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ABSTRACT

Reinforcement learning (RL) has become a cornerstone for enhancing the rea-
soning capabilities of large language models (LLMs), with recent innovations
such as Group Relative Policy Optimization (GRPO) demonstrating exceptional
effectiveness. In this study, we identify a critical yet underexplored issue in RL
training: low-probability tokens disproportionately influence model updates due to
their large gradient magnitudes. This dominance hinders the effective learning of
high-probability tokens, whose gradients are essential for LLMs’ performance but
are substantially suppressed. To mitigate this interference, we propose two novel
methods: Advantage Reweighting and Low-Probability Token Isolation (Lopti),
both of which effectively attenuate gradients from low-probability tokens while
emphasizing parameter updates driven by high-probability tokens. Our approaches
promote balanced updates across tokens with varying probabilities, thereby en-
hancing the efficiency of RL training. Experimental results demonstrate that they
substantially improve the performance of GRPO-trained LLMs, achieving up to a
46.2% improvement in K&K Logic Puzzle reasoning tasks.

1 INTRODUCTION

The reasoning capabilities of large language models (LLMs) have recently achieved a milestone
breakthrough with the integration of reinforcement learning (RL) during post-training phase (Jaech
et al., 2024; Guo et al., 2025; Team et al., 2025). Intuitively, the vast vocabulary size and the
auto-regressive generation mechanism of LLMs pose significant challenges for effective exploration
due to the exponentially large state space. DeepSeek-R1 (Guo et al., 2025) eliminates this bias,
demonstrating that ‘simple RL with rule-based reward’ can significantly enhance the reasoning
abilities of LLMs without relying on scaffolding techniques such as Monte Carlo Tree Search
(MCTS) (Xie et al., 2024b; Chen et al., 2024) or Progress Reward Modeling (PRM) (Lightman
et al., 2024; Wang et al., 2024). Moreover, they introduce a novel algorithm, Group Relative Policy
Optimization (GRPO) (Shao et al., 2024), which has proven highly effective in the domains of
mathematics and code, inspiring numerous follow-up studies.

Yu et al. (2025) and Liu et al. (2025) consistently report that GRPO training leads to progressively
longer response lengths, while the increase does not correspond to a proportional improvement in the
model’s performance. They attribute this trend to the bias in update weights related to response length
inherent in GRPO’s objective. Xiong et al. (2025) conduct comparison between GRPO and Proximal
Policy Optimization (PPO). They find that the instability of PPO, compared to GRPO, arises from its
unnecessary bias toward entirely incorrect responses on overly difficult prompts. In contrast, GRPO
mitigates this issue by discarding such prompts through a within-prompt normalization operation.
These findings highlight the substantial impact of update bias on training outcomes.

In this study, we identify another important source of update bias in RL training, which is orthogonal
to aforementioned ones and has rarely been noted in prior research. This bias arises from the gradient
perspective and is strongly correlated with the token probabilities. As shown in Figure 1, during
GRPO training, tokens are divided into four groups based on probability quartiles. The policy gradient
is conducted with the advantage presented in Figure 1(b). Figure 1(d) shows that low-probability
tokens generate disproportionately larger gradients compared to high-probability ones. Since each RL
update involves hundreds of thousands of tokens with interacting gradients, low-probability tokens
are expected to have a greater influence. To verify this, we independently update tokens from the
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Figure 1: Experimental analysis on the K&K Logic Puzzle dataset during GRPO training of
Qwen2.5-7B-Instruct-1M. Tokens are divided into four groups based on probability quartiles.
(a) Token probability distribution and (b) corresponding advantages. (c) Token probability changes
after updates (using SGD with lr=1e-3) and (d) gradient norms for each probability group. Effects
of selective updates: (e) Probability changes when only tokens in the lowest quartile (probability <
0.25) are updated, and (f) when only tokens in the highest quartile (probability > 0.75) are updated.
To ensure clarity, the top 1% of outlier samples in the violin plots for token probability changes are
excluded. Results are averaged over 10 randomly sampled batches.

lowest and highest quartiles, as shown in Figures 1(e) and (f). The pattern in (e) closely matches (c),
while (f) looks significantly different. Interestingly, in (e), even though high-probability tokens were
not updated, their probabilities changed more significantly than when they were updated (as shown in
(f)). Thus, we conclude that low-probability tokens dominate model updates during RL training
and that this dominance may impede the precise adjustment of the probability distribution
across all tokens. Notably, we observe that high-probability tokens are much less likely to be updated
in the correct direction compared to low-probability tokens (cf. Figure 3).

By deriving the gradients induced by individual tokens, we reveal a key property of RL training
that explains the phenomenon illustrated in Figure 1. Specifically, for an LLM comprising a benign
neural network, the gradient norm of any intermediate activation corresponding to a single token is
bounded between two values proportional to (1−π), where π is the token’s probability. This property
underscores that tokens with lower probabilities result in larger gradient magnitudes, whereas tokens
with probabilities approaching 1 yield gradients that are nearly negligible.

To mitigate the over-dominance of low-probability tokens and promote more efficient updates, we
propose two simple yet effective methods: Advantage Reweighting, which reduces the weight as-
signed to low-probability tokens, and Low-Probability Token Isolation (Lopti), which separates
low-probability tokens and updates them prior to high-probability tokens. Both methods attenuate gra-
dients from low-probability tokens while emphasizing parameter updates driven by high-probability
tokens. Notably, the first one incurs almost no additional computational cost. These methods can be
applied independently, each providing benefits, or together, with the potential for further performance
improvements. Experimental results demonstrate the effectiveness of the proposed methods across
various datasets. In particular, on K&K Logic Puzzle dataset, they enhance the performance of naive
GRPO (trained from Qwen2.5-3B-Instruct) by 35.9% and 38.5%, respectively, and by 46.2%
when used together.

In summary, our contributions are threefold: (1) We identify a critical issue in RL training for LLMs
that has received limited attention: low-probability tokens disproportionately dominate the updates
due to their large gradient contributions. (2) We provide a concise theoretical explanation for this
phenomenon. (3) Based on the identified issue, we propose two simple yet effective methods, which
significantly improve the downstream performance of GRPO-trained LLMs across various datasets.
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2 RELATED WORK

As a fundamental technique driving recent advancements in LLMs, reinforcement learning is at-
tracting increasing attention from researchers. In this section, we provide a concise overview on the
development of RL in the context of LLMs.

RL was pioneered by OpenAI as the final step of post-training to further align fine-tuned large models
with human preferences (Christiano et al., 2017; Ziegler et al., 2019; Stiennon et al., 2020; Ouyang
et al., 2022). By leveraging vast amounts of human preference data and stable RL algorithms such
as PPO (Schulman et al., 2017), numerous enterprise-level language models have benefited from
this approach and have been widely adopted. Notable examples include ChatGPT (Brown et al.,
2020; Achiam et al., 2023), LLaMA (Touvron et al., 2023a;b; Dubey et al., 2024), Qwen (Bai et al.,
2023; Chu et al., 2023; Yang et al., 2024), Gemini (Team et al., 2023; 2024), and Claude (Anthropic,
2024). Nevertheless, the challenges of collecting high-quality data that accurately reflect human
preferences, the limited performance of open-source LLMs, and the computationally intensive
training requirements of PPO-like online RL algorithms pose significant barriers for further exploring
RL’s potentiality in the domain of LLMs. Most studies have focused on simplifying RL algorithms
and directly leveraging preference data to optimize models. Representative works include Direct
Preference Optimization (DPO) (Rafailov et al., 2023; 2024), related analyses (Xu et al., 2024b;
Zhong et al., 2024; Ren & Sutherland, 2025), and improved variants such as ORPO (Hong et al.,
2024), CPO (Xu et al., 2024a) and SimPO (Meng et al., 2024).

Recently, the emergence of long-chain-of-thought (CoT) (Wei et al., 2022) reasoning and its integra-
tion into both pre-training and post-training processes have significantly advanced the foundational
capabilities of LLMs. OpenAI-o1 (Jaech et al., 2024) was the first to demonstrate the remarkable
potential of combining RL with CoT, enabling LLMs to surpass human cognitive abilities and tackle
complex mathematical and coding tasks for the first time. Shortly thereafter, Deepseek-R1 (Guo et al.,
2025) fully harnessed the potential of RL+CoT through a simple yet highly effective reinforcement
learning algorithm GRPO (Shao et al., 2024). Their findings revealed that LLMs exhibit human-like
‘aha moments’ during RL training. This achievement quickly garnered significant attention, inspiring
extensive replication efforts (Luo et al., 2025; Xie et al., 2025; Hu et al., 2025; Zeng et al., 2025)
stimulating further research on enhancing GRPO (Yu et al., 2025; Liu et al., 2025) and PPO (Yuan
et al., 2025; Shi et al., 2025), as well as comparative analyses between the two (Xiong et al., 2025).
Nevertheless, most existing improvement solutions focus on enhancing sample quality, balancing
response length, and preventing entropy collapse. To the best our knowledge, this work is the first to
improve RL training from the gradient-disproportionality perspective.

