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Figure 1: We presents BRIDGE, showcasing its RL-optimized Depth-to-Image (D2I) data gener-
ation engine which is used for generating realistic and geometrically accurate RGB images from
source depth maps and Monocular Depth Estimation (MDE) model which after being trained on
the massive high-quality data generated by the D2I engine, achieves superior depth prediction in
complex scenes.
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ABSTRACT

Monocular Depth Estimation (MDE) is a foundational task for computer vision.
Traditional methods are limited by data scarcity and quality, hindering their ro-
bustness. To overcome this, we propose BRIDGE, an RL-optimized depth-to-
image (D2I) generation framework that synthesizes over 20M realistic and geo-
metrically accurate RGB images, each intrinsically paired with its ground truth
depth, from diverse source depth maps. Then we train our depth estimation model
on this dataset, employing a hybrid supervision strategy that integrates teacher
pseudo-labels with ground truth depth for comprehensive and robust training. This
innovative data generation and training paradigm enables BRIDGE to achieve
breakthroughs in scale and domain diversity, consistently outperforming exist-
ing state-of-the-art approaches quantitatively and in complex scene detail capture,
thereby fostering general and robust depth features.

1 INTRODUCTION

Monocular Depth Estimation (MDE) stands as a cornerstone in the field of 3D computer vision,
providing essential geometric perception for various critical applications such as 3D reconstruc-
tion (Mildenhall et al., 2021; Kerbl et al., 2023; Charatan et al., 2024; Ye et al., 2024), autonomous
driving (Wang et al., 2019b), robotics (Wofk et al., 2019), and AR/VR (Rasla & Beyeler, 2022). The
field has witnessed notable progress in recent years (Atapour-Abarghouei & Breckon, 2018; Ranftl
et al., 2020; Bhat et al., 2023; Hu et al., 2024; Rajpal et al., 2023; Yang et al., 2024b; Ke et al., 2024;
Yang et al., 2024c;d; Fu et al., 2024; Wang et al., 2025), however, training robust MDE models
with excellent generalization remains challenging due to the scarcity of high-quality, precise ground
truth depth annotations, insufficient detail and diversity in existing labels, and the underutilization
of available depth data, creating a critical bottleneck for MDE model training.

Existing data acquisition and utilization methods can be categorized into three groups. (1) Bhat
et al. (2023); Hu et al. (2024); Piccinelli et al. (2024) primarily rely on real-world data. While
valuable, this approach is constrained by the sparsity of depth maps from sensors and the difficulty
of accurately capturing and annotating transparent or reflective objects (Costanzino et al., 2023).

(2) Atapour-Abarghouei & Breckon (2018); Rajpal et al. (2023); Yang et al. (2024b); Ke et al.
(2024) are mainly based on synthetic data. Although synthetic data is theoretically precise, it may
introduce significant domain gaps (Ganin & Lempitsky, 2015) and geometric artifacts, degrading
models’ generalization capabilities.

(3) Ranftl et al. (2020); Yang et al. (2024c;d); Fu et al. (2024); Wang et al. (2025) integrate diverse
data sources. MiDaS (Ranftl et al., 2020) as the pioneer significantly enhances generalization by
training on various mixed datasets; however, its data coverage and diversity remain limited. Building
upon this, Depth Anything (Yang et al., 2024c;d) advances SOTA by leveraging massive real-world
images and a teacher model for pseudo-label generation, significantly improving generalization.
However, its dependence on large real datasets and pseudo-label inaccuracies (despite high genera-
tion quality) bottleneck further performance and efficiency. These data-level limitations—diversity,
scale, and pseudo-label fidelity—hinder truly universal and efficient MDE models.

To address the above challenges, we propose BRIDGE, an RL-optimized, large-scale Depth-to-
Image (D2I) generation data engine. This engine leverages precise ground truth from synthetic
depth datasets to generate massive, high-quality, and diverse RGB-D training data. Data created by
the data engine enable MDE models to achieve breakthroughs in both scale and domain diversity,
thereby fostering general, robust depth features and excellent real-world performance.

Specifically, our core lies in an innovative data generation pipeline: we first train an RL-optimized
Depth-to-Image (D2I) generation model on many synthetic datasets. This model can directly utilize
diverse source depth maps (from existing synthetic depth datasets) to synthesize over 20 million
diverse and information-rich RGB images. Based on this, we introduce a hybrid data supervision
strategy. This strategy pairs generated RGB images with original high-precision ground truth depth,
which is screened through similarity detection methods such as SSIM and gradient analysis. Si-
multaneously, it leverages a large number of pseudo-labels generated by a teacher model trained
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on synthetic data, and both are jointly used for training. This ensures that the generated RGB im-
ages receive reliable supervision during training while improving the overall quality and utilization
efficiency of the labels.

Our experimental results consistently demonstrate BRIDGE’s superior performance across various
challenging benchmarks, including indoor, outdoor, and synthetic animation environments, surpass-
ing existing state-of-the-art methods. Qualitatively, BRIDGE excels at capturing fine-grained details
and maintaining robustness in complex scene structures. Furthermore, ablation studies confirm the
effectiveness of the RL-D2I generated data and the hybrid supervision training method.

Our main contributions are as follows:

• An efficient data generation and utilization paradigm: We adopt an RL-driven D2I
paradigm, efficiently generating massive high-quality RGB-D data, which effectively alle-
viates data scarcity and quality issues.

• Key practice of hybrid depth supervision training strategy: We practice a hybrid depth
supervision strategy, combining teacher model pseudo-labels with high-precision ground
truth depth, to achieve a more challenging optimization objective and learn geometric struc-
tural knowledge from RGB data.

• Superior performance and high training efficiency: Our data generation and training
strategy, using only approximately 20M data, surpasses SOTA models (e.g., Depth Any-
thing V2 which uses 62M data), significantly improving training efficiency and demon-
strating excellent detail capture capability and robustness.

