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ABSTRACT

In the field of certified robustness through randomized smoothing, several works
endeavor to improve the certified robust radius through, e.g., examining various
smoothing distributions, conducting smooth training with adversarial data, or em-
ploying f-divergence based metrics. However, there is a lack of theoretical studies
that delve into the relationship between the accuracy performance, the certified ro-
bust radius, and the model weights for smoothed classifiers. In the context of this
study, we develop a generalization error bound that possesses a certified robust ra-
dius for a variant of the smoothed classifier (i.e., the classifier with both smoothed
inputs and weights); In other words, the generalization bound holds under any
data perturbation within the certified robust radius. As a byproduct, we find that
the underpinnings of both the generalization bound and the certified robust radius
draw, in part, upon weight spectral norm, which thereby inspires the adoption of
spectral regularization in smooth training to boost certified robustness. Utilizing
the dimension-independent property of spherical Gaussian inputs in smooth train-
ing, we propose a novel and inexpensive spectral regularizer to enhance smoothed
classifiers. In addition to the theoretical contribution, an extensive set of empirical
results is provided to substantiate the effectiveness of our proposed method.

1 INTRODUCTION

Despite their remarkable performance on numerous supervised learning tasks, deep neural net-
works (DNNs) are often highly vulnerable to adversarial perturbations unnoticeable to the human
eye (Szegedy et al., 2013; Goodfellow et al., 2014). This phenomenon has instigated a substantial
body of research aimed at enhancing the adversarial robustness of DNNs (Papernot et al., 2016;
Tramèr et al., 2017; Xu et al., 2017; Madry et al., 2017; Athalye et al., 2018; Wu et al., 2020). Al-
though notable achievements have been made in the adversarial robustness community, it has been
demonstrated that models previously deemed robust have subsequently succumbed to more power-
ful adversarial attacks (Athalye et al., 2018; Uesato et al., 2018; Croce & Hein, 2020). This has
motivated the need for methodologies that provide verifiable guarantees, ensuring that the predictor
remains impervious to any attack within a certain perturbation radius. Significant advancements
have been achieved in the development of methodologies capable of computing certified robust ra-
dius for DNNs (Katz et al., 2017; Wong & Kolter, 2018; Wong et al., 2018; Raghunathan et al., 2018;
Huang et al., 2019; Jia et al., 2020), but they demand comprehensive knowledge of the architecture
of the predictor and pose challenges in terms of their extensibility to different models.

To address these challenges, recent study has introduced the randomized smoothing strat-
egy (Lecuyer et al., 2019; Cohen et al., 2019; Li et al., 2019), an innovative approach aimed at
verifying the robustness of smoothed classifiers. Specifically, it employs the smoothing noise to
the input data, followed by the determination of the most probable label by the smoothed classifier.
Then, the robust radius for the smoothed classifier can be certified. In contrast to other methodolo-
gies, randomized smoothing stands out as an efficient and model-agnostic technique, and is highly
adaptable to a wide range of machine learning models.

To improve certified robust radius of smoothed classifiers, existing studies have explored numerous
smoothing distributions (Lee et al., 2019; Li et al., 2019; Yang et al., 2020; Li et al., 2022), measures
of f-divergences (Dvijotham et al., 2020) and adversarial smooth training methods (Salman et al.,
2019). However, there is a paucity of research that theoretically studies the aspects of the gener-
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Figure 1: Illustration of the theoretical framework: perturbation bound for smoothed classifiers.
Under this framework, a standard generalization bound is extended to a smoothed generalization
bound with a certified robust radius.

alization performance, the certified robust radius, and the model weights for smoothed classifiers,
which may offer profound insights into the smoothed classifier. To this end, this paper presents a
theoretical contribution within the PAC-Bayesian framework, wherein we develop a margin-based
generalization bound endowed with a certified robust radius for smoothed classifiers. As shown in
Fig. 1, the theoretical development is accomplished through a tripartite process:

1. We extend the existing smoothed classifier, broadening its scope by smoothing both in-
puts and model weights. Subsequently, we develop a margin-based generalization bound
tailored for this new smoothed classifier (Lem. 3.1).

2. Following the margin-based analysis framework, we impose a restriction on the output of
the smoothed classifier with respect to its smoothed inputs and weights, proceed to conduct
an in-depth generalization analysis leveraging the spectral norm of weights (Thm. 3.2).

3. Building upon the preceding two steps, we derive a certified robust radius for the general-
ization bound of the smoothed classifier (Thm. 3.3), inspiring us to regularize the spectral
norm of weights to boost certified robustness.

In our theoretical setting, we find the bedrock of both the generalization bound and the correspond-
ing certified robust radius derives, in part, from the weight spectral norm. Therefore, we advocate
the adoption of an innovative approach to regularize weight spectral norm in smooth training, where
smooth training is a popular technique (Cohen et al., 2019; Salman et al., 2019) to enhance smoothed
classifiers by applying small smoothing (usually Gaussian distributed) noise to training data. The
Gershgorin circle theorem (Gershgorin, 1931) reveals that the weight spectral norm is connected
to the scale and cosine similarity of weight vectors. Since the scale of weights has normally been
regularized by common techniques like weight decay, this work centers on the regularization of
weight cosine similarity. In smooth training with spherical Gaussian inputs, we can handily regu-
larize cosine similarity (and weight spectral norm) by leveraging the ℓ1,1 entry-wise matrix norm
of the output correlation matrix. This scheme offers two key advantages of effectiveness and time-
efficiency. Through an extensive set of experiments on a wide range of datasets, we validate the
usefulness of our spectral regularization method to boost the certified robustness of smoothed clas-
sifiers, with a little extra time consumption. To summarize, the contributions of this work are as
follows:

• Major: By extending the concepts of margin-based generalization analysis to the smooth
setting, we derive a generalization bound that possesses a certified robust radius for
smoothed classifiers (Sec. 3).

• Secondary: On the strength of theoretical results, we propose an efficient method for spec-
tral regularization in smooth training to enhance certified robustness and provide compre-
hensive empirical results to demonstrate the effectiveness of our approach (Secs. 4 and 5).

2 PRELIMINARIES

Basic setting. Consider x ∈ X and y ∈ Rdy , where X = {x ∈ Rd|
∑d

i=1 x
2
i ≤ B2} is

the input domain and dy is the number of output targets. Let y be the one-hot vector of y, and
S = {(x1, y1), ..., (xm, ym)} represent a training set consisting of m samples drawn independently
and identically from an underlying distribution D. Let F = {fw(·),w ∈ W} represent the learn-
ing function class parameterized by w. We define fw as an n-layer neural network with h hidden
units per layer with ReLU activation function ϕ(·). Each function fw : X → Rdy in F maps a
data point x to a dy-dimensional vector. The objective of a supervised learner is to obtain the most
effective function in F that minimizes the expected loss (risk) over D. Let W and Wl denote the
weight matrices of the model and the l-th layer, respectively. Furthermore, let w and wl be the
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vectorizations of W and Wl (i.e., w = vec(W)), respectively. We can express each fw(x) as
fw(x) = Wnϕ(Wn−1...ϕ(W1x)...), and define f1

w(x) = W1x, f i
w(x) = Wiϕ(f

i−1
w (x)). For

convenience, we omit the bias term as it can be incorporated into the weight matrix. The spec-
tral norm of matrix W, denoted as ∥W∥2, represents the largest singular value of W, while the
Frobenius norm of W, denoted as ∥W∥F . The ℓp norm of vector w, denoted as ∥w∥p.

Margin loss. The classifier fw may exhibit different performance when evaluated on the theoret-
ical data distribution D and the training dataset S. The generalization error reflects the difference
between the average losses observed in the empirical dataset and theoretical data distribution, which
are estimated using the training and test datasets, respectively. In prior works such as Neyshabur
et al. (2017b); Farnia et al. (2019), the PAC-Bayesian generalization analysis for a DNN is con-
ducted on the margin loss. By considering any positive margin value γ, the expected margin loss is
defined as

Lγ(fw) := E
(x,y)∼D

1

[
fw(x)[y] ≤ γ +max

j ̸=y
fw(x)[j]

]
, (1)

where 1[a ≤ b] = 1 if a ≤ b, else 1[a ≤ b] = 0. Here setting γ = 0 corresponds to the normal loss.

PAC-Bayes. For randomized predictors, PAC-Bayes (McAllester, 1999; 2003) provides an upper
bound on the generalization error with respect to the Kullback-Leibler divergence (DKL) between
the posterior distribution Q and the prior distribution P of weights. Neyshabur et al. (2017b); Dziu-
gaite & Roy (2017) consider the posterior distribution Q over predictors of the form fw+u(w) , where
u(w) is a zero mean Gaussian random variable. For convenience, we denote w + u(w) as w + u.
PAC-Bayes can bound the expected loss over posterior distribution Q, defined as

Lγ(fw,u) := Eu

(
E

(x,y)∼D
1

[
fw+u(x)[y] ≤ γ +max

j ̸=y
fw+u(x)[j]

])
. (2)

We then provide a commonly used version of PAC-Bayesian generalization bound in the following.

