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ABSTRACT
Federated Learning (FL) has emerged as a pivotal framework for de-

veloping effective global models across clients with heterogeneous,

non-iid data distribution. A key challenge in FL is client drift, where

data heterogeneity impedes the aggregation of scattered knowledge.

Recent studies have tackled client drift by identifying significant

divergence in the last classifier layer. To mitigate this divergence,

strategies such as freezing classifier weights and aligning the fea-

ture extractor accordingly have proven effective. However, while

local alignment between classifier and feature extractor is crucial

in FL, it may cause the model to overemphasize observed classes

within each client. Our objective is twofold: (1) enhancing local

alignment while (2) preserving the representation of unseen class

samples. We introduce a novel algorithm named FedDr+, which
enhances local model alignment using dot-regression loss. FedDr+
freezes the classifier as a simplex ETF to align features and improves

aggregated global models through a feature distillation mechanism

to retain information about unseen/missing classes. Empirical evi-

dence demonstrates that our algorithm surpasses existing methods

that use a frozen classifier to enhance alignment across diverse

distributions.
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1 INTRODUCTION
Federated Learning (FL) [13, 36, 38] is a privacy-aware distributed

learning strategy that employs data from multiple clients while

ensuring their data privacy. A foundational method in FL, known

as FedAvg [36], involves four iterative phases: (1) distributing a

global model to clients, (2) training local models using each client’s

private dataset, (3) transmitting the locally trained models back

to the server, and (4) aggregating these models. This method ef-

fectively protects privacy without requiring the transmission of

raw data to the server. However, a significant challenge in FL is

data heterogeneity, called non-iidness, which refers to the differ-

ent underlying data distribution across clients. Such variance can

cause client drift during training, obstructing the convergence of
the aggregated model and significantly reducing its effectiveness.

To address client drift in non-iid scenarios, recent works [8, 10, 33,

38] have identified that the last classifier layer in neural networks is

particularly vulnerable to this issue. Hence, they suggest strategies

that freeze the classifier while updating only the feature extractor.

These approaches aim to enhance the alignment between the frozen
classifier and the output from the feature extractor. For instance,

FedBABU [38] employs various classifier initialization techniques,

keeping it fixed during the training of the feature extractor. The

methods proposed in [8, 10, 18, 33, 44] utilize more robust initializa-

tion, the Equiangular Tight Frame (ETF) classifier [39], to replace

traditional random initialization and improve the local alignment

strategy.

A frozen classifier is also extensively explored in other research

areas, such as class imbalance [45] and class incremental learn-

ing [46], with a consistent objective similar to aforementioned

FL studies—enhancing alignment. Recently, these fields have ad-

vanced by introducing and utilizing a novel type of loss, called

dot-regression loss LDR, which aims to achieve alignment rapidly.

In summary, LDR originates from the decomposition analysis of

cross-entropy (CE) loss, which includes pulling and pushing.
As suggested in [45], the pulling component is a force that at-

tracts features to the target class, whereas the pushing component is

a force that drives features away from other non-target classes.LDR

discards the pushing component, as it slows down convergence to

the desired alignment (refer to Figure 1).

Following the advancement of leveraging the frozen classifier

with dot-regression loss, we investigate the application of this loss
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Figure 1: Overview of the proposed method, FedDr+ trained
with LDr+. To enhance the local alignment, we employ dot-
regression loss LDR, which discards the pushing term of
cross-entropy loss, and propose a feature distillation LFD to
preserve the knowledge imbued in the global model.

to FL. However, our findings indicate that dot-regression loss does

not necessarily lead to sufficient performance improvement of the

aggregated server-side model, although it enhances local align-
ment as intended. We observe that this drawback stems from the

handling of unseen class samples. Specifically, while alignment

improves for the classes in the local training dataset, it significantly

deteriorates for unseen classes. This observation highlights the need

to preserve the representation of unobserved classes during local

training. To address this issue, we propose a training mechanism,

termed FedDr+, that employs dot-regression loss alongside feature

distillation that reduces the distance between feature vectors of

local and global models.

Contributions.Our main contributions are summarized as follows:

• We find that dot-regression loss is not easily compatible with

FL, although it can enhance the alignment of seen classes. The

drawback comes from a significant loss of information on un-

seen classes, which is vital in the global model perspective.

Therefore, we aim to preserve information of unseen classes

within the FL system.

• To preserve global knowledge, including unseen class infor-

mation while maintaining the advantages of LDR, we propose

FedDr+, which utilizes a feature distillation when training lo-

cal models. This regularizer prevents the model from focusing

solely on the local alignment.

• We verify that the proposed method surpasses conventional FL

algorithms under various datasets and non-iid settings.

2 PRELIMINARIES
2.1 Basic Setup of FedAvg Pipeline
Basic FL setup. Let [𝑁 ] = {1, . . . , 𝑁 } denote the indices of clients,
each with a unique training dataset 𝐷𝑖

train
= {(𝑥𝑚, 𝑦𝑚)}

|𝐷𝑖
train
|

𝑚=1
,

where (𝑥𝑚, 𝑦𝑚) ∼ D𝑖
for the 𝑖th client, 𝑥𝑚 is the input data, and

𝑦𝑚 ∈ [𝐶] is the corresponding label among 𝐶 classes. Importantly,

FL studies predominantly address the scenario where the data distri-

butions are heterogeneous, i.e.,D𝑖
varies across clients. Knowledge

distributed among clients is collected over𝑅 communication rounds.

The general objective of FL is to train a model fit to the aggregated

knowledge,

⋃
𝑖∈[𝑁 ] D𝑖

. This objective can be seen as solving the

optimization problem:

min

𝚯=(𝜽 ,𝑽 )

∑︁
𝑖∈[𝑁 ]

|𝐷𝑖
train
|∑

𝑗∈[𝑁 ] |𝐷
𝑗

train
|
E(𝑥,𝑦)∼D𝑖

[
L(𝑥,𝑦;𝜽 , 𝑽 )

]
,

where L is the instance-wise loss function, 𝜽 is the weight param-

eter for the feature extractor, and 𝑽 = [𝑣1, . . . , 𝑣𝐶 ] ∈ R𝑑×𝐶 is the

classifier weight matrix. We use the notation 𝚯 to denote the entire

set of model parameters.

At the beginning of each round 𝑟 ∈ [𝑅], the server has access
to only a subset of clients S𝑟 ⊂ [𝑁 ] participating in the 𝑟 th round.

At each round 𝑟 , the server transmits the global model parameters

𝚯
𝑔

𝑟−1
to the participating clients. Each client then updates the pa-

rameters with their private data 𝐷𝑖
train

and uploads𝚯
𝑖
𝑟 to the global

server. By incorporating the locally trained weights, the server then

updates the global model parameters to 𝚯
𝑔
𝑟 .

FedAvg pipeline. Our study follows the FedAvg [36] framework

to address the FL problem. FedAvg updates the global model param-

eters from locally trained parameters by aggregating these local

models into𝚯
𝑔
𝑟 =

∑
𝑖∈𝑆𝑟 𝑤

𝑖
𝑟𝚯

𝑖
𝑟 , where𝑤

𝑖
𝑟 = |𝐷𝑖

train
| /∑𝑗∈𝑆𝑟 |𝐷

𝑗

train
|

is the importance weight of the 𝑖th client.

