LANGMEDSAM: A SCALABLE ADAPTATION OF MEDICAL SEGMENT ANYTHING MODEL (MEDSAM) FOR LANGUAGE-PROMPTED MEDICAL IMAGE SEGMENTATION

Anonymous authors

000

001

002

004

006

008

009

010 011 012

013

015

016

017

018

019

021

023

025

026

027

028

029

031

033

036

040

041

042

043

044

046

047

048

051

052

Paper under double-blind review

ABSTRACT

Image segmentation is a crucial component of medical imaging, facilitating precise analysis and diagnosis by identifying anomalies and structures across various imaging modalities. Recent advancements have led to the development of foundational medical image segmentation models such as MedSAM. Trained on a large corpus of medical images, MedSAM generates segmentation masks based on user prompts such as bounding boxes and points. For faster inference, LiteMedSAM, a lightweight variant of MedSAM, offers a computationally more practical solution, while maintaining comparable performance. However, manually providing bounding boxes for each 2D slice in volumetric imaging remains cumbersome and hinders the automatic processing of large datasets. To address this, we introduce LangMedSAM, a multi-modal text-based segmentation model that leverages natural language prompts for mask generation in radiological images. LangMedSAM is trained on 20 publicly available medical datasets and evaluated both on these datasets and on 4 additional external datasets to assess generalizability. Building on LiteMedSAM's architecture, it supports segmentation via both text-based prompts and conventional inputs such as bounding boxes. Our results show that text-based prompts provide a scalable and effective solution for multi-modal and multi-region medical image segmentation, offering a practical alternative to conventional prompting methods in MedSAM—particularly for the automated processing of large collections of scans.

1 Introduction

Segmentation is a fundamental process in medical imaging that enables precise delineation of anatomical structures, including tissues, organs, and pathological anomalies. This improves diagnostic accuracy, enhances clinical workflows, and supports various research applications. Advances in deep learning have significantly simplified this complex task, with methods such as nnU-Net (Isensee et al., 2018) achieving remarkable accuracy in segmenting regions of interest (ROIs), including various anatomical structures and pathologies. However, most of these algorithms are highly task-specific and exhibit limited generalizability, often performing suboptimally when applied to the segmentation of out-of-domain ROIs. This lack of generalizability has been a persistent issue that poses significant challenges to researchers in the field.

Segment Anything (SAM) (Kirillov et al., 2023) is a foundation model trained on the SA-1B dataset to overcome task-specific limitations of traditional segmentation models in natural images. By leveraging user-provided prompts, such as bounding boxes or points, SAM enables flexible segmentation across diverse tasks, constituting a major advancement in image segmentation techniques. However, medical imaging presents unique challenges, including large image sizes, small and sparse regions of interest, and object classes that are distinguishable only by subtle differences (Xu et al., 2024), resulting in weaker performance than natural images. MedSAM (Ma et al., 2024a) addresses these limitations by fine-tuning SAM on over one million medical image-mask pairs, enhancing segmentation performance across various medical imaging modalities and tasks.

Medical images, especially radiological scans such as Magnetic Resonance (MR) and Computed Tomography (CT), are not a single image but volumetric data composed of multiple 2D slices viewed in axial, coronal, and sagittal planes. Although these slices can be visualized individually as 2D images, segmentation using MedSAM requires input prompts for each slice, since the ROI varies in shape and location across different images. This process becomes impractical, as manually creating bounding boxes or points for each 2D slice is time-consuming and tedious. However, using text prompts instead of conventional prompts can significantly reduce the effort required for segmentation. Text-based prompts allow for automatic segmentation across multiple slices, while images with suboptimal masks can still be manually refined using bounding boxes or points. In addition, text prompts can simultaneously segment multiple ROIs from the same or multiple scans, providing a more scalable solution. Leveraging natural language as a primary mode of interaction, our approach moves beyond purely visual prompting, laying the groundwork for a new generation of flexible and efficient medical image segmentation models.

