BRIDGE - BUILDING REINFORCEMENT-LEARNING DEPTH-TO-IMAGE DATA GENERATION ENGINE FOR MONOCULAR DEPTH ESTIMATION

Anonymous authors

 Paper under double-blind review

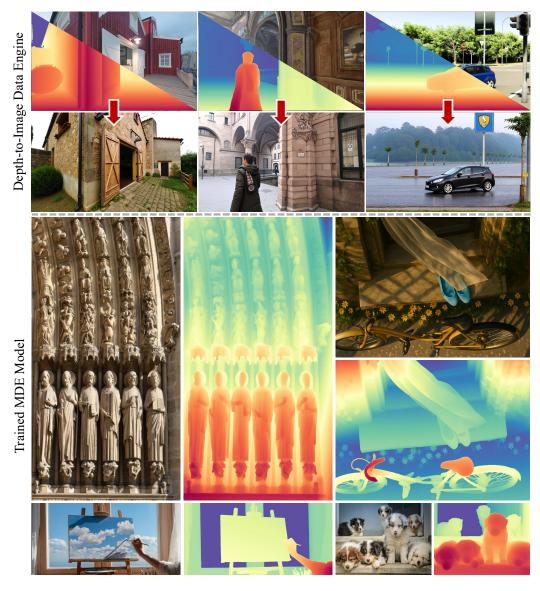


Figure 1: We presents BRIDGE, showcasing its RL-optimized Depth-to-Image (D2I) data generation engine which is used for generating realistic and geometrically accurate RGB images from source depth maps and Monocular Depth Estimation (MDE) model which after being trained on the massive high-quality data generated by the D2I engine, achieves superior depth prediction in complex scenes.

055 056

059

064

065 066 067

068 069

071

077 079

081

083 084 085

880 091

092

087

094 095 096

098

099 100 101

102 103

104 105 106

107

ABSTRACT

Monocular Depth Estimation (MDE) is a foundational task for computer vision. Traditional methods are limited by data scarcity and quality, hindering their robustness. To overcome this, we propose BRIDGE, an RL-optimized depth-toimage (D2I) generation framework that synthesizes over 20M realistic and geometrically accurate RGB images, each intrinsically paired with its ground truth depth, from diverse source depth maps. Then we train our depth estimation model on this dataset, employing a hybrid supervision strategy that integrates teacher pseudo-labels with ground truth depth for comprehensive and robust training. This innovative data generation and training paradigm enables BRIDGE to achieve breakthroughs in scale and domain diversity, consistently outperforming existing state-of-the-art approaches quantitatively and in complex scene detail capture, thereby fostering general and robust depth features.

Introduction

Monocular Depth Estimation (MDE) stands as a cornerstone in the field of 3D computer vision, providing essential geometric perception for various critical applications such as 3D reconstruction (Mildenhall et al., 2021; Kerbl et al., 2023; Charatan et al., 2024; Ye et al., 2024), autonomous driving (Wang et al., 2019b), robotics (Wofk et al., 2019), and AR/VR (Rasla & Beyeler, 2022). The field has witnessed notable progress in recent years (Atapour-Abarghouei & Breckon, 2018; Ranftl et al., 2020; Bhat et al., 2023; Hu et al., 2024; Rajpal et al., 2023; Yang et al., 2024b; Ke et al., 2024; Yang et al., 2024c;d; Fu et al., 2024; Wang et al., 2025), however, training robust MDE models with excellent generalization remains challenging due to the scarcity of high-quality, precise ground truth depth annotations, insufficient detail and diversity in existing labels, and the underutilization of available depth data, creating a critical bottleneck for MDE model training.

Existing data acquisition and utilization methods can be categorized into three groups. (1) Bhat et al. (2023); Hu et al. (2024); Piccinelli et al. (2024) primarily rely on real-world data. While valuable, this approach is constrained by the sparsity of depth maps from sensors and the difficulty of accurately capturing and annotating transparent or reflective objects (Costanzino et al., 2023).

- (2) Atapour-Abarghouei & Breckon (2018); Rajpal et al. (2023); Yang et al. (2024b); Ke et al. (2024) are mainly based on synthetic data. Although synthetic data is theoretically precise, it may introduce significant domain gaps (Ganin & Lempitsky, 2015) and geometric artifacts, degrading models' generalization capabilities.
- (3) Ranftl et al. (2020); Yang et al. (2024c;d); Fu et al. (2024); Wang et al. (2025) integrate diverse data sources. MiDaS (Ranftl et al., 2020) as the pioneer significantly enhances generalization by training on various mixed datasets; however, its data coverage and diversity remain limited. Building upon this, Depth Anything (Yang et al., 2024c;d) advances SOTA by leveraging massive real-world images and a teacher model for pseudo-label generation, significantly improving generalization. However, its dependence on large real datasets and pseudo-label inaccuracies (despite high generation quality) bottleneck further performance and efficiency. These data-level limitations—diversity, scale, and pseudo-label fidelity—hinder truly universal and efficient MDE models.

To address the above challenges, we propose BRIDGE, an RL-optimized, large-scale Depth-to-Image (D2I) generation data engine. This engine leverages precise ground truth from synthetic depth datasets to generate massive, high-quality, and diverse RGB-D training data. Data created by the data engine enable MDE models to achieve breakthroughs in both scale and domain diversity, thereby fostering general, robust depth features and excellent real-world performance.

Specifically, our core lies in an innovative data generation pipeline: we first train an RL-optimized Depth-to-Image (D2I) generation model on many synthetic datasets. This model can directly utilize diverse source depth maps (from existing synthetic depth datasets) to synthesize over 20 million diverse and information-rich RGB images. Based on this, we introduce a hybrid data supervision strategy. This strategy pairs generated RGB images with original high-precision ground truth depth, which is screened through similarity detection methods such as SSIM and gradient analysis. Simultaneously, it leverages a large number of pseudo-labels generated by a teacher model trained on synthetic data, and both are jointly used for training. This ensures that the generated RGB images receive reliable supervision during training while improving the overall quality and utilization efficiency of the labels.

Our experimental results consistently demonstrate BRIDGE's superior performance across various challenging benchmarks, including indoor, outdoor, and synthetic animation environments, surpassing existing state-of-the-art methods. Qualitatively, BRIDGE excels at capturing fine-grained details and maintaining robustness in complex scene structures. Furthermore, ablation studies confirm the effectiveness of the RL-D2I generated data and the hybrid supervision training method.

Our main contributions are as follows:

- An efficient data generation and utilization paradigm: We adopt an RL-driven D2I paradigm, efficiently generating massive high-quality RGB-D data, which effectively alleviates data scarcity and quality issues.
- Key practice of hybrid depth supervision training strategy: We practice a hybrid depth supervision strategy, combining teacher model pseudo-labels with high-precision ground truth depth, to achieve a more challenging optimization objective and learn geometric structural knowledge from RGB data.
- Superior performance and high training efficiency: Our data generation and training strategy, using only approximately 20M data, surpasses SOTA models (e.g., Depth Anything V2 which uses 62M data), significantly improving training efficiency and demonstrating excellent detail capture capability and robustness.