2.2 Dot-Regression Loss for Feature Alignment
Dot-regression loss LDR. This loss [45] facilitates a faster align-
ment of feature vectors (penultimate layer outputs) 𝑓 (𝑥 ;𝜽 ) ∈ R𝑑 to

the true class direction of 𝑣𝑦 , reducing the cosine angle as follows:

LDR (𝑥,𝑦;𝜽 , 𝑽 ) = 1

2

(
cos

(
𝑓 (𝑥 ;𝜽 ), 𝑣𝑦

)
− 1

)
2

where cos(vec1, vec2) denotes the cosine of the angle between two

vectors ∠(vec1, vec2).
The main motivation is that the gradient of the cross-entropy

(CE) loss for the feature vector can be decomposed into a pulling
and pushing gradient, and recent work indicates that we can achieve
better convergence by removing the pushing effect [32, 45]. The

pulling gradient aligns 𝑓 (𝑥 ;𝜽 ) with 𝑣𝑦 , while the pushing gradient

ensures 𝑓 (𝑥 ;𝜽 ) does not align with 𝑣𝑐 for all 𝑐 ≠ 𝑦 (Appendix B

details the exact form of pulling and pushing gradients). Since LDR

directly attracts features to the true-class classifier, it drops the

pushing gradient, thereby increasing the convergence speed for

maximizing cos(𝑓 (𝑥 ;𝜽 ), 𝑣𝑦).
Frozen ETF classifier. Since LDR focuses on aligning feature

vectors with the true-class classifier, the classifier is not required to

be trained. Instead, we construct the classifier to satisfy the simplex

Equiangular Tight Frame (ETF) condition, a constructive way to

achieve maximum angular separation between class vectors [45, 46].

Concretely, we initialize the classifier weight 𝑽 as follows and freeze

it throughout training:

𝑽 ←−
√︂

𝐶

𝐶 − 1

𝑼

(
𝑰𝐶 −

1

𝐶
1𝐶1⊤𝐶

)
,

where 𝑼 ∈ R𝑑×𝐶 is a randomly initialized orthogonal matrix. Note

that each 𝑣𝑖 in the classifier weight 𝑽 satisfies cos(𝑣𝑖 , 𝑣 𝑗 ) = − 1

𝐶−1

for all 𝑖 ≠ 𝑗 ∈ [𝐶]1.
1
This relation for cosines holds if the 𝑣𝑖 ’s are symmetrically distributed such that

𝑣 = 1

𝐶

∑
𝑖∈ [𝐶 ] 𝑣𝑖 = 0, and cos(𝑣𝑖 , 𝑣𝑗 ) are all the same for 𝑖 ≠ 𝑗 .
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Figure 2: Comparison of (a) feature-classifier align-
ment and (b) accuracy on the observed and unobserved
classes test data for 𝜽 𝑖𝑟 trained with LCE and LDR.
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Figure 3: Comparison of (a) feature-classifier alignment
gap and (b) accuracy gap on the observed and unobserved
classes test data for 𝜽 𝑖𝑟 trained with LCE and LDR.

3 DOT-REGRESSION LOSS MEETS FL
Given our focus on applying LDR to FL, we first examine its impact

on FL models compared to the CE loss LCE. In summary, we find

that while LDR improves alignment and performance on observed

class labels, it faces challenge with unobserved classes
2
, which

are essential for the generalization objective. To address this issue,

we propose FedDr+, which integrates LDR with a novel feature

distillation loss. We then evaluate FedDr+ by analyzing the effect

of feature distillation and compare it with various FL algorithms

and regularizers.

Experimental configuration. In this section, we conduct experi-

ments on CIFAR-100 [24] using MobileNet [17] with a shard non-iid

setting (𝑠=10), where each client contains at most 10 classes. The

model is trained for 320 communication rounds, randomly selecting

10% of clients in each round, and the learning rate is decayed at

160
th

and 240
th

rounds. The experimental configuration for this

section is detailed in subsection 4.1.

3.1 Impact of Dot-Regression Loss on Local and
Global Models

We investigate the performance of local models on average when

trained with LDR compared to LCE. In Figure 2–3, we calculate

the statistics on two datasets: the observed class set O𝑖 , which
includes classes present in each client’s training data 𝐷𝑖

train
, and

the unobserved class setU𝑖
, consisting of classes unseen during

training. This partition highlights the challenges associated with

generalizing to unseen classes in FL.

First, we evaluate the feature-classifier alignment cos(𝑓 (𝑥 ;𝜽 𝑖𝑟 ), 𝑣𝑦)
and accuracy of each local model on the test data (Figure 2). We

then observe the amount of change from the given global model

to each local model in every communication round (Figure 3).

For instance, the alignment gap is denoted by cos(𝑓 (𝑥 ;𝜽 𝑖𝑟 ), 𝑣𝑦) −
cos(𝑓 (𝑥 ;𝜽

𝑔

𝑟−1
), 𝑣𝑦).

Performance analysis of local models. Figure 2 shows thatLDR,

by focusing its pulling effects exclusively on observed classes within

a client’s dataset, effectively enhances alignment and accuracy for

2
While we use the term “unobserved” in this context, it also applies to “rarely” existing

classes.

these classes. However, this specificity leads to poor generalization
on unobserved classes, resulting in significantly weaker perfor-

mance than models trained with LCE. Figure 3 displays the differ-

ent impacts on O𝑖 andU𝑖
during updates from the global model to

local models. LDR significantly boosts alignment and accuracy for

O𝑖 but causes significant reductions forU𝑖
.

Global model accuracy result.We confirm that LDR shows su-

perior accuracy for O𝑖 compared to LCE but is less effective at

generalizing toU𝑖
. In the shard setting (𝑠 = 10)—where each client

has access to at most 10 out of 100 classes—this shortcoming signifi-

cantly reduces the global model’s overall accuracy (LDR: 42.52% vs.

LCE: 46.38%). Thus, it is crucial to develop methods that retain the

strengths of LDR, i.e., alignment of observed classes, while improv-

ing generalization for unobserved classes, highlighting the need

for more adaptive loss functions in FL.

3.2 FedDr+: Dot-Regression and Feature
Distillation for Federated Learning

We propose FedDr+ to mitigate forgetting unobserved classes

while retaining the strengths of dot-regression loss in aligning

features of observed classes. Using LDR with the frozen classifier 𝑽 ,
FedDr+ includes a regularizer that fully distills the global model’s

feature vectors 𝑓 (𝑥 ;𝜽𝑔) ∈ R𝑑 to the client features 𝑓 (𝑥 ;𝜽 ), to
enhance generalization across all classes. The proposed loss func-

tion LDr+, shown in Equation 1, combines LDR with a regularizer

LFD (𝑥 ;𝜽 , 𝜽𝑔) = 1

𝑑
∥ 𝑓 (𝑥 ;𝜽 ) − 𝑓 (𝑥 ;𝜽𝑔)∥2

2
. Unless specified, we use

a scaling parameter 𝛽 = 0.9 throughout the paper.

