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Abstract

Heterogeneous temporal graphs (HTGs) are ubiquitous data structures in the real
world. Recently, to enhance representation learning on HTGs, numerous attention-
based neural networks have been proposed. Despite these successes, existing meth-
ods rely on a decoupled temporal and spatial learning paradigm, which weakens
interactions of spatio-temporal information and leads to a high model complexity.
To bridge this gap, we propose a novel learning paradigm for HTGs called Simple
and Efficient Heterogeneous Temporal Graph Neural Network (SE-HTGNN).
Specifically, we innovatively integrate temporal modeling into spatial learning
via a novel dynamic attention mechanism, which substantially reduces model
complexity while enhancing discriminative representation learning on HTGs. Ad-
ditionally, to comprehensively and adaptively understand HTGs, we leverage large
language models to prompt SE-HTGNN, enabling the model to capture the implicit
properties of node types as prior knowledge. Extensive experiments demonstrate
that SE-HTGNN achieves up to 10× speed-up over the state-of-the-art and latest
baseline while maintaining the best forecasting accuracy.

1 Introduction

Heterogeneous temporal graphs (HTGs) have been commonly used to model complex systems in the
real world, such as e-commerce networks [1–3], epidemic networks [4, 5], and traffic networks [6, 7].
While static heterogeneous graphs are characterized by diverse node types and relations among con-
nected nodes, HTGs, as shown in Figure 1 (a), extend this data structure by incorporating a temporal
dimension. Therefore, learning on HTGs necessitates not only addressing spatial heterogeneity but
also capturing the interactions among graph snapshots.

Recently, various heterogeneous dynamic graph neural networks (HDGNNs) have been proposed
and have achieved remarkable progress in learning on HTGs [8, 9]. Figure 1 (b) shows a general
framework of HDGNNs [10–13], which is characterized by performing spatial and temporal modeling
in two sequential stages. Specifically, spatial modeling step employs hierarchical (node- and relation-
level) attention-based aggregation on each graph snapshot to generate spatial representations of the
target node. Subsequently, a sequence-based module is employed to model the temporal dependencies
among these spatial representations, enabling the prediction of future representations for downstream
tasks. Such sequence-based module is typically recurrent neural network (RNN) or Transformer [14].

Despite these successes, existing HDGNNs still faced the following limitations: (1) High model
complexity leads to optimization challenges and degrades efficiency. Specifically, existing meth-
ods are incremental improvements upon prior frameworks, rather than breakthroughs, which leads
to increasingly complex architectures. For example, stacking additional attention layers and as-
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signing non-shared parameters for each graph snapshot causes the parameter size to grow lin-
early with the length of the time window, limiting the scalability and efficiency of HDGNNs.

0.4

0.6

1.0

0.3

Predict

Downstream 
Tasks

Sequence-based module (e.g., RNN)

Relation-level
Attentnion

   T+1...

0.2

0.7 0.8

t = 1

Paper 
Author

Institution 
Relation

t = T

(a) HTG (b) Heterogeneous Dynamic Graph Neural Network 

Attention
Coefficient... ...

0.6

0.4

0.5

0.5 ...
t=T

Attention Discontinuity

t=1

...
Node-level Relation-level

Attention
Node-level Relation-level

Attention

Figure 1: (a) shows a heterogeneous temporal graph (HTG). (b)
shows a general framework of attention-based HDGNNs. How-
ever, decoupled spatial-temporal modeling strategy results in atten-
tion discontinuity (attention on each graph snapshot is computed
in isolation), increasing the risk of convergence to local optima.

(2) Decoupled spatial and tem-
poral learning weakens the in-
teraction of spatio-temporal in-
formation. From the temporal
perspective, the data it receives
has already been "compressed"
by spatial modeling, rather than
comprehensive spatial informa-
tion, making it difficult to cap-
ture global spatio-temporal de-
pendencies of HTGs. From
the spatial perspective, attention-
based aggregation on each graph
snapshot is temporally agnos-
tic, which constrains the recep-
tive field of the attention mecha-
nism and leads to a phenomenon
we term attention discontinuity.
That is, attention coefficients are
computed solely based on the
current graph snapshot without referring to historical attention information, making it difficult
to capture consistent long-term patterns and increasing the risk of convergence to local optima.

To bridge this gap, this paper proposes a novel attention-based learning paradigm for HTGs called
Simple and Efficient Heterogeneous Temporal Graph Neural Network (SE-HTGNN). To address the
first challenge, we redesign the representation learning of HTGs and reduce model complexity from
two aspects. At the micro level, we simplify redundant attention layers and linear projections. At
the macro level, we integrate temporal modeling into spatial learning to reduce the learning stages.
To address the second challenge, we propose a novel dynamic attention mechanism to unify spatial
and temporal modeling. Specifically, to strengthen the spatio-temporal interactions, the dynamic
attention mechanism retains attention coefficients on historical graph snapshots to guide subsequent
spatial modeling, thereby improving the overall discriminative representations learning of HTGs.
Additionally, to comprehensively and adaptively understand HTGs, we leverage large language
models (LLMs [15, 16]) to prompt SE-HTGNN, enabling the model to capture the implicit properties
of node types as prior knowledge. We evaluate our method on several real-world HTG datasets across
various downstream tasks. Extensive experiments show that SE-HTGNN significantly outperforms
the state-of-the-art and latest baselines in both performance and efficiency.

The contributions of this work are summarized below.

• We propose a novel attention-based learning paradigm for HTGs termed SE-HTGNN. By
employing a redesigned lightweight architecture and unifying spatial-temporal modeling,
SE-HTGNN enables efficient and high-quality representation learning on HTGs.

• We propose a novel dynamic attention mechanism that retains attention information on
historical graph snapshots to generate more effective attention coefficients for subsequent
graph snapshots. In addition, we introduce LLMs to inject external knowledge into the
attention process, thereby enhancing the adaptability and performance of SE-HTGNN.

• Extensive experiments on several real-world datasets demonstrate that SE-HTGNN signifi-
cantly outperforms the state-of-the-art in performance and efficiency.

2 Related Work

Heterogeneous Graph Neural Networks. In recent years, there has been explosive growth in het-
erogeneous graph neural networks (HGNNs) [17–19], driven by the pursuit of improved performance
in various applications [20–22]. To address heterogeneity, HGNNs typically employ a hierarchical
attention mechanism during aggregation process. MAGNN [23], NIRec [24], and NDS [25] capture
neighbor features through a node-level attention (e.g., GAT [26]) and then fuse these features using
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a relation-level attention (e.g., HAN [27]). Despite the success of these approaches, hierarchical
attention has become a speed bottleneck, limiting further scalability. To enhance efficiency, some
studies have sought to simplify HGNN models. SeHGNN [28] was the first to propose the non-
necessity of node-level attention, observing that prior methods tend to assign nearly uniform attention
to all neighbors. Meanwhile, methods such as MHGCN [29] and RpHGNN [30] demonstrated
that a well-designed relation-level attention mechanism can be sufficiently effective. This may be
attributed to the fact that intra-type neighbors tend to exhibit lower variance compared to inter-type
ones. Therefore, focusing solely on the inter-level (relation-level) attention can unexpectedly yield
better performance. Although models designed for static graphs struggle to capture the complex
spatio-temporal dependencies in HTGs, these methods inspire us to redesign architectures for HTGs.

