is allowed access to the entire training data, the win rate is identical.
In most cases, random sample selection is sufficient for optimal performance. Both models benefit
from PCA and mutual information dimension reduction when the feature space is large. The columns
labeled SKT / FTS / SMP list the best performing method for sketching, feature subsampling and
label-aware sketching technique, respectively. Label-aware sketching refers to a strategy where
we either sample instances proportionate to their labels, or we oversample minority classes with
replacement to create a class-balanced distribution. While the choice of label-aware sketching strategy
is often impactful (and we use it in TuneTables), and the choice of feature subselection method can
be important for some datasets, in all but one case, no sketching method we test outperforms random
sampling. Bold indicates the best-performing model(s).

Full Best Random Best Random SKT / FTS / SMP SKT / FTS / SMP
CatBoost CatBoost CatBoost TabPFN TabPFN CatBoost TabPFN

airlines_189354 0.653 0.637 0.637 0.594 0.589 RND / RND / PR RND / RND / PR
albert_189356 0.698 0.657 0.657 0.64 0.64 RND / RND / PR RND / RND / PR
CIFAR_10_167124 0.434 0.37 0.342 0.373 0.372 RND / PCA / PR RND / RND / PR
connect-4_146195 0.749 0.716 0.716 0.66 0.659 RND / RND / PR RND / RND / PR
eeg-eye-state_14951 0.832 0.808 0.806 0.932 0.932 RND / RND / PR RND / RND / EQ
elevators_3711 0.855 0.838 0.838 0.9 0.899 RND / MUT / PR RND / RND / PR
FM_146825 0.843 0.787 0.787 0.835 0.812 RND / RND / PR RND / PCA / PR
gddc_9987 0.97 0.976 0.955 0.994 0.993 RND / PCA / EQ RND / RND / PR
higgs_146606 0.71 0.684 0.684 0.665 0.661 RND / RND / PR RND / RND / PR
hill-valley_145847 0.514 0.514 0.514 0.56 0.56 RND / RND / PR RND / RND / PR
mfeat-factors_12 0.954 0.95 0.943 0.973 0.973 KMN / RND / EQ RND / RND / PR
mfeat-pixel_146824 0.955 0.951 0.951 0.971 0.97 RND / RND / PR RND / RND / PR
pendigits_32 0.972 0.966 0.964 0.995 0.993 RND / RND / PR RND / RND / PR
poker-hand_9890 0.664 0.572 0.561 0.519 0.515 RND / RND / PR RND / RND / PR
riccardo_168338 0.951 0.956 0.93 0.991 0.982 RND / PCA / EQ RND / MUT / EQ
robert_168332 0.446 0.367 0.367 0.384 0.359 RND / RND / PR RND / PCA / EQ
semeion_9964 0.887 0.869 0.863 0.915 0.915 RND / MUT / EQ RND / RND / PR
ss_9965 0.994 0.989 0.987 0.999 0.999 RND / RND / PR RND / RND / PR
volkert_168331 0.608 0.56 0.56 0.557 0.555 RND / RND / PR RND / RND / PR

Average 0.773 0.746 0.740 0.761 0.757 RND / RND / PR RND / RND / PR
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Table 7: Comparison of algorithms on datasets with a large number of classes. TuneTables
can effectively handle datasets with more classes than the ones used for pretraining, which was
not possible with TabPFN. For each algorithm, we compute its mean test accuracy, and mean rank
in terms of accuracy. We also compute the mean Z-score, computed by normalizing the set of
results on each dataset (by mean 0 std. 1), so that each dataset has the same weight, and averaging
each algorithm’s normalized performances. We see that TuneTables performs the best across all
performance-oriented metrics. Fractional num. wins values are averaged over three splits per dataset,
and reflect the presence of multi-way ties on certain splits.