LDr+ (𝑥,𝑦;𝜽 , 𝜽𝑔, 𝑽 ) = 𝛽 ·LDR (𝑥,𝑦;𝜽 , 𝑽 )+(1−𝛽)·LFD (𝑥 ;𝜽 , 𝜽𝑔) (1)

Why feature distillation? To address data heterogeneity in FL,

various distillation methods have been explored, including model

parameters [12, 27, 31, 38], logit-related measurement [4, 19, 25,

27, 34, 40, 47], and co-distillation [5, 6]. In contrast, we utilize the

feature distillation [15] technique because the feature directly con-

cerns alignment. On the other hand, logits lose information from

features when projected onto a frozen ETF classifier [2, 15, 28, 29].

By distilling features, we leverage the global, differentiated knowl-

edge for each data input 𝑥 . This approach aims to minimize blind
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Table 1: Synergy of various FL algorithms and regularizers. Baseline indicates training FL models without a regularizer. FD
denotes feature distillation, which is the regularizer we use in FedDr+.

Sharding (𝑠 = 10) LDA (𝛼 = 0.1)

Algorithm Baseline +Prox [31]+KD [16]+NTD [25]+LD [23] +FD Baseline +Prox [31]+KD [16]+NTD [25]+LD [23] +FD

FedAvg [36] 37.22 30.27 35.14 35.56 34.83 37.82 42.52 36.09 41.48 41.34 43.36 43.10

FedBABU [38] 46.20 36.71 45.50 45.09 45.81 45.31 47.37 39.04 45.58 45.56 46.46 44.77

SphereFed [8] 43.90 1.36 41.01 43.47 41.73 45.21 46.98 1.46 45.22 46.25 43.84 48.61

FedETF [33] 32.42 25.18 32.76 31.98 32.25 32.77 46.27 34.92 44.94 45.77 44.36 45.92

Dot-Regression 42.52 5.42 46.60 45.78 47.52 48.69 42.72 7.47 48.19 33.08 49.09 50.79

Observed LDR Unobserved LDR Observed LDr+ Unobserved LDr+
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Figure 4: We present (a) feature distance, (b) feature angle distance, (c) and feature norm difference from 𝜽
𝑔

𝑟−1
to 𝜽 𝑖𝑟 for observed

and unobserved classes by training with LDR and LDr+.

drift towards observed classes, and hence, we expect it to enhance

overall generalization.

3.3 Effect of Feature Distillation
Our findings from subsection 3.1 indicate that LDR is unsuitable

for the heterogeneous FL environment. This is primarily because

there is a notable gap in how features align with the fixed clas-

sifier between O𝑖 and U𝑖
. To assess the effect of feature distilla-

tion (LFD), which imposes a constraint on the feature distance

∥ 𝑓 (𝑥 ;𝜽 𝑖𝑟 ) − 𝑓 (𝑥 ;𝜽
𝑔

𝑟−1
)∥2 for 𝑥 ∈ O𝑖 , we measure this distance for

both O𝑖 andU𝑖
from the models trained with LDR and LDr+. We

additionally analyze the angle distance, ∠(𝑓 (𝑥 ;𝜽 𝑖𝑟 ), 𝑓 (𝑥 ;𝜽
𝑔

𝑟−1
)), and

feature norm difference, ∥ 𝑓 (𝑥 ;𝜽 𝑖𝑟 )∥2 − ∥ 𝑓 (𝑥 ;𝜽
𝑔

𝑟−1
)∥2, as these fac-

tors influence the feature distance. These values are averaged over

the selected client set S𝑟 .
Feature distillation stabilizes the feature dynamics. By adding
LFD, as revealed in Figure 4a, the local model trained with LDr+

shows a reduction in feature distance for observed classes, com-

pared to the model trained with LDR. This reduction happens even

for unobserved classes. As demonstrated in Figure 4b and Figure 4c,

reduction of feature distance originates from reducing the feature

angle distance and feature norm difference for both class sets. In

both localmodels trainedwithLDR andLDr+, there is a trendwhere

the angle is significantly larger forU𝑖
than for O𝑖 (Figure 4b), while

the norm difference is smaller forU𝑖
than for O𝑖 (Figure 4c). This

large angle distance ofU𝑖
leads to the degradation of the feature-

classifier alignment. By minimizing the angle distance via feature

distillation, the global model’s accuracy improved substantially,

rising from 42.52% with LDR to 48.69%with LDr+.

Stabilized features enhance alignment and accuracy. We con-

firm that feature distillation term LFD stabilizes feature dynamics

for both O𝑖 and U𝑖
, enhancing the global model’s capabilities.

While the feature difference is stabilized via LFD, it is essential to

verify whether this leads to improved alignment and accuracy.

In Figure 5, we examine in both aspects and illustrate the training

curve. Our proposed algorithm, i.e., LDr+, demonstrates superior

performance for bothO𝑖 andU𝑖
in terms of alignment and accuracy.
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Figure 5: Comparison of
alignment/accuracy on the
observed and unobserved
classes test data for 𝜽 𝑖𝑟
trained with LDR and LDr+.

Notably, even with the addition

of a term to the dot-regression

loss, alignment is improved. We

attribute this improvement to the

enhanced knowledge of the global

model, which is preserved by pre-

venting the forgetting of previ-

ously trained knowledge. Even

though the proposed regularizer

demonstrates a reasonable regu-

larizing effect, one question re-

mains: “Is it superior to other pre-
viously used regularizers?”

3.4 Different FL Algorithms and Regularizers
We answer the above question by evaluating the synergy effect of

various FL algorithms by maintaining their original training loss

and incorporating specific regularizers, as suggested in Equation 1.

Our study includes FedAvg [36] without classifier freezing and

other advanced frameworks such as FedBABU [38], SphereFed [8],

FedETF [33], and dot-regression, all of which update local models

while freezing the classifier. In addition to the FD regularizer, we

consider regularizers such as Prox [31] to constrain the distance

between local and global model parameters, and several logit-based

regularizers—KD [16], NTD [25, 48], and LD [23]—to keep logit-

related measurement of local models from deviating significantly

from that of the global model. Specifically, KD applies the softened

softmax probability from the logit vector, NTD does the same but

excludes the true class dimension, and LD distills the entire logit

vector. Table 1 demonstrates that FedDr+ (dot-regression + FD)
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Table 2: Accuracy comparison in the GFL setting. The entries are based on results obtained from three different seeds, indicating
the mean and standard deviation of the accuracy of the global model, represented as X±Y. The best performance in each case is
highlighted in bold.