Dynamic Graph Neural Networks (DGNN). Dynamic graph structures [31, 32] have been exten-
sively explored in the literature, leading to numerous successful applications [33, 7, 34–36]. To
generalize the success of DGNN [37–39], there has been considerable research on heterogeneous
temporal graph [40, 41]. Specifically, existing heterogeneous DGNNs can be classified into two main
categories. (a) compress-based methods: HGT+ [8] and DHGAS [9], as Transformer [14] variants,
compress all graphs into a single graph for efficient representation learning. (b) snapshot-based
methods: DyHATR [11], HTGNN [12], and CasMLN [13] conduct fine-grained spatial learning on
each snapshot graph separately, followed by temporal modeling of these spatial representations.

Despite these successes, both types of methods have inherent limitations. For (a) methods, compress-
ing snapshots results in structural information loss and incurs high GPU memory costs, making it
difficult to handle large-scale HTGs datasets. For (b) methods, the challenges lie in the slow training
speed due to the multiple learning steps (e.g., hierarchical attention and decoupled spatio-temporal
modeling) and learnable parameters. Furthermore, both types of methods compute attention coef-
ficients independently at each time step, without referring to historical attention information from
previous time steps, which reduces efficiency and increases the risk of convergence to local optima.
Beyond this, following the successful application of LLMs in various domains [42–45], the challenge
of efficiently leveraging LLMs to advance DGNNs is increasingly relevant.

3 Preliminary and Notations

3.1 Heterogeneous Temporal Graph (HTG)

Heterogeneous Temporal graph consists of multiple snapshots that evolve over time. Each snapshot
is a heterogeneous graph G = (V,E,X, Tn, Tr), in which V is the node set and E represents the
relation set, X is the feature set. The Tn and Tr represent type set of nodes and relations, where
|Tn|+ |Tr| ≥ 2. Heterogeneous temporal graph G =

(
{Gt}Tt=1

)
is defined as a set of heterogeneous

graphs, where T is the number of timestamps, Gt is the snapshot graph at time t. Furthermore,
V =

⋃T
t=1 V

t, E =
⋃T

t=1 E
t, X =

⋃T
t=1 X

t are defined as the set of node, relation and feature,
respectively.

HTG Downstream Task. Without loss of generality, we formulate various downstream tasks on
HTGs as a multi-step to multi-step forecasting task. Given a HTGs G =

(
{Gt}Tt=1 ,V, E ,X

)
, its

downstream task can be formulated as follows:

F(Gt−(γ−1), . . . , Gt; θ)→ (Ŷt+1, · · · , Ŷt+β), (1)

where γ denotes time window size, β denotes prediction steps, F(·) denotes forecasting model, θ
denotes learnable parameter, Ŷt denotes the predictive value at time step t.

3.2 Heterogeneous Dynamic GNNs

Recall that the general framework of heterogeneous graph neural networks (HGNNs) always consists
of two processes: (I) aggregating intra-relation neighbor representations, (II) fusing inter-relation
neighbor representations. For example, given a node i, the process of updating its representation hi

once in HGNN can be formulated as follows:

hi ← HAgg
∀r∈Tr

(Agg({hj : j ∈ Nr(i)})), (2)
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Figure 2: (a) The overall architecture of SE-HTGNN. (b) The LLM-enhanced prompt module
takes type prompts as input and generates initial attention coefficients e0 by leveraging LLM-
enhanced prior knowledge. (c) The dynamic-attention-based graph learning module predicts current
attention coefficients eT from current features and historical coefficients eT−1, enabling effective
representations fusion. (d) The linear project module maps representations to future prediction steps
for downstream tasks.

whereNr(i) is the neighbor of node i with the relation type r, including itself, Agg(·) is the message
aggregation function that aggregates the intra-relation neighbor node representations, HAgg(·) is
a fuse function which fuses the inter-relation representations. To address heterogeneity, these two
functions are designed with node-level and relation-level attention, respectively (e.g., HAN [27]).

Based on the formal definition of HGNN, the previous heterogeneous dynamic graph neural network
(HDGNN) was designed by two processes: (I) obtaining spatial representation from each graph snap-
shot, (II) modeling the temporal dependencies among these representations, enabling the prediction
of future representations for downstream tasks. These processes can be formulated as follow:

ht
i ←HAgg

∀r∈Tr

(Agg({ht
j : j ∈ N t

r (i)})),

{ht
i}

T+β
t=T+1 ← Sequence({ht

i : 1 ≤ t ≤ T}),
(3)

whereN t
r (i) is the neighbor of node i with the relation type r at timestamp t, ht

i is the representation
of node i at timestamp t, Sequence({·}) stands for the sequence-based method (e.g., RNN and
Transformer) that can model the temporal dependencies among the representations ht

i from different
graph snapshots to generate the output {hT+1

i , ...,hT+β
i } for downstream tasks, where β denotes

prediction steps. We provide a more detailed background in the appendix A.

4 Methodology

In this section, we will detail the three clear modules of SE-HTGNN: dynamic-attention-based graph
learning, LLM-enhanced prompt, and linear project. The overall architecture is shown in Figure 2.

4.1 Dynamic-attention-based Spatial Learning

Heterogeneous Feature Projection. As the features of different types of nodes within HTGs have
their own feature space, the first priority is to project them into the common feature space using a
type-specific projection. This process can be formulated as follow:

Ht
v = Wv ·Xt

v + bv, (4)

where Xt
v denotes raw attribute corresponding node type v at time t, Wv is the trainable type-specific

transformation matrix, bv is the trainable type-specific bias. Then these heterogeneous features can
be aggregated in the same dimension, and the heterogeneity is also preserved.
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Simplified Neighbor Aggregation. Existing HDGNNs typically employ a node-level attention
mechanism for attentive neighbor aggregation. However, considering that intra-type neighbors
in HTGs tend to exhibit lower variance compared to inter-type ones, we simplify the neighbor
aggregation process to reduce excessive parameters and alleviate optimization difficulties. Specifically,
as shown in Figure 2 (c), this paper implements the basic GCN [46] in a non-parametric manner
as the aggregation function, which fairly aggregates the neighbor information without introducing
redundant linear operations. This process can be formulated as2:

Ht
v,r = σ(At

rH
t
N t

r (v)
), (5)

where Ht
v,r denotes intermediate representations updated by neighbor under relation r at time t,

N t
r (·) denotes node type of neighbor under relation r at time t, At

r is the normalized adjacency
matrix corresponding to relation r at time t, σ is the activation function (i.e., ELU function). After
aggregating different types of neighbors separately, we collected various types of intermediate
representations {Ht

v,r|r ∈ R(v)}, whereR(v) denotes the set of relations with v as their target node
type. Next, we need to fuse these intermediate representations to generate the final representations.

Dynamic-Attention-based Fusion. Since the decoupled spatio-temporal modeling strategy limits the
receptive field of attention mechanisms, previous methods often converge to suboptimal performance.
In view of this limitation, we propose the dynamic attention mechanism to fuse representations.