2 METHOD

 To address data scarcity and label quality in monocular depth estimation, we propose a comprehensive three-stage pipeline, as illustrated in Figure 2. First, we train a powerful giant teacher model on large-scale synthetic data, and train a depth-to-image model using reinforcement learning. Second, we generate millions of visually realistic RGB images with accurate geometric structures, highly consistent with source depth maps, and their corresponding pseudo-labels, using the model we train in the previous stage (Section 2.1). Then we use a simple similarity algorithm method to calculate the original images and their corresponding generated images to create a mask for similar regions, and use the high-precision mask area and the original gt depth map for fine-tuning (Section 2.2). Finally, we train the MDE model on the large-scale generated data and their pseudo-labels (Section 2.3).

2.1 REINFORCEMENT LEARNING-OPTIMIZED DEPTH-TO-IMAGE GENERATION

To acquire large-scale, high-quality RGB-depth image pairs, we develop and train a reinforcement learning (RL)-optimized Depth-to-Image (D2I) generation model. This model generates visually realistic RGB images from source depth maps (from existing synthetic datasets like Hypersim (Roberts et al., 2021), TartanAir (Wang et al., 2020)) while precisely preserving their geometric structure. This generation process results in a large-scale dataset comprising approximately 20M images.

Objectives and Advantages: Leveraging the reinforcement learning paradigm, we ensure generated images are not only visually realistic but also geometrically accurate and consistent. This enables synthesizing diverse RGB images from a single depth map while preserving its true geometric structure. This approach mitigates geometric artifacts or structural distortions common in traditional D2I models and expands the diversity of effective training data.

Training Strategy: As shown in Figure 3, our D2I model, inspired by VADER (Prabhudesai et al., 2024), is trained via reward-gradient-driven direct optimization to efficiently and accurately generate high-fidelity images. This direct usage of reward gradients guides the generation process towards desired visual quality, thereby avoiding complex proxy objective functions and improving training memory efficiency. The overall optimization objective minimizes the following loss:

$$L_{\text{total}}(\theta) = \lambda_{\text{depth}} \cdot L_{\text{D}}(\mathcal{M}(D_{\text{source}}, \theta), D_{\text{source}}) - \lambda_{\text{aesthetic}} \cdot R_{\text{aesthetic}}(\mathcal{M}(D_{\text{source}}, \theta)), \tag{1}$$

Figure 2: **BRIDGE Pipeline.** First training a depth-to-image model to synthesize millions of realistic RGB images with precise ground truth depths and a teacher model for pseudo labeling. Student model is then trained on this extensive synthetic dataset. Finally, it's fine-tuned using mask-based refinement with original ground truth depth for robust generalization and detailed depth capture.

where D_{source} represents the input source depth map, $\mathcal{M}(D_{\mathrm{source}},\theta)$ denotes the RGB image generated by the D2I model \mathcal{M} with parameters θ based on $D_{\mathrm{source}}, L_{\mathrm{D}}(D_{\mathrm{gen}}, D_{\mathrm{source}})$ is a cosine similarity loss. Its corresponding loss (defined as 1- cosine similarity reward) aims to minimize the difference between the depth map D_{gen} inverted from the generated RGB image and the source depth map D_{source} . This ensures the D2I model precisely learns and maintains the scene's geometric structural information. $R_{\mathrm{aesthetic}}(\mathcal{M}(D_{\mathrm{source}},\theta))$ is the aesthetic reward function, quantifying the visual quality and aesthetic appeal of the generated image. It is formulated as:

$$R_{\text{aesthetic}}(I) = g_{\text{MLP}} \left(\frac{f_{\text{CLIP}}(I)}{\|f_{\text{CLIP}}(I)\|_2} \right), \tag{2}$$

where $f_{\text{CLIP}}(I)$ represents the high-dimensional feature embedding extracted from the input image I by a pre-trained CLIP image encoder. $\|\cdot\|_2$ denotes the L2 norm, normalizing the extracted features to unit length to prevent their magnitude from unduly influencing subsequent scoring and to align with the MLP's training process. Finally, $g_{\text{MLP}}(\cdot)$ is a specialized MLP head that receives the normalized CLIP features as input and maps them to a scalar aesthetic score $S_{\text{aesthetic}} \in \mathbb{R}$. During D2I model optimization, we maximize the aesthetic quality of generated images by minimizing the aesthetic loss term $L_{\text{aesthetic}}(I) = -R_{\text{aesthetic}}(I)$, thereby incentivizing the model to produce images with higher aesthetic scores.

The model is trained using gradient descent, with the parameter update rule:

$$\theta \leftarrow \theta - \eta \cdot \nabla_{\theta} L_{\text{total}}(\theta),$$
 (3)

where η is the learning rate. The core challenge is computing the gradient of the loss function with respect to model parameters θ , $\nabla_{\theta} L_{\text{total}}(\theta)$. Since x_0 is the final output of the diffusion model's multi-step denoising process, and model parameters θ are involved in each denoising prediction $\epsilon_{\theta}(x_t,t,D_{\text{source}})$, the gradient must be backpropagated through the entire reverse diffusion process. Specifically, the gradient of the loss with respect to parameters can be expressed as:

$$\nabla_{\theta} L_{\text{total}}(\theta) = \sum_{t=0}^{T} \frac{\partial L_{\text{total}}(x_0)}{\partial x_t} \cdot \frac{\partial x_t}{\partial \theta}, \tag{4}$$

where $\frac{\partial L_{\text{total}}(x_0)}{\partial x_t}$ represents the sensitivity of the loss to the intermediate diffusion step x_t , and $\frac{\partial x_t}{\partial \theta}$ denotes the influence of model parameters on the intermediate state. This gradient propagation efficiently guides the diffusion model to generate high-quality RGB images while precisely capturing and maintaining the geometric structure of the input depth map, significantly enhancing training sample and computational efficiency.

2.2 Depth Pseudo-label Generation and Multi-source Depth Fusion Strategy

After generating millions of high-fidelity RGB images, we construct their corresponding depth labels using a multi-strategy fusion approach. These are then combined with the original synthetic data to form the final hybrid training set.

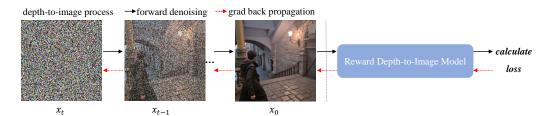


Figure 3: **Reward Model Process.** Our D2I model is trained via reward-gradient-driven direct optimization, avoiding complex proxy objective functions and improving training memory efficiency.

Teacher Model-Based Initial Pseudo-Label Generation: We leverage a powerful teacher model trained on 1M synthetic data to infer initial relative depth pseudo-labels for all 20 million generated RGB images. These pseudo-labels provide valuable, geometrically consistent supervision, crucial for bridging the domain gap.

Similarity-Guided Ground Truth Depth Utilization: To achieve more precise and reliable depth labels and maximize the use of all available depth information (including original high-precision ground truth depth), we introduce a similarity-based method. This addresses pixel-level inaccuracies or detail loss from relying solely on teacher-generated pseudo-labels. Specifically, we construct a fusion mask for each generated RGB image $I_{\rm gen}$ by evaluating its similarity to the original synthetic RGB image $I_{\rm orig}$. This mask generation involves two main steps:

- Feature-based Registration for Structural Similarity: First, we geometrically register the generated RGB image $(I_{\rm gen})$ with its original synthetic counterpart $(I_{\rm orig})$ using ORB feature detection and matching (Karami et al., 2017). This step compensates for minor shifts or deformations during image generation, aligning them at the pixel level. After registration, we compute the Structural Similarity Index Measure (SSIM) map (Nilsson & Akenine-Möller, 2020) between the aligned images. Regions with an SSIM value above a predefined threshold are identified as high-similarity areas, forming the first binary mask.
- Direct SSIM-based Pixel-level Similarity: Second, we directly compute the SSIM map between the size-adjusted generated RGB image ($I_{\rm gen}$) and the original synthetic RGB image ($I_{\rm orig}$). This evaluates their pixel-level similarity without explicit geometric registration. Regions where the SSIM value exceeds the same threshold form the second binary mask.