2 METHOD

To address data scarcity and label quality in monocular depth estimation, we propose a comprehen-
sive three-stage pipeline, as illustrated in Figure 2. First, we train a powerful giant teacher model on
large-scale synthetic data, and train a depth-to-image model using reinforcement learning. Second,
we generate millions of visually realistic RGB images with accurate geometric structures, highly
consistent with source depth maps, and their corresponding pseudo-labels, using the model we train
in the previous stage (Section 2.1). Then we use a simple similarity algorithm method to calculate
the original images and their corresponding generated images to create a mask for similar regions,
and use the high-precision mask area and the original gt depth map for fine-tuning (Section 2.2).
Finally, we train the MDE model on the large-scale generated data and their pseudo-labels (Sec-
tion 2.3).

2.1 REINFORCEMENT LEARNING-OPTIMIZED DEPTH-TO-IMAGE GENERATION

To acquire large-scale, high-quality RGB-depth image pairs, we develop and train a reinforcement
learning (RL)-optimized Depth-to-Image (D2I) generation model. This model generates visually re-
alistic RGB images from source depth maps (from existing synthetic datasets like Hypersim (Roberts
et al., 2021), TartanAir (Wang et al., 2020)) while precisely preserving their geometric structure.
This generation process results in a large-scale dataset comprising approximately 20M images.

Objectives and Advantages: Leveraging the reinforcement learning paradigm, we ensure generated
images are not only visually realistic but also geometrically accurate and consistent. This enables
synthesizing diverse RGB images from a single depth map while preserving its true geometric struc-
ture. This approach mitigates geometric artifacts or structural distortions common in traditional D2I
models and expands the diversity of effective training data.

Training Strategy: As shown in Figure 3, our D2I model, inspired by VADER (Prabhudesai et al.,
2024), is trained via reward-gradient-driven direct optimization to efficiently and accurately generate
high-fidelity images. This direct usage of reward gradients guides the generation process towards
desired visual quality, thereby avoiding complex proxy objective functions and improving training
memory efficiency. The overall optimization objective minimizes the following loss:

Ltotal(θ) = λdepth · LD(M(Dsource, θ), Dsource)− λaesthetic ·Raesthetic(M(Dsource, θ)), (1)
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Figure 2: BRIDGE Pipeline. First training a depth-to-image model to synthesize millions of realis-
tic RGB images with precise ground truth depths and a teacher model for pseudo labeling. Student
model is then trained on this extensive synthetic dataset. Finally, it’s fine-tuned using mask-based
refinement with original ground truth depth for robust generalization and detailed depth capture.

where Dsource represents the input source depth map,M(Dsource, θ) denotes the RGB image gener-
ated by the D2I modelMwith parameters θ based on Dsource, LD(Dgen, Dsource) is a cosine similarity
loss. Its corresponding loss (defined as 1 − cosine similarity reward) aims to minimize the differ-
ence between the depth map Dgen inverted from the generated RGB image and the source depth map
Dsource. This ensures the D2I model precisely learns and maintains the scene’s geometric structural
information. Raesthetic(M(Dsource, θ)) is the aesthetic reward function, quantifying the visual quality
and aesthetic appeal of the generated image. It is formulated as:

Raesthetic(I) = gMLP

(
fCLIP(I)

∥fCLIP(I)∥2

)
, (2)

where fCLIP(I) represents the high-dimensional feature embedding extracted from the input image
I by a pre-trained CLIP image encoder. ∥ · ∥2 denotes the L2 norm, normalizing the extracted
features to unit length to prevent their magnitude from unduly influencing subsequent scoring and to
align with the MLP’s training process. Finally, gMLP(·) is a specialized MLP head that receives the
normalized CLIP features as input and maps them to a scalar aesthetic score Saesthetic ∈ R. During
D2I model optimization, we maximize the aesthetic quality of generated images by minimizing the
aesthetic loss term Laesthetic(I) = −Raesthetic(I), thereby incentivizing the model to produce images
with higher aesthetic scores.

The model is trained using gradient descent, with the parameter update rule:

θ ← θ − η · ∇θLtotal(θ), (3)

where η is the learning rate. The core challenge is computing the gradient of the loss function with
respect to model parameters θ, ∇θLtotal(θ). Since x0 is the final output of the diffusion model’s
multi-step denoising process, and model parameters θ are involved in each denoising prediction
ϵθ(xt, t,Dsource), the gradient must be backpropagated through the entire reverse diffusion process.
Specifically, the gradient of the loss with respect to parameters can be expressed as:

∇θLtotal(θ) =

T∑
t=0

∂Ltotal(x0)

∂xt
· ∂xt

∂θ
, (4)

where ∂Ltotal(x0)
∂xt

represents the sensitivity of the loss to the intermediate diffusion step xt, and ∂xt

∂θ

denotes the influence of model parameters on the intermediate state. This gradient propagation ef-
ficiently guides the diffusion model to generate high-quality RGB images while precisely capturing
and maintaining the geometric structure of the input depth map, significantly enhancing training
sample and computational efficiency.

2.2 DEPTH PSEUDO-LABEL GENERATION AND MULTI-SOURCE DEPTH FUSION STRATEGY

After generating millions of high-fidelity RGB images, we construct their corresponding depth la-
bels using a multi-strategy fusion approach. These are then combined with the original synthetic
data to form the final hybrid training set.
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Figure 3: Reward Model Process. Our D2I model is trained via reward-gradient-driven direct op-
timization , avoiding complex proxy objective functions and improving training memory efficiency.

Teacher Model-Based Initial Pseudo-Label Generation: We leverage a powerful teacher model
trained on 1M synthetic data to infer initial relative depth pseudo-labels for all 20 million generated
RGB images. These pseudo-labels provide valuable, geometrically consistent supervision, crucial
for bridging the domain gap.