Specifically, to incorporate temporal information into spatial learning, dynamic attention utilizes
the gate recurrent unit (GRU) to produce coefficients in a sequential manner. In this way, historical
attention coefficients are stored in the hidden state of GRU, which can guide the attention calculation
on the subsequent snapshots. Additionally, since the evolving trends may differ across different
relations in HTGs, we use relation-wise GRUs to independently capture these various trends. As
shown in Figure 2 (c), at each time t, this module takes the current intermediate representation Ht

v,r

and the historical coefficients et−1
v,r as input to predict the current attention coefficients etv,r. Finally,

these attention coefficients are averaged and normalized. This process can be formulated as:
attention coefficient︷ ︸︸ ︷

etv,r︸︷︷︸
hidden state

= GRUr(

representation︷︸︸︷
Ht

v,r︸︷︷︸
input

,

historical coefficient︷ ︸︸ ︷
et−1
v,r︸︷︷︸

hidden state

), (6)

αt
r =

exp
(
etv,r

)∑
r′∈R(v) exp

(
etv,r′

) , (7)

where etv,r ∈ Rn×1 denotes hidden state that contain attention coefficient of relation r to node
type v at time t, etv,r ∈ R1 denotes the average of etv,r, αt

r ∈ R1 denotes normalized coefficient,
R(v) denotes the set of relations with v as their target node type, GRUr(·) denotes relation-wise
GRU corresponding to relation r. Notably, the initial hidden state e0v,r of GRU is essential as it can
significantly impact the model’s convergence speed and overall performance. Therefore, we employ
Large Language Models (LLMs) to provide external knowledge, thereby initializing e0v,r with more
meaningful vectors. The detailed initialization of e0v,r will be introduced in Section 4.2. Additionally,
dynamic attention is feasible to extend it into multi-head attention by extending the dimension of
the hidden state etv,r from Rn×1 to Rn×k, where k is the number of heads. For simplicity, we only
discuss the one-head here. After obtaining the attention coefficient of each relation, we fuse these
intermediate representations to generate the final representations for the target node. This process can
be formulated as:

Ht
v =

∑
r∈R(v)

αt
r ·Ht

v,r (8)

By performing such graph learning on each graph snapshot, we obtain spatio-temporal representations
at each time step {Ht

v|1 ≤ t ≤ T}, where T denotes the number of snapshots. Next, we need to
project these representations into the desired future steps for downstream tasks.

4.2 LLM-enhanced Prompt

In the above sections, this paper integrates temporal information into the attention mechanism using
Gated Recurrent Units (GRUs). Since a well-initialized hidden state for GRUs enhances the model’s

2To simplify notations, we omit the layer superscript.
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ability to more effectively understand the context of data and improve overall performance [47], this
paper proposes a novel initialization method based on large language models (LLMs). As shown
in Figure 2 (b), for a given node type v, we first construct a node type prompt consisting of two
elements: (I) a concise text-based description of type v, and (II) an instruction requiring the LLMs
to output in a fixed format. Then the node type prompt is processed by the LLMs (GPT-3.5 [48] or
Llama3 [16]), which facilitates the extraction of implicit information of HTGs from sequential text.
We use the embeddings of the final hidden layer of the LLMs as the semantic representations of node
types, which encode prior knowledge and domain understanding. This process can be formulated as:

Prompt(v) = {Introduction to type v; Instruction.}, (9)

HLLM
v = LLM(Prompt(v)), ∀v ∈ Tn (10)

where HLLM
v denotes the LLM-based representation of the node type v augmented through the

knowledge by the LLM. Considering that the hidden state e0v,r needs to be initialized as the initial
attention coefficient , we initialize e0v,r based on the similarity calculation of HLLM

u and HLLM
v

corresponding to source and target node types u and v of relation r. This process can be formulated
as follows:

Qu = WQH
LLM
u ,Kv = WKHLLM

v , βr = QuK
⊤
v (11)

e0v,r =
exp (βr)∑

r′∈R(v) exp (βr′)
, (12)

where e0v,r is the initial attention coefficient as described in Section 4.1, and WQ,WK are the
learnable transformation matrices. It is worth noting that since our attention is applied at the relation
level, the number of prompts processed by the LLM depends on the number of node types in the
HTGs, rather than the total number of nodes, leading to efficient computation. Furthermore, the LLM
processing step can be performed during preprocessing to reduce memory overhead during training.
In implementation, we employ LLaMA3-8B [16] to enhance our model. We also provide concrete
prompt examples and compare the performance of different LLMs in the appendix B.

4.3 Linear Project

Since our model integrates temporal information into the graph learning step, the final step only
involves projecting these obtained spatial-temporal representations into the desired number of future
steps, without the requirement for additional temporal modeling. This makes the overall process
more streamlined and computationally efficient. As shown in the figure 2 (d), given spatial-temporal
representations over T time steps Zv = [H1

v, ...,H
T
v ] ∈ RN×d×T , a linear transformation is utilized

to project them into β future steps. Here, N denotes the number of nodes corresponding to type v,
and d represents the dimension of the representations. This process can be formulated as follows:

Z′
v = Zv ·W + b, (13)

where Z′
v = [HT+1

v , ...,HT+β
v ] ∈ RN×d×β denotes the predicted representations for downstream

tasks, W ∈ RT×β and b is the trainable matrix of linear transformation.

4.4 Optimization

We then pass the yielded representation of node type v to a two-layer multilayer perceptron (MLP) to
capture non-linear interactions between the representations. Take the T + 1 as an example:

Hv = MLP(HT+1
v ) (14)

Next, we introduce loss functions over HTGs. For link prediction task, we use the following loss:

L = −
∑

(i,j)∈Ω+

log σ
(
h⊤
i hj

)
−
∑

(u′,v′)∈Ω−

log σ
(
−h⊤

i′hj′
)
, (15)

where Ω+ and Ω− denote the set of observed positive and negative pairs, respectively, and σ denotes
the sigmoid function. hi,hj ,hi′ ,hj′ ∈ Hv are node representation vectors output by the MLP. For
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Table 1: The overall results for different methods for various tasks, including the results of link
prediction, classification and node regression. The best and second-best results are shown in red and
blue, respectively. OOM: out of GPU memory.

Type Method
Link Prediction Node Classification Node Regression

OGBN-MAG Aminer YELP COVID-19 (30-day)

(AUC%)↑ (AP%)↑ (AUC%)↑ (AP%)↑ (Macro-F1%)↑ (Recall%)↑ (MAE)↓ (RMSE)↓

GCN (ICLR’2017) 78.16 ± 1.32 76.48 ± 1.86 73.12 ± 0.46 72.96 ± 0.48 37.21 ± 0.52 38.02 ± 0.69 841 ± 98 1497 ± 132
Homogeneous GAT (ICLR’2018) 79.97 ± 1.98 77.62 ± 1.68 81.56 ± 1.25 79.56 ± 1.36 35.39 ± 1.20 35.61 ± 1.45 814 ± 95 1531 ± 219

GNNs TGAT (ICLR’2020) OOM OOM 85.69 ± 0.75 85.04 ± 0.68 39.23 ± 0.78 39.87 ± 0.83 OOM OOM

Heterogeneous
GNNs

RGCN (ESWC’2018) 81.25 ± 1.99 80.24 ± 1.79 82.12 ± 0.12 81.24 ± 0.33 37.86 ± 0.89 38.21 ± 0.48 830 ± 85 1602 ± 121
RGAT (ICLR’2019) 87.54 ± 1.12 87.09 ± 1.05 85.32 ± 0.74 84.82 ± 0.86 37.74 ± 0.94 37.78 ± 1.44 785 ± 76 1501 ± 94
HGT (WWW’2020) 84.38 ± 1.22 83.99 ± 1.46 78.81 ± 1.29 77.98 ± 1.62 34.28 ± 1.08 35.32 ± 0.89 799 ± 82 1554 ± 98