The final fusion mask is generated by applying a logical OR operation to these two binary masks. This ensures that any high-similarity region identified by either method is included. To enhance mask robustness and reduce noise, we further apply morphological opening and closing operations to smooth boundaries and fill small gaps.

Upon obtaining the final fusion mask, we integrate this refined depth supervision into a two-stage training process. Initially, the D2I model undergoes pre-training on a large-scale dataset, primarily using the teacher-generated pseudo-labels. Following this, a fine-tuning stage is performed. In this fine-tuning stage, for regions covered by the fusion mask, we directly utilize the corresponding high-precision ground truth depth $(D_{\rm gt})$ from the original synthetic data as training labels. This strategy ensures the model first learns broad geometric consistency from vast pseudo-labeled data and then refines its accuracy and detail with the most accurate supervision in high-precision, geometrically consistent areas, thereby significantly improving depth estimation accuracy and detail.

Final Hybrid Dataset Composition: The composite dataset for training BRIDGE comprises two main components. The first consists of large-scale generated RGB images: approximately 20 million high-fidelity RGB images produced by the RL-optimized D2I process, each paired with its teacher-model-derived depth pseudo-label. The second involves original synthetic data depth labels: we directly integrate depth labels from multiple original synthetic datasets, crucially including the high-precision ground truth depth filtered by our similarity-guided strategy.

2.3 TRAINING MONOCULAR DEPTH ESTIMATION MODEL

After designing the data generation strategy, we train the Monocular Depth Estimation (MDE) model on the generated data. For model architecture, we adopt the established pretrained DINOv2-Giant encoder (Oquab et al., 2023) and DPT (Ranftl et al., 2021) Head combination from Depth Anything (Yang et al., 2024c). To optimize our model, we utilize two loss terms, both of which are based on the approach proposed in MiDaS(Ranftl et al., 2020) because they are well-suited for affineinvariant depth. The first is the scale- and shift-invariant loss (L_{ssi}) , which ensures the model's robustness to variations in the scale and offset of depth values. The second is the gradient matching loss (L_{am}) , which helps the model capture fine-grained scene structure and details by enforcing similarity between the gradients of the predicted and ground-truth depth maps. We set the \mathcal{L}_{ssi} and \mathcal{L}_{qm} as 1:4 and we ignore its top n largest loss regions during training, where n is set as 10% because the regions are usually considered as potentially noisy pseudo labels. To enable zero-shot metric depth estimation for arbitrary "in-the-wild" images, we further introduce a specialized scale head. This head autonomously predicts the image's metric scale, significantly enhancing the model's accuracy and generalization in real-world scenarios. We first fine-tune the metric depth model, then decouple and train the Scale Head separately. This improves training efficiency and provides high-quality, artifact-free, precise metric depth for downstream tasks like novel view synthesis, further enhancing the model's utility.

3 IMPLEMENTATION DETAILS

Our RL-D2I generative model is based on the flux.1-dev (Labs, 2024) depth version architecture and fine-tuned using depth data from synthetic datasets, and the learning rate is 1e-5. The generator synthesizes approximately 20 million visually realistic and geometrically accurate RGB images from source depth maps by optimizing a loss function that includes depth loss (weight 0.9) and aesthetic reward (weight 0.1). To achieve high geometric accuracy and depth similarity, we ensure that the generated images meet stringent quality criteria: high-precision regions are identified by combining areas where: 1) ORB feature-based registered SSIM between the generated and original RGB images exceeds 0.85 (requiring at least 10 ORB matches), and 2) direct SSIM between them also exceeds 0.85. We only select mask samples where the valid region constitutes over 50% of the pixels, and a 3x3 erosion operation is performed to filter out excessively small regions. Subsequently, a 518x518 crop is randomly extracted, centered on the largest valid region's bounding box. For each original depth map, we generate four RGB images simultaneously, and use different random seeds. The prompt is set to None during the generation process.

4 EXPERIMENTS

In this section, we will validate the effectiveness and advantages of the proposed method for monocular depth estimation through a series of experiments. We first introduce the datasets, evaluation metrics, and experimental settings. Then, we present the performance of our method on multiple benchmark datasets and conduct ablation experiments to analyze the contribution of each module to the overall performance.

4.1 EVALUATION DATASETS

For monocular depth estimation, we conduct a series of experiments to evaluate the performance of our model on five widely used benchmarks. NYUv2 (Silberman et al., 2012) and ScanNet (Dai et al., 2017) provide indoor RGB-D data captured by depth sensors. ETH3D (Schops et al., 2017) includes both indoor and outdoor scenes, with depth data collected via laser scanners. KITTI (Geiger et al., 2012) consists of outdoor driving scenes captured with cameras and LiDAR sensors. For ScanNet, we extract 1400 test frames. Sintel (Butler et al., 2012) is a synthetic dataset derived from animated short films, from which we extract images of 600 training samples for evaluation.

Table 1: Quantitative Comparison with SOTA Methods on Zero-Shot Relative Depth Estimation. These benchmarks aim to comprehensively measure model generalization ability and accuracy in diverse environments. While these standard benchmarks provide a direct quantitative comparison, some specific strengths of a model, such as details, complex layouts, may not be fully reflected by these benchmarks. The underline represents the best performance of SOTA models on this dataset.

		K	ITTI	N	YUv2	Sca	anNet	EΊ	TH3D	S	intel	DA2K
	Method	$\delta_1 \uparrow$	AbsRel↓	Acc(%)								
ive	DepthFM (Gui et al., 2025)	0.932	0.085	0.956	0.065	0.947	0.068	0.958	0.069	0.700	0.577	85.8
Generative	Marigold (Ke et al., 2024)	0.916	0.099	0.964	0.055	0.951	0.064	0.960	0.065	0.703	0.576	86.8
Gen	GeoWizard (Fu et al., 2024)	0.921	0.097	0.966	0.052	0.953	0.061	0.961	0.064	0.705	0.574	88.1
	LeReS (Yin et al., 2021)	0.784	0.149	0.916	0.090	0.917	0.091	0.777	0.171	0.590	0.785	-
üve	DPT (Ranftl et al., 2021)	0.881	0.111	0.919	0.091	0.932	0.084	0.929	0.115	0.605	0.700	-
Discriminative	MiDaSv3.1 (Birkl et al., 2023)	0.851	0.126	0.980	0.048	0.957	0.069	0.947	0.078	0.670	0.611	-
crim	Metric3Dv2 (Hu et al., 2024)	0.968	0.062	0.963	0.058	0.941	0.074	0.960	0.066	0.662	0.619	-
Dis	Depth Anything V2 (Yang et al., 2024d)	0.946	0.075	0.979	0.045	0.978	0.043	0.988	0.038	0.672	0.598	97.1
	Depth Pro (Bochkovskii et al., 2024)	0.498	0.375	0.580	0.245	0.667	0.207	0.687	0.201	0.476	0.883	-
	Ours	0.938	0.081	0.982	0.041	0.981	0.033	0.991	0.029	0.719	0.513	97.3

4.2 EVALUATION METRICS

All evaluations are carried out under the zero-shot configuration. Following previous works (Yang et al., 2024d; He et al., 2025), the evaluation of affine-invariant inverse depth prediction is performed by optimizing the scale and shift discrepancies between the estimated depth and the ground truth. For quantitative analysis, we utilize the absolute relative error (AbsRel) and $\delta 1$ accuracy. AbsRel is calculated as $\frac{1}{N}\sum_{k=0}^{N-1}\frac{|\hat{x}_d-x_d|}{x_d}$, where N represents the total pixel count. $\delta 1$ accuracy measures the percentage of pixels where the maximum ratio between the predicted affine-invariant inverse depth and the inverse true depth falls below 1.25.