MedSAM is a large transformer model, and while it provides exceptional segmentation performance, its high computational requirements pose a challenge for experiments in resource-constrained environments. To address this, the developers of MedSAM introduced LiteMedSAM, a lightweight version trained using knowledge distillation (Hinton et al., 2015) with performance comparable to the original model. LiteMedSAM uses a Tiny ViT (Dosovitskiy et al., 2021) as its image encoder, significantly reducing computational overhead.

To move beyond conventional bounding box prompts, we develop LangMedSAM, a model that builds upon LiteMedSAM and incorporates natural language prompts for medical image segmentation. This design not only preserves compatibility with traditional inputs but also unlocks scalable, text-driven segmentation, demonstrating superior flexibility and generalizability across modalities and datasets. Our main contributions are threefold:

- 1. We introduce LangMedSAM, a new model for medical image segmentation that leverages natural language prompts to directly specify regions of interest, offering a scalable alternative to conventional bounding box–based prompting.
- 2. Through comparative analysis, we show that LangMedSAM consistently outperforms existing models, even when tested with language prompts of varying phrase lengths, highlighting its robustness to prompt formulation.
- 3. We study the impact of different text encoders: SAPBERT (Liu et al., 2021), PubMedBERT (Gu et al., 2021), BERT (Devlin et al., 2019) on segmentation performance, and as part of our ablation analysis, we further evaluate LangMedSAM with a contrastive loss mechanism to align image and language embeddings.

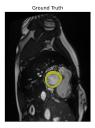
2 RELATED WORK

Medical image segmentation has long been a focal area of research, attracting significant attention from the scientific community. Numerous models such as nnU-Net (Isensee et al., 2018), SAM-Med2D (Cheng et al., 2023), and MedSAM (Ma et al., 2024a) have been proposed to generate segmentation masks for ROIs. Among these, MedSAM stands out as a versatile and promptable foundational segmentation model. MedSAM fine-tunes Meta's Segment Anything Model (SAM) (Kirillov et al., 2023) on medical image datasets, achieving state-of-the-art results. Furthermore, these foundational models have been integrated with open-source DICOM viewers to enhance accessibility and facilitate a wider adoption in medical imaging applications (Yildiz et al., 2024a;b; Ma et al., 2024b). However, it relies exclusively on bounding boxes and point-based prompts, making manual annotation across multiple images a tedious task. This highlights the need to incorporate text-based prompting into segmentation models to improve efficiency and scalability.

Recent research has explored the use of text-based prompts for object detection and segmentation in both natural and medical images. Grounding DINO (Liu et al., 2024) detects objects in natural images by combining localization losses such as L1 and GIoU (Rezatofighi et al., 2019) with a contrastive loss that aligns predicted objects with language embeddings. While effective in natural image domains, its generalization to medical images is limited due to differences in texture, scale, and complexity. To address this gap, SimTxtSeg (Xie et al., 2024) adapts textual cues for medical images by generating pseudo-bounding boxes with a text-to-visual converter, refining them with

SAM, and training a hybrid text-vision attention decoder, achieving promising results in polyp and brain tumor segmentation. Complementary to these approaches, CRIS (CLIP-Driven Referring Image Segmentation) (Wang et al., 2022) leverages contrastive learning to align textual features with pixel-level representations, enabling segmentation based on natural language queries; however, its applicability to medical images remains unexplored, motivating our ablation study to assess its effectiveness in this domain. More recently, MedCLIP-SAM (Koleilat et al., 2024) introduces another design pathway by deriving bounding boxes from saliency maps refined with a Conditional Random Field (Kraehenbuehl & Koltun, 2013), which are then used as prompts for MedSAM to perform segmentation.