DiffMG (KDD’2021) 87.98 ± 1.26 87.77 ± 1.20 85.14 ± 0.32 84.56 ± 0.28 39.32 ± 0.89 38.85 ± 1.02 621 ± 58 1286 ± 69

Heterogeneous
Dynamic

GNNs

DyHATR (ECML’2021) 89.49 ± 0.65 86.24 ± 0.91 86.46 ± 1.28 86.22 ± 1.14 38.89 ± 0.64 40.98 ± 0.98 668 ± 56 1322 ± 74
HGT+ (WWW’2020) OOM OOM 85.88 ± 0.38 84.24 ± 0.48 38.33 ± 0.60 40.29 ± 0.56 OOM OOM
HTGNN (SDM’2022) 91.21 ± 0.77 89.18 ± 1.24 85.92 ± 0.93 83.74 ± 0.85 36.65 ± 1.13 38.76 ± 1.22 555 ± 34 1136 ± 65
DHGAS (AAAI’2023) OOM OOM 88.13 ± 0.90 86.92 ± 0.78 41.99 ± 1.80 42.29 ± 1.25 536 ± 43 1112 ± 43

CasMLN (SIGIR’2024) 90.85 ± 0.64 89.47 ± 0.57 88.53 ± 0.27 87.25 ± 0.63 42.21 ± 0.51 42.57 ± 0.69 544 ± 18 1119 ± 12
SE-HTGNN (Ours) 93.13 ± 0.56 92.71 ± 0.52 91.08 ± 0.59 90.03 ± 0.48 44.24 ± 0.88 44.68 ± 0.43 497 ± 5 1069 ± 11

Improve. +2.11% +3.62% +2.89% +3.19% +4.81% +4.96% +7.27% +4.56%

node classification, the node representations will be projected by MLP to the hidden dimension
corresponding to the number of classes. Then the MLP is trained to minimize the cross-entropy loss:

L = −
∑
i∈V

|Tn|∑
c=1

yi[c]log(ŷi[c]), (16)

where V denotes the set of labeled nodes, Tn denotes the node type set, yi is a one-hot vector
indicating the label of node i, ŷi = softmax(hi) is the predicted label for the corresponding node.
For node regression, we use the mean absolute error (MAE) loss as follows:

L =
1

|VL|
∑
i∈VL

|yi − ŷi|, (17)

where VL is the set of target node, yi is the ground-truth label (an integer) of node i, and ŷi = hi is
the regression value node i output of the MLP.

5 Experiment

In this section, we present a comprehensive set of experiments to demonstrate the effectiveness of
SE-HTGNN. The details about experimental setups are recorded in the appendix C.

5.1 Experimental Setups

Dataset. We follow the dataset and splits provided by previous works [12, 9]. Specifically, we
utilized two link prediction datasets: OGBN-MAG and Aminer, one node classification dataset YELP,
and one node regression dataset COVID-19. We repeat all experiments 5 times and report the average
results and standard deviations. The description of the datasets are summarized in the appendix C.1.

Baseline. We compare the proposed SE-HTGNN with 12 strong baselines of three categories as
follow: (1) Homogeneous GNNs: GCN [46], GAT [26] and TGAT [37]. These models ignore the
heterogeneity of HTGs. (2) Heterogeneous GNNs: RGCN [17], RGAT [49], HGT [8], and DiffMG
[19]. These models ignore the evolution of HTGs. (3) Heterogeneous Dynamic GNNs: DyHATR
[11], HGT+ [8], HTGNN [12], DHGAS [9] and CasMLN [13].

5.2 Experimental Results

Link Prediction & Node Classification Task. For the link prediction task, we use the area under the
ROC curve (AUC) and average Precision (AP) as evaluation metrics. For the node classification task,
we use Macro-F1 and Recall as evaluation metrics. Macro-F1 score represents the unweighted mean
of the F1-score for each label. While the Recall score reflects a model’s ability to cover true positives.
From the results shown in Table 1, we have the following observations: (1) HDGNNs generally
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outperform GNNs, demonstrating the importance of incorporating temporal information when dealing
with HTGs. Among them, the attention-based methods CasMLN, performed well on multiple datasets,
demonstrating the potential of the attention mechanism. (2) Both HGT+ and DHGAS, which are
variants of the Transformer model, are unable to handle large-scale temporal graphs, OGBN-MAG,
and long-term graph COVID-19 due to their significant GPU memory consumption. (3) SE-HTGNN
achieves the best performance by a substantial margin, with an average improvement of approximately
3% in evaluation metrics over the state-of-the-art baseline. This result demonstrates that by using
a dynamic attention mechanism, SE-HTGNN can better utilize temporal information to generate
superior representations for complex link prediction and node classification tasks.

Table 2: Long-term prediction on COVID-19.
COVID-19 60-day prediction 90-day prediction

Metric (MAE)↓ (RMSE) ↓ (MAE)↓ (RMSE)↓

HTGNN 901 ± 35 1787 ± 62 1105 ± 26 2250 ± 42
DHGAS 1351 ± 82 2809 ± 142 1692 ± 108 3708 ± 241
CasMLN 914 ± 52 1792 ± 102 1084 ± 36 2211 ± 48

SE-HTGNN 825 ± 8 1701 ± 15 1001 ± 12 2131 ± 31
Improve. +8.44% +4.81% +6.97% +3.62%

Node Regression Task (Long-term). For
the node regression task, we use the mean
absolute error (MAE) and root mean square
error (RMSE) as evaluation metrics. Our
objective on the COVID-19 dataset is to
forecast the new daily cases. We report
the results in Table 1,2 and observe the
following findings: (1) SE-HTGNN again
achieves the best performance across all
baselines, which demonstrate that our method can adaptively handle various applications of HTGs.
(2) As shown in Table 2, under long-term prediction settings (i.e., 60-day and 90-day horizons) on
the COVID-19 dataset, all methods experience varying degrees of performance degradation due
to the reduced training set and extended prediction length. Nevertheless, our method consistently
outperforms the best-performing baseline across all evaluations, achieving an improvement of
approximately 7% to 8% in MAE. This superior performance can be attributed to our unified
spatial-temporal learning paradigm, which enables the model to better capture long-term temporal
dependencies in HTGs compared to decoupled approaches.

Table 3: Ablation study results on various variants of SE-HTGNN.