Lemma 2.1 Consider a training dataset S with m samples drawn from a distribution D with binary
targets. Given a learning algorithm (e.g., a classifier) fw with prior and posterior distributions P
and Q (i.e., w+ u) on the weights respectively, for any δ > 0, with probability 1− δ over the draw
of training data, we have that

L0(fw,u) ≤ L̂0(fw,u) + 2

√
2(DKL(w + u||P ) + log 2m

δ )

m− 1
,

where L0(fw,u) is the expected loss on D, L̂0(fw,u) is the empirical loss on S, and their difference
yields the generalization error.

Smoothed classifier. We consider the smoothed input data as x + u(x), where u(x) is also a zero
mean Gaussian random variable. Suppose u =

(
u(w)

u(x)

)
∼ N (0, σ2I), we denote w+u(w), x+u(x)

as w + u, x + u for convenience. Randomized smoothing constructs a smoothed classifier by
enhancing a given base classifier with input noise u(x), where Gaussian distribution is a widely
employed smoothing distribution in the literature (Lecuyer et al., 2019; Cohen et al., 2019; Li et al.,
2019; Yang et al., 2020). Typically, in these works, the smoothed classifier predicts the class with
the highest confidence on the smoothed data, i.e.,

argmax
c∈Y

Eu1

[
fw(x+ u)[c] > max

j ̸=c
fw(x+ u)[j]

]
. (3)

The technique of smooth training is extensively employed within the framework of randomized
smoothing. Specifically, it introduces smoothing noise, often in the form of spherical Gaussian
noise, to the training data, which serves to enhance the capability of smoothed classifiers to deal
with smoothed inputs.

Different from the previous work, we utilize the smoothed classifier Gγ,w,u with the smoothing
distribution on both model weights w and input data x. When queried at both w and x, the smoothed
classifier Gγ,w,u returns the class that the base classifier fw is most likely to select under margin γ,

Gγ,w,u(x) = argmax
c∈Y


Eu1

[
fw+u(x+ u)[c] > max

j ̸=c
fw+u(x+ u)[j] + γ

]
, if c = y

Eu1

[
fw+u(x+ u)[c] + γ > max

j ̸=c
fw+u(x+ u)[j]

]
. if c ̸= y

(4)
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Note that γ is a tool that aids in the development of our theory, which allows us to establish an upper
bound on the expected loss of G0,w,u (i.e., γ = 0) on D. We then define the expected loss of a
smoothed classifier Gγ,w,u as

Lγ(G) := E
(x,y)∼D

1

[
Gγ,w,u(x) ̸= y

]
. (5)

The expected loss under ℓ2 norm data perturbation is defined as

Lγ(G, ϵ) := E
(x,y)∼D

1

[
∃ε
∣∣∣ ∥ε∥22 ≤ ϵx, Gγ,w,u(x+ ε) ̸= y

]
, (6)

where ε ∈ Rd and
√
ϵx is the perturbation radius for x. Here we suppose ϵx can be different for

different x, which we will discuss later. We consider L̂γ(fw), L̂γ(fw,u), L̂γ(G), L̂γ(G, ϵ) to be the
empirical estimate of the above expected losses, e.g., L̂γ(G) is defined as

L̂γ(G) :=
1

m

∑
(x,y)∈S

1

[
Gγ,w,u(x) ̸= y

]
. (7)

The goal of the generalization analysis in this work is to provide theoretical comparison between
the true and empirical margin losses for smoothed classifiers. Next, we show how to develop the
above PAC-Bayesian generalization analysis for smoothed classifiers, initially bounding L0(G) and
further extending it to bound L0(G, ϵ) with a certified robust radius

√
ϵx.

3 MAIN RESULTS

3.1 SKETCH

For clarity, we first outline our principal theoretical result (in Thm. 3.3). Within the PAC-Bayesian
framework, we formulate a generalization bound that incorporates a certified robust radius. The
primary content is elucidated as follows.

With probability at least 1 − δ, the inequality L0(G, ϵ) ≤ L̂γ(G) + Ωge holds within the ℓ2
norm data perturbation radius Ωr, both Ωge and Ωr are influenced, in part, by ∥Wi∥2.

In other words, this says both the accuracy performance and the certified robust radius, for the
smoothed classifier, can be affected by weight spectral norm. Consequently, we have the potential to
improve certified robustness through spectral regularization. In the following, we provide the details
of our theoretical development, as illustrated in Fig. 1.

3.2 ELABORATION

In light of the PAC-Bayesian framework established in Lem. 2.1, which bounds the generalization
error over the expected loss of the posterior Q, our initial objective is to formulate a generalization
bound specifically tailored to the smoothed classifier, as defined in (4) and (5). By leveraging the
margin-based generalization analysis approach (Neyshabur et al., 2017b; Bartlett et al., 2017), we
have successfully derived a generalization bound for the smoothed classifier through incorporating
the empirical margin loss, as elucidated below.

Lemma 3.1 Consider Lem. 2.1, let fw : X → Y denote any predictor with weights w over training
dataset of size m, and let P be any prior distribution of weights that is independent of the training
data, w + u be the posterior of weights. Then, for any δ, γ > 0, and any random perturbation u
s.t. Pu(maxx |fw+u(x) − fw(x)|∞ < γ

8 ∩ maxx |fw+u(x + u) − fw(x)|∞ < γ
8 ) ≥ 1

2 , with
probability at least 1− δ, we have

L0(G) ≤ L̂γ(G) + 4

√
DKL(w + u∥P ) + ln 6m

δ

m− 1
,

where L0(G) is the expected loss for the smoothed classifier G0,w,u and L̂γ(G) is the empirical
estimate of the margin loss for Gγ,w,u.
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Proof. See App. B.1. □

Lem. 3.1 follows a similar analysis approach as the margin-based PAC-Bayesian bounds derived
for traditional machine learning models (Langford & Shawe-Taylor, 2003; McAllester, 2003) and
deep learning models (Neyshabur et al., 2017b; Farnia et al., 2019). However, when considering
the lemma in its current form, it constitutes a generalization bound specifically designed for the
smoothed classifier. There are two distinctions from previous research: 1. It considers the gener-
alization performance concerning both smoothed weights and data. 2. It employs a 0 − 1 loss to
evaluate the most probable output of the smoothed classifier.

The methodologies employed by Langford & Caruana (2002); Neyshabur et al. (2017a); Dziugaite &
Roy (2017) involve utilizing PAC-Bayesian bounds to analyze the generalization behavior of neural
networks, wherein the evaluation is conducted either on the KL divergence, the perturbation error
L0(fw+u)−L0(fw), or the entire bound numerically. In addition, Neyshabur et al. (2017b); Farnia
et al. (2019) employ the PAC-Bayesian framework to derive a margin-based bound that depends
on weight norms through restricting fw+u(x) − fw(x). We will also introduce a margin-based
bound that relies on weight norms, but through imposing restrictions on both fw+u(x)−fw(x) and
fw+u(x+ u)− fw(x) as demonstrated in Lem. 3.1. This is because the smoothed classifier in this
work is implemented on both x+u and w+u. As in previous work, we can then choose the largest
perturbation u while adhering to the given constraint to obtain the conditionally tight bound. In the
following theorem, we provide the details of the bound, which mainly rests on the spectral norm and
the Frobenius norm of weights.

Theorem 3.2 Given Lem. 3.1, for any B,n, h > 0, let fw : X → Y be an n-layer feedforward
network with h units each layer and ReLU activation function. Choose the largest perturbation u
under the restriction, for any δ, γ > 0, any w over training dataset of size m, with probability at
least 1− δ, we have the the following bound:

L0(G) ≤ L̂γ(G) +O

√Φ (
∏

i ∥Wi∥22,
∑

i ∥Wi∥2F ) + ln nm
δ

m− 1

 ,

where

Φ

(∏
i

∥Wi∥22,
∑
i

∥Wi∥2F

)
=

∑
i

(
∥Wi∥2F /∥Wi∥22

)
Ψ(
∏

i ∥Wi∥22) /(
∏

i ∥W∥22)
1
n

,

and

Ψ

(∏
i

∥Wi∥22

)
=

(γ/(
28n(h ln(8nh))

1
2 τ

1
2

∏
i

∥Wi∥
n−1
n

2

)
+

B2

4τ

) 1
2

− B

2τ
1
2

2

.

Here τ is the solution of Fχ2
d
(τ) =

√
2
2 , where Fχ2

d
(·) is the cumulative distribution function (CDF)

for the chi-square distribution χ2
d with d degrees of freedom.

Proof. See App. B.2. □

The above theorem derives the generalization guarantee by restricting the variation in the output of
the network and thus bounding the sharpness of the model. This approach is similar to Neyshabur
et al. (2017b); Bartlett et al. (2017), yet with some notable differences: the previous work depicts
the change of the output with respect to smoothed weights, whereas we consider the variation of the
output in connection with both smoothed weights and smoothed inputs for the smoothed classifier.