3 PRELIMINARY

Large Language Models. Most existing LLMs are based on a transformer decoder-only architec-
ture (Vaswani et al., 2017), typically denoted as πθ, where θ ∈ Rd represents the model parameters.
The fundamental unit of LLMs is the token, a discrete textual element that may correspond to a
word, subword, or character, and is drawn from a finite vocabulary V = {v1, . . . , vN}, where N
denotes the vocabulary size. During text generation, the model outputs a probability distribution
over the vocabulary, conditioned on the given prompt q and the sequence of previously generated
tokens o<t. The next token ot is then sampled from this distribution, expressed mathematically as
ot ∼ πθ(·|q,o<t). The generation process is autoregressive, proceeding iteratively until either an
end-of-sentence (EOS) token is produced or a predefined maximum sequence length tmax is reached.
The resulting sequence of tokens is denoted as o.

Practical LLMs are often required to align with human preferences or exhibit strong reasoning
capabilities, which cannot be easily achieved through naive pre-training and supervised fine-tuning.
If a reward function r(q,o) is available to quantitatively capture these objectives, the optimization of
an LLM can be formulated as a reinforcement learning task. In this framework, the generation of each
token is treated as an action, while the prompt and the previously generated tokens are treated as the
state. Accordingly, the optimization objective of the LLM is expressed as maxθ Eq∼D,o∼πθ

[r(q,o)],
where D is pre-collected dataset.
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Group Relative Policy Optimization. As a widely used algorithm in early-stage research,
PPO (Schulman et al., 2017) requires a value model with as many—or even more—parameters
as the model being trained. The value model must be trained in conjunction with LLMs, and its
initialization adds complexity and uncertainties to the RL training process. To address these chal-
lenges, DeepSeek introduces GRPO (Liu et al., 2025), which eliminates the need for a value model
entirely by estimating value through group-relative comparison. Specifically, for each question q,
GRPO samples a group of outputs {o1,o2, . . . ,oG} and estimate the expected return under the
question through V (q) = mean(r(q,o1), r(q,o2), . . . ). During the training process, the estimated
advantage is set to be consistence within each responses (Âi,t = Âi), and is calculated through
Âi =

r(q,oi)−V (q)
std(r(q,o1),r(q,o2),... )

. Compared to PPO, GRPO reduces GPU memory overhead by 50% and
decreases single-step RL training time by over 60% (Xie et al., 2025). In this work, we adopt a
variant of GRPO to optimize the policy model πθ. The optimization objective is expressed as follows:

JGRPO(θ) = Eq∼D,{oi}Gi=1∼πold

1∑G
i=1 |oi|

G∑
i=1

|oi|∑
t=1

{
min

[
ri,t(θ)Âi,t, clip(ri,t(θ); 1− ϵl, 1 + ϵh)Âi,t

]
− β DKL [πθ∥πref ]

}
with ri,t(θ)=

πθ(oi,t|q,oi,<t)

πold(oi,t|q,oi,<t)
, and DKL [πθ∥πref ]=

πref (oi,t|q,oi,<t)

πθ(oi,t|q,oi,<t)
−log

πref (oi,t|q,oi,<t)

πθ(oi,t|q,oi,<t)
−1,

(1)
where πold denotes the policy used to sample the responses, πref represents the initial policy
prior to RL training, and ϵl, ϵh, β are manually defined hyperparameters. Note that the original
implementation of GRPO normalizes the token update weights based on the response length, which
introduces a significant bias toward shorter responses during updates. In line with verl (Sheng et al.,
2025) and most follow-up work (Zeng et al., 2025; Liu et al., 2025), we remove this operation and
conduct normalization among all tokens within the same query-batch.

4 METHODOLOGY

4.1 EXPLANATION ON LOW-PROBABILITY TOKENS’ DOMINANCE

In this section, we provide a theoretical explanation for why tokens with lower probabilities tend to
dominate updates during RL training. The learning objective in equation 1 can be interpreted as a
weighted cross-entropy loss. For simplicity, we use the notation π(oi,t) to denote π(oi,t|q,oi,<t).
By evaluating the gradient, we obtain the following expression (cf. Appendix A.1 for derivation):

∇θJGRPO(θ) = Eq∼D,{oi}Gi=1∼πold

1∑G
i=1 |oi|

G∑
i=1

|oi|∑
t=1[

πθ(oi,t)

πold(oi,t)
Âi,t · Itrust(

πθ(oi,t)

πold(oi,t)
, Âi,t) + β

πref (oi,t)

πθ(oi,t)
− β

]
︸ ︷︷ ︸

wi,t

·∇θ log πθ(oi,t),

where Itrust(
πθ(oi,t)

πold(oi,t)
, Âi,t) =

 0

{
if Âi,t > 0 and

πθ(oi,t)

πold(oi,t)
> 1 + ϵh

if Âi,t < 0 and
πθ(oi,t)

πold(oi,t)
< 1− ϵl

1 otherwise

.

(2)

We represent LLM as a composite function f = fL ◦ fL−1 ◦ · · · ◦ f1, where each fℓ (with ℓ ∈
{1, . . . , L}) corresponds to a distinct layer of the network. Let aℓ−1 denote the input and aℓ denotes
the output of ℓth layer. We further define the Jacobian matrix of the ℓth layer with respect to its input
as Jℓ :=

∂fℓ(aℓ−1)
∂aℓ−1

.

Assumption 4.1. For every layer, the Jacobian Jℓ is well-defined and the fℓ is locally differentiable.
Furthermore, assume that for each layer, there exist two constants cℓ > 0 and dℓ > 0 such that
σmin(Jℓ) ≥ cℓ and σmax(Jℓ) ≤ dℓ, where σmin(·) and σmax(·) denote the minimum and maximum
singular values of the given matrix, respectively.

Assumption 4.1 is not restrictive, as it aligns with the standard design and training principles of
neural-networks, ensuring stable gradients flow through well-defined and non-degenerate Jacobians.
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Proposition 4.2. Under Assumption 4.1, let δℓ(oi,t) := ∇aℓ
JGRPO(oi,t) denote the gradient of the

GRPO objective with respect to activation aℓ at any layer for a single token oi,t. Let ∥ · ∥ denote the
spectral norm, and define the vocabulary size as N . Then, for each layer ℓ, the following inequalities
always hold:

L∏
j=ℓ+1

cj · |wi,t| ·
√

N

N − 1
·
(
1− πθ(oi,t)

)
≤ ∥δℓ(oi,t)∥ ≤

L∏
j=ℓ+1

dj · |wi,t| ·
√
2 ·
(
1− πθ(oi,t)

)
. (3)

Figure 2: Diagram of Proposition 4.2.

Refer to Appendix A.2 for the detailed proof. Proposi-
tion 4.2 demonstrate that, for a single token, the gradient
norm with respect to activation aℓ at any layer is bounded.
Specifically, it is confined within the truncated conical re-
gion illustrated in Figure 2. In equation 3, apart from the
term (1−πθ(oi,t)), all other components in these bounds
can be regarded as constant. (Although wi,t depends on
πθ(oi,t), it is approximately equal to Âi,t in most cases.)
This result highlights that tokens with lower probabilities
lead to larger gradient magnitudes, whereas tokens with
probabilities approaching 1 produce gradients that are
nearly zero. The experimental evidence presented in Figure 1 corroborates this relationship, demon-
strating a roughly proportional correspondence between the gradient norm of all LLM parameters
and (1− πθ(oi,t)).

Notably, during the RL training process, the gradients are averaged over hundreds of thousands
of tokens for each update. Typically, the gradients are not sparsely distributed, leading to mutual
influence among them. In such cases, low-probability tokens tend to dominate the gradient updates.
Nevertheless, the gradients of high-probability tokens are equally important and should not be
neglected (see Section 5.3 for details). To the best of our knowledge, no prior study has explicitly
investigated the gradient interference between low-probability and high-probability tokens.

4.2 MITIGATING THE OVER-DOMINANCE OF LOW-PROBABILITY TOKENS

Figure 3: The proportion of posi-
tive tokens updated in the correct di-
rection for different updating meth-
ods, under the same experimental
settings as in Figure 1.

Adverse Effect of the Dominance. A natural question arises:
what are the consequences if the gradient of low-probability
tokens over-dominates the update process? Experimental re-
sults in Xiong et al. (2025) suggest that positive samples (i.e.,
responses/tokens with an advantage greater than 0) play a more
significant role than those negative ones. Theoretically, the
probability of tokens with positive advantage should increase
after each update. Thus, we record the proportion of positive
tokens with increased probabilities during a single RL train-
ing step, as shown in Figure 3. In line with expectations, as
the probability of a token grows, the proportion of updates
in the correct direction decreases. In particular, the propor-
tion of correct update directions for tokens with probability
greater than 0.75 is even slightly less than 50%. To mitigate the
over-dominance of low-probability tokens and promote more
efficient updates for high-probability tokens, we introduce the
following two methods.

Advantage Reweighting. A straightforward approach to ad-
dress this issue is to reweight the advantage of tokens based on
their probabilities. Specifically, we re-calculate the advantage
of each token as follows:

Âi,t = [α · πθ(oi,t) + (1− α)] · Âi,t, (4)

where α ∈ [0, 1] is a manually-defined hyperparameter. This formulation assigns linearly smaller
update weights to tokens with lower probabilities. As shown in the upper panel of Figure 3, it can
significantly reduce the errors in update directions for positive high-probability tokens.