4.3 ZERO-SHOT DEPTH ESTIMATION

Our model demonstrates exceptional zero-shot generalization in depth estimation across both indoor and outdoor datasets, highlighting its robustness, fine-grained detail, and consistent depth estimation for objects.

Quantitative Comparisons: Table 1 shows the results that our method achieves outstanding performance across multiple datasets. Our method achieves outstanding performance across multiple datasets and establishes new state-of-the-art (SOTA) results on several mainstream benchmarks. Specifically, our model demonstrates overwhelming superiority on indoor scene datasets like NYUv2, ScanNet, and ETH3D, with its ability to generate fine-structure predictions aligning perfectly with its objectives. Furthermore, our model slightly surpasses Depth Anything V2 on benchmarks like DA2K, further confirming its excellent zero-shot generalization capabilities. Notably, Depth Pro's significantly lower performance in this evaluation is related to its primary optimization for metric depth rather than relative depth. Lastly, we do not achieve optimal performance on KITTI, primarily because of the dataset's inherent sparsity. Our model is designed to capture fine-grained global and local depth information, which is not fully reflected in the KITTI evaluation.

Qualitative Comparisons: Figure 4 presents qualitative monocular depth estimation results, high-lighting our model's superior capability to capture fine-grained details and robustly handle challenging objects compared to Depth Anything V2, depth-pro, and generative methods. Notably, our model successfully identifies and accurately estimates the depth of reflective surfaces, such as mirrors, on the NYUv2 dataset. It also preserves complex details, like distant table legs in ScanNet, and captures the fine textures of remote architectural and wooden structures on the Sintel dataset. Furthermore, it effectively processes similarly colored objects; for instance, on the KITTI dataset, it precisely delineates a person's head from the background, a nuance Depth Anything V2 often struggles with. Crucially, our model exhibits excellent generalization to "in-the-wild" data, exem-

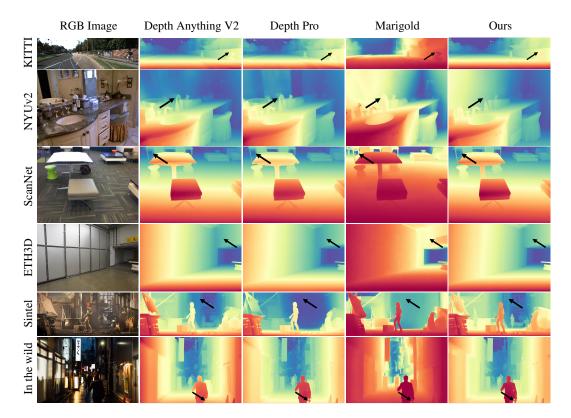


Figure 4: Qualitative comparison of relative depth estimation across different datasets. Our model captures fine-grained details and generalizes robustly on in-the-wild data.

plified by its accurate depth estimation for transparent umbrellas, fully demonstrating its robustness in complex real-world scenarios.

4.4 FINE-TUNED TO METRIC DEPTH ESTIMATION

To validate our model's generalization ability in metric depth estimation, we also transfer our pretrained encoder and design an additional scale head to adapt to both indoor and outdoor domains. Following the pipeline of Depth Anything V2, our model maintains a consistently strong performance level on both NYUv2 and KITTI datasets shown in Table 4 and Table 5.

4.5 ABLATION STUDIES

In this section, we systematically evaluate the contribution of each factor in BRIDGE to the overall performance, aiming to quantify the impact of our proposed innovative data generation scheme. Our ablation experiments are conducted under consistent training configurations to ensure fair comparisons.

Table 2: **Impact of Generated Data.** We demonstrate the effectiveness of our RL-D2I engine by comparing a model trained on standard synthetic data with one trained on 1M generated data with ViT-L. The results show that our generated data boosts performance across all metrics.

	KITTI		NYUv2		ScanNet		ETH3D		Sintel	
Method	$\delta_1 \uparrow$	AbsRel↓								
Baseline	0.921	0.097	0.960	0.060	0.964	0.057	0.969	0.060	0.599	0.709
w/ Generated Data	ı 0.929	0.092	0.964	0.056	0.968	0.048	0.970	0.059	0.612	0.692

Table 3: **Ablation Study of the Hybrid Training Strategy.** We compares the performance of BRIDGE's ViT-L model, trained solely on pseudo-labels with hybrid supervision integrating similarity-guided high-precision ground truth depth on benchmarks. The results highlight the importance of incorporating original ground truth depth for improving depth estimation accuracy and detail capture.

	KITTI		NYUv2		ScanNet		ETH3D		Sintel	
Method	$\delta_1 \uparrow$	AbsRel↓								
Pseudo-labels Only	0.924	0.099	0.958	0.069	0.957	0.069	0.949	0.078	0.595	0.751
Full Hybrid Strategy	0.926	0.098	0.960	0.067	0.960	0.061	0.953	0.073	0.600	0.725

Table 4: The metric results on NYUv2.

Table 5: The metric results on KITTI.

	Higher '	Low	er↓
Method	δ_1	AbsRel	RMSE
AdaBins (Bhat et al., 2021)	0.903	0.103	0.364
PT (Ranftl et al., 2021)	0.904	0.110	0.357
23Depth (Patil et al., 2022)	0.898	0.104	0.356
winV2 (Liu et al., 2022)	0.949	0.083	0.287
EBins (Shao et al., 2023)	0.936	0.087	0.314
CoeDepth (Bhat et al., 2023)	0.951	0.077	0.282
Metric3Dv2 (Hu et al., 2024)	0.987	0.046	0.181
urs	0.986	0.052	0.197

	Higher ↑	Low	er↓
Method	δ_1	AbsRel	RMSE
AdaBins (Bhat et al., 2021)	0.964	0.058	2.360
P3Depth (Patil et al., 2022)	0.953	0.071	2.842
SwinV2 (Liu et al., 2022)	0.977	0.050	1.966
GEDepth (Yang et al., 2023b)	0.976	0.048	2.044
IEBins (Shao et al., 2023)	0.978	0.050	2.011
ZoeDepth (Bhat et al., 2023)	0.971	0.054	2.281
Metric3Dv2 (Hu et al., 2024)	0.985	0.044	1.993
Ours	0.983	0.045	1.862

Impact of BRIDGE Generated Data: We first investigate the effectiveness of our RL-D2I generation engine, which serves as the core mechanism for alleviating data scarcity and enhancing training data diversity. To demonstrate its significant impact, we compare a baseline model using DINOv2 Base trained on 1M synthetic data from various large-scale synthetic depth datasets with the BRIDGE model generated 1M data (comprising 0.95M pseudo-labels and 0.05M masked original ground truth depth). As shown in Table 2, the integration of RL-D2I-generated data significantly boosts the performance across all evaluated metrics. This improvement underscores the effectiveness of our RL-D2I engine in generating visually realistic and geometrically accurate images, which effectively expands the scale and diversity of the training data.