Next, we extend Thm. 3.2 to a certified robustness setting. Although randomized smoothing has been
extensively explored in previous research to provide robustness guarantee for a specific input, limited
attention has been given to the relationship between the certified robust radius, the generalization
performance, and the model weights. As a first attempt, we endeavor to develop the generalization
bound under a certified robust radius, i.e., the generalization bound holds for any data perturbation
within the radius.
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Theorem 3.3 Given Thm. 3.2, for any x ∈ X , suppose there exist pAw,u(x), p
B
w,u(x) such that

Eu1

[
argmax

c
fw+u(x+ u)[c] = G0,w,u(x)

]
≥ pAw,u(x) ≥ pBw,u(x)

≥ max
j ̸=G0,w,u(x)

Eu1

[
argmax

c
fw+u(x+ u)[c] = j

]
.

Then, for any δ, γ > 0, with probability at least 1− δ we have

L0(G, ϵ) ≤ L̂γ(G) +O

√Φ (
∏

i ∥Wi∥22,
∑

i ∥Wi∥2F ) + ln nm
δ

m− 1


within ℓ2 norm data perturbation radius

√
ϵx, where

ϵx = − ln

(
1−

(√
pAw,u(x)−

√
pBw,u(x)

)2)
︸ ︷︷ ︸

Model and Data Joint Dependence

· 2Ψ

(∏
i

∥Wi∥22

)
︸ ︷︷ ︸

Model Dependence

. (8)

Proof. See App. B.3. □

In Thm. 3.3, we utilize a commonly employed setup of randomized smoothing that there exists a
lower bound pAw,u(x) of the largest probability of the output and an upper bound pBw,u(x) of the

secondary probability of the output. The gap between
√
pAw,u(x) and

√
pAw,u(x) determines the

first component of the certified robust radius in (8), which is jointly influenced by both the model
and the input data. In addition, the second component of the certified robust radius depends solely
on the model, primarily on the spectral norm of weights.

The above theorem illustrates that, within our theoretical framework for the smoothed classifier,
both the generalization bound and its corresponding certified robust radius are partially influenced
by the spectral norm of weights. Assume other factors remain constant, reducing the spectral norm
of weights can, generally and simultaneously, narrow the generalization bound and enhance the
certified robust radius. Thus, Thm. 3.3 leads to our conclusion that the spectral regularization of
weights may enhance the smoothed classifier in the aspect of certified robust radius and generaliza-
tion performance. This theoretical analysis will guide our design of regularization in the next section
for smooth training.

4 SPECTRAL REGULARIZATION IN SMOOTH TRAINING

Thm. 3.3 reveals the existence of two components in (8) that influence the certified robust radius.
The first component pertains to the gap between

√
pAw,u(x) and

√
pBw,u(x), which depends on both

the model and the data. The second component, denoted as Ψ(
∏

i ∥Wi∥22), is solely reliant on the
model, mainly on the spectral norm of model weights. In previous work (Cohen et al., 2019; Salman
et al., 2019), smooth training is designed to augment the first component of the gap through adding
Gaussian noise to the training data. From a different point of view, Thm. 3.3 in this work reaches
a theoretical perspective that the weight spectral norm in the second component may also be a key
factor to the generalization and certified robust radius — our empirical results in Sec. 5 will provide
further evidence. Thus in this section, we will explore how the spectral norm can be utilized to help
smooth training to learn a better smoothed classifier.

In previous literature, spectral regularization has been used to improve generalization (Yoshida &
Miyato, 2017) and adversarial robustness (Farnia et al., 2019). However, considering the inherent
difficulty in computing the spectral norm, estimating it for each layer of weights is still a costly
endeavor. In this work, thanks to the spherical Gaussian inputs in smooth training, we can harness
the correlation matrix to craft an economical approach for spectral regularization as follows.

Given W = WnWn−1 · · ·W1, according to the Gershgorin circle theorem, we have

∥W∥22 ≤ ∥WW⊤∥∞ = max
i

∑
j

[
∥w(i)∥2∥w(j)∥2︸ ︷︷ ︸

Scale

| cos(w(i),w(j))|︸ ︷︷ ︸
Correlation

]
, (9)
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where w(i) is the i-th row vector of W.

The scale term presented in (9) has been extensively studied in previous research, particularly in
seminal studies on weight decay (LeCun et al., 2015; Loshchilov & Hutter, 2017) and batch normal-
ization (Ioffe & Szegedy, 2015), among other notable works. In this work, given the weight scale
has normally been regularized (e.g., via weight decay), we propose to leverage the correlation term
in (9) to impose regularization on ∥W∥2 and, furthermore,

∏
i ∥Wi∥2. Although minimizing the

correlation term, also known as weight orthogonality (Saxe et al., 2013; Mishkin & Matas, 2015;
Bansal et al., 2018), has been the subject of prior research, our algorithm is different from previous
work in two aspects: Firstly, the regularization is directly applied to the whole weight matrix W,
which is an ensemble of all layer weight matrices; Secondly, our algorithm is specially crafted to
leverage the spherical Gaussian inputs for spectral regularization, leading to a little additional time
consumption (see Tab. 1).

In addition, we would like to point out that optimizing the correlation term for spectral regularization
is a worthwhile endeavor. Suppose the weight scale in (9) remains invariant (e.g., after regularization
by weight decay), both | cos(w(i),w(j))| and ∥W∥22 can then achieve the optimum simultaneously.
That is, given a weight matrix W (with fixed ∥w(i)∥2) s.t. ∀i ̸= j, cos(w(i),w(j)) = 0, we have
∥W∥22 = ∥WW⊤∥∞ and ∥W∥22 attains its minimum for the given scale. Moreover, the empirical
results in Sec. 5.1 demonstrate that regularizing the correlation term in (9) yields a notable reduction
in both ∥W∥2 and

∏
i ∥Wi∥2. In the following, we will provide the details of our novel and cheap

method for spectral regularization in smooth training.

Let f̃w be the linear (remove non-linear components) classifier parameterized by W and f̃w(x)[i] be
the i-th output of f̃w(x). Given η ∈ Rd is a spherical Gaussian, the cosine similarity between w(i)

and w(j) is equal to the statistical correlation (Pearson correlation coefficient) between f̃w(x+η)[i]

and f̃w(x+ η)[j], i.e.,

cos(w(i),w(j)) = ρ(f̃w(x+ η)[i], f̃w(x+ η)[j])

=
Eη[(f̃w(x+ η)[i]− Eη(f̃w(x+ η)[i]))(f̃w(x+ η)[j]− Eη(f̃w(x+ η)[j]))]√

Eη[(f̃w(x+ η)[i]− Eη(f̃w(x+ η)[i]))2]Eη[(f̃w(x+ η)[j]− Eη(f̃w(x+ η)[j]))2]
.

(10)

Note that here x is a constant vector and η is a random vector. Let R(f̃w) be the correlation matrix
of random vector f̃w(x+η), i.e., ρ(f̃w(x+η)[i], f̃w(x+η)[j]) is the element of i-th row and j-th
column of R(f̃w), we thus have∑

i

∑
j

| cos(w(i),w(j))| = ∥R(f̃w)∥1,1, (11)

where ∥ · ∥1,1 is the ℓ1,1 entry-wise matrix norm, represents the sum of absolute elements in the
matrix. Therefore, to minimize the spectral norm of W through correlation term in (9), we can
incorporate the regularization term ∥R(f̃w)∥1,1 into the objective function of smooth training, i.e.,

L(f(x+ η), y) + α · ∥R(f̃w)∥1,1, (12)
where α ∈ [0,+∞) is a hyper-parameter to balance the relative contributions of smooth train-
ing loss L(f(x + η), y) and regularization term ∥R(f̃w)∥1,1. For time-efficiency, we just com-
pute ∥R(f̃w)∥1,1 once per epoch. In the next section, we will provide extensive empirical re-
sults to demonstrate that our method can successfully regularize weight spectral norm and enhance
smoothed classifiers.

5 EMPIRICAL RESULTS

Within this section, we present a comprehensive experiment with the purpose of substantiating the
derived bound in Sec. 3 as well as validating the effectiveness of our spectral regularization method
as delineated in Sec. 4. Our results illustrate that the spectral regularization method enhances certi-
fied robustness for smoothed classifiers across diverse datasets. Specifically, in Sec. 5.1, we demon-
strate that our regularizer can effectively reduce the weight spectral norm with a little extra time
consumption. In Sec. 5.2, we show the reduced weight spectral norm can enhance certified robust-
ness within our evaluation framework.
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Figure 2: We train MLPs on MNIST and FashionMNIST with α ∈ {0.0, 0.1, 0.2, 0.3, 0.4, 0.5},
respectively. Left: the spectral norm of the whole weight matrix, i.e., ∥W∥2 where W =
WnWn−1 · · ·W1, with respect to α. Middle: the product of the spectral norms of the weight
matrix, i.e.,

∏
i ∥Wi∥2, with respect to α. Right: the cosine similarity matrix of row vectors of the

whole weight matrix W.