NIID Partition Strategy: Sharding NIID Partition Strategy: LDA

MobileNet on CIFAR-100 VGG on CIFAR-10 MobileNet on CIFAR-100 VGG on CIFAR-10

Algorithm 𝑠=10 𝑠=20 𝑠=50 𝑠=100 𝑠=2 𝑠=5 𝑠=10 𝛼=0.05 𝛼=0.1 𝛼=0.2 𝛼=0.3 𝛼=0.1 𝛼=0.2 𝛼=0.3

FedAvg [36] 36.63± 0.22 42.25± 1.42 45.57± 0.22 48.20± 1.36 72.08± 0.67 81.53± 0.35 82.38± 0.40 35.58± 1.35 42.10± 0.60 44.78± 0.72 45.73± 0.88 68.71± 1.82 77.75± 0.26 80.76± 0.51

SCAFFOLD [21] (×2) 46.08± 0.37 48.15± 1.21 49.31± 0.62 50.73± 0.42 75.49± 0.42 84.14± 0.13 85.11± 0.29 40.54± 0.48 46.14± 0.70 47.98± 0.93 48.06± 1.08 (Failed) 80.15± 0.29 82.63± 0.23

FedNTD [25] 34.05± 1.19 41.78± 0.31 46.42± 0.63 47.17± 0.32 72.21± 0.59 69.96± 17.10 81.99± 0.42 31.78± 3.14 40.41± 0.96 43.10± 2.03 43.04± 0.82 70.22± 0.40 77.16± 0.20 79.50± 0.56

FedExP [20] 36.85± 0.11 42.49± 1.22 45.07± 0.92 48.09± 1.00 72.31± 0.60 81.41± 0.19 82.47± 0.16 34.39± 1.77 40.85± 1.32 44.47± 0.28 45.44± 0.14 70.14± 0.53 78.09± 0.21 80.40± 0.54

FedBABU [38] 45.97± 0.48 45.53± 0.79 46.52± 0.51 46.02± 0.28 71.99± 0.52 81.07± 0.60 82.32± 0.06 41.97± 1.01 45.77± 0.28 44.28± 0.45 44.80± 0.63 65.15± 3.66 77.03± 0.25 79.91± 0.13

SphereFed [8] 42.71± 0.65 48.63± 0.90 52.16± 0.22 53.41± 0.19 76.33± 0.33 83.67± 0.18 84.36± 0.30 39.56± 0.48 46.54± 0.58 49.41± 0.78 49.22± 0.86 67.49± 3.49 80.05± 0.40 82.62± 0.66

FedETF [33] 31.37± 0.72 42.22± 0.77 47.47± 0.67 49.00± 0.74 67.81± 0.94 80.78± 0.68 82.60± 0.46 40.71± 0.90 45.63± 0.33 46.28± 1.05 46.69± 0.87 70.75± 0.36 77.86± 0.46 79.95± 0.34

FedDr+ (Ours) 48.21± 0.56 50.77± 0.14 52.15± 0.03 52.41± 0.81 76.57± 0.51 83.22± 0.34 84.14± 0.27 45.12± 1.00 49.48± 0.50 50.67± 0.88 51.15± 0.65 72.07± 2.26 80.90± 0.02 82.42± 0.10

achieves the best performance. Generally, Prox tends to be less ef-

fective than logit-based regularizers, which are often outperformed

by FD across most algorithms. This is because, as noted in subsec-

tion 3.2, with the frozen classifier, features are expected to have

rich information to mitigate the drift. Prox uniformly regularizes

all data instances, whereas logit and feature regularizers adapt to

both model parameters and data instances, offering more refined

control. Specifically, FD regularizer, with its higher dimensional-

ity, captures the global model’s information more precisely than

logit-based ones, resulting in better synergy.

4 EXPERIMENTS AND RESULTS
In this section, we present the experimental results of FedDr+,
specifically focusing on global federated learning (GFL). Further-

more, a comprehensive evaluation of FedDr+, including personal-

ized federated learning (PFL) results, analyses of hyper-parameters

such as local epochs, client sampling ratio, the effect of different

𝛽 values in FedDr+, and the elapsed time results, is detailed in

Appendix D.

4.1 Experimental Setup
Dataset and models. To simulate a realistic FL scenario involv-

ing 100 clients, we conduct extensive studies on two widely used

datasets: CIFAR-10 and CIFAR-100 [24]. For CIFAR-10, we employ

VGG11 [42], while for CIFAR-100, MobileNet [17] is used. The train-

ing data is distributed among 100 clients using sharding and the

LDA (Latent Dirichlet Allocation) partition strategies. Following

the convention, sharding distributes the data into non-overlapping

shards of equal size, each shard encompassing
|𝐷train |
100×𝑠 and

|𝐷test |
100×𝑠

samples per class, where 𝑠 denotes the number of shards per client.

On the other hand, LDA involves sampling a probability vector

from Dirichlet distribution, 𝑝𝑐 = (𝑝𝑐,1, 𝑝𝑐,2, · · · , 𝑝𝑐,100) ∼ Dir(𝛼),
and allocating a proportion 𝑝𝑐,𝑘 of instances of class 𝑐 ∈ [𝐶] to
each client 𝑘 ∈ [100]. Smaller values of 𝑠 and 𝛼 increase the level

of data heterogeneity.

Implementation details. In each round of communication, a frac-

tion of clients equal to 0.1 is randomly selected to participate in

the training process. The total number of communication rounds

is 320. The initial learning rate and the number of local epochs for

CIFAR-10 and CIFAR-100 are determined through grid searches,

with the detailed process and results provided in Appendix C. The

learning rate 𝜂 is decayed by a factor of 0.1 at the 160th and 240th

communication rounds. The number of local epochs is set to 10 for

CIFAR-10 and 3 for CIFAR-100 in the main experiments.

4.2 Global Federated Learning Results
We compare FedDr+ with a range of GFL algorithms, consider-

ing both non-freezing and freezing classifier approaches. Among

non-freezing classifiers, FedDr+ competes with FedAvg [36], SCAF-

FOLD [21], FedNTD [25], and FedExP [20]. FedDr+ is also evalu-

ated against freezing classifier algorithms such as FedBABU [38],

SphereFed [8], and FedETF [33]. Among the baseline algorithms,

SCAFFOLD incurs a communication cost two times higher per

round, denoted as (×2). Our experiments encompass heterogeneous

settings involving sharding and LDA non-IID environments.

Table 2 summarizes the accuracy comparison between the state-

of-the-art GFL methods and FedAvg under various conditions.

While specific methods demonstrated effectiveness in particular

scenarios, some of these frequently underperformed relative to the

robustness of FedAvg. For example, SCAFFOLD shown strong per-

formance in the less heterogeneous sharding setting on CIFAR-10;

however, it failed in model training under the highly heteroge-

neous LDA condition with 𝛼 = 0.1. Notably, FedDr+ consistently

exceeded all baseline methods in performance across diverse ex-

perimental conditions and often achieved state-of-the-art results.

FedDr+ demonstrated exceptional performance in highly hetero-

geneous FL environments, particularly excelling in the CIFAR-100

LDA configuration with 𝛼 = 0.05, achieving a notable 3.15% im-

provement over all baseline models.

5 CONCLUSION
Motivated by the recent FL methods enhancing feature alignment

with a fixed classifier, we first investigate the effects of applying dot-

regression loss for FL. Since the dot-regression is the most direct

method for feature-classifier alignment, we find it improves align-

ment and accuracy in local models but degrades the performance

of the global model. This happens because local clients trained with

dot-regression tend to forget classes that have not been observed.