Similarity-Guided Ground Truth Depth Utilization: To achieve more precise and reliable depth
labels and maximize the use of all available depth information (including original high-precision
ground truth depth), we introduce a similarity-based method. This addresses pixel-level inaccuracies
or detail loss from relying solely on teacher-generated pseudo-labels. Specifically, we construct a
fusion mask for each generated RGB image Igen by evaluating its similarity to the original synthetic
RGB image Iorig. This mask generation involves two main steps:

• Feature-based Registration for Structural Similarity: First, we geometrically register
the generated RGB image (Igen) with its original synthetic counterpart (Iorig) using ORB
feature detection and matching (Karami et al., 2017). This step compensates for minor
shifts or deformations during image generation, aligning them at the pixel level. After
registration, we compute the Structural Similarity Index Measure (SSIM) map (Nilsson &
Akenine-Möller, 2020) between the aligned images. Regions with an SSIM value above a
predefined threshold are identified as high-similarity areas, forming the first binary mask.

• Direct SSIM-based Pixel-level Similarity: Second, we directly compute the SSIM map
between the size-adjusted generated RGB image (Igen) and the original synthetic RGB im-
age (Iorig). This evaluates their pixel-level similarity without explicit geometric registration.
Regions where the SSIM value exceeds the same threshold form the second binary mask.

The final fusion mask is generated by applying a logical OR operation to these two binary masks.
This ensures that any high-similarity region identified by either method is included. To enhance
mask robustness and reduce noise, we further apply morphological opening and closing operations
to smooth boundaries and fill small gaps.

Upon obtaining the final fusion mask, we integrate this refined depth supervision into a two-stage
training process. Initially, the D2I model undergoes pre-training on a large-scale dataset, primarily
using the teacher-generated pseudo-labels. Following this, a fine-tuning stage is performed. In this
fine-tuning stage, for regions covered by the fusion mask, we directly utilize the corresponding high-
precision ground truth depth (Dgt) from the original synthetic data as training labels. This strategy
ensures the model first learns broad geometric consistency from vast pseudo-labeled data and then
refines its accuracy and detail with the most accurate supervision in high-precision, geometrically
consistent areas, thereby significantly improving depth estimation accuracy and detail.

Final Hybrid Dataset Composition: The composite dataset for training BRIDGE comprises two
main components. The first consists of large-scale generated RGB images: approximately 20 million
high-fidelity RGB images produced by the RL-optimized D2I process, each paired with its teacher-
model-derived depth pseudo-label. The second involves original synthetic data depth labels: we
directly integrate depth labels from multiple original synthetic datasets, crucially including the high-
precision ground truth depth filtered by our similarity-guided strategy.
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2.3 TRAINING MONOCULAR DEPTH ESTIMATION MODEL

After designing the data generation strategy, we train the Monocular Depth Estimation (MDE) model
on the generated data. For model architecture, we adopt the established pretrained DINOv2-Giant
encoder (Oquab et al., 2023) and DPT (Ranftl et al., 2021) Head combination from Depth Any-
thing (Yang et al., 2024c). To optimize our model, we utilize two loss terms, both of which are based
on the approach proposed in MiDaS(Ranftl et al., 2020) because they are well-suited for affine-
invariant depth. The first is the scale- and shift-invariant loss (Lssi), which ensures the model’s
robustness to variations in the scale and offset of depth values. The second is the gradient matching
loss (Lgm), which helps the model capture fine-grained scene structure and details by enforcing sim-
ilarity between the gradients of the predicted and ground-truth depth maps. We set the Lssi and Lgm

as 1:4 and we ignore its top n largest loss regions during training, where n is set as 10% because the
regions are usually considered as potentially noisy pseudo labels. To enable zero-shot metric depth
estimation for arbitrary “in-the-wild” images, we further introduce a specialized scale head. This
head autonomously predicts the image’s metric scale, significantly enhancing the model’s accuracy
and generalization in real-world scenarios. We first fine-tune the metric depth model, then decouple
and train the Scale Head separately. This improves training efficiency and provides high-quality,
artifact-free, precise metric depth for downstream tasks like novel view synthesis, further enhancing
the model’s utility.

3 IMPLEMENTATION DETAILS

Our RL-D2I generative model is based on the flux.1-dev (Labs, 2024) depth version architecture and
fine-tuned using depth data from synthetic datasets, and the learning rate is 1e-5. The generator syn-
thesizes approximately 20 million visually realistic and geometrically accurate RGB images from
source depth maps by optimizing a loss function that includes depth loss (weight 0.9) and aesthetic
reward (weight 0.1). To achieve high geometric accuracy and depth similarity, we ensure that the
generated images meet stringent quality criteria: high-precision regions are identified by combin-
ing areas where: 1) ORB feature-based registered SSIM between the generated and original RGB
images exceeds 0.85 (requiring at least 10 ORB matches), and 2) direct SSIM between them also
exceeds 0.85. We only select mask samples where the valid region constitutes over 50% of the pix-
els, and a 3x3 erosion operation is performed to filter out excessively small regions. Subsequently, a
518x518 crop is randomly extracted, centered on the largest valid region’s bounding box. For each
original depth map, we generate four RGB images simultaneously, and use different random seeds.
The prompt is set to None during the generation process.

4 EXPERIMENTS

In this section, we will validate the effectiveness and advantages of the proposed method for monoc-
ular depth estimation through a series of experiments. We first introduce the datasets, evaluation
metrics, and experimental settings. Then, we present the performance of our method on multiple
benchmark datasets and conduct ablation experiments to analyze the contribution of each module to
the overall performance.