Table 1: Running time (seconds/epoch) for MLP on MNIST, ResNet110 on CIFAR-10 and
ResNet50 on ImageNet.

MLP (MNIST) ResNet110 (CIFAR-10) ResNet50 (ImageNet)
Normal Spectral Gap Normal Spectral Gap Normal Spectral Gap

17.0 17.1 +0.5% 32.6 33.7 +3.3% 8970 9160 +2.1%

5.1 SPECTRAL REGULARIZATION

Since the weight spectral norm of small multilayer perceptron (MLP) can be easily computed, we
implement MLPs with different values of hyper-parameter α on MNIST and FashionMNIST to show
the efficacy of our approach in reducing weight spectral norm. As shown in Fig. 2, our method can
effectively reduce the whole weight matrix spectral norm (∥W∥2) and the product of weight spectral
norms (

∏
i ∥Wi∥2). Both of them significantly decrease as α increases. However, large α can also

damage the training accuracy of the classifier, thus we set α = 0.1 as the default value for the
following experiments in Sec. 5.2. Moreover, our method incurs only a minor overhead in training
time due to the ease of computing the correlation matrix in a linear network, as demonstrated in
Tab. 1.

5.2 ENHANCE CERTIFIED ROBUSTNESS

In adversarially robust classification, one important metric is the certified test accuracy at radius r.
This metric is defined as the fraction of the test set that G0,w,u classifies correctly with a prediction
that is certifiably robust within an ℓ2 norm ball of radius r. Following Cohen et al. (2019), we also
report the approximate certified test accuracy with respect to the radius. When running the evalu-
ation algorithm from Cohen et al. (2019), we use 100 Monte Carlo samples for selection, 100000
samples for estimation on MNIST (LeCun & Cortes, 2010) and FashionMNIST, 10000 samples for
estimation on CIFAR-10 (Krizhevsky et al., 2009) and ImageNet (Deng et al., 2009). Our evalua-
tion method differs from previous work in that we use a certified framework that is tailored to our
smoothed classifiers for both smoothed inputs and weights (details are given in App. C). Specifically,
the certified robust radius in our evaluation is defined as

R =

√
−2σ2 ln

(
1−

(√
pAw,u(x)−

√
pBw,u(x)

)2)
, (13)

where pAw,u(x), p
B
w,u(x) share the same definitions as outlined in Thm. 3.3, and σ2 represents the

variance of the smoothing noise. Details are given in Prop. 5.2 in App. B.4. In contrast, Cohen et al.
(2019); Salman et al. (2019) employ the evaluation that is only designed for smoothed inputs.

Fig. 3 plots the upper envelope of the certified accuracies for MLPs trained on MNIST and Fashion-
MNIST, as well as ResNet110 (He et al., 2016) on CIFAR-10 and ResNet50 on ImageNet. For the
normal trained models, we set σ = 0.12, while for the spectral regularized models, we use σ = 0.13.
As shown in Fig. 3, the application of spectral regularization consistently leads to superior certified
robustness performance across all four datasets. The spectral regularized models exhibit the ability
to maintain high levels of accuracy while slightly increasing the certified robust radius by elevating
σ.
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Figure 3: Experiments with randomized smoothing on both weights and data, for MLP on MNIST,
MLP on FashionMNIST, ResNet110 on CIFAR-10, and ResNet50 on ImageNet, respectively. We
certify the full MNIST, FashionMNIST, CIFAR-10 test sets and a subsample of 1000 examples from
the ImageNet test set. We choose σ = 0.12 for normal trained models and σ = 0.13 for spectral
regularized models.

6 RELATED WORK

PAC-Bayes is a general framework that enables efficient study of generalization for various machine
learning models. Numerous canonical works have been developed in the past decades since the
inception of PAC-Bayes by McAllester (1999). E.g., Seeger (2002) studies PAC-Bayes for Gaussian
process classification; Langford & Caruana (2002) uses PAC-Bayes to bound the true error rate of
a continuous valued classifier; Langford & Shawe-Taylor (2003) develops a margin-based PAC-
Bayesian bound which is more data-dependent; Germain et al. (2009) proposes different learning
algorithms to find linear classifiers that minimize PAC-Bayesian bounds; Parrado-Hernández et al.
(2012) explores the capabilities of PAC-Bayes to provide tight predictions for the generalization of
SVM; Alquier et al. (2016) shows that when the risk function is convex, a variational approximation
of PAC-Bayesian posterior can be obtained in polynomial time; Thiemann et al. (2017) proposes a
PAC-Bayesian bound and a way to construct a hypothesis space, so that the bound is convex in the
posterior distribution; Dziugaite & Roy (2018) shows a differentially private data-dependent prior
can yield a valid PAC-Bayesian bound; Letarte et al. (2019) studies PAC-Bayes for multilayer neural
networks with binary activation; Rivasplata et al. (2020) provides a basic PAC-Bayesian inequality
for stochastic kernels; Jin et al. (2020) studies PAC-Bayes with non-spherical Gaussian posterior
distribution for DNNs; Pérez-Ortiz et al. (2021) conducts an empirical study on the use of training
objectives derived from PAC-Bayesian bounds to train probabilistic neural networks; Dziugaite et al.
(2021) shows that in some cases, a stronger PAC-Bayesian bound can be obtained by using a data-
dependent oracle prior; Lotfi et al. (2022) develops a compression approach to provide tight PAC-
Bayesian generalization bounds on a variety of tasks, including transfer learning; Haddouche &
Guedj (2022) proves new PAC-Bayesian bounds in the online learning framework; Amit et al. (2022)
presents a PAC-Bayesian generalization bound which enables the replacement of the KL divergence
with a variety of Integral Probability Metrics; Wu & Seldin (2022) derives a PAC-Bayes-split-kl
inequality to bound the expected loss; Biggs & Guedj (2023) introduces a modified version of the
excess risk to obtain empirically tighter, faster-rate PAC-Bayesian generalization bounds. Livni &
Moran (2020) presents a limitation for the PAC-Bayes and demonstrates an easy learning task that
is not amenable to a PAC-Bayesian analysis. More related work on randomized smoothing is
provided in App. A.

In contrast to previous research, this paper investigates the theoretical properties of smoothed clas-
sifiers within the PAC-Bayesian framework. As shown in Fig. 1, the most notable difference is that
this work introduces a margin-based generalization bound tailored for the smoothed classifier with
a certified robust radius.

7 CONCLUSION

In this paper, we explored the theoretical connection between the generalization performance, the
certified robust radius, and the model weights for smoothed classifiers, leading to the development of
a margin-based generalization bound within our smooth framework. As a result of these theoretical
findings, we were inspired to formulate a highly effective and efficient spectral regularizer tailored
for smooth training. Subsequently, we conducted extensive experiments to empirically demonstrate
the effectiveness of our spectral regularizer in improving certified robustness.

Reproducibility Statement: We provide the proofs for Sec. 3 in App. B, the code for the experi-
ments in the supplementary file.
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Marıa Pérez-Ortiz, Omar Rivasplata, John Shawe-Taylor, and Csaba Szepesvári. Tighter risk certifi-
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The appendices can be summarized as follows:

• App. A: In this section, we provide more related work about randomized smoothing.
• App. B: We provide the detailed proofs for Lem. 3.1, Thm. 3.2, Thm. 3.3 and Prop. 5.2.
• App. C: We present the details of the evaluation in Sec. 5.