To address this, we propose FedDr+, combining dot-regression

with a feature distillation method. By regularizing the deviation

of local features from global features, FedDr+ allows local models

to maintain knowledge about all classes during training, thereby

ultimately preserving general knowledge of the global model. Our

method achieves top performance in FL experiments, even when

data is distributed unevenly across devices (non-IID settings).
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- Appendix -

FedDr+: Stabilizing Dot-regression with Global Feature Distillation for Federated Learning

We organized notations at Appendix A. In Appendix B, we show the pulling and pushing gradients of the CE loss in detail. Then, we

elucidate the experimental setup in Appendix C, encompassing dataset description, model specifications, NIID partition, and hyperparameter

search. In Appendix D, We present additional experimental results of PFL, sensitivity analysis, and elapsed time measurement.

A NOTATIONS
Table 3: Notations used throughout the paper.

Indices
𝑐 ∈ [𝐶] Index for a class

𝑟 ∈ [𝑅] Index for FL round

𝑖 ∈ [𝑁 ] Index for a client

Dataset
𝐷𝑖
train

Training dataset for client 𝑖

𝐷𝑖
test

Test dataset for client 𝑖

(𝑥,𝑦) ∈ 𝐷𝑖
train,test

; (𝑥,𝑦) ∼ D𝑖
Data on client 𝑖 sampled from distribution D𝑖

(𝑥 : input data, 𝑦: class label)

O𝑖 Dataset consists of observed classes in client 𝑖

U𝑖
Dataset consists of unobserved classes in client 𝑖

Parameters
𝜽 Feature extractor weight parameters

𝑽 = [𝑣1, . . . , 𝑣𝐶 ] ∈ R𝐶×𝑑 Classifier weight parameters (frozen during training)

𝑣𝑐 , 𝑐 ∈ [𝐶] 𝑐-th row vector of 𝑽
𝚯 = (𝜽 , 𝑽 ) All model parameters

𝚯
𝑔
𝑟 = (𝜽𝑔𝑟 , 𝑽 ) Aggregated global model parameters at round 𝑟

𝚯
𝑖
𝑟 = (𝜽 𝑖𝑟 , 𝑽 ) Trained model parameters on client 𝑖 at round 𝑟

Model Forward
𝑝 (𝑥 ;𝜽 ) ∈ R𝐶 Softmax probability of input 𝑥

𝑝𝑐 (𝑥 ;𝜽 ), 𝑐 ∈ [𝐶] 𝑐-th element of 𝑝 (𝑥 ;𝜽 )
LCE (𝑥 ;𝜃 ) = − log 𝑝𝑦 (𝑥 ;𝜽 ) Cross-entropy loss of input 𝑥

𝑓 (𝑥 ;𝜽 ) ∈ R𝑑 Feature vector of input 𝑥

𝑧 (𝑥 ;𝜽 ) = 𝑓 (𝑥 ;𝜽 )𝑽⊤ ∈ R𝐶 Logit vector of input 𝑥

𝑧𝑐 (𝑥 ;𝜽 ), 𝑐 ∈ [𝐶] 𝑐-th element of 𝑧 (𝑥 ;𝜽 )
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B PRELIMINARIES: PULLING AND PUSHING FEATURE GRADIENTS IN CE
In this section, we first calculate the classifier gradient for features and introduce the pulling and pushing effects of the cross-entropy

objective.

B.1 Feature Gradient of LCE
We first provide two lemmas supporting Proposition 1, explaining the behavior of pulling and pushing feature gradients in the cross-entropy

(CE) loss.

Lemma 1. For all 𝑐, 𝑐′ ∈ [𝐶], 𝜕𝑝𝑐′ (𝑥 ;𝜽 )
𝜕𝑧𝑐 (𝑥 ;𝜽 ) =

{
𝑝𝑐 (𝑥 ;𝜽 ) · (1 − 𝑝𝑐 (𝑥 ;𝜽 )) if 𝑐 = 𝑐′

−𝑝𝑐 (𝑥 ;𝜽 ) · 𝑝𝑐′ (𝑥 ;𝜽 ) else
.

Proof. Note that 𝑝 (𝑥 ;𝜽 ) =
[

exp(𝑧 𝑗 (𝑥 ;𝜽 ) )∑𝐶
𝑖=1

exp(𝑧𝑖 (𝑥 ;𝜽 ) )

]𝐶
𝑗=1

∈ R𝐶 . Then,

(i) 𝑐 = 𝑐′ case:

𝜕𝑝𝑐 (𝑥 ;𝜽 )
𝜕𝑧𝑐 (𝑥 ;𝜽 ) =

𝜕

𝜕𝑧𝑐 (𝑥 ;𝜽 )

{
exp(𝑧𝑐 (𝑥 ;𝜽 ))∑𝐶
𝑖=1

exp(𝑧𝑖 (𝑥 ;𝜽 ))

}

=

exp(𝑧𝑐 (𝑥 ;𝜽 ))
(∑𝐶

𝑖=1
exp(𝑧𝑖 (𝑥 ;𝜽 ))

)
− exp(𝑧𝑐 (𝑥 ;𝜽 ))2(∑𝐶

𝑖=1
exp(𝑧𝑖 (𝑥 ;𝜽 ))

)
2

= 𝑝𝑐 (𝑥 ;𝜽 ) − 𝑝𝑐 (𝑥 ;𝜽 )2 = 𝑝𝑐 (𝑥 ;𝜽 ) (1 − 𝑝𝑐 (𝑥 ;𝜽 )).

(ii) 𝑐 ≠ 𝑐′ case:

𝜕𝑝𝑐′ (𝑥 ;𝜽 )
𝜕𝑧𝑐 (𝑥 ;𝜽 ) =

𝜕

𝜕𝑧𝑐 (𝑥 ;𝜽 )

{
exp(𝑧𝑐′ (𝑥 ;𝜽 ))∑𝐶
𝑖=1

exp(𝑧𝑖 (𝑥 ;𝜽 ))

}
=
− exp(𝑧𝑐 (𝑥 ;𝜽 )) exp(𝑧𝑐′ (𝑥 ;𝜽 ))(∑𝐶

𝑖=1
exp(𝑧𝑖 (𝑥 ;𝜽 ))

)
2

= −𝑝𝑐 (𝑥 ;𝜽 )𝑝𝑐′ (𝑥 ;𝜽 ) .

□

Lemma 2. ∇𝑧 (𝑥 ;𝜽 )LCE (𝑥,𝑦;𝜽 ) = 𝑝 (𝑥 ;𝜽 ) − e𝑦 , where e𝑦 ∈ R𝐶 is the unit vector with its 𝑦-th element as 1.

Proof.

𝜕LCE (𝑥,𝑦;𝜽 )
𝜕𝑧𝑐 (𝑥 ;𝜽 ) = − 𝜕

𝜕𝑧𝑐 (𝑥 ;𝜽 ) log𝑝𝑦 (𝑥 ;𝜽 ) = − 1

𝑝𝑦 (𝑥 ;𝜽 )
𝜕𝑝𝑦 (𝑥 ;𝜽 )
𝜕𝑧𝑐 (𝑥 ;𝜽 )

(⋆)
=

{
𝑝𝑐 (𝑥 ;𝜽 ) − 1 if 𝑐 = 𝑦

𝑝𝑐 (𝑥 ;𝜽 ) else

= 𝑝𝑐 (𝑥 ;𝜽 ) − 1{𝑐 = 𝑦}.