4.1 EVALUATION DATASETS

For monocular depth estimation, we conduct a series of experiments to evaluate the performance of
our model on five widely used benchmarks. NYUv2 (Silberman et al., 2012) and ScanNet (Dai et al.,
2017) provide indoor RGB-D data captured by depth sensors. ETH3D (Schops et al., 2017) includes
both indoor and outdoor scenes, with depth data collected via laser scanners. KITTI (Geiger et al.,
2012) consists of outdoor driving scenes captured with cameras and LiDAR sensors. For ScanNet,
we extract 1400 test frames. Sintel (Butler et al., 2012) is a synthetic dataset derived from animated
short films, from which we extract images of 600 training samples for evaluation.
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Table 1: Quantitative Comparison with SOTA Methods on Zero-Shot Relative Depth Estima-
tion. These benchmarks aim to comprehensively measure model generalization ability and accuracy
in diverse environments. While these standard benchmarks provide a direct quantitative comparison,
some specific strengths of a model, such as details, complex layouts, may not be fully reflected by
these benchmarks.The underline represents the best performance of SOTA models on this dataset.

Method

KITTI NYUv2 ScanNet ETH3D Sintel DA2K

δ1 ↑ AbsRel↓ δ1 ↑ AbsRel↓ δ1 ↑ AbsRel↓ δ1 ↑ AbsRel↓ δ1 ↑ AbsRel↓ Acc(%)

G
en

er
at

iv
e DepthFM (Gui et al., 2025) 0.932 0.085 0.956 0.065 0.947 0.068 0.958 0.069 0.700 0.577 85.8

Marigold (Ke et al., 2024) 0.916 0.099 0.964 0.055 0.951 0.064 0.960 0.065 0.703 0.576 86.8

GeoWizard (Fu et al., 2024) 0.921 0.097 0.966 0.052 0.953 0.061 0.961 0.064 0.705 0.574 88.1

D
is

cr
im

in
at

iv
e

LeReS (Yin et al., 2021) 0.784 0.149 0.916 0.090 0.917 0.091 0.777 0.171 0.590 0.785 -

DPT (Ranftl et al., 2021) 0.881 0.111 0.919 0.091 0.932 0.084 0.929 0.115 0.605 0.700 -

MiDaSv3.1 (Birkl et al., 2023) 0.851 0.126 0.980 0.048 0.957 0.069 0.947 0.078 0.670 0.611 -

Metric3Dv2 (Hu et al., 2024) 0.968 0.062 0.963 0.058 0.941 0.074 0.960 0.066 0.662 0.619 -

Depth Anything V2 (Yang et al., 2024d) 0.946 0.075 0.979 0.045 0.978 0.043 0.988 0.038 0.672 0.598 97.1

Depth Pro (Bochkovskii et al., 2024) 0.498 0.375 0.580 0.245 0.667 0.207 0.687 0.201 0.476 0.883 -

Ours 0.938 0.081 0.982 0.041 0.981 0.033 0.991 0.029 0.719 0.513 97.3

4.2 EVALUATION METRICS

All evaluations are carried out under the zero-shot configuration. Following previous works (Yang
et al., 2024d; He et al., 2025), the evaluation of affine-invariant inverse depth prediction is performed
by optimizing the scale and shift discrepancies between the estimated depth and the ground truth.
For quantitative analysis, we utilize the absolute relative error (AbsRel) and δ1 accuracy. AbsRel is
calculated as 1

N

∑N−1
k=0

|x̂d−xd|
xd

, where N represents the total pixel count. δ1 accuracy measures the
percentage of pixels where the maximum ratio between the predicted affine-invariant inverse depth
and the inverse true depth falls below 1.25.

4.3 ZERO-SHOT DEPTH ESTIMATION

Our model demonstrates exceptional zero-shot generalization in depth estimation across both indoor
and outdoor datasets, highlighting its robustness, fine-grained detail, and consistent depth estimation
for objects.

Quantitative Comparisons: Table 1 shows the results that our method achieves outstanding per-
formance across multiple datasets. Our method achieves outstanding performance across mul-
tiple datasets and establishes new state-of-the-art (SOTA) results on several mainstream bench-
marks. Specifically, our model demonstrates overwhelming superiority on indoor scene datasets
like NYUv2, ScanNet, and ETH3D, with its ability to generate fine-structure predictions align-
ing perfectly with its objectives. Furthermore, our model slightly surpasses Depth Anything V2
on benchmarks like DA2K, further confirming its excellent zero-shot generalization capabilities.
Notably, Depth Pro’s significantly lower performance in this evaluation is related to its primary opti-
mization for metric depth rather than relative depth. Lastly, we do not achieve optimal performance
on KITTI, primarily because of the dataset’s inherent sparsity. Our model is designed to capture
fine-grained global and local depth information, which is not fully reflected in the KITTI evaluation.

Qualitative Comparisons: Figure 4 presents qualitative monocular depth estimation results, high-
lighting our model’s superior capability to capture fine-grained details and robustly handle chal-
lenging objects compared to Depth Anything V2, depth-pro, and generative methods. Notably, our
model successfully identifies and accurately estimates the depth of reflective surfaces, such as mir-
rors, on the NYUv2 dataset. It also preserves complex details, like distant table legs in ScanNet,
and captures the fine textures of remote architectural and wooden structures on the Sintel dataset.
Furthermore, it effectively processes similarly colored objects; for instance, on the KITTI dataset,
it precisely delineates a person’s head from the background, a nuance Depth Anything V2 often
struggles with. Crucially, our model exhibits excellent generalization to “in-the-wild” data, exem-
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Figure 4: Qualitative comparison of relative depth estimation across different datasets. Our
model captures fine-grained details and generalizes robustly on in-the-wild data.

plified by its accurate depth estimation for transparent umbrellas, fully demonstrating its robustness
in complex real-world scenarios.

4.4 FINE-TUNED TO METRIC DEPTH ESTIMATION

To validate our model’s generalization ability in metric depth estimation, we also transfer our pre-
trained encoder and design an additional scale head to adapt to both indoor and outdoor domains.
Following the pipeline of Depth Anything V2, our model maintains a consistently strong perfor-
mance level on both NYUv2 and KITTI datasets shown in Table 4 and Table 5.