A MORE RELATED WORK

Following the groundbreaking research of randomized smoothing by Lecuyer et al. (2019); Co-
hen et al. (2019); Li et al. (2019), several notable contributions have emerged. Kumar et al. (2020b)
shows that extending the smoothing technique to defend against other attack models can be challeng-
ing. Lee et al. (2019); Schuchardt et al. (2020); Wang et al. (2021) introduce extensions of random-
ized smoothing that address discrete perturbations like ℓ0-perturbations, whereas Bojchevski et al.
(2020); Gao et al. (2020); Levine & Feizi (2020b); Liu et al. (2021) delve into extensions related
to graphs, patches, and point cloud manipulations. Yang et al. (2020); Zhang et al. (2020) derive
methods to determine certificates with ℓ1, ℓ2, and ℓ∞ norms. Xie et al. (2021) trains certifiably ro-
bust federated learning models against backdoor attacks via randomized smoothing. Mu et al. (2023)
leverages randomized smoothing for multi-agent reinforcement learning system to determine actions
with guaranteed certified bounds. Dvijotham et al. (2020) offers theoretical derivations applicable
to both continuous and discrete smoothing measures, whereas Mohapatra et al. (2020) enhances cer-
tificates by incorporating gradient information and Horváth et al. (2021) uses ensembles to improve
certificates. Rosenfeld et al. (2020); Levine & Feizi (2020a); Jia et al. (2021); Weber et al. (2023)
use randomized smoothing to defend against data poisoning attacks. In addition to norm-balls cer-
tificates, Fischer et al. (2020); Li et al. (2021) demonstrate how randomized smoothing can be used
to certify geometric operations like rotation and translation. In their respective works, Chiang et al.
(2020); Fischer et al. (2021) show how certificates can be extended from classification to regression
(and object detection) and segmentation. In the context of classification, Jia et al. (2020) broadens
the scope of certificates by encompassing not only the top-1 class but also the top-k classes, whereas
Kumar et al. (2020a) focuses on certifying the confidence of the classifier, extending beyond solely
the top-class prediction. Hong et al. (2022) proposes a universally approximated certified robust-
ness framework to provide robustness certification for any input data on any classifier; Hao et al.
(2022) proposes generalized randomized smoothing to certify robustness against general semantic
transformations. Schuchardt & Günnemann (2022) proposes a gray-box approach to enhance ran-
domized smoothing technique with white-box knowledge about invariances. Mehra et al. (2021)
presents a novel bilevel optimization-based poisoning attack that damages the robustness of certi-
fied robust models. Alfarra et al. (2022b) shows that the variance of the Gaussian distribution in
randomized smoothing can be optimized at each input so as to maximize the certification radius.
Mohapatra et al. (2021) shows that the decision boundaries of smoothed classifiers will shrink, lead-
ing to disparity in class-wise accuracy. Alfarra et al. (2022a) reformulates the randomized smoothing
framework which can scale to large networks on large input datasets. Chen et al. (2022) proposes
Input-Specific Sampling acceleration to achieve the cost-effectiveness for randomized smoothing
robustness certification.

In contrast to previous work on randomized smoothing, this paper explores the theoretical properties
of smoothed classifiers under PAC-Bayesian framework. Specifically, it offers a theoretical expla-
nation of how a smoothed classifier can achieve superior generalization performance and a larger
certified robust radius.
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B PROOFS

B.1 PROOF FOR LEM. 3.1

First, we restate Lem. 3.1 here.

Lemma 3.1 Consider Lem. 2.1, let fw : X → Y denote any predictor with weights w over training
dataset of size m, and let P be any prior distribution of weights that is independent of the training
data, w + u be the posterior of weights. Then, for any δ, γ > 0, and any random perturbation u
s.t. Pu(maxx |fw+u(x) − fw(x)|∞ < γ

8 ∩ maxx |fw+u(x + u) − fw(x)|∞ < γ
8 ) ≥ 1

2 , with
probability at least 1− δ, we have

L0(G) ≤ L̂γ(G) + 4

√
DKL(w + u∥P ) + ln 6m

δ

m− 1
,

where L0(G) is the expected loss for the smoothed classifier G0,w,u and L̂γ(G) is the empirical
estimate of the margin loss for Gγ,w,u.

In the following, we provide the details of the proof.

Proof for Lem. 3.1. Let Su be the set of perturbations with the following property:

Su ⊆
{
u
∣∣∣max
x∈X

|fw+u(x+ u)− fw(x)|∞ <
γ

8
∩ max

x∈X
|fw+u(x)− fw(x)|∞ <

γ

8

}
. (14)

Let q be the probability density function over u. We construct a new distribution Q̃ over ũ that is
restricted to Su with the probability density function:

q̃(ũ) =
1

z

{
q(ũ) ũ ∈ Su,

0 otherwise,
(15)

where z is a normalizing constant and by the lemma assumption z = P(u ∈ Su) ≥ 1
2 . By the

definition of Q̃, we have:

max
x∈X

|fw+ũ(x+ ũ)− fw(x)|∞ <
γ

8
and max

x∈X
|fw+ũ(x)− fw(x)|∞ <

γ

8
. (16)

Therefore, with probability at least 1− δ over training dataset S, we have:

L0(G) ≤ L γ
2
(fw,ũ) ▷because of Pf. B.1

≤ L̂ γ
2
(fw,ũ) + 2

√
2(DKL(w + ũ||P ) + log 2m

δ )

m− 1
▷because of Lem. 2.1

≤ L̂γ(G) + 2

√
2(DKL(w + ũ||P ) + log 2m

δ )

m− 1
▷because of Pf. B.2

≤ L̂γ(G) + 4

√
DKL(w + u||P ) + log 6m

δ

m− 1
▷because of Pf. B.3

Hence, proved. □

Proof B.1 Given (14) and (15), for all ũ ∈ Q̃, we have

max
x∈X

|fw+ũ(x+ ũ)− fw(x)|∞ <
γ

8
,

max
x∈X

|fw+ũ(x)− fw(x)|∞ <
γ

8
.

(17)

For all x ∈ X s.t. G0,w,u(x) ̸= y, as z = P(u ∈ Su) ≥ 1
2 , there exists ǔ ∈ Q̃ s.t.

fw+ǔ(x+ ǔ)[G0,w,u(x)] > fw+ǔ(x+ ǔ)[y]. (18)

16
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Then for all ũ ∈ Q̃, all x ∈ X s.t. G0,w,u(x) ̸= y, we have

fw+ũ(x)[G0,w,u(x)] +
γ

4
> fw(x)[G0,w,u(x)] +

γ

8
> fw+ǔ(x+ ǔ)[G0,w,u(x)]

> fw+ǔ(x+ ǔ)[y]

> fw(x)[y]− γ

8

> fw+ũ(x)[y]−
γ

4
.

(19)

Thus we have L0(G) ≤ L γ
2
(fw,ũ). □

Proof B.2 Given (14), (15) and (17), for all ũ ∈ Q̃, if there exists x ∈ X and ǔ ∈ Q̃ s.t.
fw+ǔ(x)[y] < maxj ̸=y fw+ǔ(x)[j] +

γ
2 , we have

fw+ũ(x+ ũ)[j] +
3γ

4
> fw(x)[j] +

5γ

8

> fw+ǔ(x)[j] +
γ

2
> fw+ǔ(x)[y]

> fw(x)[y]− γ

8

> fw+ũ(x+ ũ)[y]− γ

4
.

(20)

Hence, if there exists x ∈ X and ǔ ∈ Q̃ s.t. fw+ǔ(x)[y] < maxj ̸=y fw+ǔ(x)[j] +
γ
2 , we have

fw+ũ(x+ ũ)[j]+γ > fw+ũ(x+ ũ)[y] for all ũ ∈ Q̃. Given z ≥ 1
2 , we have Gγ,w,u(x) ̸= y. Thus,

we have L̂γ(G) ≥ L̂ γ
2
(fw,ũ). □

Proof B.3 Given q, q̃, z and Su in (15), let Sc
u denote the complement set of Su and q̃c denote the

normalized density function restricted to Sc
u. Then, we have

DKL(q∥p) = zDKL(q̃∥p) + (1− z)DKL(q̃
c∥p)−H(z), (21)

where H(z) = −z ln z− (1− z) ln(1− z) ≤ 1 is the binary entropy function. Since DKL is always
positive, we get

DKL(q̃∥p) =
1

z
[DKL(q∥p) +H(z))− (1− z)DKL(q̃

c∥p)] ≤ 2(DKL(q∥p) + 1). (22)

Thus we have 2(DKL(w + u||P ) + log 6m
δ ) ≥ DKL(w + ũ||P ) + log 2m

δ . □

B.2 PROOF FOR THM. 3.2

First, we restate Thm. 3.2 here.

Theorem 3.2 Given Lem. 3.1, for any B,n, h > 0, let fw : X → Y be an n-layer feedforward
network with h units each layer and ReLU activation function. Choose the largest perturbation u
under the restriction, for any δ, γ > 0, any w over training dataset of size m, with probability at
least 1− δ, we have the the following bound:

L0(G) ≤ L̂γ(G) +O

√Φ (
∏

i ∥Wi∥22,
∑

i ∥Wi∥2F ) + ln nm
δ

m− 1

 ,

where

Φ

(∏
i

∥Wi∥22,
∑
i

∥Wi∥2F

)
=

∑
i

(
∥Wi∥2F /∥Wi∥22

)
Ψ(
∏

i ∥Wi∥22) /(
∏

i ∥W∥22)
1
n

,

17
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and

Ψ

(∏
i

∥Wi∥22

)
=

(γ/(
28n(h ln(8nh))

1
2 τ

1
2

∏
i

∥Wi∥
n−1
n

2

)
+

B2

4τ

) 1
2

− B

2τ
1
2

2

.

Here τ is the solution of Fχ2
d
(τ) =

√
2
2 , where Fχ2

d
(·) is the CDF for the chi-square distribution χ2

d

with d degrees of freedom.

In the following, we provide the details of the proof.

Proof for Thm. 3.2. Following Neyshabur et al. (2017b), we also use two main steps to prove
Thm. 3.2. Firstly, utilizing Lems. B.4 and B.5, we compute the maximum allowable perturbation
of u required to satisfy the given condition on the margin γ. In the second step, we compute the KL
term in Lem. 3.1, considering the perturbation obtained from the previous step. This computation is
essential in deriving the PAC-Bayesian bound.