5
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Algorithm 1 GRPO with Advantage Reweighting and Low-Probability Token Isolation
Require: Initial LLM πθ = πref , datasets D = {q}, reward function r(q,o), reweighting hyperparamter α,

isolation threshold η
1: for each dataset epoch do
2: for each RL step, sample {q}M ∼ D do
3: Auto-regress sampling G responses {oi}Gi=1 for each question within {q}M
4: Record the old probability for each token πold(oi,t) = πθ(oi,t)
5: Calculate the reward for each response with reward function r(q,oi)

6: Calculate the advantage for each token (response) through Âi,t = Âi =
r(q,oi)−mean{r(q,oi)}Gi=1

std{r(q,oi)}Gi=1

7: Reweight Advantage through equation 4
8: for each RL epoch, sample mini_batch ∼ {q, {{Âi,t, πold(oi,t)}|oi|

t=1}Gi=1}M do
9: Update the policy πθ with mini_batch through equation 1

10: end for
11: Record the old Advantage Âold

i,t = Âi,t

12: Mask high-probability tokens through Âi,t = Âold
i,t ⊙ I(πold(oi,t) ≤ η)

13: for each RL epoch, sample mini_batch ∼ {q, {{Âi,t, πold(oi,t)}|oi|
t=1}Gi=1}M do

14: Update the policy πθ with mini batch through equation 1
15: end for
16: Mask low-probability tokens Âi,t = Âold

i,t ⊙ (1− I(πold(oi,t) ≤ η) )
17: for each RL epoch, sample mini_batch ∼ {q, {{Âi,t, πold(oi,t)}|oi|

t=1}Gi=1}M do
18: Update the policy πθ with mini batch through equation 1
19: end for
20: end for
21: end for
22: return Final policy πθ

Low-Probability Tokens Isolation (Lopti). In addition to Advantage Reweighting, we also ex-
plored an alternative method, referred to as Lopti. Specifically, for a sampled mini-batch in RL,
we predefine a probability threshold η ∈ (0, 1) to divide tokens into two groups: low-probability
tokens and high-probability tokens. We first update the low-probability tokens, followed by the
high-probability tokens. For detailed implementation, please refer to lines 11–19 of Algorithm 1.
With a universal hyperparameter setting of η = 0.5, this method achieves a comparable effect to
Advantage Reweighting, as shown in the lower panel of Figure 3.

The intuition behind Lopti is as follows: during the first stage, updates on low-probability tokens
indirectly influence the distribution of the remaining high-probability tokens that have not yet been
updated (as in Figure 1(e)). If a positive high-probability token is affected in the correct direction (i.e.,
its probability increases), its gradient becomes smaller in the subsequent stage when high-probability
tokens are updated. Conversely, if its probability decreases, its gradient will dominate within the
high-probability token group, thereby receiving greater attention during the update process. Note that
the order of updates cannot be reversed. The corresponding ablation is presented in Section 5.3.

It is worth noting that Advantage Reweighting and Lopti can operate concurrently and may even lead
to further improved downstream performance. In Algorithm 1, we detail how to integrate these two
techniques with GRPO. Note that the original GRPO update step (the gray section with strikethrough
in lines 8–10) should be skipped if Lopti is activated. The computational cost requirements are
detailed in Appendix C.2. Since Lopti splits the tokens and performs updates twice, it results in
higher computational costs, which is a limitation of our method (cf. Appendix F).

5 EXPERIMENTAL RESULTS

To validate the effectiveness of our proposed method, we first conduct experiments on the Knights
and Knaves (K&K) Logic Puzzles dataset (Xie et al., 2025; 2024a) using GRPO, as described in
Section 5.1. We then extend the experiments to the math-related dataset (Luo et al., 2025; Shi et al.,
2025), as detailed in Section 5.2. Finally, we present a series of critical ablation studies, as outlined
in Section 5.3. Note that our methods are not restricted to GRPO and hold great potential across all
Policy-Gradient based RL algorithms. For experiments utilizing REINFORCE++ (Hu, 2025), please
refer to Appendix D.

6
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Difficulty by Number of PeopleModel 3 4 5 6 7 Avg.
GPT-4o 0.57 0.49 0.32 0.23 0.21 0.36
o1-2024-12-17 0.51 0.38 0.38 0.35 0.30 0.38
Deepseek-R1 0.73 0.77 0.78 0.75 0.88 0.78
Qwen2.5-3B-Instruct 0.09 0.10 0.03 0.05 0.02 0.06
+ GRPO 0.60 0.45 0.33 0.34 0.23 0.39
+ GRPO + Reweight 0.67 0.62 0.53 0.44 0.37 0.53 (↑35.9%)

+ GRPO + Lopti 0.74 0.67 0.56 0.42 0.30 0.54 (↑38.5%)

+ GRPO + Reweight + Lopti 0.72 0.66 0.55 0.52 0.40 0.57 (↑46.2%)

Qwen2.5-7B-Instruct-1M 0.22 0.15 0.08 0.10 0.02 0.11
+ GRPO 0.91 0.91 0.77 0.65 0.61 0.77
+ GRPO + Reweight 0.97 0.98 0.89 0.83 0.80 0.89 (↑15.6%)

+ GRPO + Lopti 0.95 0.94 0.84 0.80 0.76 0.86 (↑9.1%)

+ GRPO + Reweight + Lopti 0.95 0.94 0.91 0.87 0.87 0.91 (↑18.2%)

Figure 4: Experimental results on the K&K Logic Puzzles benchmark. For Advantage Reweight,
α = 0.3, and for Lopti, η = 0.5. The reward curve during training (left) is truncated to exclude the
first epoch and smoothed with an exponential moving average (coefficient: 0.95). The evaluation
accuracy on the test set (right) are averaged over the last three checkpoints to mitigate randomness.

5.1 EXPERIMENTS ON K&K LOGIC PUZZLES

The K&K logic puzzles, first aggregated into a benchmark for LLMs by Xie et al. (2024a), are a
class of reasoning problems rooted in classical logic game (Smullyan, 1986; Johnson-Laird & Byrne,
1990). These puzzles involve a fictional scenario where inhabitants of an island are either Knights,
who always tell the truth, or Knaves, who always lie. The objective is to determine the identity of
each inhabitant (Knight or Knave) based on a set of statements they make about themselves and
others. Please refer to Appendix C.1.1 for detailed introduction. The K&K logic puzzles are highly
challenging, with only the most advanced LLMs demonstrating strong performance (Xie et al., 2024a).
Additionally, it is not exposed in the model’s pre-training phase, allowing the model to demonstrate
continual learning behavior during training. As training progresses, both the training reward and
test accuracy gradually improve, rather than converging rapidly. These characteristics make this
benchmark an ideal choice for verifying RL performance.

Following Logic-RL (Xie et al., 2025), we construct the training set by combining logic puzzles with
3 to 7 players and adopt its rule-based reward function, which consists of two components: (1) Format
score, assigned 1 if the model provides CoT reasoning within <think></think> tags and the final
answer within <answer></answer> tags, and -1 otherwise; (2) Answer reward, assigned 2 for a
perfect match with the ground truth, -1.5 for partial correctness, and -2 for an completely incorrect
answer. We use Qwen2.5-3B-Instruct and Qwen2.5-7B-Instruct-1M as starting points.
Without employing curriculum learning, we directly expose the model to the mixed training set
and train it for a total of 5 epochs. The experimental results are reported in Figure 4. Detailed
hyperparameter settings are provided in Appendix B, and comprehensive experimental records can
be found in Appendix C.1.1.

During the early stages of GRPO training, the reward increases rapidly, but the growth slows signifi-
cantly after the first epoch. Subsequently, the improvements introduced by Advantage Reweighting
and Lopti become progressively more evident, particularly after 4 epochs. Interestingly, for simpler
tasks (involving fewer players), the performance gap between the baseline GRPO and the GRPO
enhanced with Advantage Reweighting and/or Lopti is minimal. However, for more complex tasks
with more players, the performance gap becomes significant. In challenging tasks, positive samples
are typically fewer and thus more valuable. As analyzed in Section 4.2, high-probability tokens in
these rare positive samples are not effectively amplified under standard GRPO training. Our method
addresses this limitation, thereby resulting in substantial performance improvements.

In addition, we perform a linguistic analysis to investigate the correlation between the model’s
reasoning behavior and its final performance. Specifically, we use the model trained with naive
GRPO to generate responses for the 500 prompts in the test set, sampling 8 responses per prompt,
resulting in a total of 4,000 samples. For these samples, we analyze the frequency of six categories of
inference-related words (see Appendix C.1.1 for details) and their corresponding rule-based rewards,
as illustrated in Figure 5(a). The analysis reveals a positive correlation between the frequency of words
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Figure 5: (a) The relationship between the frequency of six categories of inference-related words
and the corresponding sample rewards for Qwen-2.5-7B-Instruct-1M trained with naive GRPO. The
Pearson correlation coefficient (r) and Spearman rank correlation coefficient (ρ) are annotated. (b) A
comparison of the frequency of the six categories of words across the starting point (Qwen-2.5-7B-
Instruct-1M), naive GRPO, and GRPO enhanced with Advantage Reweighting and/or Lopti.

in the categories Analysis, Statement, and Causal Indicators and the samples’ rewards. Conversely,
the frequency of words in the categories Conclusion Indicator, Assumption, and Assertion exhibits a
negative correlation with the rewards.