4.5 ABLATION STUDIES

In this section, we systematically evaluate the contribution of each factor in BRIDGE to the overall
performance, aiming to quantify the impact of our proposed innovative data generation scheme. Our
ablation experiments are conducted under consistent training configurations to ensure fair compar-
isons.

Table 2: Impact of Generated Data. We demonstrate the effectiveness of our RL-D2I engine by
comparing a model trained on standard synthetic data with one trained on 1M generated data with
ViT-L. The results show that our generated data boosts performance across all metrics.

Method

KITTI NYUv2 ScanNet ETH3D Sintel

δ1 ↑ AbsRel↓ δ1 ↑ AbsRel↓ δ1 ↑ AbsRel↓ δ1 ↑ AbsRel↓ δ1 ↑ AbsRel↓

Baseline 0.921 0.097 0.960 0.060 0.964 0.057 0.969 0.060 0.599 0.709

w/ Generated Data 0.929 0.092 0.964 0.056 0.968 0.048 0.970 0.059 0.612 0.692

8
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Table 3: Ablation Study of the Hybrid Training Strategy. We compares the performance
of BRIDGE’s ViT-L model, trained solely on pseudo-labels with hybrid supervision integrating
similarity-guided high-precision ground truth depth on benchmarks. The results highlight the im-
portance of incorporating original ground truth depth for improving depth estimation accuracy and
detail capture.

Method

KITTI NYUv2 ScanNet ETH3D Sintel

δ1 ↑ AbsRel↓ δ1 ↑ AbsRel↓ δ1 ↑ AbsRel↓ δ1 ↑ AbsRel↓ δ1 ↑ AbsRel↓

Pseudo-labels Only 0.924 0.099 0.958 0.069 0.957 0.069 0.949 0.078 0.595 0.751

Full Hybrid Strategy 0.926 0.098 0.960 0.067 0.960 0.061 0.953 0.073 0.600 0.725

Table 4: The metric results on NYUv2.

Method

Higher ↑ Lower ↓
δ1 AbsRel RMSE

AdaBins (Bhat et al., 2021) 0.903 0.103 0.364
DPT (Ranftl et al., 2021) 0.904 0.110 0.357
P3Depth (Patil et al., 2022) 0.898 0.104 0.356
SwinV2 (Liu et al., 2022) 0.949 0.083 0.287
IEBins (Shao et al., 2023) 0.936 0.087 0.314
ZoeDepth (Bhat et al., 2023) 0.951 0.077 0.282
Metric3Dv2 (Hu et al., 2024) 0.987 0.046 0.181

Ours 0.986 0.052 0.197

Table 5: The metric results on KITTI.

Method

Higher ↑ Lower ↓
δ1 AbsRel RMSE

AdaBins (Bhat et al., 2021) 0.964 0.058 2.360
P3Depth (Patil et al., 2022) 0.953 0.071 2.842
SwinV2 (Liu et al., 2022) 0.977 0.050 1.966
GEDepth (Yang et al., 2023b) 0.976 0.048 2.044
IEBins (Shao et al., 2023) 0.978 0.050 2.011
ZoeDepth (Bhat et al., 2023) 0.971 0.054 2.281
Metric3Dv2 (Hu et al., 2024) 0.985 0.044 1.993

Ours 0.983 0.045 1.862

Impact of BRIDGE Generated Data: We first investigate the effectiveness of our RL-D2I gen-
eration engine, which serves as the core mechanism for alleviating data scarcity and enhancing
training data diversity. To demonstrate its significant impact, we compare a baseline model using
DINOv2 Base trained on 1M synthetic data from various large-scale synthetic depth datasets with
the BRIDGE model generated 1M data (comprising 0.95M pseudo-labels and 0.05M masked origi-
nal ground truth depth). As shown in Table 2, the integration of RL-D2I-generated data significantly
boosts the performance across all evaluated metrics. This improvement underscores the effective-
ness of our RL-D2I engine in generating visually realistic and geometrically accurate images, which
effectively expands the scale and diversity of the training data.

Efficiency of Hybrid Training Strategy: As shown in Table 3, our hybrid depth supervision strat-
egy is crucial for combining the broad coverage of teacher model pseudo-labels with the precision of
similarity-guided high-precision ground truth depth. This approach aims to provide more robust and
reliable supervision signals for learning geometric structural knowledge. We conduct an ablation
study to quantify the benefits of this dual supervision. We also test on 1M data, the BRIDGE model
trained with our full hybrid strategy yields superior results compared to a variant that relies solely
on teacher-generated pseudo-labels for the generated RGB images.

5 CONCLUSION

In this work, we introduce BRIDGE, an innovative framework that effectively addresses data scarcity
and quality issues in Monocular Depth Estimation. By leveraging a novel Reinforcement Learning-
optimized Depth-to-Image (RL-D2I) generation engine, BRIDGE generates over 20M visually real-
istic RGB-D data. This generated data, coupled with a hybrid strategy fusing teacher pseudo-labels
and high-precision ground truth depth, enables our model to achieve state-of-the-art performance.
Remarkably, BRIDGE consistently outperforms leading methods like Depth Anything V2 on bench-
marks, utilizing significantly less training data (20M vs. 62M). Our findings highlight BRIDGE’s
superior capability in capturing fine-grained details, ensuring geometric consistency, and demon-
strating robust zero-shot generalization to complex in-the-wild scenes, paving the way for more
efficient and generalizable MDE solutions.
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ETHICS STATEMENT

Responsible Utilization of Source Depth Datasets: The core of BRIDGE relies on utilizing exist-
ing publicly available synthetic depth datasets as diverse source depth maps for our Depth-to-Image
(D2I) generation engine. We strictly adhere to the original licenses and terms of use associated
with these datasets, ensuring proper attribution and full compliance with all usage guidelines. These
datasets provide the foundational high-precision ground truth depth necessary for our geometrically
accurate image synthesis process.