Consider a network with weights W that we can regularize through dividing each weight matrix
Wi by its spectral norm ∥Wi∥2. Let β be defined as the geometric mean of the spectral norms of
all weight matrices, i.e., β = (

∏n
i=1 ∥Wi∥2)

1/n. We introduce a modified version of the weights,
denoted as W̃i =

β
∥Wi∥2

Wi, which is obtained by scaling the original weights Wi by a factor of
β

∥Wi∥2
. As a consequence of the homogeneity property of ReLU, the behavior of the network with

the modified weights fw̃, is the same as the original network fw.

Moreover, we find that the product of the spectral norms of the original weights, (
∏n

i=1 ∥Wi∥2), is

equal to the product of the spectral norms of the modified weights,
(∏n

i=1

∥∥∥W̃i

∥∥∥
2

)
. Additionally,

the ratio of the Frobenius norm of the original weights to their spectral norm is equal to the ratio

of the modified weights, i.e., ∥Wi∥F

∥Wi∥2
=

∥W̃i∥
F

∥W̃i∥
2

. Consequently, the excess error mentioned in the

Theorem statement remains unchanged under this weight normalization. Hence, it suffices to prove
the Theorem only for the normalized weights w̃. We assume, without loss of generality, that the
spectral norm of each weight matrix is equal to β, i.e., for any layer i, ∥Wi∥2 = β.

Now, we choose the prior distribution P to be a Gaussian distribution with zero mean and a diagonal
covariance matrix of σ2I. We introduce a random perturbation u =

(
u(w)

u(x)

)
∼ N (0, σ2I), where

the value of σ will be determined based on β later. More precisely, since the prior cannot depend on
the learned predictor w or its norm, we will set σ based on an approximation β̃. For each value of β̃
on a pre-determined grid, we will compute the PAC-Bayesian bound, establishing the generalization
guarantee for all w for which |β − β̃| ≤ 1

nβ, and ensuring that each relevant value of β is covered
by some β̃ on the grid. We will then take a union bound over all β̃ on the grid. For now, we will
consider a fixed β̃ and the w for which |β − β̃| ≤ 1

nβ, and hence 1
eβ

n−1 ≤ β̃n−1 ≤ eβn−1.

According to Bandeira & Boedihardjo (2021) and u(w) ∼ N
(
0, σ2I

)
, we can get the following

bound for ∥U(w)
i ∥2:

P
u

(w)
i ∼N (0,σ2I)

[∥∥∥U(w)
i

∥∥∥
2
> t
]
≤ 2he−t2/2hσ2

. (23)

By taking a union bound over the layers, we can establish that, with a probability ≥
√
2
2 , the spectral

norm of the perturbation U
(w)
i in each layer is bounded by σ

√
2h ln((4 + 2

√
2)nh).

As u(x) ∼ N (0, σ2I) and takes value in Rd, ∥u(x)∥2
2

σ2 has a chi-square distribution χ2
d. Let Fχ2

d
(·) be

the cumulative distribution function of χ2
d, and Fχ2

d
(τ) =

√
2
2 . Then, with a probability

√
2
2 , ∥u(x)∥2

is upper bounded by
√
τσ.

18
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Thus, with probability at least 1
2 (i.e.,

√
2
2 ·

√
2
2 ), the above bounds can both hold. Plugging the

bounds into Lems. B.4 and B.5, we have that

max
x∈X

∥fw+u(x)− fw(x)∥2 ≤ eBβn
∑
i

∥∥∥U(w)
i

∥∥∥
2

β

= eBβn−1
∑
i

∥∥∥U(w)
i

∥∥∥
2

≤ e2nBβ̃n−1σ

√
2h ln((4 + 2

√
2)nh) ≤ γ

8
,

(24)

and

max
x∈X

∥fw+u(x+ u)− fw(x)∥2 ≤ e(B + ∥u(x)∥2)βn
∑
i

∥∥∥U(w)
i

∥∥∥
2

β

= e(B + ∥u(x)∥2)βn−1
∑
i

∥∥∥U(w)
i

∥∥∥
2

≤ e2n(B +
√
τσ)β̃n−1σ

√
2h ln((4 + 2

√
2)nh) ≤ γ

8
.

(25)

To make (24) and (25) both hold, given β̃n−1 ≤ eβn−1, we can choose the largest σ (with numerical
simplification, i.e., 8e3

√
2 < 28, 4 + 2

√
2 < 8) as

σ2 = Ψ

(∏
i

∥Wi∥22

)
=

(γ/(
28n(h ln(8nh))

1
2 τ

1
2

n∏
i=1

∥Wi∥
n−1
n

2

)
+

B2

4τ

) 1
2

− B

2τ
1
2

2

.

Hence, the perturbation u with the above value of σ satisfies the assumptions of the Lem. 3.1. We
now compute the KL-term in Lem. 3.1 using the selected distributions for P and u, considering the
given value of σ.

DKL(w + u∥P ) ≤ ∥w∥22
2σ2

=

∑n
i=1 ∥Wi∥2F

2σ2

≤ O

(
Φ

(∏
i

∥Wi∥22,
∑
i

∥Wi∥2F

))
,

where

Φ

(∏
i

∥Wi∥22,
∑
i

∥Wi∥2F

)
=

∑
i

(
∥Wi∥2F /∥Wi∥22

)
Ψ(
∏

i ∥Wi∥22) /(
∏

i ∥W∥22)
1
n

. (26)

Clearly, Φ increases with the growth of
∏

i ∥Wi∥22 and
∑

i ∥Wi∥2F , since

∂Φ

∂ (
∏

i ∥Wi∥22)
> 0,

∂Φ

∂ (
∑

i ∥Wi∥2F )
> 0,

(27)

for all
∏

i ∥Wi∥22 > 0 and
∑

i ∥Wi∥2F > 0.

Then, we can give a union bound over different choices of β̃. We only need to form the bound

for
(

γ
2B

) 1
n ≤ β ≤

(
γ
√
m

2B

) 1
n

which can be covered using a cover of size nm
1
2n as discussed

in Neyshabur et al. (2017b). Thus, with probability ≥ 1 − δ, for any β̃ and for all w such that
|β − β̃| ≤ 1

nβ, we have:

L0(G) ≤ L̂γ(G) +O

√Φ (
∏

i ∥Wi∥22,
∑

i ∥Wi∥2F ) + ln nm
δ

m− 1

 .

19



Under review as a conference paper at ICLR 2024

Hence, proved. □

Lemma B.4 (Neyshabur et al. (2017b)) For any B,n > 0, let fw : X → Y be a n-layer feedfor-
ward network with ReLU activation function. Then for any w, and x ∈ X , and any perturbation
u(w) = vec({U(w)

i }ni=1) such that ∥U(w)
i ∥2 ≤ 1

n∥Wi∥2, the change in the output of the network
can be bounded as follow

∥fw+u(x)− fw(x)∥2 ≤ eB

(
n∏

i=1

∥Wi∥2

)
n∑

i=1

∥∥∥U(w)
i

∥∥∥
2

∥Wi∥2
. (28)

Proof for Lem. B.4. (Neyshabur et al. (2017b)) Let ∆i = ∥f i
w+u(x) − f i

w(x)∥2, we will prove
using induction that for any i ≥ 0:

∆i ≤
(
1 +

1

n

)i
 i∏

j=1

∥Wj∥2

 ∥x∥2
i∑

j=1

∥∥∥U(w)
j

∥∥∥
2

∥Wj∥2
. (29)

The above inequality together with (1 + 1
n )

n ≤ e proves the lemma statement. The induction base
clearly holds since . For any i ≥ 1, we have the following

∆i+1 =
∥∥∥(Wi+1 +U

(w)
i+1

)
ϕ
(
f i
w+u(x)

)
−Wi+1ϕ

(
f i
w(x)

)∥∥∥
2

=
∥∥∥(Wi+1 +U

(w)
i+1

) (
ϕ
(
f i
w+u(x)

)
− ϕ

(
f i
w(x)

))
+U

(w)
i+1ϕ

(
f i
w(x)

)∥∥∥
2

≤
(
∥Wi+1∥2 +

∥∥∥U(w)
i+1

∥∥∥
2

)∥∥ϕ (f i
w+u(x)

)
− ϕ

(
f i
w(x)

)∥∥
2
+
∥∥∥U(w)

i+1

∥∥∥
2

∥∥ϕ (f i
w(x)

)∥∥
2

≤
(
∥Wi+1∥2 +

∥∥∥U(w)
i+1

∥∥∥
2

)∥∥f i
w+u(x)− f i

w(x)
∥∥
2
+
∥∥∥U(w)

i+1

∥∥∥
2

∥∥f i
w(x)

∥∥
2

= ∆i

(
∥Wi+1∥2 +

∥∥∥U(w)
i+1

∥∥∥
2

)
+
∥∥∥U(w)

i+1

∥∥∥
2

∥∥f i
w(x)

∥∥
2
,

where the last inequality is by the Lipschitz property of the activation function and using ϕ(0) = 0.
The ℓ2 norm of outputs of layer i is bounded by ∥x∥2Πi

j=1 ∥Wj∥2 and by the lemma assumption we

have ∥U(w)
i+1∥2 ≤ 1

n∥Wi+1∥2. Therefore, using the induction step, we get the following bound:

∆i+1 ≤ ∆i

(
1 +

1

n

)
∥Wi+1∥2 +

∥∥∥U(w)
i+1

∥∥∥
2
∥x∥2

i∏
j=1

∥Wj∥2

≤
(
1 +

1

n

)i+1
i+1∏

j=1

∥Wj∥2

 ∥x∥2
i∑

j=1

∥∥∥U(w)
j

∥∥∥
2

∥Wj∥2
+

∥∥∥U(w)
i+1

∥∥∥
2

∥Wi+1∥2
∥x∥2

i+1∏
j=1

∥Wi∥2

≤
(
1 +

1

n

)i+1
i+1∏

j=1

∥Wj∥2

 ∥x∥2
i+1∑
j=1

∥Uj∥2
∥Wj∥2

.