Method Mean Acc. Mean Rank Mean Z-Score Std. Z-Score Med. Z-Score Num. Wins

XGBoost 0.885 2.000 1.052 0.558 1.245 12.0
TuneTables 0.779 2.524 0.602 0.932 0.971 5.0
rtdl_ResNet 0.776 3.929 0.053 0.826 -0.006 2.0
KNN 0.789 3.976 0.121 0.262 0.103 0.0
CatBoost 0.781 4.524 -0.177 0.960 0.107 2.0
RandomForest 0.751 5.214 -0.628 0.754 -0.767 0.0
rtdl_MLP 0.624 5.833 -1.022 0.908 -1.257 0.0

Table 8: Comparison of the top-performing methods on LARGESCALETABLES . For each
algorithm, we show its test accuracy and end-to-end runtime in seconds. In this table, Table 11 and
Table 16, we report the summed runtime for all random seeds (30 in the case of all algorithms except
for TuneTables, which generally requires fewer than 30). Since TuneTables uses TabPFN predictions
on small datasets, we conservatively report its end to end runtime as the sum of TabPFNs3000 runtime
and TuneTables grid search runtime. This prediction is also extremely conservative for TabPFNs3000,
as 30 random seeds are unnecessary on datasets with fewer than 100 features. We report runtime in
this manner to mitigate concerns that we are advantaging PFNs over boosted trees. We also show the
number of samples in each dataset. All datasets above the line were included in Table 1.

Dataset Size TabPFNs3000 TuneTables CatBoost XGBoost
Acc. Runtime Acc. Runtime Acc. Runtime Acc. Runtime

breast-cancer 286 0.765 29 0.770 65 0.770 37 0.724 4
heart-c 303 0.848 40 0.903 66 0.903 21 0.839 2
ecoli 336 0.848 30 0.843 66 0.892 73 0.833 17
colic 368 0.856 39 0.892 66 0.874 218 0.883 3
dresses-sales 500 0.578 41 0.580 122 0.640 40 0.640 5
cylinder-bands 540 0.800 41 0.846 82 0.827 94 0.864 6
climate 540 0.959 59 0.951 97 0.963 25 0.926 4
balance-scale 625 0.990 29 0.995 55 0.899 53 0.894 145
blood-transfusion 748 0.801 25 0.782 56 0.756 24 0.760 58
cmc 1473 0.554 91 0.556 109 0.561 78 0.561 13
kc-1 2109 0.862 168 0.856 187 0.856 49 0.859 6
bioresponse 3151 0.797 638 0.798 3012 0.788 113 0.800 102
christine 5418 0.742 666 0.755 3920 0.736 331 0.743 4
robert 10000 0.250 964 0.414 2397 0.464 599 0.503 2118
dilbert 10000 0.922 761 0.992 3749 0.949 809 0.978 1144
har 10299 0.936 370 0.981 2657 0.985 302 0.994 232
eeg-eye-state 14980 0.940 178 0.986 1929 0.907 28 0.946 18
elevators 16599 0.902 186 0.902 1297 0.891 176 0.896 234
riccardo 20000 0.922 1395 0.995 5247 0.997 692 0.998 735

volkert 58310 0.567 459 0.693 6331 0.666 230 0.703 604
higgs 67557 0.671 931 0.714 4084 0.724 80 0.725 46
connect-4 98050 0.668 696 0.817 5395 0.807 204 0.855 106
BNG (vote) 131072 0.968 1976 0.974 2493 0.975 42 0.975 16
albert 425240 0.642 2363 0.658 17518 0.706 1078 0.690 76
airlines 539383 0.600 2602 0.653 44434 0.664 155 0.673 184
BNG (labor) 1000000 0.937 5518 0.967 7717 0.971 226 0.970 179
agrawal1 1000000 0.948 5158 0.950 45504 0.951 142 0.951 98
poker-hand 1025009 0.531 2423 1.000 10471 0.912 5331 0.940 439
click-prediction-small 1997410 0.833 10421 0.837 33148 0.842 85 0.843 213

Average 0.781 1320 0.830 6975 0.823 390 0.826 234

24



Table 9: Comparison of neural nets on LARGESCALETABLES . We compare TuneTables to other
prominent deep learning methods for tabular data on the 17 datasets in LARGESCALETABLES for
which all algorithms reported results. For each algorithm, we compute its different metrics of accuracy
and rank. We also compute the mean Z-score, computed by normalizing the set of results on each
dataset (by mean 0 std. 1), so that each dataset has the same weight, and averaging each algorithm’s
normalized performances. We see that TuneTables performs the best across all performance-oriented
metrics. Fractional num. wins values are averaged over three splits per dataset, and reflect the
presence of multi-way ties on certain splits.