Ethical Application of Teacher Models and Generated Data: The approximately 20 million
RGB-D images, generated by our RL-D2I process and coupled with a hybrid supervision strat-
egy (integrating teacher pseudo-labels and original high-precision ground truth depth), are created
exclusively for advancing academic research in Monocular Depth Estimation. Our data generation
process is designed to mitigate the introduction or amplification of biases, and the generated content
is solely for non-commercial, research-driven progress in computer vision, aiming to address data
scarcity and enhance model robustness and generalization.
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Aleksei Bochkovskii, AmaÃĢl Delaunoy, Hugo Germain, Marcel Santos, Yichao Zhou, Stephan R
Richter, and Vladlen Koltun. Depth pro: Sharp monocular metric depth in less than a second.
arXiv preprint arXiv:2410.02073, 2024.

Daniel J Butler, Jonas Wulff, Garrett B Stanley, and Michael J Black. A naturalistic open source
movie for optical flow evaluation. In European conference on computer vision, pp. 611–625.
Springer, 2012.

Yohann Cabon, Naila Murray, and Martin Humenberger. Virtual kitti 2. arXiv preprint
arXiv:2001.10773, 2020.

David Charatan, Sizhe Lester Li, Andrea Tagliasacchi, and Vincent Sitzmann. pixelsplat: 3d gaus-
sian splats from image pairs for scalable generalizable 3d reconstruction. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, pp. 19457–19467, 2024.

Weifeng Chen, Zhao Fu, Dawei Yang, and Jia Deng. Single-image depth perception in the wild.
Advances in neural information processing systems, 29, 2016.

Alex Costanzino, Pierluigi Zama Ramirez, Matteo Poggi, Fabio Tosi, Stefano Mattoccia, and Luigi
Di Stefano. Learning depth estimation for transparent and mirror surfaces. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pp. 9244–9255, 2023.

Angela Dai, Angel X. Chang, Manolis Savva, Maciej Halber, Thomas Funkhouser, and Matthias
Nießner. Scannet: Richly-annotated 3d reconstructions of indoor scenes. In Proc. Computer
Vision and Pattern Recognition (CVPR), IEEE, 2017.

10

https://arxiv.org/abs/2302.12288
https://arxiv.org/abs/2302.12288


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

David Eigen and Rob Fergus. Predicting depth, surface normals and semantic labels with a common
multi-scale convolutional architecture. In Proceedings of the IEEE international conference on
computer vision, pp. 2650–2658, 2015.

David Eigen, Christian Puhrsch, and Rob Fergus. Depth map prediction from a single image using
a multi-scale deep network. Advances in neural information processing systems, 27, 2014.

Huan Fu, Mingming Gong, Chaohui Wang, Kayhan Batmanghelich, and Dacheng Tao. Deep ordinal
regression network for monocular depth estimation. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 2002–2011, 2018.

Xiao Fu, Wei Yin, Mu Hu, Kaixuan Wang, Yuexin Ma, Ping Tan, Shaojie Shen, Dahua Lin, and
Xiaoxiao Long. Geowizard: Unleashing the diffusion priors for 3d geometry estimation from a
single image. In European Conference on Computer Vision, pp. 241–258. Springer, 2024.

Yaroslav Ganin and Victor Lempitsky. Unsupervised domain adaptation by backpropagation. In
International conference on machine learning, pp. 1180–1189. PMLR, 2015.

Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we ready for autonomous driving? the kitti
vision benchmark suite. In 2012 IEEE conference on computer vision and pattern recognition,
pp. 3354–3361. IEEE, 2012.

Clément Godard, Oisin Mac Aodha, and Gabriel J Brostow. Unsupervised monocular depth estima-
tion with left-right consistency. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 270–279, 2017.

Ming Gui, Johannes Schusterbauer, Ulrich Prestel, Pingchuan Ma, Dmytro Kotovenko, Olga
Grebenkova, Stefan Andreas Baumann, Vincent Tao Hu, and Björn Ommer. Depthfm: Fast gen-
erative monocular depth estimation with flow matching. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 39, pp. 3203–3211, 2025.

Xiankang He, Dongyan Guo, Hongji Li, Ruibo Li, Ying Cui, and Chi Zhang. Distill any depth:
Distillation creates a stronger monocular depth estimator. arXiv preprint arXiv:2502.19204, 2025.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840–6851, 2020.

Mu Hu, Wei Yin, Chi Zhang, Zhipeng Cai, Xiaoxiao Long, Hao Chen, Kaixuan Wang, Gang Yu,
Chunhua Shen, and Shaojie Shen. Metric3d v2: A versatile monocular geometric foundation
model for zero-shot metric depth and surface normal estimation. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 2024.

Yuanfeng Ji, Zhe Chen, Enze Xie, Lanqing Hong, Xihui Liu, Zhaoqiang Liu, Tong Lu, Zhenguo Li,
and Ping Luo. Ddp: Diffusion model for dense visual prediction. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pp. 21741–21752, 2023.

Ebrahim Karami, Siva Prasad, and Mohamed Shehata. Image matching using sift, surf, brief and
orb: performance comparison for distorted images. arXiv preprint arXiv:1710.02726, 2017.

Bingxin Ke, Anton Obukhov, Shengyu Huang, Nando Metzger, Rodrigo Caye Daudt, and Konrad
Schindler. Repurposing diffusion-based image generators for monocular depth estimation. In
Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 9492–
9502, 2024.

Bingxin Ke, Kevin Qu, Tianfu Wang, Nando Metzger, Shengyu Huang, Bo Li, Anton Obukhov,
and Konrad Schindler. Marigold: Affordable adaptation of diffusion-based image generators for
image analysis, 2025.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler, and George Drettakis. 3d gaussian splat-
ting for real-time radiance field rendering. ACM Trans. Graph., 42(4):139–1, 2023.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny im-
ages.(2009), 2009.