Note that (⋆) holds by the Lemma 1. Therefore, the desired result is satisfied. □

Proposition 1. Given (𝑥,𝑦), the gradient of the LCE with respect to 𝑓 (𝑥 ;𝜽 ) is given by:

∇𝑓 (𝑥 ;𝜽 )LCE (𝑥,𝑦;𝜽 ) = −(1 − 𝑝𝑦 (𝑥 ;𝜽 ))𝑣𝑦 +
∑︁

𝑐∈[𝐶 ]\{𝑦}
𝑝𝑐 (𝑥 ;𝜽 )𝑣𝑐 . (2)
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Proof.

∇𝑓 (𝑥 ;𝜽 )LCE (𝑥,𝑦;𝜽 )
(♣)
=

[
∇𝑓 (𝑥 ;𝜽 )𝑧1 (𝑥 ;𝜽 ) | · · · |∇𝑓 (𝑥 ;𝜽 )𝑧𝐶 (𝑥 ;𝜽 )

]
∇𝑧 (𝑥 ;𝜽 )LCE (𝑥,𝑦;𝜽 )

=

𝐶∑︁
𝑐=1

𝜕LCE (𝑥,𝑦;𝜽 )
𝜕𝑧𝑐 (𝑥 ;𝜽 ) ∇𝑓 (𝑥 ;𝜽 )𝑧𝑐 (𝑥 ;𝜽 )

=
𝜕LCE (𝑥,𝑦;𝜽 )
𝜕𝑧𝑦 (𝑥 ;𝜽 ) ∇𝑓 (𝑥 ;𝜽 )𝑧𝑦 (𝑥 ;𝜽 ) +

∑︁
𝑐∈[𝐶 ]\{𝑦}

𝜕LCE (𝑥,𝑦;𝜽 )
𝜕𝑧𝑐 (𝑥 ;𝜽 ) ∇𝑓 (𝑥 ;𝜽 )𝑧𝑐 (𝑥 ;𝜽 )

=
𝜕LCE (𝑥,𝑦;𝜽 )
𝜕𝑧𝑦 (𝑥 ;𝜽 ) 𝑣𝑦 +

∑︁
𝑐∈[𝐶 ]\{𝑦}

𝜕LCE (𝑥,𝑦;𝜽 )
𝜕𝑧𝑐 (𝑥 ;𝜽 ) 𝑣𝑐

(♠)
= −(1 − 𝑝𝑦 (𝑥 ;𝜽 ))𝑣𝑦 +

∑︁
𝑐∈[𝐶 ]\{𝑦}

𝑝𝑐 (𝑥 ;𝜽 )𝑣𝑐 .

Employing the chain rule for (♣) and invoking Lemma 2 for (♠) confirms the result.

□

B.2 Physical Meaning of ∇𝑓 (𝑥 ;𝜃 )LCE(𝑥,𝑦;𝜃 )
Note that ∇𝑓 (𝑥 ;𝜽 )LCE (𝑥,𝑦;𝜽 ) has two components: F

Pull
= (1 − 𝑝𝑦 (𝑥 ;𝜽 ))𝑣𝑦 and F

Push
= −∑𝑐∈[𝐶 ]\{𝑦} 𝑝𝑐 (𝑥 ;𝜽 )𝑣𝑐 . FPull adjusts the feature

vector in the positive direction of the actual class index’s classifier vector 𝑣𝑦 , guiding alignment towards 𝑣𝑦 . Conversely, FPush adjusts the

feature vector in the negative direction of the vectors in the not-true class set [𝐶] \ {𝑦}, inducing misalignment towards 𝑣𝑐 for 𝑐 ∈ [𝐶] \ {𝑦}.

C EXPERIMENTAL SETUP
C.1 Code Implementation
Our implementations are conducted using the PyTorch framework. Specifically, the experiments presented in Table 2 are executed on a single

NVIDIA RTX 3090 GPU, based on the code structure from the following repository: https://github.com/Lee-Gihun/FedNTD. The other parts

of our study are carried out on a single NVIDIA A5000 GPU, utilizing the code framework from https://github.com/jhoon-oh/FedBABU.

C.2 Datasets, Model, and Optimizer
To simulate a realistic FL scenario, we conduct extensive studies on two widely used datasets: CIFAR-10 and CIFAR-100 [24]. A momentum

optimizer is utilized for all experiments. Unless otherwise noted, the basic setting of our experiments follows the dataset statistics, FL

scenario specifications, and optimizer hyperparameters summarized in Table 4.

Table 4: Summary of Dataset, Model, FL System, and Optimizer Specifications

Datasets 𝐶 |𝐷train | |𝐷test | 𝑁 𝑅 𝑟 𝐸 𝐵 𝑚 𝜆

CIFAR-10 10 50000 10000 100 320 0.1 10 50 0.9 1e-5

CIFAR-100 100 50000 10000 100 320 0.1 3 50 0.9 1e-5

Note: In terms of dataset information, 𝐶 represents the number of classes in the dataset, with |𝐷train | and |𝐷test | indicating the total

numbers of training and test data used, respectively. For the federated learning (FL) system specifics, 𝑅 indicates the total number of FL

rounds, 𝑟 is the ratio of clients selected for each round, and 𝐸 denotes the number of local epochs. Local model training utilizes a momentum

optimizer where 𝐵 is the batch size, and𝑚 and 𝜆 represent the momentum and weight decay parameters, respectively. The initial learning

rate 𝜂 is decayed by a factor of 0.1 at the 160th and 240th communication rounds. The initial learning rate 𝜂 and batch size 𝐵 were determined

via extensive grid search for each algorithm, details outlined in Appendix C.4.

C.3 Non-IID Partition Strategies
To induce heterogeneity in each client’s training and test data (𝐷𝑖

train
, 𝐷𝑖

test
), we distribute the entire class-balanced datasets, 𝐷train and 𝐷test,

among 100 clients using both sharding and Latent Dirichlet Allocation (LDA) partitioning strategies:

• Sharding [36, 38]: We organize the 𝐷train and 𝐷test by label and divide them into non-overlapping shards of equal size. Each shard

encompasses
|𝐷train |
100×𝑠 and

|𝐷test |
100×𝑠 samples of the same class, where 𝑠 denotes the number of shards per client. This sharding technique is

https://github.com/Lee-Gihun/FedNTD
https://github.com/jhoon-oh/FedBABU
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Table 5: Hyperparameters for VGG11 training on CIFAR-10.

Feature un-normalized algorithms Feature normalized algorithms

Hyperparameters FedAvg FedBABU SCAFFOLD FedNTD FedExP FedETF SphereFed FedDr+ (Ours)

𝜂 0.01 0.01 0.01 0.01 0.01 0.05 0.55 0.35

Additional None None None (𝛽, 𝜏 )=(1,3) 𝜖=0.001 (𝛽, 𝜏 )=(1,1) None 𝛽=0.9

Table 6: Hyperparameters for MobileNet training on CIFAR-100.