Method Mean Acc. Med Acc. Mean Rank Med. Rank Mean Z-Score Med. Z-Score Num. Wins

TuneTables 0.81 0.85 1.93 1.0 0.85 0.91 9.67
rtdl_ResNet 0.77 0.78 2.68 2.0 0.18 0.19 3.33
TabTransformer 0.76 0.73 3.05 3.0 -0.10 0.05 3.00
rtdl_MLP 0.73 0.76 3.55 4.0 -0.34 -0.55 0.83
MLP 0.72 0.74 3.79 4.0 -0.59 -0.55 0.17

Table 10: Comparison of inference times across datasets. In this table, we compare the inference
time of TabPFNs3000 (which uses up to 3000 points of real data as context, when available) and
four common configurations for TuneTables. We report inference time for the entire test set, as
well as per 1000 samples, estimated from the inference time for the entire test set. At inference
time, TuneTables does not require ensembling to achieve high accuracy, while TabPFNs3000 does.
Therefore, TuneTables is considerably faster.

Dataset N. classes N. Feats N. Samples TabPFNs3000 TuneTables-pt10-C TuneTables-pt10-NC TuneTables-pt1000-C TuneTables-pt1000-NC
3000 pts, ens. per1k 3000 pts per1k 0 pts per1k 3000 pts per1k 0 pts per1k

breast-cancer 2 9 286 0.951 3.325 0.103 0.36 0.103 0.36 0.119 0.416 0.109 0.381
heart-c 2 13 303 1.011 3.337 0.103 0.34 0.102 0.337 0.111 0.366 0.107 0.353
ecoli 8 7 336 0.99 2.946 0.094 0.28 0.092 0.274 0.094 0.28 0.091 0.271
colic 2 22 368 1.045 2.84 0.103 0.28 0.102 0.277 0.124 0.337 0.112 0.304
dresses-sales 2 12 500 1.024 2.048 0.098 0.196 0.09 0.18 0.106 0.212 0.092 0.184
climate 2 18 540 1.067 1.976 0.098 0.181 0.09 0.167 0.11 0.204 0.095 0.176
cylinder-bands 2 37 540 1.317 2.439 0.088 0.163 0.091 0.169 0.108 0.2 0.093 0.172
balance-scale 3 4 625 0.7 1.12 0.115 0.184 0.105 0.168 0.147 0.235 0.104 0.166
blood-transfusion 2 4 748 0.595 0.795 0.123 0.164 0.117 0.156 0.149 0.199 0.107 0.143
cmc 3 9 1473 1.485 1.008 0.099 0.067 0.093 0.063 0.155 0.105 0.093 0.063
kc-1 2 21 2109 2.623 1.244 0.12 0.057 0.11 0.052 0.203 0.096 0.116 0.055
bioresponse 2 1776 3151 5.623 1.785 0.23 0.073 0.116 0.037 0.338 0.107 0.114 0.036
christine 2 1636 5418 5.392 0.995 0.486 0.09 0.183 0.034 0.725 0.134 0.167 0.031
dilbert 5 2000 10000 9.355 0.936 0.74 0.074 0.204 0.02 1.126 0.113 0.232 0.023
robert 10 7200 10000 9.369 0.937 0.718 0.072 0.202 0.02 1.143 0.114 0.208 0.021
har 6 561 10299 9.399 0.913 0.804 0.078 0.219 0.021 1.27 0.123 0.236 0.023
eeg-eye-state 2 14 14980 8.235 0.55 1.086 0.072 0.245 0.016 1.683 0.112 0.284 0.019
elevators 2 18 16599 8.501 0.512 1.169 0.07 0.278 0.017 1.799 0.108 0.294 0.018
riccardo 2 4296 20000 5.994 0.3 1.369 0.111 0.325 0.018 2.21 0.111 0.358 0.018
volkert 10 180 58310 17.448 0.299 3.931 0.067 0.772 0.013 6.336 0.109 0.897 0.015
higgs 3 42 67557 21.991 0.326 6.449 0.095 1.356 0.02 10.404 0.154 1.517 0.022
connect-4 2 28 98050 19.966 0.204 4.491 0.046 0.922 0.009 7.064 0.072 0.992 0.01
BNG(vote) 2 16 131072 28.229 0.215 8.898 0.068 1.636 0.012 14.25 0.109 1.95 0.015
albert 2 78 425240 77.546 0.182 27.988 0.066 5.748 0.014 47.855 0.113 6.378 0.015
airlines 2 7 539383 85.146 0.158 36.797 0.068 6.751 0.013 61.477 0.114 8.123 0.015
agrawal1 2 9 1000000 193.083 0.193 70.665 0.071 12.129 0.012 112.533 0.113 14.944 0.015
BNG(labor) 2 16 1000000 190.81 0.191 69.374 0.069 12.094 0.012 108.211 0.108 14.666 0.015
poker-hand 10 10 1025009 198.151 0.193 71.605 0.07 13.097 0.013 112.214 0.109 15.199 0.015
click-prediction-small 2 11 1997410 384.192 0.192 133.212 0.067 24.964 0.012 227.546 0.114 30.982 0.016
Average 222079 44.525 1.109 15.212 0.124 2.839 0.087 24.814 0.162 3.402 0.09
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Table 11: TuneTables-medium and TuneTables-light are substantially faster with only a modest
decrease in accuracy. We compare the average accuracy and runtime in seconds of three versions of
TuneTables, across all 19 datasets of size < 50K, as well as all 29 datasets. All datasets above the
line were included in Table 1.