Dataset OGBN-MAG Aminer YELP COVID-19
Metric (AUC%) ↑ (AP%) ↑ (AUC%)↓ (AP%)↓ (Macro-F1%)↓ (Recall%)↓ (MAE)↓ (RMSE)↓

w/o LLMRandom 90.87 ± 1.24 90.06 ± 1.27 87.91 ± 1.54 87.05 ± 189 41.05 ± 0.93 41.29 ± 0.68 542 ± 28 1181 ± 46
w/o LLMAverage 91.18 ± 0.81 89.83 ± 1.29 89.76 ± 0.34 88.56 ± 0.33 43.39 ± 0.62 43.82 ± 0.78 521 ± 22 1102 ± 35

w/o LLMZero 91.78 ± 0.68 91.08 ± 0.65 89.98 ± 0.62 88.93 ± 0.76 43.31 ± 0.79 43.76 ± 1.07 524 ± 9 1114 ± 19

w/o Attproj 86.83 ± 1.21 86.29 ± 1.35 85.42 ± 0.98 84.86 ± 1.12 38.19 ± 1.56 37.82 ± 1.42 574 ± 52 1222 ± 59
w/o Attself 91.65 ± 1.22 90.65 ± 1.14 88.73 ± 0.82 88.21 ± 0.94 42.41 ± 1.32 42.73 ± 0.97 545 ± 33 1114 ± 42
w/o Attgate 87.94 ± 2.42 87.24 ± 1.89 87.42 ± 1.24 86.55 ± 1.33 38.96 ± 3.27 39.26 ± 2.27 574 ± 45 1216 ± 68

w/o Aggnone 83.91 ± 1.20 82.60 ± 1.16 62.47 ± 1.23 64.91 ± 1.18 35.27 ± 2.79 35.56 ± 2.52 672 ± 78 1336 ± 131
w/o Agggcn 90.57 ± 0.86 92.28 ± 0.75 88.40 ± 2.64 87.26 ± 2.21 43.69 ± 0.79 43.82 ± 0.62 508 ± 10 1080 ± 18
w/o Agggat 91.93 ± 0.46 89.54 ± 0.48 88.37 ± 0.28 86.89 ± 0.61 42.11 ± 1.32 42.23 ± 1.41 605 ± 88 1231 ± 137

SE-HTGNN 93.13 ± 0.56 92.71 ± 0.52 91.08 ± 0.59 90.03 ± 0.48 44.24 ± 0.88 44.68 ± 0.43 497 ± 5 1069 ± 11

Ablation Studies. In this section, we compare SE-HTGNN with its variants to validate the effec-
tiveness of each component. The description of the variants is given as follow: w/o LLM indicates
the removal of the LLM-enhanced prompt module, w/o Att indicates the removal of the dynamic
attention mechanism, and w/o Agg indicates the removal of the simplified neighbor aggregation.
Furthermore, we use subscripts to denote alternative methods adopted in the ablation experiments: For
the w/o LLM, we replace the original LLM initialization with Random, Average, Zero initializations.
For the w/o Att, we substitute it with Projected-attention, Self-attention, Gated-attention. For the w/o
Agg, we replace the simplified neighbor aggregation with None-aggregation, GCN, GAT.

From the results shown in Table 3, we have the following observation: (1) w/o LLM exhibited a
decline in performance, demonstrating the effectiveness of LLMs in HTG representation learning.
Among the alternatives, random initialization leads to the most significant degradation, which can be
attributed to the noise introduced by the semantically void initialization strategy. (2) w/o Att led to
a dramatic collapse in performance, demonstrating the indispensable role of the dynamic attention
mechanism (particularly in the context of dynamic graph mining). (3) w/o Agg also shows a clear
decrease in performance. This is because traditional aggregation approaches such as GCN and GAT
learn parameterized transformations that fail to adapt to the shifting feature distributions in HTGs,
thereby adversely affecting the overall model performance. (4) SE-HTGNN consistently outperforms
all its variants in the three datasets, validating the effectiveness of each component.
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5.3 Additional Analysis and Discussion

Study on Dynamic Attention. We further investigate the impact of different sequence-based modules
on the dynamic attention mechanism. Specifically, we replace the GRU with other modules as follows:
LSTM [50], Transformer [14], and Mamba [51]. According to the experimental results shown in
Table 4, the original model and the LSTM-based variant achieve comparable performance. However,
GRU offers better computational efficiency than LSTM. For Mamba model, as reported in its original
paper, it suffers from unstable training. For Transformer model, it is worth noting that it cannot
benefit from the LLM-enhanced prompt module, which may account for its inferior performance.

Table 4: Study result on various variants of dynamic attention mechanism.

Dataset OGBN-MAG Aminer YELP COVID-19
Metric (AUC%) ↑ (AP%) ↑ (AUC%)↓ (AP%)↓ (Macro-F1%)↓ (Recall%)↓ (MAE)↓ (RMSE)↓

LSTM 92.77 ± 0.48 92.28 ± 0.45 90.52 ± 0.48 89.87 ± 0.58 44.31 ± 0.97 44.73 ± 0.52 506 ± 7 1078 ± 16
Mamba 91.79 ± 1.32 90.92 ± 1.45 87.81 ± 1.65 87.12 ± 1.59 41.45 ± 2.41 41.58 ± 3.10 601 ± 67 1259 ± 84

Transformer 90.75 ± 0.32 89.93 ± 0.34 90.93 ± 0.45 89.89 ± 0.32 43.59 ± 1.21 43.64 ± 1.19 529 ± 12 1098 ± 23

SE-HTGNN 93.13 ± 0.56 92.71 ± 0.52 91.08 ± 0.59 90.03 ± 0.48 44.24 ± 0.88 44.68 ± 0.43 497 ± 5 1069 ± 11

Efficiency Analysis. Firstly, we theoretically analyze the time complexity of SE-HTGNN compared
to HTGNN and CasMLN, as Table 5 shows. Since DHGAS is an automated architecture search
framework, we only report its actual training time. For a concise and fair comparison, all models are
simplified to a single-layer structure without common components such as heterogeneous feature
projection. We assume there are T time slices for single-step forecasting and R node types, with
each node type containing an average of n nodes. The hidden dimension is denoted as d, and each
relation involves an average of e neighboring nodes per node. It can be observed that existing methods
incur O(d2) complexity in spatial learning due to complex node-level attention and redundant linear
projections. Additionally, HTGNN incurs O(T 2) complexity in temporal modeling because of its
self-attention mechanism. In contrast, SE-HTGNN achieves significantly lower complexity through a
lightweight design and dynamic attention mechanisms that unify spatial and temporal modeling.

To validate our theoretical analysis, we conduct experiments to compare the GPU time consumption.
We compare SE-HTGNN with these representative models to evaluate model efficiency. To ensure
fairness, the time consumed during the LLM preprocessing stage is also included in the total
computation time. As shown in Table 6, SE-HTGNN significantly outperforms all previous methods
in terms of actual training time. Specifically, SE-HTGNN achieves a 2.7× speedup over the SOTA
on the large-scale dataset OGBN-MAG, and nearly a 10× speedup on the long-sequence dataset
COVID-19, which reflects the superiority of SE-HTGNN on the training speed.

Table 5: Time complexity comparison.

Method Spatial Learning Temporal Learning

HTGNN O(TR(ned+ nd2)) O(n(T 2d+ Td2))
CasMLN O(TR(ned+ nd2)) O(Tnd)

SE-HTGNN O( TRned︸ ︷︷ ︸
Aggregation

+ TRnd︸ ︷︷ ︸
Attention

+ Tnd︸︷︷︸
Project

+Rd′d︸ ︷︷ ︸
LLM

) = O(TRned︸ ︷︷ ︸
Total

)

Table 6: Training cost compared in GPU second.

Dataset OGBN-MAG Aminer YELP COVID-19

HTGNN 1132 472 165 1403
DHGAS OOM 351 164 11,120
CasMLN 272 135 88 637

SE-HTGNN 102 84 47 64

Convergence Analysis. In this section, we delve into the convergence speed analysis of SE-HTGNN
with other methods on Aminer and OGBN-MAG datasets. As depicted in Figure 3, our proposed
SE-HTGNN achieves convergence within 50 epochs. Meanwhile, HTGNN and CasMLN require
more epochs to achieve the best performance. This demonstrates that the unified spatio-temporal
modeling strategy of SE-HTGNN not only improves performance but also accelerates convergence.