Efficiency of Hybrid Training Strategy: As shown in Table 3, our hybrid depth supervision strategy is crucial for combining the broad coverage of teacher model pseudo-labels with the precision of similarity-guided high-precision ground truth depth. This approach aims to provide more robust and reliable supervision signals for learning geometric structural knowledge. We conduct an ablation study to quantify the benefits of this dual supervision. We also test on 1M data, the BRIDGE model trained with our full hybrid strategy yields superior results compared to a variant that relies solely on teacher-generated pseudo-labels for the generated RGB images.

5 Conclusion

In this work, we introduce BRIDGE, an innovative framework that effectively addresses data scarcity and quality issues in Monocular Depth Estimation. By leveraging a novel Reinforcement Learning-optimized Depth-to-Image (RL-D2I) generation engine, BRIDGE generates over 20M visually realistic RGB-D data. This generated data, coupled with a hybrid strategy fusing teacher pseudo-labels and high-precision ground truth depth, enables our model to achieve state-of-the-art performance. Remarkably, BRIDGE consistently outperforms leading methods like Depth Anything V2 on benchmarks, utilizing significantly less training data (20M vs. 62M). Our findings highlight BRIDGE's superior capability in capturing fine-grained details, ensuring geometric consistency, and demonstrating robust zero-shot generalization to complex in-the-wild scenes, paving the way for more efficient and generalizable MDE solutions.

ETHICS STATEMENT

Responsible Utilization of Source Depth Datasets: The core of BRIDGE relies on utilizing existing publicly available synthetic depth datasets as diverse source depth maps for our Depth-to-Image (D2I) generation engine. We strictly adhere to the original licenses and terms of use associated with these datasets, ensuring proper attribution and full compliance with all usage guidelines. These datasets provide the foundational high-precision ground truth depth necessary for our geometrically accurate image synthesis process.

Ethical Application of Teacher Models and Generated Data: The approximately 20 million RGB-D images, generated by our RL-D2I process and coupled with a hybrid supervision strategy (integrating teacher pseudo-labels and original high-precision ground truth depth), are created exclusively for advancing academic research in Monocular Depth Estimation. Our data generation process is designed to mitigate the introduction or amplification of biases, and the generated content is solely for non-commercial, research-driven progress in computer vision, aiming to address data scarcity and enhance model robustness and generalization.

REFERENCES

- Amir Atapour-Abarghouei and Toby P Breckon. Real-time monocular depth estimation using synthetic data with domain adaptation via image style transfer. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp. 2800–2810, 2018.
- Shariq Farooq Bhat, Ibraheem Alhashim, and Peter Wonka. Adabins: Depth estimation using adaptive bins. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 4009–4018, 2021.
- Shariq Farooq Bhat, Reiner Birkl, Diana Wofk, Peter Wonka, and Matthias Müller. Zoedepth: Zeroshot transfer by combining relative and metric depth, 2023. URL https://arxiv.org/abs/2302.12288.
- Reiner Birkl, Diana Wofk, and Matthias Müller. Midas v3. 1–a model zoo for robust monocular relative depth estimation. *arXiv preprint arXiv:2307.14460*, 2023.
- Aleksei Bochkovskii, AmaÃĢl Delaunoy, Hugo Germain, Marcel Santos, Yichao Zhou, Stephan R Richter, and Vladlen Koltun. Depth pro: Sharp monocular metric depth in less than a second. *arXiv preprint arXiv:2410.02073*, 2024.
- Daniel J Butler, Jonas Wulff, Garrett B Stanley, and Michael J Black. A naturalistic open source movie for optical flow evaluation. In *European conference on computer vision*, pp. 611–625. Springer, 2012.
- Yohann Cabon, Naila Murray, and Martin Humenberger. Virtual kitti 2. arXiv preprint arXiv:2001.10773, 2020.
- David Charatan, Sizhe Lester Li, Andrea Tagliasacchi, and Vincent Sitzmann. pixelsplat: 3d gaussian splats from image pairs for scalable generalizable 3d reconstruction. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 19457–19467, 2024.
- Weifeng Chen, Zhao Fu, Dawei Yang, and Jia Deng. Single-image depth perception in the wild. *Advances in neural information processing systems*, 29, 2016.
- Alex Costanzino, Pierluigi Zama Ramirez, Matteo Poggi, Fabio Tosi, Stefano Mattoccia, and Luigi Di Stefano. Learning depth estimation for transparent and mirror surfaces. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pp. 9244–9255, 2023.
- Angela Dai, Angel X. Chang, Manolis Savva, Maciej Halber, Thomas Funkhouser, and Matthias Nießner. Scannet: Richly-annotated 3d reconstructions of indoor scenes. In *Proc. Computer Vision and Pattern Recognition (CVPR), IEEE*, 2017.

- Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An image is worth 16x16 words: Transformers for image recognition at scale. *arXiv preprint arXiv:2010.11929*, 2020.
 - David Eigen and Rob Fergus. Predicting depth, surface normals and semantic labels with a common multi-scale convolutional architecture. In *Proceedings of the IEEE international conference on computer vision*, pp. 2650–2658, 2015.
 - David Eigen, Christian Puhrsch, and Rob Fergus. Depth map prediction from a single image using a multi-scale deep network. *Advances in neural information processing systems*, 27, 2014.
 - Huan Fu, Mingming Gong, Chaohui Wang, Kayhan Batmanghelich, and Dacheng Tao. Deep ordinal regression network for monocular depth estimation. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp. 2002–2011, 2018.
 - Xiao Fu, Wei Yin, Mu Hu, Kaixuan Wang, Yuexin Ma, Ping Tan, Shaojie Shen, Dahua Lin, and Xiaoxiao Long. Geowizard: Unleashing the diffusion priors for 3d geometry estimation from a single image. In *European Conference on Computer Vision*, pp. 241–258. Springer, 2024.
 - Yaroslav Ganin and Victor Lempitsky. Unsupervised domain adaptation by backpropagation. In *International conference on machine learning*, pp. 1180–1189. PMLR, 2015.
 - Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we ready for autonomous driving? the kitti vision benchmark suite. In 2012 IEEE conference on computer vision and pattern recognition, pp. 3354–3361. IEEE, 2012.
 - Clément Godard, Oisin Mac Aodha, and Gabriel J Brostow. Unsupervised monocular depth estimation with left-right consistency. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp. 270–279, 2017.
 - Ming Gui, Johannes Schusterbauer, Ulrich Prestel, Pingchuan Ma, Dmytro Kotovenko, Olga Grebenkova, Stefan Andreas Baumann, Vincent Tao Hu, and Björn Ommer. Depthfm: Fast generative monocular depth estimation with flow matching. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 39, pp. 3203–3211, 2025.
 - Xiankang He, Dongyan Guo, Hongji Li, Ruibo Li, Ying Cui, and Chi Zhang. Distill any depth: Distillation creates a stronger monocular depth estimator. *arXiv preprint arXiv:2502.19204*, 2025.
 - Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. *Advances in neural information processing systems*, 33:6840–6851, 2020.
 - Mu Hu, Wei Yin, Chi Zhang, Zhipeng Cai, Xiaoxiao Long, Hao Chen, Kaixuan Wang, Gang Yu, Chunhua Shen, and Shaojie Shen. Metric3d v2: A versatile monocular geometric foundation model for zero-shot metric depth and surface normal estimation. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 2024.
 - Yuanfeng Ji, Zhe Chen, Enze Xie, Lanqing Hong, Xihui Liu, Zhaoqiang Liu, Tong Lu, Zhenguo Li, and Ping Luo. Ddp: Diffusion model for dense visual prediction. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pp. 21741–21752, 2023.
 - Ebrahim Karami, Siva Prasad, and Mohamed Shehata. Image matching using sift, surf, brief and orb: performance comparison for distorted images. *arXiv preprint arXiv:1710.02726*, 2017.
 - Bingxin Ke, Anton Obukhov, Shengyu Huang, Nando Metzger, Rodrigo Caye Daudt, and Konrad Schindler. Repurposing diffusion-based image generators for monocular depth estimation. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 9492–9502, 2024.
 - Bingxin Ke, Kevin Qu, Tianfu Wang, Nando Metzger, Shengyu Huang, Bo Li, Anton Obukhov, and Konrad Schindler. Marigold: Affordable adaptation of diffusion-based image generators for image analysis, 2025.

- Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler, and George Drettakis. 3d gaussian splatting for real-time radiance field rendering. *ACM Trans. Graph.*, 42(4):139–1, 2023.
- Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. (2009), 2009.
 - Yevhen Kuznietsov, Jorg Stuckler, and Bastian Leibe. Semi-supervised deep learning for monocular depth map prediction. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp. 6647–6655, 2017.
 - Black Forest Labs. Flux. https://github.com/black-forest-labs/flux, 2024.
 - Dong-Hyun Lee et al. Pseudo-label: The simple and efficient semi-supervised learning method for deep neural networks. In *Workshop on challenges in representation learning, ICML*, volume 3, pp. 896. Atlanta, 2013.
 - Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo. Swin transformer: Hierarchical vision transformer using shifted windows. In *Proceedings of the IEEE/CVF international conference on computer vision*, pp. 10012–10022, 2021.
 - Ze Liu, Han Hu, Yutong Lin, Zhuliang Yao, Zhenda Xie, Yixuan Wei, Jia Ning, Yue Cao, Zheng Zhang, Li Dong, et al. Swin transformer v2: Scaling up capacity and resolution. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 12009–12019, 2022.
 - Lukas Mehl, Jenny Schmalfuss, Azin Jahedi, Yaroslava Nalivayko, and Andrés Bruhn. Spring: A high-resolution high-detail dataset and benchmark for scene flow, optical flow and stereo. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 4981–4991, 2023.
 - Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi Ramamoorthi, and Ren Ng. Nerf: Representing scenes as neural radiance fields for view synthesis. *Communications of the ACM*, 65(1):99–106, 2021.
 - Alexander Quinn Nichol and Prafulla Dhariwal. Improved denoising diffusion probabilistic models. In *International conference on machine learning*, pp. 8162–8171. PMLR, 2021.
 - Jim Nilsson and Tomas Akenine-Möller. Understanding ssim. *arXiv preprint arXiv:2006.13846*, 2020.
 - Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov, Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, et al. Dinov2: Learning robust visual features without supervision. *arXiv preprint arXiv:2304.07193*, 2023.
 - Vaishakh Patil, Christos Sakaridis, Alexander Liniger, and Luc Van Gool. P3depth: Monocular depth estimation with a piecewise planarity prior. In *Proceedings of the IEEE/CVF Conference* on Computer Vision and Pattern Recognition, pp. 1610–1621, 2022.
 - Luigi Piccinelli, Yung-Hsu Yang, Christos Sakaridis, Mattia Segu, Siyuan Li, Luc Van Gool, and Fisher Yu. Unidepth: Universal monocular metric depth estimation. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 10106–10116, 2024.
 - Mihir Prabhudesai, Russell Mendonca, Zheyang Qin, Katerina Fragkiadaki, and Deepak Pathak. Video diffusion alignment via reward gradients. *arXiv preprint arXiv:2407.08737*, 2024.
 - Aakash Rajpal, Noshaba Cheema, Klaus Illgner-Fehns, Philipp Slusallek, and Sunil Jaiswal. High-resolution synthetic rgb-d datasets for monocular depth estimation. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 1188–1198, 2023.
 - René Ranftl, Katrin Lasinger, David Hafner, Konrad Schindler, and Vladlen Koltun. Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. *IEEE transactions on pattern analysis and machine intelligence*, 44(3):1623–1637, 2020.
 - René Ranftl, Alexey Bochkovskiy, and Vladlen Koltun. Vision transformers for dense prediction. In *Proceedings of the IEEE/CVF international conference on computer vision*, pp. 12179–12188, 2021.

- Alex Rasla and Michael Beyeler. The relative importance of depth cues and semantic edges for indoor mobility using simulated prosthetic vision in immersive virtual reality. In *Proceedings of the 28th ACM symposium on virtual reality software and technology*, pp. 1–11, 2022.
 - Haoyu Ren, Aman Raj, Mostafa El-Khamy, and Jungwon Lee. Suw-learn: Joint supervised, unsupervised, weakly supervised deep learning for monocular depth estimation. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops*, pp. 750–751, 2020.
 - Mike Roberts, Jason Ramapuram, Anurag Ranjan, Atulit Kumar, Miguel Angel Bautista, Nathan Paczan, Russ Webb, and Joshua M Susskind. Hypersim: A photorealistic synthetic dataset for holistic indoor scene understanding. In *Proceedings of the IEEE/CVF international conference on computer vision*, pp. 10912–10922, 2021.
 - Ashutosh Saxena, Min Sun, and Andrew Y Ng. Make3d: Learning 3d scene structure from a single still image. *IEEE transactions on pattern analysis and machine intelligence*, 31(5):824–840, 2008.
 - Thomas Schops, Johannes L Schonberger, Silvano Galliani, Torsten Sattler, Konrad Schindler, Marc Pollefeys, and Andreas Geiger. A multi-view stereo benchmark with high-resolution images and multi-camera videos. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp. 3260–3269, 2017.
 - Shuwei Shao, Zhongcai Pei, Xingming Wu, Zhong Liu, Weihai Chen, and Zhengguo Li. Iebins: Iterative elastic bins for monocular depth estimation. *Advances in Neural Information Processing Systems*, 36:53025–53037, 2023.
 - Nathan Silberman, Derek Hoiem, Pushmeet Kohli, and Rob Fergus. Indoor segmentation and support inference from rgbd images. In *European conference on computer vision*, pp. 746–760. Springer, 2012.
 - Kihyuk Sohn, David Berthelot, Nicholas Carlini, Zizhao Zhang, Han Zhang, Colin A Raffel, Ekin Dogus Cubuk, Alexey Kurakin, and Chun-Liang Li. Fixmatch: Simplifying semi-supervised learning with consistency and confidence. *Advances in neural information processing systems*, 33:596–608, 2020.
 - Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. *arXiv* preprint arXiv:2010.02502, 2020.
 - Qiang Wang, Shizhen Zheng, Qingsong Yan, Fei Deng, Kaiyong Zhao, and Xiaowen Chu. Irs: A large naturalistic indoor robotics stereo dataset to train deep models for disparity and surface normal estimation. *arXiv* preprint arXiv:1912.09678, 2019a.
 - Ruicheng Wang, Sicheng Xu, Cassie Dai, Jianfeng Xiang, Yu Deng, Xin Tong, and Jiaolong Yang. Moge: Unlocking accurate monocular geometry estimation for open-domain images with optimal training supervision. In *Proceedings of the Computer Vision and Pattern Recognition Conference*, pp. 5261–5271, 2025.
 - Wenshan Wang, Delong Zhu, Xiangwei Wang, Yaoyu Hu, Yuheng Qiu, Chen Wang, Yafei Hu, Ashish Kapoor, and Sebastian Scherer. Tartanair: A dataset to push the limits of visual slam. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4909–4916. IEEE, 2020.
 - Yan Wang, Wei-Lun Chao, Divyansh Garg, Bharath Hariharan, Mark Campbell, and Kilian Q Weinberger. Pseudo-lidar from visual depth estimation: Bridging the gap in 3d object detection for autonomous driving. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 8445–8453, 2019b.
 - Diana Wofk, Fangchang Ma, Tien-Ju Yang, Sertac Karaman, and Vivienne Sze. Fastdepth: Fast monocular depth estimation on embedded systems. In *2019 International Conference on Robotics and Automation (ICRA)*, pp. 6101–6108. IEEE, 2019.