Dataset TuneTables-standard TuneTables-medium TuneTables-light
Acc. Runtime Acc. Runtime Acc. Runtime

breast-cancer 0.770 65 0.782 36 0.747 30
heart-c 0.903 66 0.892 27 0.892 23
ecoli 0.843 66 0.833 36 0.833 30
colic 0.892 66 0.892 27 0.892 23
dresses-sales 0.580 122 0.600 81 0.600 37
climate 0.951 97 0.963 38 0.963 30
cylinder-bands 0.846 82 0.870 41 0.870 34
balance-scale 0.995 55 0.995 26 0.995 22
blood-transfusion 0.782 56 0.773 31 0.760 30
cmc 0.556 109 0.536 32 0.514 44
kc-1 0.856 187 0.843 68 0.842 50
bioresponse 0.798 3012 0.776 2374 0.766 653
christine 0.755 3920 0.740 3254 0.724 1366
dilbert 0.992 3749 0.990 2988 0.896 3107
robert 0.414 2397 0.420 1433 0.313 767
har 0.981 2657 0.985 2287 0.963 568
eeg-eye-state 0.986 1929 0.978 1752 0.938 213
elevators 0.900 1297 0.898 1110 0.897 211
riccardo 0.995 5247 0.995 3852 0.987 1309

volkert 0.693 6331 0.707 5872 0.562 1116
connect-4 0.817 5395 0.813 4699 0.682 471
higgs 0.714 4084 0.714 3153 0.648 719
BNG (vote) 0.974 2493 0.973 517 0.970 113
albert 0.658 17518 0.654 2056 0.642 350
airlines 0.653 44434 0.643 2230 0.601 352
BNG (labor) 0.967 7717 0.963 3942 0.956 641
agrawal1 0.950 45504 0.950 2131 0.949 531
poker-hand 1.000 10471 0.998 8184 0.575 630
click-prediction-small 0.837 33148 0.835 3050 0.834 635

Average 0.830 6975 0.828 1907 0.787 486
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Table 12: Ablation on TuneTables variants. Comparison of the different variants of our
method (TabPFN-PT) and the entire backbone fine-tuning (TabPFN-FT) to TuneTables itself on the
LARGESCALETABLES benchmark. TuneTables is our full method described in Section 3. For each
variant, we show its test accuracy. For all methods in this table except for TuneTables, there is no
hyperparameter optimization (HPO). For TuneTables, we use our standard grid search.