Hyper-parameter Sensitive Study. In this section, we investigate the impact of the time window and
embedding dimension on the performance of the model. (1) Time window size determines the number
of snapshots that can be reviewed during prediction. We validate the effect of size by ranging it from
2 to 9 for three datasets. The results are shown in the left part of Figure 4. We can see that a large size
on Aminer and YELP boosts the performance as more historical information is included. However,
the time window size has a minor impact on the OGBN-MAG, possibly because each snapshot
contains sufficient information. (2) embedding dimension refers to the size of the model’s hidden
representations. The right part of Figure 4 exhibits a rising trend in performance as the embedding
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dimension increases, followed by a stabilization phase. To strike a balance between accuracy and
efficiency, we set the embedding dimension to 32 for all datasets.
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Visualization and Discussion. To gain more in-
tuitive insights into our model, we visualize the
model’s predictions and the dynamic attention
coefficients on the COVID-19 dataset. (1) For
the visualization of prediction (left part of Fig-
ure 5), we average the predicted values across all
nodes and compare them with the ground truth.
It can be observed that existing methods, limited
by their decoupled modeling strategy, can only
capture coarse-grained trends and fail to reflect
fine-grained temporal variations. In contrast, our
model produces predictions that closely match
the ground truth, demonstrating superior capability in capturing subtle temporal dynamics in HTGs.

(2) For the visualization of dynamic attention coefficients, the right part of Figure 5 illustrates
how attention coefficients evolving over a 30-day period for a specific U.S. state in the COVID-19
dataset. In this figure, the blue "state" denotes a specific state node, the orange "state" refers to
all neighboring state-type nodes of the blue state, and the "county" refers to all county-type nodes
governed by the blue state. In the task of predicting the new cases in that state, we first observe
that the attention coefficients assigned to neighboring states are consistently higher than those for
county. This suggests that the state’s case increases are likely more influenced by adjacent states.
Furthermore, the coefficients of the state-type node increases from 0.58 to 0.61, indicating that recent
information from the neighboring state becomes more important than historical data. This observation
also supports our insight that historical attention patterns are meaningful for future learning.

Limitations and Future Work. This work introduces large language models (LLMs) to enhance the
overall performance of model. However, LLM-generated embeddings typically have high and fixed
dimensionality. As a result, the learnable transformation matrices required for linear dimensionality
reduction contribute a considerable parameter overhead, which can compromise computational
efficiency. In future work, we plan to explore dimensionality reduction techniques (e.g., low-rank
decomposition and principal component analysis) to compress LLM outputs, aiming to further
improve model efficiency and scalability without substantially sacrificing semantic information.

6 Conclusion

This paper revisits the existing learning paradigm for HTGs and identifies its limitations. Specifically,
existing methods rely on a decoupled temporal and spatial modeling paradigm, which weakens
interactions of spatio-temporal information and leads to a high model complexity. To address these
limitations, we propose a novel attention-based learning paradigm for HTGs called SE-HTGNN. To
the best of our knowledge, SE-HTGNN is the first to propose the concept of a dynamic attention
mechanism to unify spatial and temporal modeling, with its innovation lying in utilizing historical
attention information to guide subsequent attention processes, thereby improving the model efficiency
and performance. Furthermore, we innovatively introduce LLMs to provide external knowledge to
improve the adaptability and performance of our model. Extensive experiments on several real-world
datasets demonstrate the superiority of SE-HTGNN in both efficiency and performance.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .
• [NA] means either that the question is Not Applicable for that particular paper or the

relevant information is Not Available.
• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",
• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification:We have claimed the contributions and scope in lines 78-86.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We have discussed the limitations in appendix D.
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Guidelines:
• The answer NA means that the paper has no limitation while the answer No means that

the paper has limitations, but those are not discussed in the paper.
• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: We provide the complete theoretical analyses in Section 5.3.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide a comprehensive description of the experimental settings in
appendix C. All the code for reproducing the experiments is made available in the supple-
mentary material accompanying the submission.
Guidelines:

• The answer NA means that the paper does not include experiments.
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• If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The datasets are publicly available. We properly cite and introduce the dataset
in Appendix C.1.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
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• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We give experimental settings in appendix C.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: the experiments were conducted over 5 runs, and we present the averaged
results along with the standard deviation.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: we provide the information on the computer resources in Appendix C.4:
NVIDIA GeForce RTX 3090 GPU 24GB memory, and Intel(R) Xeon(R) CPU E5-2650 v2
@ 2.60GHz CPU.
Guidelines:

• The answer NA means that the paper does not include experiments.
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• The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conforms with the NeurIPS Code of
Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We have discussed social impacts in Appendix E.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
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Justification: The paper poses no such risks

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We have cited the original paper that produced the code package or dataset
and have explicitly stated the license used for the open-source frameworks in Appendix C.5.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: We totally use public benchmarks.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
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Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: We have described the usage of LLMs.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Appendix Contents:

• A. Background

• B. Prompt Example

• C. Experimental setup

• D. Limitations and Future Work

• E. Broader Impacts

A Background

As illustrated in Section 3.2, we provide a general framework for heterogeneous graph neural networks
(HGNNs) and hierarchical attention mechanisms. Here, we provide a detailed implementation of this
mechanism. In general, the hierarchical attention mechanism consists of node-level attention (e.g.,
GAT [26]) and relation-level attention (e.g., HAN [27]).

A.1 Node-level attention

Previous methods typically use GAT [26] to calculate the importance of each neighbor to the central
node, thereby aggregating neighbors discriminatively. The attention coefficients are computed using
a shared attention parameter a ∈ R2d′

. For nodes u and v, the attention coefficient euv is given by:

euv = LeakyReLU
(
aT [Whu ∥Whv]

)
, (18)

αuv =
exp(euv)∑

v′∈N (u) exp(euv′)
(19)

where hu,hv is the feature vector of node u and v, respectively, W ∈ Rd×d′
denotes weight matrix,

where d′ is the dimension of the transformed features. ∥ denotes concatenation and LeakyReLU(x) =
max(0.01x, x) denotes activation function. To handle heterogeneity, these methods assign different
attention parameterizations for neighbor under different relation types.

A.2 Relation-level attention

Relation-level attention, also known as semantic-level attention, functions to fuse these representations
after collecting information from different types of neighbors [49, 27, 28, 30]. This type of attention
does not involve pairwise calculations, making it much more efficient than node-level attention. For
each relation r, the attention coefficients βr are computed as follows:

βr =
exp (MLP(hu,r))∑

r′∈R exp (MLP(hu,r′))
, (20)

where hu,r denotes the feature vector updated by neighbor under relation r, MLP(·) denotes multi
layer perception with output dimension d ∈ R1.