Yevhen Kuznietsov, Jorg Stuckler, and Bastian Leibe. Semi-supervised deep learning for monocular
depth map prediction. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 6647–6655, 2017.

Black Forest Labs. Flux. https://github.com/black-forest-labs/flux, 2024.

Dong-Hyun Lee et al. Pseudo-label: The simple and efficient semi-supervised learning method for
deep neural networks. In Workshop on challenges in representation learning, ICML, volume 3,
pp. 896. Atlanta, 2013.

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo.
Swin transformer: Hierarchical vision transformer using shifted windows. In Proceedings of the
IEEE/CVF international conference on computer vision, pp. 10012–10022, 2021.

Ze Liu, Han Hu, Yutong Lin, Zhuliang Yao, Zhenda Xie, Yixuan Wei, Jia Ning, Yue Cao, Zheng
Zhang, Li Dong, et al. Swin transformer v2: Scaling up capacity and resolution. In Proceedings of
the IEEE/CVF conference on computer vision and pattern recognition, pp. 12009–12019, 2022.

Lukas Mehl, Jenny Schmalfuss, Azin Jahedi, Yaroslava Nalivayko, and Andrés Bruhn. Spring: A
high-resolution high-detail dataset and benchmark for scene flow, optical flow and stereo. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4981–
4991, 2023.

Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi Ramamoorthi, and
Ren Ng. Nerf: Representing scenes as neural radiance fields for view synthesis. Communications
of the ACM, 65(1):99–106, 2021.

Alexander Quinn Nichol and Prafulla Dhariwal. Improved denoising diffusion probabilistic models.
In International conference on machine learning, pp. 8162–8171. PMLR, 2021.
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A RELATED WORKS

A.1 MONOCULAR DEPTH ESTIMATION

Monocular Depth Estimation (MDE), a foundational computer vision task, has seen significant
progress with deep learning, moving beyond early methods limited by data homogeneity (Sax-
ena et al., 2008). Deep learning approaches are broadly categorized into Discriminative Methods
and Generative Methods. The former, starting with CNN-based pioneers like (Krizhevsky et al.,
2009; Eigen et al., 2014; Eigen & Fergus, 2015; Chen et al., 2016) and later enhanced by multi-
dataset training in MiDaS (Ranftl et al., 2020), learns a direct mapping from image to depth (Fu
et al., 2018). The adoption of the Transformer architecture (Dosovitskiy et al., 2020; Ranftl et al.,
2021; Liu et al., 2021) and large-scale self-supervised learning, as in Depth Anything (Yang et al.,
2024c), further improves generalization, while models like NDDdepth citepshao2023nddepth and
Depth Pro (Bochkovskii et al., 2024) target high-precision boundary estimation. In contrast, gen-
erative methods utilize models like Diffusion Models (Ho et al., 2020; Song et al., 2020; Nichol &
Dhariwal, 2021; Ji et al., 2023) to synthesize depth maps, with works such as LeReS (Yin et al.,
2021) and Metric3D v2 (Hu et al., 2024) focusing on accurate metric depth. The recent Depth Any-
thing V2 (Yang et al., 2024d) combines large-scale synthetic images and pseudo-labeling to boost
performance. Despite these advancements, a key challenge remains: achieving highly accurate and
generalizable depth estimation in complex, unseen scenarios. To tackle this, we propose BRIDGE,
a framework that generates a massive dataset of realistic and geometrically accurate RGB images to
expand the effective training data.

A.2 SELF-SUPERVISED AND HYBRID SUPERVISION LEARNING

To train a robust MDE model despite the scarcity of precisely labeled data, researchers have explored
various weakly supervised and self-supervised approaches, such as utilizing unlabeled monocular or
stereo video data through photometric consistency loss for training (Godard et al., 2017; Kuznietsov
et al., 2017; Ren et al., 2020). Other self-supervised approaches also include consistency training
methods like FixMatch (Sohn et al., 2020) and unsupervised data augmentation (Xie et al., 2020),
as well as strategies like shrinking class space (Yang et al., 2023a) to enhance certainty. Build-
ing on this, Pseudo-labeling supervision strategies (Lee et al., 2013), exemplified by Depth Any-
thing V2 (Yang et al., 2024d), significantly improve model generalization by employing a powerful
teacher model to generate pseudo-labels for massive amounts of unlabeled images. However, de-
spite the broad coverage provided by pseudo-labels, their inherent noise and inaccuracy—especially
around boundaries and fine details—remain a bottleneck for further enhancing depth estimation per-
formance. To leverage both the scale of pseudo-labels and the precision of ground truth annotations,
we propose a hybrid supervision strategy. Unlike methods that solely rely on pseudo-labels, our
strategy integrates high-precision ground truth depth from the original data via a similarity detection
mechanism. By utilizing the teacher model’s pseudo-labels for broad training and the similarity-
guided ground truth for precision fine-tuning, our hybrid approach provides a more reliable and
comprehensive supervision signal.

A.3 DEPTH-TO-IMAGE GENERATION AND SYNTHETIC DATA

The performance of Monocular Depth Estimation (MDE) is directly linked to the scale and quality
of training data, yet acquiring high-quality ground truth depth from real-world data is expensive
and lacks sufficient diversity, leading researchers to increasingly utilize synthetic data. Traditional
synthetic methods, which rely on 3D rendering engines, provide geometrically accurate annotations
but often suffer from a pronounced domain gap (Atapour-Abarghouei & Breckon, 2018; Rajpal et al.,
2023) and low generation efficiency. More recently, methods based on Generative Models have been
explored, such as using Diffusion Models (Ke et al., 2025; Gui et al., 2025) to generate depth maps
from RGB images, but these primarily focus on depth prediction rather than the active generation
of high-fidelity RGB-D data pairs for model training. To address this data bottleneck, Depth-to-
Image (D2I) generation emerges as an active data augmentation strategy, synthesizing geometrically
consistent RGB images from existing depth data. However, conventional D2I models often struggle
with precise geometric alignment, leading to artifacts. Our BRIDGE framework alleviates this by
employing a Reinforcement Learning (RL) optimization mechanism in its D2I engine, ensuring both
visual realism and geometric consistency for the massive generated dataset.
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B EXPERIMENTS