(30)

Hence, proved. □

Lemma B.5 Given Lem. B.4 and the proof, we have

∥fw+u(x+ u)− fw(x)∥2 ≤ e(B + ∥u(x)∥2)

(
n∏

i=1

∥Wi∥2

)
n∑

i=1

∥∥∥U(w)
i

∥∥∥
2

∥Wi∥2
. (31)
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B.3 PROOF FOR THM. 3.3

First, we restate Thm. 3.3 here.

Theorem 3.3 Given Thm. 3.2, for any x ∈ X , suppose there exist pAw,u(x), p
B
w,u(x) such that

Eu1

[
argmax

c
fw+u(x+ u)[c] = G0,w,u(x)

]
≥ pAw,u(x) ≥ pBw,u(x)

≥ max
j ̸=G0,w,u(x)

Eu1

[
argmax

c
fw+u(x+ u)[c] = j

]
.

Then, for any δ, γ > 0, with probability at least 1− δ we have

L0(G, ϵ) ≤ L̂γ(G) +O

√Φ (
∏

i ∥Wi∥22,
∑

i ∥Wi∥2F ) + ln nm
δ

m− 1


within ℓ2 norm data perturbation radius

√
ϵx, where

ϵx = − ln

(
1−

(√
pAw,u(x)−

√
pBw,u(x)

)2)
︸ ︷︷ ︸

Model and Data Joint Dependence

· 2Ψ

(∏
i

∥Wi∥22

)
︸ ︷︷ ︸

Model Dependence

.

In the following, we provide the details of the proof. This proof is developed from Dvijotham et al.
(2020), but their smoothing function is only applied on x, our certification is with respect to the
smoothing scheme on both w and x.

Proof for Thm. 3.3. Consider a classifier fw : X → Y . The output of the classifier relies on both
the input x and its model weights w. We would like to verify the robustness of smoothed classifier
G. Recall that we smooth the classify on both x and w with u =

(
u(w)

u(x)

)
∼ N (0, σ2I), to prove

Thm. 3.3, our goal is to certify that

G0,w,u(x) = G0,w,u(x+ ε) (32)

for all ε ∈ {ε ∈ Rd | ∥ε∥22 ≤ ϵx} and all x ∈ X , where ϵx satisfies the condition in Thm. 3.3.

First, recall that we use w + u and x + u to denote w + u(w) and x + u(x), respectively. We
let Dg be g-divergence (as we have used f(·), we define g-divergence rather than f-divergence),
ϵg(x) = Dg(ν∥ρ) where ν is the joint distribution of w+ u and x+ ε+ u with probability density
function (PDF) ν(·, ·), ρ is the joint distribution of w+ u and x+ u with PDF ρ(·, ·), pAw,u(x) and
pBw,u(x) be as in Thm. 3.3. Let

PA
w,u(x) = Eu1

[
argmax

c
fw+u(x+ u)[c] = G0,w,u(x)

]
,

PB
w,u(x) = max

j ̸=G0,w,u(x)
Eu1

[
argmax

c
fw+u(x+ u)[c] = j

]
,

PA
w,u(x) + PB

w,u(x) ≤ 1,

(33)

and
PA
w,u(x) ≥ pAw,u(x) ≥ pBw,u(x) ≥ PB

w,u(x). (34)

According to Pf. B.6, we have that: the smoothed classifier G0,w,u(x) is robustly certified, i.e., (32)
holds, if the optimal value of the following convex optimization problem is non-negative, i.e.,

max
λ≥0,κ

κ−λϵg(x)−PA
w,u(x)g

∗
λ(κ−1)−PB

w,u(x)g
∗
λ(κ+1)− (1−PA

w,u(x)−PB
w,u(x))g

∗
λ(κ) ≥ 0,

(35)
where g∗λ(u) = maxv≥0(uv − gλ(v)), gλ(v) = λg(v), the function g(·) is used in g-divergence.

Then, let Dg be DKL, according to Pf. B.7, the optimization problem of (35) is non-negative if

DKL(ν∥ρ) ≤ − ln

(
1−

(√
PA
w,u(x)−

√
PB
w,u(x)

)2)
. (36)
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Since u =
(

u(w)

u(x)

)
∼ N (0, σ2I), we have

DKL(ν∥ρ) = DKL

((
w+u(w)

x+ε+u(x)

)∥∥∥(w+u(w)

x+u(x)

))
=

∥ ( w
x+ε )− (wx ) ∥22

2σ2

=
∥ε∥22
2σ2

.

(37)

Given Thm. 3.2, (34), (36) and (37), we have that G0,w,u(x) is certified robust if

∥ε∥22 ≤ ϵx = − ln

(
1−

(√
pAw,u(x)−

√
pBw,u(x)

)2)
︸ ︷︷ ︸

Data Dependence

· 2Ψ

(∏
i

∥Wi∥22

)
︸ ︷︷ ︸

Model Dependence

. (38)

Hence, proved. □

Proof B.6 Let Dg be g-divergence, the function g(·) is used in g-divergence, ϵg(x) = Dg(ν∥ρ)
where ν is the joint distribution of w+u and x+ε+u with PDF ν(w,x), ρ is the joint distribution of
w+u and x+u with PDF ρ(w,x), pAw,u(x) and pBw,u(x) be as in Thm. 3.3. Let r(w,x) = ν(w,x)

ρ(w,x)

be likelihood ratio, and

ϕ(w,x) =


+1, if argmax

c
fw(x)[c] = G0,w,u(x)

−1, else if argmax
c

fw(x)[c] = max
j ̸=G0,w,u(x)

Eu1

[
argmax

c
fw+u(x+ u)[c] = j

]
0, otherwise

(39)
we have

E(w,x)∼ν [ϕ(w,x)] = E(w,x)∼ρ[r(w,x)ϕ(w,x)],

Dg(ν∥ρ) = E(w,x)∼ρ[g(r(w,x))],

E(w,x)∼ρ[r(w,x)] = 1.

(40)

The third condition is obtained using the fact that ν is a probability measure. The optimization over
ν, which is equivalent to optimize over r, can be rewritten as

min
r≥0

E(w,x)∼ρ[r(w,x)ϕ(w,x)]

s.t. E(w,x)∼ρ[g(r(w,x))] ≤ ϵg(x), E(w,x)∼ρ[r(w,x)] = 1.
(41)

We solve the optimization using Lagrangian duality as follows. We first dualize the constraints on r
to obtain

min
r≥0

E(w,x)∼ρ[r(w,x)ϕ(w,x)] + λ
(
E(w,x)∼ρ[g(r(w,x))]− ϵg(x)

)
+ κ

(
1− E(w,x)∼ρ[r(w,x)]

)
= min

r≥0
E(w,x)∼ρ[r(w,x)ϕ(w,x) + λg(r(w,x))− κr(w,x)] + κ− λϵg(x).

(42)
As the w components of ν and ρ are identical, but x components of ν and ρ can be different, let
r(x) = Ew∼ρw [r(w,x)] where ρw is the marginal distribution of w for ρ, the above optimization
problem can be rewritten as

κ− λϵg(x)− Ex∼ρx

[
max
r≥0

κr(x)− r(x)Ew∼ρwϕ(w,x)− λg(r(x))

]
= κ− λϵg(x)− Ex∼ρx

[
max
r≥0

r(x)(κ− Ew∼ρwϕ(w,x))− λg(r(x))

]
= κ− λϵg(x)− Ex∼ρx

[
max
r≥0

r(x)(κ− Ew∼ρwϕ(w,x))− gλ(r(x))

]
= κ− λϵg(x)− Ex∼ρx [g∗λ(κ− Ew∼ρwϕ(w,x))] ,

(43)
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where g∗λ(u) = maxv≥0(uv − gλ(v)), gλ(v) = λg(v). Since strong duality, we can maximize the
final term in (43) with respect to λ ≥ 0, κ, to achieve the optimal value in (41). If the optimal value,
i.e.,

max
λ≥0,κ

κ− λϵg(x)− Ex∼ρx [g∗λ(κ− Ew∼ρwϕ(w;x))] (44)

is non-negative, then (32) holds. As we have

max
λ≥0,κ

κ− λϵg(x)− Ex∼ρx [g∗λ(κ− Ew∼ρwϕ(w;x))]

≥ max
λ≥0,κ

κ− λϵg(x)− E(w,x)∼ρ [g
∗
λ(κ− ϕ(w;x))] ,

(45)

given (33), (44), (45), we get that (32) holds if

max
λ≥0,κ

κ−λϵg(x)−PA
w,u(x)g

∗
λ(κ−1)−PB

w,u(x)g
∗
λ(κ+1)− (1−PA

w,u(x)−PB
w,u(x))g

∗
λ(κ) ≥ 0.