A.3 Existing Attention Mechanism in Heterogeneous Dynamic GNNs (HDGNNs)

When extending the hierarchical attention mechanism to HDGNNs [10, 11, 13, 12], previous work
often employed attention mechanisms in each graph snapshot independently. As an example of
relation-level attention, Eq.(20) is extended as follows:

βt
r =

exp
(
MLPt(ht

u,r)
)

∑
r′∈R exp

(
MLPt(ht

u,r′)
) , (21)

where ht
u,r denotes the feature vector updated by neighbor under relation r at time t, MLPt(·) denotes

time-wise multi layer perception at time t with output dimension d ∈ R1.
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A.3.1 Study on Hierarchical Attention in HDGNNs

HDGNNs typically inherit a hierarchical attention mechanism from HGNNs to address the spatial
heterogeneity present in HTGs. To analyze the effect of each level, the mean function is utilized to
separately replace these two levels of attention. We conducted experiment on four real-world datasets,
where Aminer and OGBN-MAG were used for link prediction, YELP was used for node classification,
COVID-19 was used for node regression. We experiment on two representative HDGNN models,
HTGNN [12] and DyHATR [11], where ▽ means removing the node-level attention and ♢ means
removing the relation-level attention. Additionally, real-world datasets Aminer and OGBN-MAG are
used for link prediction, while YELP is used for node classification.

As results shown in Table 7, the model without relation-level attention exhibited performance
degradation, while the model without node-level attention did not. Additionally, we found that the
computation time for node-level attention is approximately 5 times that of relation-level attention in
DyHATR, with the former averaging 0.03 GPU seconds and the latter 0.006 seconds. This disparity
is greater in HTGNN, where it is 8 times. Therefore, we obtain the first finding.

Finding 1: Relation-level attention is vital, while node-level attention is trivial on HTGs. This may
be attributed to the fact that intra-type neighbors in HTGs tend to exhibit lower variance compared to
inter-type ones. This finding is also consistent with the latest research on HGNNs [29, 28, 30], which
shows that a well-designed relation-level attention mechanism can be effective enough, even without
node-level attention.

Table 7: Experiments to analyze the effects of hierarchical attentions. HTGNN [12] and DyHATR
[11] are representative models for HTGs. ▽ means removing the node-level attention and ♢ means
removing the relation-level attention.

Dataset Aminer OGBN-MAG YELP COVID-19

Metric (AUC%) ↑ (AUC%) ↑ (Macro-F1%) ↑ (MAE)↓

DyHATR 86.46 ± 1.28 89.49 ± 0.65 38.89 ± 0.64 668 ± 56
DyHATR▽ 86.37 ± 0.96 89.52 ± 0.49 39.16 ± 0.45 660 ± 39
DyHATR♢ 84.52 ± 1.48 87.49 ± 0.88 37.13 ± 0.84 698 ± 56

HTGNN 85.92 ± 0.93 91.21 ± 0.77 36.65 ± 1.13 555 ± 34
HTGNN▽ 85.95 ± 0.64 91.14 ± 0.95 36.87 ± 0.98 560 ± 28
HTGNN♢ 84.56 ± 0.82 89.45 ± 1.22 35.19 ± 1.43 601 ± 41

B Prompt Example

To show how we constructed the prompts for our model, a specific example of summary generation
for the a node type (Academic papers) in the OGBN-MAG dataset is present in Figure 6. We generate
distinct prompts for each type of node and input them into the large language model to obtain
additional knowledge. We experimented with three LLMs: LLaMA3-8B, GPT-3.5 and LLaMA2-7B.
As shown in Figure 8, SE-HTGNN enhanced by LLaMA3-8B achieves the best performance on four
real-world HTG datasets.

Table 8: Comparison of different LLMs in performance.

Dataset Aminer OGBN-MAG YELP COVID-19
Metric (AUC%) ↑ (AUC%) ↑ (Macro-F1%) ↑ (MAE)↓

SE-HTGNNllama2−7B 89.92 ± 0.64 92.25 ± 1.08 42.84 ± 1.08 512 ± 12
SE-HTGNNGPT−3.5 90.53 ± 0.51 92.85 ± 0.98 43.37 ± 1.23 504 ± 8

SE-HTGNNllama3−8B 91.08 ± 0.59 93.13 ± 0.56 44.24 ± 0.88 497 ± 5

Please note that in practice, we do not use the final text output of the LLMs. Instead, we take the
embedding from the last hidden layer of the LLM as the output to facilitate subsequent computations.
If the last hidden layer cannot be accessed (e.g., ChatGPT-3.5), we use an embedding model, such
as text-embedding-ada-0023, to convert the LLM’s text output into embeddings for subsequent
computations.

3https://platform.openai.com/docs/guides/embeddings
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Node Type Prompt (input) 
Description:  Academic paper is a type 
of node in the academic dynamic graph. 
These type of nodes are connected to 
Author nodes and Venues nodes.
<Description of downstream tasks.>

Instruction: Please output a summary 
of the information about this node type 
in the following format: {Introduction to 
node type:; Relevant relations analysis:}.

Large Language Models (output)
{Introduction to node type: Academic 
paper is a key type of node in the academic 
dynamic graph. Each academic paper 
represents a scholarly work, ......
Relevant relations analysis: nodes are 
connected to:  1. Author nodes: Representing 
the researchers who wrote the paper, this 
relationship captures contributions and 
collaborations among authors.
2. Venue nodes: .......}

Figure 6: An example of constructing prompts for node type in OGBN-MAG Dataset.

C Experimental setup

C.1 Dataset & Task Objective

We utilized two link prediction datasets: OGBN-MAG, Aminer, one node classification dataset, and
one node regression dataset COVID-19. We follow the splits provided by previous works [12, 9]. For
all tasks, we use the first t snapshots for training, and the snapshots after t+ 1 are used for validation
and testing. The statistics of the datasets are summarized in Table 9, and their descriptions are as
follows.

• Aminer4: Aminer [9] is an academic citation dataset for papers that were published during
1990-2006. The dataset has three types of nodes (paper, author and venue), and two types
of relations (paper-publish-venue and author-writer-paper). The task is to predict links
between author nodes, i.e., whether a pair of authors will coauthor a paper in the future.

• OGBN-MAG5: The original OGBN-MAG dataset is a static heterogeneous network com-
posed of a subset of the Microsoft Academic Graph (MAG). HTGNN [12] extracts a
heterogeneous temporal graph (HTG) from OGBN-MAG consisting of 10 graph snapshots
spanning from 2010 to 2019. Specifically, previous work selects authors that consecutively
publish at least one paper every year. Then it collects these authors’ affiliated institutions,
published papers, and the papers’ field of studies in each year to construct this HTG. Each
snapshots is a heterogeneous graph that contains four types of nodes (paper, author, in-
stitutions, and fields of study), and four types of relations among them (author-affiliated
with-institution, author-writes-paper, paper-cites-paper, and paper-has a topic of -field of
study). The task is to predict links between author nodes, i.e., whether a pair of authors will
coauthor a paper in the future.

• Yelp6: Yelp [9] is a business review dataset, containing user reviews and tips on business.
Following, we consider interactions of three categories of business including ”American
(New) Food”, ”Fast Food” and ”Sushi” from January 2012 to December 2012. The task is
to classify the type of business nodes, i.e., a three-class classification problem.

• COVID-197: This dataset [12] contains both state and county level daily case reports (e.g.,
confirmed cases, new cases, deaths, and recovered cases). We use the daily new COVID-19
cases as the time-series data for each state and county. We then build a HTG including
304 graph slices. Each graph slice is also a heterogeneous graph consisting of two types of
nodes (state and county) and three types of relations between them, i.e., one administrative
affiliation relation (state-includes-county) and two geospatial relations (state-near-state,
county-near-county). The task on COVID-19 is to predict the new daily cases.