TabPFN-FT TabPFN-PT TabPFN-PT TabPFN-PT TabPFN-PT TabPFN-PT TabPFN-PT TuneTables
Context in Training ✓ ✓ ✓ ✓ ✓ Varied
Context in Inference ✓ ✓ ✓ ✓ ✓ Varied
Tuned prompt length N/A 1000 1000 1000 1000 100 10 Varied

Agrawal1 0.946 0.948 0.950 0.950 0.946 0.950 0.949 0.950
BNG(labor) 0.931 0.961 0.965 0.965 0.966 0.965 0.960 0.967
BNG(vote) 0.964 0.971 0.974 0.973 0.973 0.974 0.971 0.974
Bioresponse 0.754 0.756 0.760 0.747 0.668 0.729 0.748 0.798
Click_prediction_small 0.834 0.834 0.834 0.835 0.835 0.835 0.833 0.837
airlines 0.588 0.628 0.645 0.643 0.639 0.640 0.628 0.653
albert 0.605 0.646 0.648 0.651 0.651 0.657 0.648 0.658
balance-scale 0.937 0.909 0.944 0.940 0.456 0.932 0.933 0.995
blood-transfusion 0.787 0.760 0.785 0.764 0.691 0.773 0.771 0.782
breast-cancer 0.730 0.743 0.713 0.741 0.661 0.724 0.718 0.770
christine 0.711 0.723 0.716 0.714 0.685 0.712 0.700 0.755
climate-model 0.947 0.938 0.938 0.941 0.666 0.923 0.938 0.951
cmc 0.542 0.525 0.559 0.540 0.436 0.532 0.548 0.556
colic 0.888 0.871 0.880 0.816 0.563 0.870 0.842 0.892
connect-4 0.678 0.787 0.810 0.795 0.804 0.767 0.679 0.817
cylinder-bands 0.842 0.791 0.759 0.870 0.556 0.820 0.856 0.846
dilbert 0.825 0.934 0.941 0.895 0.847 0.869 0.834 0.992
dresses-sales 0.550 0.573 0.533 0.567 0.553 0.560 0.577 0.580
ecoli 0.814 0.765 0.775 0.823 0.314 0.833 0.823 0.843
eeg-eye-state 0.579 0.626 0.651 0.651 0.654 0.616 0.601 0.986
elevators 0.894 0.895 0.899 0.896 0.854 0.896 0.892 0.902
har 0.940 0.980 0.982 0.971 0.946 0.962 0.945 0.981
heart-c 0.863 0.839 0.860 0.806 0.718 0.838 0.855 0.903
higgs 0.638 0.700 0.703 0.696 0.700 0.698 0.675 0.714
kc1 0.843 0.848 0.843 0.853 0.218 0.860 0.851 0.856
poker-hand 0.601 0.479 0.993 0.982 0.985 0.690 0.572 1.000
riccardo 0.918 0.990 0.993 0.990 0.990 0.960 0.936 0.995
robert 0.303 0.394 0.404 0.386 0.369 0.354 0.311 0.414
volkert 0.487 0.621 0.647 0.631 0.649 0.605 0.540 0.693

Average 0.757 0.774 0.797 0.794 0.689 0.777 0.763 0.830
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Table 13: Ensembled models outperform models trained on a single tuned prompt; with
ensembling, the training and testing without real-data context (NC) setting matches or exceeds
the setting with context (C). Runs with prompt tuned only once are noted as TabPFN-PT, and
ensembles of such runs as TabPFN-PT-Ens. Although the improvements are often quite small, we
find that ensembles generally outperform single tuned prompts in both C and NC settings. We also
find that ensembles trained without additional real data context at train time or test time are as good or
better than ensembles trained and tested with real data context on datasets larger than 3000 samples.