Feature un-normalized algorithms Feature normalized algorithms

Hyperparameters FedAvg FedBABU SCAFFOLD FedNTD FedExP FedETF SphereFed FedDr+ (Ours)

𝜂 0.1 0.1 0.1 0.1 0.1 0.5 6.5 5.0

Additional None None None (𝛽, 𝜏 )=(1,3) 𝜖=0.001 (𝛽, 𝜏 )=(1,1) None 𝛽=0.9

used to create 𝐷𝑖
train

and 𝐷𝑖
test

, which are then distributed to each client 𝑖 , ensuring that each client has the same number of training and

test samples. The data for each client is disjoint. As a result, each client has access to a maximum of 𝑠 different classes. Decreasing the

number of shards per user 𝑠 increases the level of data heterogeneity among clients.

• Latent Dirichlet Allocation (LDA) [35, 43]: We utilize the LDA technique to create 𝐷𝑖
train

from 𝐷train. This involves sampling a

probability vector 𝑝𝑐 = (𝑝𝑐,1, 𝑝𝑐,2, · · · , 𝑝𝑐,100) ∼ Dir(𝛼) and allocating a proportion 𝑝𝑐,𝑘 of instances of class 𝑐 ∈ [𝐶] to each client

𝑘 ∈ [100]. Here, 𝐷𝑖𝑟 (𝛼) represents the Dirichlet distribution with the concentration parameter 𝛼 . The parameter 𝛼 controls the strength

of data heterogeneity, with smaller values leading to stronger heterogeneity among clients. For 𝐷𝑖
test

, we randomly sample from 𝐷test to

match the class frequency of 𝐷𝑖
train

and distribute it to each client 𝑖 .

C.4 Hyperparameter Search for 𝜂 and 𝐸

To optimize the initial learning rate (𝜂) and the number of local epochs (𝐸) for our algorithm, we conduct a grid search on the CIFAR-10 and

CIFAR-100 datasets. The process and reasoning are outlined below.

Rationale for varying initial learning rate (𝜂). The algorithms used in our experiments differ in handling feature normalization

within the loss function. Some algorithms apply feature normalization, while others do not. When features 𝑓 (𝑥 ;𝜽 ) are normalized, the

resulting gradient is scaled by
1

∥ 𝑓 (𝑥 ;𝜽 ) ∥2 . This scaling effect necessitates a grid search across various learning rates to account for the

differences in learning behavior.

Rationale for varying local epochs (𝐸). In FL, choosing the appropriate number of local epochs is crucial. Too few epochs can lead to

underfitting, while too many can cause client drift. Therefore, finding the optimal number of local epochs is essential by exploring a range of

values.

Grid search process and results. Considering the above reasons, we perform grid search for 𝜂 and 𝐸 on CIFAR-10 and CIFAR-100

datasets. The grid search for CIFAR-10 uses a shard size of 2, while for CIFAR-100, a shard size of 10 is used. The detailed procedures for each

dataset are provided below. These optimal settings have also been confirmed to yield good performance in less heterogeneous settings.

• CIFAR-10: We examine 𝜂 values from {0.01, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6}. For 𝐸, we consider {1, 3, 5, 10,

15}. The optimal learning rates vary by algorithm, and the results are summarized in Table 5. Table 5 also includes the additional

hyperparameters used for each algorithm. The notation for these additional hyperparameters follows the conventions used throughout

this paper. The optimal number of local epochs is found to be 10 for every algorithm.

• CIFAR-100: We examine 𝜂 values from {0.1, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 6.5, 7.0}. A default initial learning rate of

0.1 is used unless specified otherwise. The optimal learning rates differ by algorithm, and the results are listed in Table 6. Table 6 also

includes the additional hyperparameters used for each algorithm. The notation for these additional hyperparameters follows the

conventions used throughout this paper. The optimal number of local epochs is found to be 3 for every algorithm.
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D ADDITIONAL EXPERIMENT RESULTS
D.1 Personalized Federated Learning Results
Table 7: PFL accuracy comparison withMobileNet on CIFAR-100. For PFL, we denote the entries in the form of X±(Y), representing
the mean and standard deviation of personalized accuracies across all clients derived from a single seed.

Algorithm 𝑠=10 𝑠=20 𝑠=100 𝛼=0.05 𝛼=0.1 𝛼=0.3

Local only (LCE) 58.05±(8.11) 42.45±(6.44) 18.69±(3.28) 55.39±(8.79) 43.76±(7.46) 27.75±(5.32)

Local only (LCE+ETF) 58.01±(7.34) 41.62±(5.91) 18.92±(3.00) 55.34±(9.13) 43.37±(7.12) 27.87±(5.34)

Local only (LDR) 60.68±(7.77) 44.61±(6.61) 20.98±(3.49) 58.56±(9.16) 46.72±(7.29) 30.88±(5.33)

FedPer [1] 70.67±(7.19) 57.27±6.66 24.30±(4.34) 62.67±(7.65) 53.43±(6.60) 35.68±(4.82)

Per-FedAvg [9] 32.13±(10.90) 36.66±(8.86) 41.27±(7.43) 28.81±(8.68) 35.56±(6.56) 42.80±(4.76)

FedRep [7] 63.14±(7.63) 51.69±(6.50) 26.31±(4.74) 57.53±(8.05) 49.60±(6.25) 37.00±(4.82)

Ditto [30] 39.26±(14.43) 38.18±(9.96) 44.53±(5.08) 35.81±(14.83) 37.81±(11.80) 43.72±(5.12)

FedAvg-FT [36] 69.81±(6.78) 56.13±(5.77) 47.66±(5.20) 63.37±(9.28) 56.79±(5.96) 50.12±(3.67)

FedBABU-FT [38] 80.14±(6.25) 70.89±(5.60) 52.14±(5.09) 75.50±(6.40) 70.83±(5.06) 56.91±(3.74)

SphereFed-FT [8] 81.90±(5.86) 71.56±(5.78) 55.83±(4.67) 73.21±(7.08) 70.00±(5.09) 60.03±(3.99)

FedETF-FT [33] 53.75±(7.35) 52.94±(5.71) 51.69±(5.03) 52.96±(8.01) 53.97±(5.40) 51.67±(3.83)

FedDr+ FT (ours) 84.10±(5.43) 75.42±(4.80) 56.76±(4.91) 78.55±(6.16) 74.75±(4.75) 62.16±(3.73)

We introduce FedDr+ FT, inspired by prior work [8, 22, 33, 38], which enhances personalization by leveraging local data to fine-tune the

global federated learning (GFL) model. We fine-tune the FedDr+ GFL model using LDr+ to create FedDr+ FT, i.e., 2-step approach. For a

comprehensive analysis, we compare FedDr+ FT with existing personalized federated learning (PFL) methods, including 1-step approaches,

i.e., creating PFL models from scratch, such as FedPer [1], Per-FedAvg [9], FedRep [7], and Ditto [30], as well as 2-step methods such as

FedAVG-FT, FedBABU-FT [38], SphereFed-FT [8], and FedETF-FT [33]. Additionally, we compare these methods with various simple local

models that have not undergone federated learning: (1) Local only (LCE), trained with LCE, (2) Local only (LCE +ETF), trained with LCE

and initializing the classifier with an ETF classifier, and (3) Local only (LDR), trained using LDR.