4https://www.aminer.cn/collaboration
5https://github.com/snap-stanford/ogb
6https://www.yelp.com/dataset
7https://coronavirus.1point3acres.com/en
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Dataset Graph Time Span Node Relation Data Split

Aminer
# Graph: 16

Granularity: year 1990-2005
# Paper : 18,464

# Author : 23,035
# Venue : 22

# Paper-publish-Venue : 18,464
# Author-write-Paper : 52,545

Training: 14
Validation: 1

Testing: 1

OGBN-MAG
# Graph: 10

Granularity: year 2010-2019

# Author: 17,764 # Author-Paper: 2,061,677
# Paper-Paper:2,377,564
# Paper-Field: 289,376

# Author-Institution: 40,307

Training: 8
Validation: 1

Testing: 1

# Paper: 282,039
# Field: 34,601

# Institution: 2,276

YELP
# Graph: 12

Granularity: month
01/2012-
12/2021

# User : 55,702
# Business : 12,524

# User-review-Business : 87,846
# User-tip-Business : 35,508

Training: 10
Validation: 1

Testing: 1

COVID-19
# Graph: 304

Granularity: day
05/01/2020-
02/28/2021

# State: 54
# County: 3223

# State-State: 269 Training: 244
Validation: 30

Testing: 30/60/90
# State-County: 3,141

# County-County: 22,176

Table 9: Statistics of datasets.

C.2 Baseline

We compare our method with state-of-the-art baselines. Specifically, we compare SE-HTGNN with
the following competitive baselines.

• GCN [46]: a representative static homogeneous GNN aggregating neighbors using degree
normalized weights.

• GAT [26]: a representative static homogeneous GNN aggregating neighbors using the
attention mechanism.

• TGAT [37]: a representative dynamic homogeneous GNN aggregating neighbors using the
attention mechanism with temporal encoder.

• RGCN [17]: a static heterogeneous GNN that assigns different parameterizations for
different relation types.

• RGAT [49]: a static heterogeneous GNN using the hierarchical attention mechanism that
assigns different parameterizations for different node and relation types.

• HGT [8]: a static heterogeneous GNN adopting mutual attention and different attention
parameterization for different node and relation types.

• DiffMG [19]: a representative static heterogeneous graph neural architecture search method.
DiffMG automates the static heterogeneous GNN designs by searching meta-paths used
by GCN and exploring the search space with its specially designed differentiable search
algorithm.

• DyHATR [11]: a representative dynamic heterogeneous GNN that uses hierarchical attention
and temporal self-attention to capture heterogeneous and temporal information.

• HGT+ [8]: a dynamic heterogeneous GNN that extends HGT by utilizing the relative
temporal encoding to model temporal information.

• HTGNN [12]: a dynamic heterogeneous GNN that uses hierarchical attention and temporal
self-attention iteratively to capture complex dynamic heterogeneous information.

• DHGAS [9]: a representative dynamic heterogeneous graph neural architecture search
method. DHGAS automates the dynamic heterogeneous GNN designs by searching at-
tention method and exploring the search space with its specially designed multiple-stages
differentiable search algorithm.

• CasMLN [13]: a novel attention-based heterogeneous dynamic GNNs that utilizes node
degrees to calculate attention coefficients for that nodes. Furthermore, it utilize Large
Language Model to provide auxiliary information from an alternative view.

Notably, among these methods, DiffMG and DHGAS are automated models, while the rest are
manually designed models.
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C.3 Implementation Details and Hyperparameters

We use PyTorch-Geometric [52] implementations for GCN, GAT, RGCN, RGAT, HGT and HGT+.
Other models, DiffMG8, DyHATR9, HTGNN10, DHGAS11, and CasMLN12 are reproduced using the
source code released by the authors. For all baselines and datasets, we use the default hyperparameters
provided in the original source code, if available. Otherwise, we choose the number of message-
passing layers in {1, 2, 3} and the number of attention heads in {1, 2, 4, 8}. The hidden representation
dimensionality is set as d = 64 except d = 8 for COVID-19. We record the best the best-performing
results among them. Other hyperparameters for baselines are kept the same as in the original paper.
The max number of epochs is 500, and we set the early stopping round on the validation set as
25 or 50 to alleviate over-fitting. We report the test performance based on the best epoch of the
validation set. For our method, we adopt the Adam optimizer with a learning rate searched in {1,3,5}
× {10−2, 10−3}, and the weight decay rate is searched in {1,2,5} × {10−4, 10−5}. The layer number
of our methods is set as 2, except 3 for Aminer.

C.4 Configurations

Experiments on all datasets are conducted with:

• Operating System: Ubuntu 20.04.6 LTS

• CPU: Intel(R) Xeon(R) CPU E5-2650 v2 @ 2.60GHz

• GPU: NVIDIA RTX 3090 with 24 GB of memory

• RAM: 128 GB

• Software: Python 3.9.19, Deep Graph Library13 1.1.1 [53], Cuda 11.3, PyTorch14 1.12.1[54],
PyTorch-Geometric15 2.5.3 [52].

C.5 Licenses

The licenses of the baselines and datasets are as follows:

• GNU Affero General Public License 3.0: COVID-1916

• MIT License: DyHATR17, HGT18, PyTorch-Geometric19

• Apache License 2.0: Yelp20, Deep Graph Library 21

• Other license: Unspecified license: Aminer, Ecomm, HTGNN, DiffMG

• Other license: PyTorch22

D Limitations and Future Work

This work introduces large language models (LLMs) to enhance the semantic representations of node
types, thereby improving the overall model performance. However, LLM-generated embeddings

8https://github.com/LARS-research/DiffMG
9https://github.com/skx300/DyHATR

10https://github.com/YesLab-Code/HTGNN
11https://github.com/wondergo2017/DHGAS/
12https://github.com/PasaLab/CasMLN
13https://www.dgl.ai/
14https://pytorch.org/
15https://github.com/pyg-team/pytorchgeometric
16https://coronavirus.1point3acres.com/en/data
17https://github.com/skx300/DyHATR/blob/master/LICENSE
18https://github.com/acbull/pyHGT/blob/master/LICENSE
19https://github.com/pyg-team/pytorch-geometric/blob/master
20https://www.yelp.com/dataset/
21https://github.com/dmlc/dgl/blob/master/LICENSE
22https://github.com/pytorch/pytorch/blob/master/LICENSE
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typically have high and fixed dimensionality. As a result, the learnable transformation matrices
required for linear dimensionality reduction contribute a considerable parameter overhead, which
can compromise computational efficiency. Despite this, experimental results demonstrate that the
incorporation of LLMs yields significant performance gains. In future work, we plan to explore
dimensionality reduction techniques—such as low-rank decomposition and principal component
analysis (PCA)—to compress LLM outputs, aiming to improve model efficiency and scalability
without subsantially sacrificing semantic information.

E Broader Impacts

Our proposed SE-HTGNN is tailored neural network for Heterogeneous temporal graph (HTG),
focusing on the efficient representation of large-scale graphs problem. The application of the COVID-
19 dataset shows that heterogeneous temporal graph (HTG) learning models such as SE-HTGNN can
effectively predict the development trend of the epidemic, which is helpful for the government to
intervene in advance, optimize the allocation of medical resources, and enhance the social emergency
response capacity. On the other hand, in e-commerce networks YELP, HTG learning models like
SE-HTGNN can greatly enhance user experience by capturing the dynamic interactions between
users, items, and contextual factors over time, enabling more accurate personalized recommendations,
trend forecasting, and fraud detection.
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