- Qizhe Xie, Zihang Dai, Eduard Hovy, Thang Luong, and Quoc Le. Unsupervised data augmentation for consistency training. *Advances in neural information processing systems*, 33:6256–6268, 2020.
- Honghui Yang, Di Huang, Wei Yin, Chunhua Shen, Haifeng Liu, Xiaofei He, Binbin Lin, Wanli Ouyang, and Tong He. Depth any video with scalable synthetic data. *arXiv preprint arXiv:2410.10815*, 2024a.
- Honghui Yang, Di Huang, Wei Yin, Chunhua Shen, Haifeng Liu, Xiaofei He, Binbin Lin, Wanli Ouyang, and Tong He. Depth any video with scalable synthetic data. *arXiv preprint arXiv:2410.10815*, 2024b.
- Lihe Yang, Zhen Zhao, Lei Qi, Yu Qiao, Yinghuan Shi, and Hengshuang Zhao. Shrinking class space for enhanced certainty in semi-supervised learning. In *Proceedings of the IEEE/CVF international conference on computer vision*, pp. 16187–16196, 2023a.
- Lihe Yang, Bingyi Kang, Zilong Huang, Xiaogang Xu, Jiashi Feng, and Hengshuang Zhao. Depth anything: Unleashing the power of large-scale unlabeled data. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 10371–10381, 2024c.
- Lihe Yang, Bingyi Kang, Zilong Huang, Zhen Zhao, Xiaogang Xu, Jiashi Feng, and Hengshuang Zhao. Depth anything v2. *Advances in Neural Information Processing Systems*, 37:21875–21911, 2024d.
- Xiaodong Yang, Zhuang Ma, Zhiyu Ji, and Zhe Ren. Gedepth: Ground embedding for monocular depth estimation. In *Proceedings of the IEEE/CVF international conference on computer vision*, pp. 12719–12727, 2023b.
- Yao Yao, Zixin Luo, Shiwei Li, Jingyang Zhang, Yufan Ren, Lei Zhou, Tian Fang, and Long Quan. Blendedmys: A large-scale dataset for generalized multi-view stereo networks. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 1790–1799, 2020.
- Chongjie Ye, Yinyu Nie, Jiahao Chang, Yuantao Chen, Yihao Zhi, and Xiaoguang Han. Gaustudio: A modular framework for 3d gaussian splatting and beyond. *arXiv preprint arXiv:2403.19632*, 2024.
- Wei Yin, Jianming Zhang, Oliver Wang, Simon Niklaus, Long Mai, Simon Chen, and Chunhua Shen. Learning to recover 3d scene shape from a single image. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 204–213, 2021.
- Lymin Zhang, Anyi Rao, and Maneesh Agrawala. Adding conditional control to text-to-image diffusion models. In *Proceedings of the IEEE/CVF international conference on computer vision*, pp. 3836–3847, 2023.

A RELATED WORKS

756

757 758

759 760

761

762

764

765

766

767

768

769

770

771

772

773

774

775

776 777

778 779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795 796

797

798

799

800

801

802

803

804

805

806

807

808

809

A.1 Monocular Depth Estimation

Monocular Depth Estimation (MDE), a foundational computer vision task, has seen significant progress with deep learning, moving beyond early methods limited by data homogeneity (Saxena et al., 2008). Deep learning approaches are broadly categorized into Discriminative Methods and Generative Methods. The former, starting with CNN-based pioneers like (Krizhevsky et al., 2009; Eigen et al., 2014; Eigen & Fergus, 2015; Chen et al., 2016) and later enhanced by multidataset training in MiDaS (Ranftl et al., 2020), learns a direct mapping from image to depth (Fu et al., 2018). The adoption of the Transformer architecture (Dosovitskiy et al., 2020; Ranftl et al., 2021; Liu et al., 2021) and large-scale self-supervised learning, as in Depth Anything (Yang et al., 2024c), further improves generalization, while models like NDDdepth citepshao2023nddepth and Depth Pro (Bochkovskii et al., 2024) target high-precision boundary estimation. In contrast, generative methods utilize models like Diffusion Models (Ho et al., 2020; Song et al., 2020; Nichol & Dhariwal, 2021; Ji et al., 2023) to synthesize depth maps, with works such as LeReS (Yin et al., 2021) and Metric3D v2 (Hu et al., 2024) focusing on accurate metric depth. The recent Depth Anything V2 (Yang et al., 2024d) combines large-scale synthetic images and pseudo-labeling to boost performance. Despite these advancements, a key challenge remains: achieving highly accurate and generalizable depth estimation in complex, unseen scenarios. To tackle this, we propose BRIDGE, a framework that generates a massive dataset of realistic and geometrically accurate RGB images to expand the effective training data.

A.2 Self-supervised and Hybrid Supervision Learning

To train a robust MDE model despite the scarcity of precisely labeled data, researchers have explored various weakly supervised and self-supervised approaches, such as utilizing unlabeled monocular or stereo video data through photometric consistency loss for training (Godard et al., 2017; Kuznietsov et al., 2017; Ren et al., 2020). Other self-supervised approaches also include consistency training methods like FixMatch (Sohn et al., 2020) and unsupervised data augmentation (Xie et al., 2020), as well as strategies like shrinking class space (Yang et al., 2023a) to enhance certainty. Building on this, Pseudo-labeling supervision strategies (Lee et al., 2013), exemplified by Depth Anything V2 (Yang et al., 2024d), significantly improve model generalization by employing a powerful teacher model to generate pseudo-labels for massive amounts of unlabeled images. However, despite the broad coverage provided by pseudo-labels, their inherent noise and inaccuracy—especially around boundaries and fine details—remain a bottleneck for further enhancing depth estimation performance. To leverage both the scale of pseudo-labels and the precision of ground truth annotations, we propose a hybrid supervision strategy. Unlike methods that solely rely on pseudo-labels, our strategy integrates high-precision ground truth depth from the original data via a similarity detection mechanism. By utilizing the teacher model's pseudo-labels for broad training and the similarityguided ground truth for precision fine-tuning, our hybrid approach provides a more reliable and comprehensive supervision signal.