Dataset TabPFN-PT-C TabPFN-PT-Ens-C TabPFN-PT-NC TabPFN-PT-Ens-NC

agrawal1 0.949 0.95 0.95 0.949
airlines 0.645 0.649 0.645 0.646
albert 0.657 0.66 0.648 0.66
balance-scale 0.921 0.968 0.984 0.952
bioresponse 0.763 0.795 0.776 0.776
blood-transfusion 0.813 0.84 0.827 0.747
BNG (labor) 0.965 0.966 0.965 0.967
BNG (vote) 0.974 0.976 0.975 0.977
breast-cancer 0.793 0.793 0.759 0.69
car 0.96 0.971 0.977 0.965
christine 0.76 0.738 0.734 0.756
click-prediction-small 0.834 0.836 0.834 0.836
climate 0.926 0.944 0.963 0.981
cmc 0.534 0.581 0.547 0.446
colic 0.811 0.892 0.865 0.865
connect-4 0.796 0.814 0.808 0.812
cylinder-bands 0.815 0.815 0.926 0.778
dilbert 0.87 0.951 0.948 0.968
dresses-sales 0.6 0.68 0.66 0.6
eeg-eye-state 0.74 0.977 0.666 0.983
elevators 0.903 0.908 0.902 0.902
har 0.94 0.984 0.976 0.987
heart-c 0.871 0.903 0.871 0.871
higgs 0.695 0.712 0.709 0.709
kc-1 0.867 0.872 0.867 0.872
poker-hand 1 1 0.992 1
riccardo 0.991 0.996 0.994 0.996
robert 0.391 0.415 0.421 0.444
volkert 0.633 0.665 0.658 0.672
Average 0.807 0.836 0.822 0.821

Table 14: TuneTables is competitive with strong baselines on a range of regression datasets.
In this table, we compare 7 algorithms on 15regression datasets from [51]. The terminology and
methods of this table follow Table 1, except that we report mean R2 score instead of mean accuracy
as our primary statistic. TuneTables ties with XGBoost for the number of wins, has the highest
average R2 score of any algorithm, and the second-highest mean rank after LightGBM.

Model Mean R2 Mean Rank Mean Z-Scores Std Z-Scores Med Z-Scores Number of Wins

TuneTables 0.603 3.533 0.792 0.448 0.768 4.0
LightGBM 0.536 3.333 0.640 0.472 0.660 1.0
CatBoost 0.508 3.800 0.431 0.933 0.576 2.0
XGBoost 0.386 4.000 0.116 1.009 0.405 3.0
MLP 0.359 5.267 -0.009 0.673 0.109 1.0
STG 0.332 6.067 -0.369 0.864 -0.169 2.0
TabNet 0.239 5.867 -0.107 0.747 0.099 0.0
VIME -0.007 7.733 -1.072 1.054 -1.159 0.0
DeepFM -7.954 5.400 -0.422 1.248 0.027 2.0
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Table 15: TuneTables matches SOTA algorithms on small and medium-sized datasets. In this
table, we compare algorithms over 19 datasets in LARGESCALETABLES with at most 50 000 samples.
For each algorithm, we compute its mean accuracy, mean runtime, and mean rank in terms of
accuracy. We also compute the mean Z-score, computed by normalizing the set of results on each
dataset (by mean 0 std. 1), so that each dataset has the same weight, and averaging each algorithm’s
normalized performances. Std. Z-Score is computed with respect to random splits and averaged
across datasets. Fractional num. wins values are averaged over three splits per dataset, and reflect the
presence of multi-way ties on certain splits. This table is similar to Table 1, but the benchmark is
LARGESCALETABLES , and the search spaces for XGBoost and CatBoost are expanded to include
more trees.