It is worth noting that the statistical patterns observed in these six categories of words indirectly
highlight the enhancement effects of our proposed Advantage Reweighting and/or Lopti mechanisms
on GRPO training, as shown in Figure 5(b). Notably, the frequency of words positively correlated
with reward in the samples generated by our method is significantly higher than that of the baseline,
while the frequency of words negatively correlated with reward is substantially lower.

5.2 EXPERIMENTS ON MATH-RELATED DATASETS

To assess the generalization capability of our proposed methods, we conduct additional experiments
on math-related datasets. Consistent with the majority of prior studies, we utilize Qwen2.5-7B as
the base model and employ a straightforward rule-based reward. Specifically, a score of 1 is assigned
for completely correct answers, while a score of 0 is given for all other cases. We experiment with
two different datasets. The first one is a subset containing 10k problems introduced by AdaRFT (Shi
et al., 2025), which is sampled from DeepScaleR (Luo et al., 2025). This dataset, referred to as
DSR-Uniform, evenly covers problems across all difficulty levels and is specifically designed for
Qwen2.5-7B. We train this dataset for 5 epochs. The second one is a dataset containing 57k
problems introduced by Open-Reasoner-Zero (ORZ) (Liu et al., 2025). For this dataset (ORZ),
we train for 1 epoch. Apart from the number of training epochs, all other hyperparameters (cf.
Appendix B) are kept consistent across both datasets.

Table 1: Experimental results on math-related datasets (DSR for DeepScaleR and ORZ for Open-
Reasoner-Zero). For Advantage Reweight, α is set to 0.1, and for Lopti, η is set to 0.5. The evaluation
accuracy(%) are averaged over the last three checkpoints to mitigate randomness.

Dataset Algorithms Olympiad
Bench Minerva MATH

500
AMC

avg@16
AIME24
pass@16

AIME24
avg@16

Avg.
all

Qwen2.5-7B 27.64 18.38 63.00 22.21 30.00 5.00 27.71
+ GRPO 36.50 29.66 74.67 47.72 28.89 16.46 38.98
+ GRPO + Reweight 37.00 29.66 75.47 48.32 35.56 14.03 40.01DSR

Uniform + GRPO + Lopti 36.60 30.27 76.53 47.69 32.22 14.24 39.59
+ GRPO 38.23 27.69 78.33 49.57 32.22 12.92 39.83
+ GRPO + Reweight 40.81 29.04 77.80 49.07 33.33 16.46 41.09ORZ
+ GRPO + Lopti 38.63 29.78 78.53 47.29 34.44 15.28 40.66
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Figure 6: Ablation studies on the K&K Logic Puzzles dataset. (a) Effect of restricting updates to
high-probability tokens. (b) Effect of the token update order in Lopti. (c) Effect of the hyperparameter
α in Advantage Reweighting. (d) Effect of the hyperparameter η in Lopti.

We evaluate the LLMs after training on five benchmarks: Olympiad Bench (He et al., 2024),
Minerva (Lewkowycz et al., 2022), MATH-500 (Hendrycks et al., 2021), AMC 2022-2023, and
AIME 2024. For the first three benchmarks, we use greedy sampling for evaluation. For the last
two benchmarks, following prior works, we sample 16 responses for each question and report the
average accuracy (avg@16). Notably, AIME 2024 is extremely challenging; therefore, we also report
pass@16, which considers a question correctly answered if at least one of the 16 responses is correct.

The experimental results are summarized in Table 1. In contrast to the continual learning behavior ob-
served in the K&K Logic Puzzle dataset, the test accuracy curve on the math-related dataset converges
to a specific value within 100 steps and subsequently exhibits only minor fluctuations. Despite this,
the improvements introduced by our Advantage Reweighting and Lopti remain observable. It is worth
noting that the combined application of these two techniques does not result in further performance
gains; therefore, we recommend using them individually for optimal results. The underlying reasons
for this phenomenon are discussed in Appendix C.3. For detailed experimental records, please refer
to Appendix C.1.2.

5.3 ABLATION STUDIES

To better convey our motivation and demonstrate the effectiveness of the proposed methods, we
perform ablation studies on the K&K Logic Puzzles dataset. The key conclusions derived from these
studies are summarized in the following three points.

• High-probability tokens matter in RL training. Although the results in Figure 1 and Figure 3
suggest that the gradients of high-probability tokens are almost suppressed by low-probability tokens
during updates, the high-probability tokens remain crucial and cannot be disregarded. As shown in
Figure 6(a), masking high-probability tokens leads to a significant degradation in the performance of
the baseline GRPO. Therefore, reducing the influence of low-probability tokens on high-probability
ones holds great potential for advancing RL training, as anticipated.

• The update order is the key for Lopti. The intuition behind Lopti, as introduced in Section 4.2,
stems from the low-probability dominant effect of incorrectly reduced positive high-probability tokens.
To confirm this intuition and rule out the possibility of random gains, we reverse the update order by
processing high-probability tokens first, followed by low-probability tokens, as shown in Figure 6(b).
This modification leads to significantly worse performance compared to the GRPO baseline, with
training even collapsing after the 4th epoch.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

• Proper hyperparameter tuning is essential for Advantage Reweighting and Lopti. As intro-
duced in Section 4.2, Advantage Reweighting involves the hyperparameter α, while Lopti depends on
the hyperparameter η. For the K&K Logic Puzzles dataset, the recommended ranges are α ∈ [0.2, 0.3]
and η ∈ [0.3, 0.5], as values outside these ranges may result in inferior performance compared to
the GRPO baseline. It is worth noting that the hyperparameter setting for Advantage Reweighting
is task-sensitive, whereas Lopti demonstrates greater robustness in this regard. For math-related
datasets, the optimal hyperparameter for Advantage Reweighting is α = 0.1, while Lopti maintains
its robustness with η = 0.5.

6 CONCLUSION

In this paper, we identify a crucial issue in RL training for LLMs: the over-dominance of low-
probability tokens in model updates due to their disproportionately large gradient magnitudes. We
substantiate this issue through both empirical observations and rigorous theoretical analysis. To
address this imbalance, we propose two novel approaches: Advantage Reweighting and Lopti. These
methods effectively mitigate gradient disparities by diminishing the undue influence of low-probability
tokens, thereby facilitating more balanced and efficient updates for high-probability tokens. Extensive
experiments demonstrate the effectiveness of these approaches, showing consistent improvements in
GRPO-trained LLMs across diverse base models and datasets.
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A THEORETICAL INTERPRETATIONS

A.1 GRADIENT DERIVATION FOR THE GRPO OBJECTIVE

For clarity, we re-state the objective function of GRPO below:

JGRPO(θ) = Eq∼D,{oi}Gi=1∼πold

1∑G
i=1 |oi|

G∑
i=1

|oi|∑
t=1

min
[
ri,t(θ)Âi, clip(ri,t(θ); 1− ϵl, 1 + ϵh)Âi

]
︸ ︷︷ ︸

Jpolicy(θ)

−β DKL [πθ∥πref ]︸ ︷︷ ︸
JKL(θ)


with ri,t(θ) =

πθ(oi,t)

πold(oi,t)
, and DKL [πθ∥πref ] =

πref (oi,t)

πθ(oi,t)
− log

πref (oi,t)

πθ(oi,t)
− 1.

(5)

We begin by analyzing the policy loss term Jpolicy(θ), which originates from the PPO clipping
mechanism (Schulman et al., 2017). Note that for samples with positive advantage estimates (i.e.,
Âi > 0), the clipping is activated only when ri,t(θ) > 1 + ϵh. Conversely, for samples with
negative advantage estimates (i.e., Âi < 0), the clipping becomes active only when ri,t(θ) < 1 + ϵl.
Consequently, when clipping is active, the gradient ∇θJpolicy(θ) is zero; otherwise, it simplifies to
∇θri,t(θ) · Âi. In summary, we can express the gradient of Jpolicy(θ) as

∇θJpolicy(θ) =
∇θπθ(oi,t)

πold(oi,t)
· Âi · Itrust(

πθ(oi,t)

πold(oi,t)
, Âi)

=
πθ(oi,t)

πold(oi,t)
· Âi · Itrust(

πθ(oi,t)

πold(oi,t)
, Âi)∇θ log πθ(oi,t)

where Itrust(
πθ(oi,t)

πold(oi,t)
, Âi) =

 0

{
if Âi > 0 and

πθ(oi,t)
πold(oi,t)

> 1 + ϵh

if Âi < 0 and
πθ(oi,t)
πold(oi,t)

< 1− ϵl
1 otherwise

.

(6)

Next, we consider the KL constraint term JKL(θ), commonly referred to as k3 estimation (Schulman,
2020). It provides an unbiased estimate of the KL divergence between the current policy and the
reference policy. The gradient of JKL(θ) is given by:

∇θJKL(θ) = β∇θ
πref (oi,t)

πθ(oi,t)
+ β∇θ log πθ(oi,t)

= −β
πref (oi,t)

πθ(oi,t)2
∇θπθ(oi,t) + β∇θ log πθ(oi,t)

= −
[
β
πref (oi,t)

πθ(oi,t)
− β

]
∇θ log πθ(oi,t).

(7)

By combining equation 6 and equation 7, we finally obtain the gradient of GRPO objective in the
following form.