(46)
□

Proof B.7 We use the KL divergence function g(u) = u ln(u) for Dg , which is a convex function
with g(1) = 0. Thus, we have

g∗λ(u) = max
v≥0

(uv − λg(v)) = max
v≥0

(uv − λv log(v)). (47)

Use the derivative with respect to v to 0 to solve the above optimization problem, i.e.,

∂(uv − λv ln(v))

∂v
= 0, (48)

we have v = ln u−λ
λ , λ > 0. Thus we get

g∗λ(u) = λ exp
(u
λ
− 1
)
.

Suppose there exists a bound ϵKL(x) on the KL divergence, i.e., DKL(ν∥ρ) ≤ ϵKL(x), then the
optimization problem in (35) can be rewritten as

max
λ>0,κ

(
κ− λϵKL(x)− PA

w,u(x)λ exp

(
κ− 1

λ
− 1

)
− PB

w,u(x)λ exp

(
κ+ 1

λ
− 1

)

− (1− PA
w,u(x)− PB

w,u(x))λ exp
(κ
λ
− 1
))

≥ 0.

(49)

Let ξ = κ/λ, ζ = 1
λ (with ζ > 0), (49) can be rewritten as:

max
ζ>0,ξ

(
1

ζ

(
ξ − ϵKL(x)− PA

w,u(x) exp(ξ − ζ − 1)− PB
w,u(x) exp(ξ + ζ − 1)

−
(
1− PA

w,u(x)− PB
w,u(x)

)
exp(ξ − 1)

))
≥ 0.

(50)

Since ζ > 0, let both left-hand side and right-hand side time ζ and the above optimization problem
can be rewritten as:

max
ζ>0,ξ

(
ξ − ϵKL(x)− PA

w,u(x) exp(ξ − ζ − 1)− PB
w,u(x) exp(ξ + ζ − 1)

−
(
1− PA

w,u(x)− PB
w,u(x)

)
exp(ξ − 1)

)
≥ 0.

(51)

Setting the derivative of the left-hand side with respect to ζ to 0 and solving for ζ, we obtain

PA
w,u(x) exp(ξ − ζ − 1)− PB

w,u(x) exp(ξ + ζ − 1) = 0,

ζ = ln

(√
PA
w,u(x)

PB
w,u(x)

)
.

(52)
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Given (51) and (52), we have

max
ξ

(
ξ − ϵKL(x)−

(
1−

(√
PA
w,u(x)−

√
PB
w,u(x)

)2)
exp(ξ − 1)

)
≥ 0. (53)

Setting the derivative with respect to ξ to 0 and solving for ξ, we obtain

1−
(
1−

(√
PA
w,u(x)−

√
PB
w,u(x)

)2)
exp(ξ − 1) = 0,

ξ = 1− ln

(
1−

(√
PA
w,u(x)−

√
PB
w,u(x)

)2)
.

(54)

Given (53) and (54), we have

− ln

(
1−

(√
PA
w,u(x)−

√
PB
w,u(x)

)2)
− ϵKL(x) ≥ 0. (55)

Then, we have

DKL(ν∥ρ) ≤ − ln

(
1−

(√
PA
w,u(x)−

√
PB
w,u(x)

)2)
. (56)

Hence, proved. □

B.4 PROP. 5.2

First, we state Prop. 5.2 here.

Proposition 5.2 Let fw : X → Y be any deterministic classifier, smoothing noise u =
(

u(w)

u(x)

)
∼

N (0, σ2I). For any x ∈ X , suppose there exists pAw,u(x), p
B
w,u(x) such that

Eu1

[
argmax

c
fw+u(x+ u)[c] = G0,w,u(x)

]
≥ pAw,u(x) ≥ pBw,u(x)

≥ max
j ̸=G0,w,u(x)

Eu1

[
argmax

c
fw+u(x+ u)[c] = j

]
.

Then, we have G0,w,u(x+ ε) = G0,w,u(x) for all ∥ε∥2 ≤ R, where

R2 = −2σ2 ln

(
1−

(√
pAw,u(x)−

√
pBw,u(x)

)2)
.

In the following, we provide the details of the proof.

Proof for Prop. 5.2. Consider a classifier fw : X → Y . The output of the classifier relies on both
the input x and its model weights w. We would like to verify the robustness of smoothed classifier
G. Recall that we smooth the classify on both x and w with u =

(
u(w)

u(x)

)
∼ N (0, σ2I), to prove

Prop. 5.2, our goal is to certify that

G0,w,u(x) = G0,w,u(x+ ε) (57)

for all ε ∈ {ε ∈ Rd | ∥ε∥2 ≤ R}, where

R2 = −2σ2 ln

(
1−

(√
pAw,u(x)−

√
pBw,u(x)

)2)
.

First, recall that we use w + u and x + u to denote w + u(w) and x + u(x), respectively. We
let Dg be g-divergence (as we have used f(·), we define g-divergence rather than f-divergence),
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ϵg(x) = Dg(ν∥ρ) where ν is the joint distribution of w+u and x+ε+u with PDF ν(·, ·), ρ is the
joint distribution of w+u and x+u with PDF ρ(·, ·), pAw,u(x) and pBw,u(x) be as in Prop. 5.2. Let

PA
w,u(x) = Eu1

[
argmax

c
fw+u(x+ u)[c] = G0,w,u(x)

]
,

PB
w,u(x) = max

j ̸=G0,w,u(x)
Eu1

[
argmax

c
fw+u(x+ u)[c] = j

]
,

PA
w,u(x) + PB

w,u(x) ≤ 1,

(58)

and
PA
w,u(x) ≥ pAw,u(x) ≥ pBw,u(x) ≥ PB

w,u(x). (59)

According to Pf. B.6, we have that: the smoothed classifier G0,w,u(x) is robustly certified, i.e., (57)
holds, if the optimal value of the following convex optimization problem is non-negative, i.e.,

max
λ≥0,κ

κ−λϵg(x)−PA
w,u(x)g

∗
λ(κ−1)−PB

w,u(x)g
∗
λ(κ+1)− (1−PA

w,u(x)−PB
w,u(x))g

∗
λ(κ) ≥ 0,

(60)
where g∗λ(u) = maxv≥0(uv − gλ(v)), gλ(v) = λg(v), the function g(·) is used in g-divergence.

Then, let Dg be DKL, according to Pf. B.7, the optimization problem of (60) is non-negative if

DKL(ν∥ρ) ≤ − ln

(
1−

(√
PA
w,u(x)−

√
PB
w,u(x)

)2)
. (61)

Since u =
(

u(w)

u(x)

)
∼ N (0, σ2I), we have

DKL(ν∥ρ) = DKL

((
w+u(w)

x+ε+u(x)

)∥∥∥(w+u(w)

x+u(x)

))
=

∥ ( w
x+ε )− (wx ) ∥22

2σ2

=
∥ε∥22
2σ2

.

(62)

Given (59), (61) and (62), we have that G0,w,u(x) is certified robust if

∥ε∥2 ≤ R =

√
−2σ2 ln

(
1−

(√
pAw,u(x)−

√
pBw,u(x)

)2)
. (63)

Hence, proved. □

C EVALUATION DETAILS

In this work, our primary evaluation algorithm closely adheres to Cohen et al. (2019),
while there exist two minor differences. The first difference lies in the function
SAMPLEUNDERNOISE(fw,x, num, σ) of Cohen et al. (2019):

1. Draw num samples of noise, u1, ...,unum ∼ N (0, σ2I).
2. Run the noisy images and noisy weights through the base classifier fw to obtain the pre-

dictions fw+u1(x+ u1), ..., fw+unum(x+ unum).
3. Return the counts for each class.

Here, we smooth both the inputs and weights with x + ui and w + ui, while Cohen et al. (2019)
only smooths inputs.

The second difference lies in the certified robust radius, our randomized smoothing evaluation frame-
work adopts

R =

√
−2σ2 ln

(
1−

(√
pAw,u(x)−

√
pBw,u(x)

)2)
, (64)

while Cohen et al. (2019) uses the inverse cumulative distribution function of Gaussian.
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