In Table 7, we first compare the performance of simple local models in PFL by examining LDR and LCE. While methods using LCE

show no significant differences, utilizing LDR leads to substantial performance improvements in PFL across all settings. The “Local only

(LCE)” and “Local only (LCE +ETF)” methods exhibit similar performance due to the nearly classwise orthogonal nature of randomly

initialized classifiers [11, 14, 26, 38, 41]. With a large number of classes (𝐶=100), the ETF classifier, which is also nearly classwise orthogonal,

performs similarly to random initialization. When comparing FedDr+ FT with other 2-step methods, FedDr+ FT consistently demonstrates

superior performance. This aligns with previous research [3, 37] suggesting that fine-tuning from a well-initialized model yields better PFL

performance. Additionally, compared with 1-step algorithms, FedDr+ FT continues to show superiority, outperforming all baseline methods

across all settings.

D.2 Evaluating Dot-Regression and FedDr+ for Personalized Federated Learning

Table 8: PFL accuracy comparison based on dot-regression and FedDr+ with MobileNet on CIFAR-100. For PFL, we denote the
entries in the form of X±(Y), representing the mean and standard deviation of personalized accuracies across all clients, derived
from a single seed.

Algorithm 𝑠=10 𝑠=20 𝑠=100 𝛼=0.05 𝛼=0.1 𝛼=0.3

Dot-Regression 42.52 49.02 52.86 30.31±7.95 37.52±5.60 47.08±3.69

Dot-Regression FT (LDR) 80.84±(5.99) 74.18±(5.78) 56.84±(5.04) 72.02±(6.80) 66.96±(5.36) 60.34±(3.66)

Dot-Regression FT (LDr+) 80.82±(6.12) 73.73±(5.75) 56.69±(4.95) 71.85±(7.03) 66.59±(5.32) 59.87±(3.65)

FedDr+ (ours) 48.69 51.00 53.23 39.63±9.12 45.83±6.18 48.04±3.44

FedDr+ FT (LDR) (ours) 84.23±(5.44) 75.73±(4.79) 56.90±(4.85) 78.65±(6.17) 74.86±(4.77) 62.47±(3.72)
FedDr+ FT (LDr+) (ours) 84.10±(5.43) 75.42±(4.80) 56.76±(4.91) 78.55±(6.16) 74.75±(4.75) 62.16±(3.73)

We introduce FedDr+ FT and dot-regression FT, inspired by prior work [8, 22, 33, 38]. These methods enhance personalization by

leveraging local data to fine-tune the GFL model. We investigate the impact of fine-tuning using LDr+ and LDR loss for each GFL model to

assess their effectiveness on personalized accuracy. Performance metrics without standard deviations indicate results on 𝐷test, obtained from

the GFL model after the initial step in the 2-step method. Our experiments involve heterogeneous settings with sharding and LDA non-IID

environments, using MobileNet on CIFAR-100 datasets. We set 𝑠 as 10, 20, and 100, and the LDA concentration parameter (𝛼) as 0.05, 0.1, and

0.3. Table 8 provides detailed personalized accuracy results.
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Our 2-step process involves first developing the GFL model either using dot-regression or FedDr+. In the second step, we fine-

tune this model to create the PFL model, again using LDR or LDr+. This results in four combinations: Dot-Regression FT (LDR), Dot-

Regression FT (LDr+), FedDr+ FT (LDR), and FedDr+ FT (LDr+). When the GFL model is fixed, using LDR for fine-tuning consistently

outperforms LDr+ across all settings, because dot-regression focuses on local alignment which advantages personalized fine-tuning. Con-

versely, when the fine-tuning method is fixed, employing LDr+ for the GFL model consistently outperforms LDR across all settings. This

aligns with previous research [3, 37] suggesting that fine-tuning from a well-initialized model yields better PFL performance.

D.3 Sensitivity Analysis
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Figure 6: Performance of baselines and FedDr+ on CIFAR-100 (𝛼=0.1 and 𝑠=10) with various analyses: (a) client sampling ratio,
(b) the number of local epochs, and (c) sensitivity to 𝛽 .

We explore the impact of varying client sampling ratio and local epochs on performance, as well as the effect of different 𝛽 values in

FedDr+, as detailed in Figure 6. All experiments are conducted on MobileNet using the CIFAR-100 dataset with sharding (𝑠=10) and LDA

(𝛼=0.1).

Effect of client sampling ratio and local epochs.We evaluate the sensitivity of hyperparameters in FedDr+ by comparing it to

baselines under varying client sampling ratio and local epochs, starting from the default setting of client sampling ratio of 0.1 and local

epoch of 3. Compared to FedAvg (without classifier freezing), FedBABU and SphereFed (all with classifier freezing) show performance

improvements with increasing fraction ratios, but FedDr+ consistently outperforms the baselines. The number of local epochs is crucial in

FL; too few epochs result in underfitting, while too many cause client drift, degrading global model performance. The default setting of local

epochs 3 is optimal for all baselines, with FedDr+ achieving the best performance. Although performance generally declines when deviating

from this peak point, FedDr+ remains the best or highly competitive.

Weight ratio 𝛽 analysis.We analyze the effect of scaling parameter in FedDr+ by varying 𝛽 while keeping other hyperparameters

constant. The performance is evaluated for 𝛽 ∈ {0, 0.1, 0.3, 0.5, 0.7, 0.9, 1.0}. When 𝛽 = 0, only feature distillation is applied, and when 𝛽 = 1,

only dot-regression is used. 𝛽 ∈ {0, 1} are generally less effective, whereas 𝛽 ∈ {0.3, 0.5, 0.7, 0.9} show consistently good performance,

indicating a balanced approach is beneficial.

D.4 Elapsed Time Results
Table 9: Elapsed time per round (in seconds) for various GFL algorithms.

Non-feature normalized algorithms Feature normalized algorithms

FedAvg FedBABU SCAFFOLD FedNTD FedExP FedETF SphereFed FedDr+ (Ours)

Elapsed time 21.3 20.9 22.3 22.9 20.3 22.2 22.3 24.4

We compare FedDr+ with various GFL algorithms for the elapsed time per communication round on CIFAR-100 (𝑠=10). The results,

detailed in Table 9, show that FedDr+ exhibits a similar but slightly longer elapsed time than the other algorithms.


	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Basic Setup of FedAvg Pipeline
	2.2 Dot-Regression Loss for Feature Alignment

	3 Dot-Regression Loss Meets FL
	3.1 Impact of Dot-Regression Loss on Local and Global Models
	3.2 FedDr+: Dot-Regression and Feature Distillation for Federated Learning
	3.3 Effect of Feature Distillation
	3.4 Different FL Algorithms and Regularizers

	4 Experiments and Results
	4.1 Experimental Setup
	4.2 Global Federated Learning Results

	5 Conclusion
	References
	A Notations
	B Preliminaries: Pulling and Pushing Feature Gradients in CE
	B.1 Feature Gradient of LCE
	B.2 Physical Meaning of f(x;)LCE(x,y;)

	C Experimental Setup
	C.1 Code Implementation
	C.2 Datasets, Model, and Optimizer
	C.3 Non-IID Partition Strategies
	C.4 Hyperparameter Search for  and E

	D Additional Experiment Results
	D.1 Personalized Federated Learning Results
	D.2 Evaluating Dot-Regression and FedDr+ for Personalized Federated Learning
	D.3 Sensitivity Analysis
	D.4 Elapsed Time Results