∇θJGRPO(θ) = Eq∼D,{oi}Gi=1∼πold

1∑G
i=1 |oi|

G∑
i=1

|oi|∑
t=1[

πθ(oi,t)

πold(oi,t)
Âi · Itrust(

πθ(oi,t)

πold(oi,t)
, Âi) + β

πref (oi,t)

πθ(oi,t)
− β

]
︸ ︷︷ ︸

wi,t

·∇θ log πθ(oi,t),

where Itrust(
πθ(oi,t)

πold(oi,t)
, Âi) =

 0

{
if Âi > 0 and

πθ(oi,t)

πold(oi,t)
> 1 + ϵh

if Âi < 0 and
πθ(oi,t)

πold(oi,t)
< 1− ϵl

1 otherwise

.

(8)
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A.2 PROOF FOR PROPOSITION 4.2

Proof. As introduced in Section 4.1, we denote LLM as a composite function f = fL◦fL−1◦· · ·◦f1,
where each fℓ (with ℓ ∈ {1, . . . , L}) corresponds to a distinct layer of the network. aℓ−1 denotes the
input and aℓ denotes the output of ℓth layer, and the Jacobian matrix of the ℓth layer with respect
to its input is expressed as Jℓ := ∂fl(aℓ−1)

∂aℓ−1
. For any token oi,t, we denote the gradient of GRPO

objective with respect to the activations aℓ at ℓth layer as δℓ(oi,t) := ∇aℓ
JGRPO(oi,t). According

to the rule of backpropagation, we have:

δℓ(oi,t) = JT
ℓ+1δℓ+1(oi,t) =

L∏
j=ℓ+1

JT
j · δL(oi,t). (9)

Note that the gradients of all intermediate layers are back-propagated from the last layer of LLM,
thereby we discuss the gradients of the last layer (δL(oi,t)) first. The last-layer output of an LLM is
the logits aL = (a1L, a

2
L, . . . , a

N
L ), which corresponds to a finite vocabulary V = {v1, v2, . . . , vN}.

The output probability of the corresponding token is calculated through softmax operation:

πθ(v
n) =

ea
n
L∑N

m=1 e
am
L

, for ∀n ∈ {1, 2, . . . , N}. (10)

Given a token oi,t, let k denote the index of the logits head corresponding to this token (i.e., vk = oi,t).
To obtain the gradient of last layer of LLM, we have:

∂JGRPO(oi,t)

∂anL

i
= wi,t ·

∂ log πθ(oi,t)

∂anL

ii
= wi,t ·

N∑
m=1

∂ log πθ(oi,t)

∂πθ(vm)
· ∂πθ(v

m)

∂anL

iii
= wi,t ·

∂ log πθ(oi,t)

∂πθ(vk)
· ∂πθ(v

k)

∂anL
= wi,t ·

1

πθ(vk)
· ∂πθ(v

k)

∂anL
.

(11)

Here, equality (i) follows from equation 8; equality (ii) is obtained by applying the chain rule during
backpropagation; and equality (iii) holds because ∂ log πθ(oi,t)/πθ(v

m) = 0 for all m ̸= k. Next,
we consider the following two cases for the gradient on the logits head anL (n ∈ {1, 2, . . . , N}).

Case 1: the logits head corresponds to the sampled token (n = k)

∂JGRPO(oi,t)

∂akL
= wi,t ·

1

πθ(vk)
· ∂πθ(v

k)

∂akL

= wi,t ·
1

πθ(vk)
·
ea

n
L ·

∑N
m=1 e

am
L − e2a

n
L

(
∑N

m=1 e
am
L )2

= wi,t ·
1

πθ(vk)
· πθ(v

k) ·
(
1− πθ(v

k)
)

= wi,t ·
(
1− πθ(v

k)
)
.

(12)

Case 2: the logits head corresponds to the un-sampled token (n ̸= k)

∂JGRPO(oi,t)

∂anL
= wi,t ·

1

πθ(vk)
· ∂πθ(v

k)

∂anL

= wi,t ·
1

πθ(vk)
· −ea

k
L · ean

L

(
∑N

m=1 e
am
L )2

= wi,t ·
1

πθ(vk)
· πθ(v

k) · (−πθ(v
n))

= wi,t · (−πθ(v
n)) .

(13)
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For simplicity, we denote the vector distribution output across the vocabulary as p, and denote
I(oi,t) as the one-hot vector with its only non-zero component at kth position (i.e., the position
correspondence to token oi,t). We have the following expressions

p(oi,t) = (πθ(v
1), πθ(v

2), . . . , πθ(v
N )) ∈ RN

I(oi,t) = (0, 0, . . . , 1︸︷︷︸
kth

, . . . , 0) ∈ RN . (14)

Combining equation 12 and equation 13, and utilizing the notation defined in equation 14, we
obtain:

δL(oi,t) = ∇aL
JGRPO(oi,t) = wi,t · (I(oi,t)− p(oi,t)) . (15)

Considering the lower bound for the gradient norm, we have:

∥δL(oi,t)∥ = |wi,t| · ∥p(oi,t)− I(oi,t)∥

= |wi,t| ·
√
(1− πθ(vk))

2
+

∑N

n̸=k
πθ(vn)2

≥ |wi,t| ·
√
(1− πθ(vk))

2
+

1

N − 1

(∑N

n̸=k
πθ(vn)

)2
= |wi,t| ·

√
(1− πθ(vk))

2
+

1

N − 1
(1− πθ(vk))

2

= |wi,t| ·
√

N

N − 1
(1− πθ(oi,t)) ,

(16)

where the inequality follows from the Cauchy-Schwarz inequality. The equality holds holding if and
only if πθ(v

n) is uniformly distributed for all n ̸= k.

By substituting equation 16 into equation 9, we obtain:

∥δℓ(oi,t)∥ = ∥
∏L

j=ℓ+1
JT
j · δL(oi,t)∥

i
≥

∏L

j=ℓ+1
σmin(J

T
j ) · ∥δL(oi,t)∥

ii
≥

∏L

j=ℓ+1
cj · ∥δL(oi,t)∥

iii
≥

∏L

j=ℓ+1
cj · |wi,t| ·

√
N

N − 1

(
1− πθ(v

k)
)
,

(17)

where inequality (i) follows from the variational characterization of singular values, inequality (ii) is
a consequence of Assumption 4.1, and inequality (iii) results from equation 16.

Next, considering an alternative direction, we derive an upper bound for the gradient norm:

∥δL(oi,t)∥ = |wi,t| ·
√
(1− πθ(vk))

2
+
∑N

n̸=k
πθ(vn)2

≤ |wi,t| ·
√
(1− πθ(vk))

2
+
∑N

n̸=k
πθ(vn)2 + 2

∑N

n,m̸=k,n<m
πθ(vn)πθ(vm)

= |wi,t| ·
√
(1− πθ(vk))

2
+
(∑N

n̸=k
πθ(vn)

)2
= |wi,t| ·

√
(1− πθ(vk))

2
+ (1− πθ(vk))

2

= |wi,t| ·
√
2 (1− πθ(oi,t)) ,

(18)

where the inequality holds because πθ(v
n) ≥ 0 for all n ∈ 1, 2, . . . , N . The equality is achieved if

and only if there exists an index m such that πθ(v
m) = 1− πθ(v

k) and πθ(v
m) = 0 for all n ̸= m

and n ̸= k.
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Similarly, substituting equation 18 into equation 9, we have

∥δℓ(oi,t)∥ = ∥
∏L

j=ℓ+1
JT
j · δL(oi,t)∥

≤
∏L

j=ℓ+1
σmax(J

T
j ) · ∥δL(oi,t)∥

≤
∏L

j=ℓ+1
dj · ∥δL(oi,t)∥

≤
∏L

j=ℓ+1
dj · |wi,t| ·

√
2
(
1− πθ(v

k)
)
,

(19)

where the inequalities hold for the same reasons as in equation 17. Together, equation 17 and
equation 19 establish the result of Proposition 4.2.

B HYPERPARAMETER SETTINGS

As described in Section 4.2, our proposed Advantage Reweighting and Lopti require only minor
modifications to the existing GRPO training framework. Our implementation is built upon the verl
library* (Sheng et al., 2025). The key hyperparameter configurations for GRPO training are detailed
in Table 2. Note that we adopt the ‘clip higher’ technique from DAPO (Yu et al., 2025) to stabilize
entropy and mitigate entropy collapse. All other hyperparameters adhere to the default settings
provided by verl.

The hyperparameter configurations specific to Advantage Reweighting and Lopti are summarized in
Table 3. As reported in Section 5, while the joint application of the two techniques generally yields
improved results for the K&K Logic Puzzle dataset, this is not the case for the Math dataset. Please
refer to Appendix C.3 for a detailed explanation. Consequently, using either technique individually is
recommended for the math-related dataset.

It should be noted that the hyperparameter settings for our proposed methods are related to the task
specification, but not to the base model utilized. As we concluded in Appendix C.3, for reasoning tasks
where the model uses natural language for inference, low-probability tokens occur more frequently in
the sampled batch, and therefore their dominant effect is more pronounced. Consequently, integrating
Advantage Reweighting and Lopti can yield better results. On the other hand, for tasks such as
mathematics, where the model uses specialized mathematical notation for inference, low-probability
tokens occur less frequently. The dominant effect is not as pronounced under such circumstances.
Regarding the hyperparameter α for Advantage Reweighting, for tasks where low-probability tokens
exhibit a greater dominant effect (such as reasoning tasks), it should be set to 0.2–0.3 to achieve the
best performance. For tasks where the dominant effect is weaker (such as math tasks), it should be
set to 0.1 to achieve the best performance. As for the hyperparameter η for Lopti, it is robust across
tasks, and setting the value to 0.5 is sufficient for all tasks.