Method Mean Acc. Mean Rank Mean Z-Score Std. Z-Score Med. Z-Score Num. Wins Runtime

TuneTables 0.831 2.263 0.471 0.536 0.614 9.833 1325
CatBoost 0.827 2.579 0.320 0.644 0.558 4.500 915
XGBoost 0.825 2.684 0.267 0.625 0.720 3.500 304
rtdl_ResNet 0.790 3.561 -0.341 0.461 -0.408 0.333 500
rtdl_MLP 0.755 3.912 -0.717 0.678 -0.897 0.833 374

Table 16: Comparison of top-performing methods on the LARGESCALETABLES benchmark.
For each algorithm, we show its test accuracy and runtime (seconds). We also show the number of
samples in each dataset. All datasets above the line were included in Table 15. This table is similar to
Table 8, but the search spaces for XGBoost and CatBoost are expanded to include more trees.

Dataset Size TabPFN TuneTables CatBoost XGBoost
Acc. Runtime Acc. Runtime Acc. Runtime Acc. Runtime

breast-cancer 286 0.765 29 0.770 65 0.736 190 0.724 23
heart-c 303 0.848 40 0.903 66 0.839 164 0.849 27
ecoli 336 0.848 30 0.843 66 0.892 394 0.843 72
colic 368 0.856 39 0.892 66 0.874 458 0.883 27
dresses-sales 500 0.578 41 0.580 122 0.613 292 0.660 30
cylinder-bands 540 0.800 41 0.846 82 0.827 552 0.846 35
climate 540 0.959 59 0.951 97 0.951 282 0.938 29
balance-scale 625 0.990 29 0.995 55 0.931 241 0.894 112
blood-transfusion 748 0.801 25 0.782 56 0.756 92 0.760 27
cmc 1473 0.554 91 0.556 109 0.547 224 0.552 58
kc-1 2109 0.862 168 0.856 187 0.855 138 0.853 40
bioresponse 3151 0.797 638 0.798 3012 0.791 618 0.797 131
christine 5418 0.742 666 0.755 3920 0.735 234 0.742 158
robert 10000 0.250 964 0.414 2397 0.534 2934 0.524 3294
dilbert 10000 0.922 761 0.992 3749 0.987 3185 0.986 779
har 10299 0.936 370 0.981 2657 0.993 3004 0.995 251
eeg-eye-state 14980 0.940 178 0.986 1929 0.957 2594 0.955 116
elevators 16599 0.902 186 0.902 1297 0.894 1316 0.896 103
riccardo 20000 0.922 1395 0.995 5247 0.996 473 0.996 468
volkert 58310 0.567 459 0.693 6331 0.715 2364 0.711 1550
higgs 67557 0.671 931 0.714 4084 0.729 222 0.726 128
connect-4 98050 0.668 696 0.817 5395 0.864 3492 0.860 593
BNG (vote) 131072 0.968 1976 0.974 2493 0.975 42 0.975 76
albert 425240 0.642 2363 0.658 17518 0.709 4001 0.694 529
airlines 539383 0.600 2602 0.653 44434 0.671 2023 0.673 305
BNG (labor) 1000000 0.937 5518 0.967 7717 0.971 226 0.970 184
agrawal1 1000000 0.948 5158 0.950 45504 0.951 142 0.951 98
poker-hand 1025009 0.531 2423 1.000 10471 1.000 6039 0.997 3469
click-prediction-small 1997410 0.833 10421 0.837 33148 0.842 84 0.843 102

Average 0.781 1321 0.830 6975 0.832 1242 0.831 703
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Our abstract and introduction both state the main claims in the paper.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We discuss the limitations of our work in Section 7.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: Our work does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Section 4 and Appendix C lay out all information needed to reproduce the
experimental results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: We do release all code and materials needed to reproduce our results.
We provided this link in the introduction: https://anonymous.4open.science/r/
TuneTables.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Section 4 and Appendix C specify all experimental settings and details.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Our results in Section 4 do include standard deviations, and we also include
critical difference plots in order to compute the statistical significance of our results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Section 4 does provide information on the compute resources needed to
reproduce the experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The paper conforms to the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We discuss the societal impacts in Appendix A.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: As discussed in Appendix A, our paper does not pose such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We credit the original owners of the resources we use in the supplementary
material.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We release code which is documented with a readme and comments.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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