B.1 MODEL SELECTION

We compare the learning capabilities of different DINOv2 (Oquab et al., 2023) versions on our hy-
brid data. For DINOv2-Giant and Large, we select the non-register version as their representative.
As shown in Table 6, we find that the Giant and Large versions of DINOv2 exhibit excellent learning
ability on synthetic data and generalize remarkably well to real-world test datasets. In contrast, the
Small and Base versions do not achieve satisfactory results. This might be attributed to their lim-
ited model capacity, which is insufficient to capture the rich fine-grained information and diversity
present in generation data, thus leading to difficulties in generalizing to more complex real-world
scenarios. Therefore, we ultimately choose to adopt the DINOv2-Giant for our model, to fully
leverage its powerful generalization capabilities and accuracy.

Method

KITTI NYUv2 ScanNet ETH3D Sintel

δ1 ↑ AbsRel↓ δ1 ↑ AbsRel↓ δ1 ↑ AbsRel↓ δ1 ↑ AbsRel↓ δ1 ↑ AbsRel↓

DINOv2-S 0.928 0.082 0.964 0.062 0.921 0.085 0.978 0.045 0.637 0.684

DINOv2-B 0.932 0.081 0.968 0.054 0.941 0.065 0.980 0.039 0.647 0.644

DINOv2-L 0.937 0.081 0.978 0.045 0.972 0.049 0.989 0.032 0.688 0.588

DINOv2-G 0.938 0.081 0.982 0.041 0.981 0.033 0.991 0.029 0.719 0.513

Table 6: Comparison among various size pre-trained DINOv2 encoders trained on our dataset.

Table 7: Our training sources. * represents the quantity sampled from the dataset.

Dataset Indoor Outdoor # Images

Precise Synthetic Images (1M)

BlendedMVS (Yao et al., 2020) ✓ ✓ 115K

TartanAir (Wang et al., 2020) ✓ ✓ 306K

Hypersim (Roberts et al., 2021) ✓ 60K

IRS (Wang et al., 2019a) ✓ 103K

VKITTI 2 (Cabon et al., 2020) ✓ 20K

Spring (Mehl et al., 2023) ✓ 5K

DA-V (Yang et al., 2024a) ✓ ✓ 400K*

Generated Images (20M)

BlendedMVS ✓ ✓ 2.2M

TartanAir ✓ 2M

Hypersim ✓ ✓ 2.4M

IRS ✓ ✓ 4.2M

VKITTI 2 ✓ 1M

Spring ✓ 20K

DA-V ✓ ✓ 8.2M

B.2 ADDITIONAL QUALITATIVE COMPARISON

Training Datasets: As shown in Table 7, we train both a generative model and a teacher model
using seven synthetic datasets to enhance label precision. To effectively mitigate the limitations of
synthetic images regarding distribution shift and limited diversity, we generate 20M synthetic data
based on the aforementioned datasets, thereby significantly broadening the diversity of the overall
samples. Notably, for datasets such as Hypersim, where the original data primarily covers indoor
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scenes, our generation strategy successfully produces outdoor data largely consistent with depth
maps, effectively expanding the scene coverage of the training samples.

Qualitative Results:Figure 5 and Figure 6 show additional qualitative comparisons with other state-
of-the-art monocular depth estimation methods. For indoor, outdoor, and non-real scenes alike, our
model consistently produces depth maps with higher fidelity than the other methods. Our method
particularly excels in outdoor scenes, showing clear distinctions between distant objects and the sky,
while Depth Pro (Bochkovskii et al., 2024) and Marigold (Ke et al., 2025) fail to distinguish objects
that are farther away.

Conditional Synthesis: Figure 7 shows a comparison of depth-conditioned synthesis results. We
first infer depth based on an image using our BRIDGE and the Depth Anything V2 model, and then
use the most basic pre-trained depth-to-image ControlNet (Zhang, Rao, and Agrawala 2023) with
Stable Diffusion 1.5 to synthesize new samples based on the depth maps and a text prompt. We can
clearly observe that the depth maps obtained with Depth Anything V2 do not reflect the actual depth
well and are additionally inaccurate for some parts of the image. In contrast, our method yields
sharp and realistic depth maps. This result is also reflected in the synthesized results, where images
created based on our depth map more closely resemble the actual image.

B.3 STATEMENT ON LLM USAGE

In the preparation of this manuscript, we utilize Large Language Models (LLMs) only to polish
writing.
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OursMarigoldDepth ProDepth Anything V2RGB Image

Figure 5: Comparison between Depth Anything V2 (Yang et al., 2024d) and our model on open-
world images.
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OursMarigoldDepth ProDepth Anything V2RGB Image

Figure 6: Additional comparison between Depth Anything V2 (Yang et al., 2024c) and our model
on “in-the-wild” images.
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A neo-futuristic 
building standing in 
the Amazon rainforest

An ancient gazebo-
like structure with 
pointed, slate roof 
sitting beside a 

dirt road.

Wooden piano and 
classical guitar.

A plant surrounded 
by cardboard boxes 

and cloth.

Ours

Ours

Depth 
Anything V2

Depth 
Anything V2

Figure 7: Our model, BRIDGE, generates superior, high-fidelity depth maps that enable ControlNet
(Zhang et al., 2023) to synthesize new images with a zero-shot capability, precisely replicating the
depth field of the source image. In contrast, Depth Anything V2 (Yang et al., 2024d) struggles to
produce an accurate depth field, as demonstrated by the clear discrepancies between its correspond-
ing ControlNet output and the source images. The prompts used for ControlNet are displayed in the
lower left corners, and all images were generated with the same random seed.
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