For consistency, the same seed is used across all experiments. We save a checkpoint every 20 RL
steps, and all evaluation accuracies reported on the test set in this paper are averaged over the last
three checkpoints. The detailed implementation can be found in our code†.

C EXPERIMENTAL DETAILS

C.1 TASK DESCRIPTION

C.1.1 K&K LOGIC PUZZLE

As introduced in Section 5.1, the K&K logic puzzles involve a fictional scenario where inhabitants of
an island are either Knights, who always tell the truth, or Knaves, who always lie. The objective of the
LLMs is to determine the identity of each inhabitant (Knight or Knave) based on a set of statements
they make about themselves and others. Following Logic-RL (Xie et al., 2025), we utilize the LLMs

*https://github.com/volcengine/verl
†We provide the source code in supplementary materials.
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Table 2: Key hyperparameters for GRPO training, with the corresponding variable names in the
verl configuration indicated in brackets.

ValueHyperparameter K&K Math
Rollout-related

Sampling temperature (temperature) 0.7 1.0
Question num per batch (ppo_mini_batch_size) 64 128
Answer num per question (rollout.n) 8
Max tokens num per response (max_response_length) 4096

Training-related
Update batch size (ppo_micro_batch_size) 256 512
Optimizer (optim.type) adamw
Learning rate (optim.lr) 1e-6
KL divergence coefficient (kl_loss_coef) 0.001
Lower clipping threshold (clip_ratio_low) 0.2
Upper clipping threshold (clip_ratio_high) 0.24

Table 3: Hyperparameter settings for Advantage Reweighting and Lopti.
ValueHyperparameter K&K Math

Advantage Reweighting (α) 0.3 0.1
Lopti (η) 0.5 0.5
Joint operation for better results True False

after instruction fine-tuning (Qwen2.5-3B-Instruct and Qwen2.5-7B-Instruct-1M) as
starting point. The prompt specifically designed for the LLMs is as follows.

Prompt

system\n You are a helpful assistant. The assistant first thinks about the reasoning process in the
mind and then provides the user with the answer. The reasoning process and answer are enclosed
within <think> </think> and<answer> </answer> tags, respectively, i.e., <think> reasoning process
here </think><answer> answer here </answer>. Now the user asks you to solve a logical reasoning
problem. After thinking, when you finally reach a conclusion, clearly state the identity of each
character within <answer> </answer> tags. i.e., <answer> (1) Zoey is a knight\n (2) ... </answer>.\n
\n user\n {problem}\n \n assistant\n <think>

To encourage LLMs to exhibit chain-of-thought (CoT) reasoning, Logic-RL (Xie et al., 2025) designs
a reward function consisting of two components, as outlined in Table 4. The output format is deemed
completely correct if LLMs include CoT reasoning enclosed within <think></think> tags and
the final answer enclosed within <answer></answer> tags.

Table 4: Reward design for K&K Logic Puzzle proposed in Logic-RL (Xie et al., 2025)

.

Format Reward Answer Reward
Completely Correct 1 2
Patially Correct -1 -1.5
Completely Wrong -1 -2

For the K&K Logic Puzzle dataset, the number of players (ranging from 3 to 7) can be adjusted to
control the difficulty level, with a greater number of players resulting in higher difficulty. To provide
an intuitive illustration, we present an easy example with 3 players and a challenging example with
7 players below. Without utilizing curriculum learning, we directly train the LLMs on the mixed
training set for a total of 5 epochs.
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An Example of K&K Puzzle with 3 people

Problem:
A very special island is inhabited only by knights and knaves. Knights always tell the truth, and
knaves always lie. You meet 3 inhabitants: Alexander, Lily, and Samuel. Alexander remarked, "Lily
is a knave or Lily is a knight". In a statement by Lily: "Samuel is a knight if and only if Lily is a
knight". Samuel was heard saying, "Lily is a knight". So who is a knight and who is a knave?

Example Reasoning Process:
• Assume Alexander is a knight. No contradiction is found in their claim that Lily is a knave or Lily
is a knight.
• Assume Lily is a knight. No contradiction is found in their claim that Samuel is a knight if and
only if Lily is a knight.
• Assume Samuel is a knight. No contradiction is found in their claim that Lily is a knight.

Standard Solution:
(1) Alexander is a knight, (2) Lily is a knight, (3) Samuel is a knight

An Example of K&K Puzzle with 7 people

Problem:
A very special island is inhabited only by knights and knaves. Knights always tell the truth, and
knaves always lie. You meet 7 inhabitants: Harper, Emma, Mia, Luke, Alexander, David, and Ethan.
As Harper put it, "David is not a knight". In Emma’s words: "David is a knight". Mia said that
If Emma is a knight then Emma is a knave. Luke said, "If Alexander is a knave then Emma is a
knight." Alexander was heard saying, "If David is a knight then Harper is a knave". "Alexander
is not a knight" - David. "Harper is a knight," Ethan mentioned. So who is a knight and who is a
knave?

Example Reasoning Process:
• Assume Harper is a knight. No contradiction is found in their claim that David is not a knight.
• David cannot be a knight, because this would contradict the claim of Harper that David is not a
knight.
• Assume David is a knave. No contradiction is found in their false claim that Alexander is not a
knight.
• Assume Alexander is a knight. No contradiction is found in their claim that If David is a knight
then Harper is a knave.
• Emma cannot be a knight, because this would contradict the claim of their own that David is a
knight.
• Assume Emma is a knave. No contradiction is found in their false claim that David is a knight.
• Assume Mia is a knight. No contradiction is found in their claim that If Emma is a knight then
Emma is a knave.
• Assume Luke is a knight. No contradiction is found in their claim that If Alexander is a knave then
Emma is a knight.
• Assume Ethan is a knight. No contradiction is found in their claim that Harper is a knight.

Standard Solution:
(1) Harper is a knight (2) Emma is a knave (3) Mia is a knight (4) Luke is a knight (5) Alexander is a
knight (6) David is a knave (7) Ethan is a knight

The detailed training records for Qwen2.5-3B-Instruct and Qwen2.5-7B-Instruct-1M
are presented in Figure 7 and Figure 8, respectively. In addition to the points discussed in Section 5.1,
it is worth noting that our Advantage Reweighting and Lopti approaches slightly increase the response
length while significantly reducing the gradient norm compared to the naive GRPO. Both observations
empirically suggest that the RL training process is further stabilized.

For the six categories of inference-related words used in the linguistic analysis, the detailed word
lists are provided in Table 5. It is important to note that for the nouns and verbs listed in the table,
their conjugated forms are also included in the analysis. Specifically, we account for the plural forms
of nouns as well as the past tense and past participle forms of verbs. Additionally, uppercase and
lowercase letters are treated equivalently.
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Figure 7: Experimental records of Qwen2.5-3B-Instruct trained with GRPO on the K&K
Logic Puzzle dataset. The training curve is smoothed through exponential moving average with
coefficient of 0.95.

Figure 8: Experimental records of Qwen2.5-7B-Instruct-1M trained with GRPO on the K&K
Logic Puzzle dataset.

C.1.2 MATH DATASET

As discussed in Section 5.2, we perform additional experiments on two math-related datasets, DSR-
Uniform and ORZ. Consistent with the majority of prior studies, we use Qwen2.5-7B as the starting
point. It is important to note that Qwen2.5-7B undergoes no post-training. This setup is therefore
referred to as a "cold-start" and denoted as RL-Zero (Guo et al., 2025). No instruction-following
templates are employed; instead, we use the following straightforward prompt.
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Table 5: Six categories of inference-related words associated with LLMs’ performance on the K&K
Logic Puzzles dataset.

Category Words (Nouns and verbs include their conjugated forms)
Analysis ‘analyze’, ‘consider’, ‘look at’, ‘check’, ‘examine’
Statement XXX’s ‘statement’
Causal Indicator ‘since’, ‘because’, ‘due to’, ‘given that’
Conclusion Indicator ‘so’, ‘thus’, ‘hence’, ‘as a result’, ‘consequently’, ‘therefore’
Assumption ‘assume’, ‘if...then...’
Assertion ‘must be’, ‘definite’

Prompt

{problem} Let’s think step by step and output the final answer within \\boxed{}.

LLMs that have not undergone post-training typically exhibit poor performance in adhering to specific
output formats. As a result, format-related points were not included during training. Additionally,
math problems are generally not partially correct, making a binary reward sufficient for evaluating
the LLMs’ output. Specifically, a reward of 1 is assigned when LLMs produce the correct answer,
and 0 otherwise.

The detailed experimental results for the DSR-Uniform and ORZ datasets are presented in Figure 9
and Figure 10, respectively. Notably, the training curve for DSR-Uniform demonstrates a continual
learning trend, with the reward progressively increasing over time. In contrast, this is not observed
for ORZ, where the reward converges rapidly within 100 steps. However, the test accuracy curves
for both datasets converge to a stable value within 100 steps, after which they exhibit only minor
fluctuations. Despite these patterns, the improvements achieved by our proposed methods, Advantage
Reweighting and Lopti, remain clearly observable.