A.3 DEPTH-TO-IMAGE GENERATION AND SYNTHETIC DATA

The performance of Monocular Depth Estimation (MDE) is directly linked to the scale and quality of training data, yet acquiring high-quality ground truth depth from real-world data is expensive and lacks sufficient diversity, leading researchers to increasingly utilize synthetic data. Traditional synthetic methods, which rely on 3D rendering engines, provide geometrically accurate annotations but often suffer from a pronounced domain gap (Atapour-Abarghouei & Breckon, 2018; Rajpal et al., 2023) and low generation efficiency. More recently, methods based on Generative Models have been explored, such as using Diffusion Models (Ke et al., 2025; Gui et al., 2025) to generate depth maps from RGB images, but these primarily focus on depth prediction rather than the active generation of high-fidelity RGB-D data pairs for model training. To address this data bottleneck, Depth-to-Image (D2I) generation emerges as an active data augmentation strategy, synthesizing geometrically consistent RGB images from existing depth data. However, conventional D2I models often struggle with precise geometric alignment, leading to artifacts. Our BRIDGE framework alleviates this by employing a Reinforcement Learning (RL) optimization mechanism in its D2I engine, ensuring both visual realism and geometric consistency for the massive generated dataset.

B EXPERIMENTS

B.1 MODEL SELECTION

We compare the learning capabilities of different DINOv2 (Oquab et al., 2023) versions on our hybrid data. For DINOv2-Giant and Large, we select the non-register version as their representative. As shown in Table 6, we find that the Giant and Large versions of DINOv2 exhibit excellent learning ability on synthetic data and generalize remarkably well to real-world test datasets. In contrast, the Small and Base versions do not achieve satisfactory results. This might be attributed to their limited model capacity, which is insufficient to capture the rich fine-grained information and diversity present in generation data, thus leading to difficulties in generalizing to more complex real-world scenarios. Therefore, we ultimately choose to adopt the DINOv2-Giant for our model, to fully leverage its powerful generalization capabilities and accuracy.

	K	ITTI	N	YUv2	Sc	anNet	E	ГН3D	S	intel
Method	$\delta_1 \uparrow$	AbsRel↓								
DINOv2-S	0.928	0.082	0.964	0.062	0.921	0.085	0.978	0.045	0.637	0.684
DINOv2-B	0.932	0.081	0.968	0.054	0.941	0.065	0.980	0.039	0.647	0.644
DINOv2-L	0.937	0.081	0.978	0.045	0.972	0.049	0.989	0.032	0.688	0.588
DINOv2-G	0.938	0.081	0.982	0.041	0.981	0.033	0.991	0.029	0.719	0.513

Table 6: Comparison among various size pre-trained DINOv2 encoders trained on our dataset.

Table 7: Our training sources. * represents the quantity sampled from the dataset.

Dataset	Indoor	· Outdoor	# Images
Precise Synthetic Images (1M)		
BlendedMVS (Yao et al., 2020)	✓	√	115K
TartanAir (Wang et al., 2020)	\checkmark	\checkmark	306K
Hypersim (Roberts et al., 2021)	✓		60K
IRS (Wang et al., 2019a)	\checkmark		103K
VKITTI 2 (Cabon et al., 2020)		\checkmark	20K
Spring (Mehl et al., 2023)		\checkmark	5K
DA-V (Yang et al., 2024a)	\checkmark	\checkmark	400K*
Generated Images (20M)			
BlendedMVS	✓	√	2.2M
TartanAir		\checkmark	2M
Hypersim	\checkmark	\checkmark	2.4M
IRS	\checkmark	\checkmark	4.2M
VKITTI 2		\checkmark	1M
Spring		\checkmark	20K
DA-V	✓	✓	8.2M

B.2 ADDITIONAL QUALITATIVE COMPARISON

Training Datasets: As shown in Table 7, we train both a generative model and a teacher model using seven synthetic datasets to enhance label precision. To effectively mitigate the limitations of synthetic images regarding distribution shift and limited diversity, we generate 20M synthetic data based on the aforementioned datasets, thereby significantly broadening the diversity of the overall samples. Notably, for datasets such as Hypersim, where the original data primarily covers indoor

scenes, our generation strategy successfully produces outdoor data largely consistent with depth maps, effectively expanding the scene coverage of the training samples.

Qualitative Results: Figure 5 and Figure 6 show additional qualitative comparisons with other state-of-the-art monocular depth estimation methods. For indoor, outdoor, and non-real scenes alike, our model consistently produces depth maps with higher fidelity than the other methods. Our method particularly excels in outdoor scenes, showing clear distinctions between distant objects and the sky, while Depth Pro (Bochkovskii et al., 2024) and Marigold (Ke et al., 2025) fail to distinguish objects that are farther away.

Conditional Synthesis: Figure 7 shows a comparison of depth-conditioned synthesis results. We first infer depth based on an image using our BRIDGE and the Depth Anything V2 model, and then use the most basic pre-trained depth-to-image ControlNet (Zhang, Rao, and Agrawala 2023) with Stable Diffusion 1.5 to synthesize new samples based on the depth maps and a text prompt. We can clearly observe that the depth maps obtained with Depth Anything V2 do not reflect the actual depth well and are additionally inaccurate for some parts of the image. In contrast, our method yields sharp and realistic depth maps. This result is also reflected in the synthesized results, where images created based on our depth map more closely resemble the actual image.

B.3 STATEMENT ON LLM USAGE

In the preparation of this manuscript, we utilize Large Language Models (LLMs) only to polish writing.

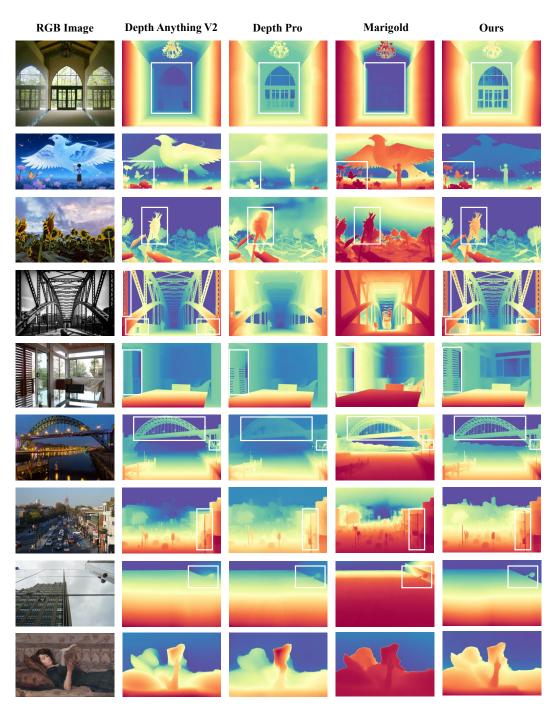


Figure 5: Comparison between Depth Anything V2 (Yang et al., 2024d) and our model on openworld images.

Figure 6: Additional comparison between Depth Anything V2 (Yang et al., 2024c) and our model on "in-the-wild" images.

Figure 7: Our model, BRIDGE, generates superior, high-fidelity depth maps that enable ControlNet (Zhang et al., 2023) to synthesize new images with a zero-shot capability, precisely replicating the depth field of the source image. In contrast, Depth Anything V2 (Yang et al., 2024d) struggles to produce an accurate depth field, as demonstrated by the clear discrepancies between its corresponding ControlNet output and the source images. The prompts used for ControlNet are displayed in the lower left corners, and all images were generated with the same random seed.