Figure 9: Experimental records of Qwen2.5-7B trained with GRPO on DSR-uniform dataset. The
training curve is smoothed through exponential moving average with coefficient of 0.95, and the
testing curve is smoothed with a window size of 3.
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Figure 10: Experimental records of Qwen2.5-7B trained with GRPO on ORZ dataset.

C.2 COMPUTATIONAL COSTS

Our experiments are conducted on a single machine equipped with an AMD EPYC 7V13 64-Core
CPU and four NVIDIA A100 80GB PCIe GPUs. The experiments on the K&K Logic Puzzle dataset
require approximately 16–22 hours to complete (excluding testing during the training process), while
those on the math-related dataset take around 37–48 hours.

The Advantage Reweighting involves only recalculating the advantage of tokens, with a time overhead
in the range of milliseconds. However, this efficiency does not apply to Lopti, as it splits the tokens
in a batch into two groups and performs updates twice. Consequently, the updating process requires
twice the amount of time, as detailed in Table 6.

Table 6: Computational cost comparison of Lopti operation over the first 50 training steps on K&K
Logic Puzzle Dataset.

Time (s)/step
Deepseek-Distill-1.5B Qwen2.5-3B-Instruct Qwen2.5-7B-Instruct-1MProcedure
w/o Lopti w/ Lopti w/o Lopti w/ Lopti w/o Lopti w/ Lopti

Sampling 140.9 141.7 25.4 27.8 68.5 69.3
Training 100.8 179.2 17.6 35.3 61.4 116.8
Others 10.1 9.4 2.4 2.8 10.3 10.2
Total 251.8 330.3 45.4 65.9 140.2 196.3

C.3 INCOMPATIBILITY OF AR AND LOPTI FOR SIMULTANEOUS APPLICATION TO
MATH-RELATED DATASETS

As reported in Section 5, although the joint application of the two techniques (Advantage Reweighting
and Lopti) generally yields improved results on the K&K Logic Puzzle dataset, this is not observed
for the Math dataset. To investigate the underlying cause of this discrepancy, we perform an analysis
on the DeepScaleR-Uniform dataset analogous to that in Figure 1, and present a comparison between
the K&K Logic Puzzle and DeepScaleR-Uniform datasets in Figure 11.

When the task involves "logic puzzle", LLMs encounter a greater number of "high-entropy" positions
during the auto-regressive generation process. This remains true even when we lower the temperature
to 0.7 (as opposed to the typical setting of 1.0 used in mathematical tasks). As a result, the proportion
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Figure 11: Comparison of token probability distributions and gradient norms during GRPO training
of Qwen2.5-7B-Instruct-1M between the K&K Logic Puzzle dataset and the DeepScaleR-
Uniform dataset. The proportion of sampled low-probability tokens during training is substantially
smaller for the DeepScaleR-Uniform dataset than for the K&K Logic Puzzle dataset.

of "low-probability tokens" in the sampled batch increases. In such scenarios, the dominance effect
of low-probability tokens becomes more pronounced, allowing both "Advantage Reweighting"
and "Lopti" to perform effectively. When used independently, there is no significant difference in
performance; when combined, they can even yield superior results.

In contrast, for math-related tasks, high-entropy positions are encountered less frequently during
generation, leading to a lower proportion of low-probability tokens in the sampled batch compared
to logic puzzles. This may be attributed to the greater textual inertia and determinism inherent in
mathematical language. Consequently, in this setting, combining the two methods can overly suppress
the contribution of low-probability tokens to the gradient updates, ultimately resulting in suboptimal
performance.

D ADDITIONAL EXPERIMENTAL RESULTS

D.1 ADDITIONAL POLICY-GRADIENT-BASED RL ALGORITHMS

In addition to GRPO, our proposed methods, Advantage Reweighting and Lopti, are also well-
adapted to other Policy Gradient-based RL algorithms. In this section, we extend our methods to
REINFORCE++ (Hu, 2025), and DAPO (Yu et al., 2025).

D.1.1 REINFORCE++

REINFORCE++ (Hu, 2025) is a widely recognized algorithm that builds upon the conventional
REINFORCE (Williams, 1992) while incorporating various stabilization techniques introduced by
PPO (Schulman et al., 2017).

Similar to GRPO, REINFORCE++ also eliminates the need for a value model, thereby reducing
computational costs compared to PPO. The key differences between GRPO and REINFORCE++
lie in how they estimate the advantage and constrain the distance between the RL-trained model
and the initial (or reference) model. GRPO estimates the advantage based on the difference between
the reward and the group-relative expected return, incorporating the KL constraint directly into the
objective function (cf. Section 3 for details). In contrast, REINFORCE++ does not emphasize the
concept of ‘group’ under the same prompt. Instead, it estimates the advantage directly from the reward
and treats the KL constraint as a penalty term added to the reward. Specifically, REINFORCE++
estimates the advantage as follows:
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Âi,t =
ÂR++

i,t − µA

σA
with ÂR++

i,t = r(q,oi)− β ·
T∑

j=t

DKL [πθ(oi,j)∥πref (oi,j)] , (20)

where µA and σA represent the mean and standard deviation of the advantages of all tokens within
the RL-sampled batch, respectively. The KL divergence term is computed using the k1 estima-
tion (Schulman, 2020): DKL [πθ(oi,j)∥πref (oi,j)] = πθ(oi,j)/πref (oi,j). The optimization objective
of REINFORCE++ is:

JR++(θ) = Eq∼D,{oi}G
i=1∼πold

1∑G
i=1 |oi|

G∑
i=1

|oi|∑
t=1

{
min

[
ri,t(θ)Âi,t, clip(ri,t(θ); 1− ϵl, 1 + ϵh)Âi,t

]}
with ri,t(θ) =

πθ(oi,t|q,oi,<t)

πold(oi,t|q,oi,<t)
.

(21)

Similar to the experiments conducted with GRPO, we validate two base models as starting points:
Qwen2.5-3B-Instruct and Qwen2.5-7B-Instruct-1M. All hyperparameters of REIN-
FORCE++ are kept consistent with those used for GRPO, as described in Appendix B. The only
difference is that, on the K&K Logic Puzzle dataset, the optimal hyperparameter setting for Advantage
Reweighting is α = 0.1 for REINFORCE++, and α = 0.3 for GRPO.

The evaluation results on the test set are reported in Table 7. Notably, the performance of naive
REINFORCE++ is slightly worse than that of naive GRPO (cf. Figure 4). This observation aligns
with the findings of Xiong et al. (2025), as the advantage normalization method in REINFORCE++
may introduce unnecessary bias toward entirely incorrect responses on overly difficult prompts.
Nevertheless, the improvements achieved by our proposed methods, Advantage Reweighting and
Lopti, remain significant. For more details on the training process, please refer to the records presented
in Figure 12 and Figure 13.

Table 7: Experimental results of REINFORCE++ on the K&K Logic Puzzles dataset. For Advantage
Reweight, α = 0.1, and for Lopti, η = 0.5. The evaluation accuracy on the test set are averaged over
the last three checkpoints to mitigate randomness.

Difficulty by Number of PeopleModel 3 4 5 6 7 Avg.
Qwen2.5-3B-Instruct 0.09 0.10 0.03 0.05 0.02 0.06
REINFORCE++ 0.37 0.31 0.20 0.21 0.06 0.23
REINFORCE++ with Reweight 0.53 0.44 0.31 0.26 0.14 0.34 (↑46.1%)

REINFORCE++ with Lopti 0.47 0.36 0.26 0.26 0.12 0.29 (↑27.8%)

REINFORCE++ with Reweight & Lopti 0.61 0.49 0.38 0.34 0.21 0.41 (↑76.5%)

Qwen2.5-7B-Instruct-1M 0.22 0.15 0.08 0.10 0.02 0.11
REINFORCE++ 0.68 0.72 0.54 0.42 0.43 0.56
REINFORCE++ with Reweight 0.81 0.77 0.66 0.62 0.48 0.67 (↑19.7%)

REINFORCE++ with Lopti 0.89 0.85 0.71 0.66 0.51 0.72 (↑29.7%)

REINFORCE++ with Reweight & Lopti 0.87 0.88 0.81 0.71 0.69 0.79 (↑41.9%)
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Figure 12: Experimental records of Qwen2.5-3B-Instruct trained with REINFORCE++ on
the K&K Logic Puzzle dataset. The training curve is smoothed through exponential moving average
with coefficient of 0.95.

Figure 13: Experimental records of Qwen2.5-7B-Instruct-1M trained with REINFORCE++
on the K&K Logic Puzzle dataset.

D.1.2 DAPO

DAPO (Yu et al., 2025) is a recently proposed algorithm that builds upon GRPO (Liu et al., 2025).
Beyond the foundation of GRPO, it further introduces four key techniques to accelerate and stabilize
training:

• Clip Higher, which establishes a higher clip threshold for PPO-style importance sampling
clipping on positive samples. This proves effective in promoting system diversity and
preventing entropy collapse;

• Dynamic Sampling, which filters out prompts that yield homogeneous responses with
identical rewards, thereby improving training efficiency and stability;
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• Token-Level Policy Gradient Loss, which averages the loss over all tokens within a batch
rather than over sequences, a modification that is critical in long-chain-of-thought RL
scenarios;

• Overlong Reward Shaping, which mitigates reward noise caused by hard truncation when
responses exceed length limits, thereby reducing noise and stabilizing training.

Table 8: Experimental results of DAPO on the K&K Logic Puzzles dataset.

Difficulty by Number of PeopleModel 3 4 5 6 7 Avg.
Qwen2.5-3B-Instruct 0.09 0.10 0.03 0.05 0.02 0.06
+ DAPO 0.68 0.61 0.45 0.42 0.31 0.49
+ DAPO + Reweight 0.72 0.68 0.52 0.51 0.47 0.58 (↑17.4%)

+ DAPO + Lopti 0.77 0.73 0.60 0.58 0.50 0.64 (↑28.7%)

+ DAPO + Reweight + Lopti 0.85 0.88 0.71 0.70 0.58 0.74 (↑50.6%)

Qwen2.5-7B-Instruct-1M 0.22 0.15 0.08 0.10 0.02 0.11
+ DAPO 0.96 0.93 0.81 0.76 0.67 0.82
+ DAPO + Reweight 0.97 0.97 0.92 0.87 0.86 0.92 (↑11.1%)

+ DAPO + Lopti 0.99 0.99 0.97 0.92 0.90 0.95 (↑15.5%)

+ DAPO + Reweight + Lopti 1.00 0.99 0.98 0.96 0.91 0.97 (↑17.2%)

Figure 14: Experimental records of Qwen2.5-3B-Instruct trained with DAPO on the K&K
Logic Puzzle dataset.

DAPO utilizes the same training objective as defined in Eq. 1. In our experiments, we validate
DAPO on the K&K Logic Puzzle dataset using two base models: Qwen2.5-3B-Instruct and
Qwen2.5-7B-Instruct-1M. All hyperparameters of DAPO are kept consistent with those used
for GRPO, as described in Appendix B. It is important to note that during the sampling process,
DAPO filters out prompts that yield homogeneous responses. This filtering operation results in
variability in the total number of training steps across different experimental settings, as the filtered
prompts differ in each training run. To ensure a fair comparison, we do not fix the number of training
epochs at 5; instead, we fix the total number of training steps. For the 3B model, we set the training
steps to 360, consistent with the experiments conducted for GRPO and REINFORCE++. However,
for the 7B model, DAPO converges after 300 steps, and the prevalence of homogeneous responses
during the sampling process triggers early stopping. Consequently, we set the training steps to 300
for the 7B model. The experimental results are presented in Table 8 and Figures 14 15.
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Figure 15: Experimental records of Qwen2.5-7B-Instruct-1M trained with DAPO on the
K&K Logic Puzzle dataset.

D.2 ADDITIONAL LARGE LANGUAGE MODELS

To demonstrate the generalization capability of our proposed method beyond Qwen-series models,
we further evaluate its performance on LLaMA-series (Dubey et al., 2024) and DeepSeek-series (Guo
et al., 2025) models in Appendices D.2.1 and D.2.2, respectively.

D.2.1 LLAMA

We adopt two models from the LLaMA-series (Dubey et al., 2024): LLaMA-3.2-3B-Instruct
and LLaMA-3.1-8B-Instruct for our experiments. We evaluate our methods with GRPO on the
K&K Logic Puzzle dataset. All other hyperparameters are kept consistent with those in Appendix B.
The experimental results are presented in Table 9, Figure 16, and Figure 17. These results closely
resemble those obtained with Qwen-series models, as shown in Table 4, Figure 7, and Figure 8.

Table 9: Experimental records of LLaMA-3.2-3B-Instruct & LLaMA-3.1-8B-Instruct
trained with GRPO on the K&K Logic Puzzles dataset. For Advantage Reweight, α = 0.3, and for
Lopti, η = 0.5.

Difficulty by Number of PeopleModel 3 4 5 6 7 Avg.
LLaMA-3.2-3B-Instruct 0.00 0.00 0.01 0.00 0.01 0.00
GRPO 0.47 0.33 0.29 0.27 0.13 0.30
GRPO + Reweight 0.58 0.51 0.33 0.36 0.23 0.40 (↑33.3%)

GRPO + Lopti 0.73 0.70 0.59 0.49 0.43 0.59 (↑96.7%)

GRPO + Reweight + Lopti 0.73 0.76 0.58 0.55 0.45 0.62 (↑106.7%)

LLaMA-3.1-8B-Instruct 0.05 0.01 0.03 0.00 0.00 0.02
GRPO 0.86 0.88 0.77 0.72 0.68 0.78
GRPO + Reweight 0.89 0.92 0.86 0.81 0.78 0.85 (↑9.0%)

GRPO + Lopti 0.90 0.95 0.89 0.87 0.84 0.88 (↑12.8%)

GRPO + Reweight + Lopti 0.94 0.97 0.89 0.86 0.82 0.90 (↑15.4%)
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Figure 16: Experimental records of LLaMA-3.2-3B-Instruct trained with GRPO on the K&K
Logic Puzzle dataset.

Figure 17: Experimental records of LLaMA-3.1-8B-Instruct trained with GRPO on the K&K
Logic Puzzle dataset.

D.2.2 DEEPSEEK-R1-DISTILL

As discussed in Section 5.2 and illustrated in Figure 10, the test accuracy curve on the math-
related dataset converges to a specific value within 100 steps and subsequently exhibits only minor
fluctuations. Consequently, the improvements introduced by Advantage Reweighting and Lopti are
not significant. This phenomenon is common for base models with limited reasoning capability, as
they encounter similar data during the pre-training phase and their capability is constrained by the
number of model parameters.

To observe the continuous learning behavior on the math-related dataset and reveal the
capability of our proposed methods, we conduct experiments on the ORZ dataset with
DeepSeek-R1-Distill-1.5B. All hyperparameters are set the same as those in Appendix B.

28



1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

The experimental results are recorded in Table 10 and Figure 18. It is evident that the gap between
the baseline GRPO and GRPO enhanced with Advantage Reweighting or Lopti becomes increasingly
larger for both the reward curve and the test curve. Compared with the experimental results shown in
Figure 10, the improvements brought by our proposed methods are more pronounced.

Table 10: Experimental results on of DeepSeek-R1-Distill-1.5B trained with GRPO on
ORZ dataset.

Dataset Algorithms Olympiad
Bench Minerva MATH

500
AMC

avg@16
AIME24
pass@16

AIME24
avg@16

Avg.
all

DeepSeek-R1-Distill-1.5B 24.81 9.93 55.40 34.64 23.33 9.58 26.28
+ GRPO 35.84 19.51 73.90 49.85 33.26 14.78 37.86
+ GRPO + Reweight 40.02 19.73 77.20 53.97 32.22 17.50 40.11ORZ
+ GRPO + Lopti 37.25 20.34 75.67 51.66 34.44 14.72 39.01

Figure 18: Experimental records of DeepSeek-R1-Distill-1.5B trained with GRPO on the
ORZ-math dataset.

E ON THE CONTRADICTORY CONCLUSIONS OF THE 80/20 RULE

It is noteworthy that the conclusions from our paper are somewhat contradictory to those of the 80/20
Rule of RL introduced by Wang et al. (2025). Specifically, in this work, we emphasize that high-
probability tokens are equally important as low-probability ones, and that the over-dominant effect
of low-probability tokens may impede the learning of high-probability tokens. In contrast, Wang
et al. (2025) argue that only high-entropy tokens (which are somewhat equivalent to low-probability
tokens) matter, and that all low-entropy tokens (high-probability ones) can be completely dropped
during the training process.

We would like to emphasize that the fundamental reason lies in the hyperparameter settings used in
the experiments. We follow the settings from Logic-RL (Xie et al., 2025), while Wang et al. (2025)
follow those from DAPO (Yu et al., 2025). In our setting, we set the update batch size to half of the
total samples per RL step, i.e., the sampled trajectories are separated into n = 2 batches for updating.
This configuration was common before RL scaled up to models of extremely large size. For extremely
large models, switching between inference and training engines can be extremely slow due to heavy
I/O costs. For this reason, DAPO samples a large batch and updates it separately across n = 16
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gradient steps. This means that only the first batch is on-policy, while the rest are off-policy, causing
the clipping mechanism to be activated. It is observed that in such off-policy cases, low-probability
tokens are clipped to a large extent, leading to an overemphasis on high-probability tokens, which are
less likely to be clipped in the later batches of updates. This phenomenon can be mitigated by the
80/20 rule. However, for relatively on-policy training (when n is small), the 80/20 rule does not work.
To verify this analysis, we conduct experiments as shown in Figure 19. It is noteworthy that the 80/20
rule degrades the performance of the baseline DAPO for n ≤ 8 and only improves performance when
n = 16.

Figure 19: The effect of the 80/20 rule (Wang et al., 2025) with different numbers of sampled batch
shards on K&K Logic Puzzle dataset.

F LIMITATIONS

One limitation of our study lies in the additional computational overhead introduced by Lopti. As
detailed in Appendix C.2, the updating process requires twice the amount of time as it splits the tokens
in a batch into two groups and performs updates twice. However, we also propose an alternative
method, Advantage Reweighting, which incurs negligible computational cost while achieving even
greater improvements on the math-related dataset compared to Lopti.
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