However, approaches that rely on text prompts to generate bounding boxes face notable limitations when used for segmentation. Bounding boxes often cover overly large regions, especially when the regions of interest (ROIs) are spatially separated, leading to the inclusion of unintended areas. They also struggle to capture fine anatomical details, such as thin-walled structures like the myocardium (see Figure 1). Point-based prompts provide more localized guidance, but they require precise placement of both positive and negative points—a process that is labor intensive and time-consuming, ultimately reducing annotation efficiency.



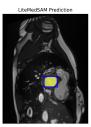


Figure 1: Example of imprecise segmentation using bounding box prompting: the bounding box provided for the myocardium leads to segmentation of the entire heart region, highlighting the limitations of spatial prompts in isolating fine-grained anatomical structures.

Another recent advancement is BiomedParse (Zhao et al., 2024), a segmentation model developed by Microsoft that supports text-based prompts. Trained on over three million image-mask-text triplets, BiomedParse leverages GPT-4 to align unstructured textual information with established biomedical object ontologies. However, BiomedParse is limited to textual inputs, and architecturally lacks support for visual prompts such as bounding boxes or point-based annotations. Additionally, BiomedParse is computationally expensive, requiring 16 GB of VRAM during inference, which limits its usability across different platforms and its integration with open-source DICOM viewers. In contrast, we introduce LangMedSAM, a lightweight segmentation model that supports both natural language and visual prompts, providing flexible interaction modes for medical image analysis. Its efficiency allows seamless deployment on widely available hardware and straightforward integration into existing medical software and DICOM viewers, offering a more practical alternative to large-scale models such as BiomedParse.

3 METHODOLOGY

Current SAM-based methods in the medical domain rely on bounding boxes or point-based prompts, both of which limit scalability due to annotation effort and precision requirements. To overcome these limitations, we extend LiteMedSAM into a text-driven framework—LangMedSAM—that unifies language and vision, enabling segmentation directly from textual descriptions. The model consists of three key components: an image encoder, a prompt encoder, and a mask decoder.

The image encoder E_{img} processes an input image $I^{H \times W \times C}$ to produce a corresponding image embeddings $I_{emb} \in \mathbb{R}^{H/4 \times W/4 \times D}$:

$$I_{emb} = E_{imq}(I^{H \times W \times C}) \tag{1}$$

Here H, W and C are the height, width and number of channels of the input image I, respectively. D refers to the output dimension of the image encoder. We introduce a multimodal prompt encoder

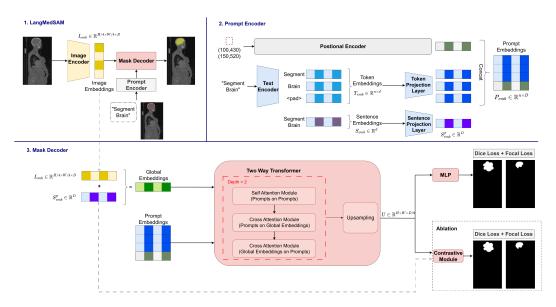


Figure 2: Overview of LangMedSAM - Block 1 presents the overall architecture of LangMedSAM. Block 2 details the incorporation of text prompts within the prompt encoder. Block 3 illustrates the mask decoder for text-guided segmentation

that extends LiteMedSAM beyond spatial inputs, incorporating text embeddings from pre-trained text encoders such as BERT, PubMedBERT, or SAPBERT. Unlike prior SAM-based methods restricted to bounding boxes or points, this architecture enables segmentation to be guided directly by natural language prompts (P_{text}) . The text encoder (E_{text}) produces a global sentence-level representation ($S_{emb} \in \mathbb{R}^d$), which captures the overall semantics of the prompt and serves as a high-level guidance signal for segmentation. Beyond this global embedding, E_{text} also generates token-level embeddings that preserve the granularity of individual words. By incorporating both sentence- and token-level information, LangMedSAM can attend not only to the overall intent of a prompt but also to fine-grained cues such as explicit class names or anatomical terms. This dual-level design enables robust segmentation even when prompts are long (50 words or longer), as the model can still reliably identify and localize the relevant structures if the target class appears anywhere within the description. To accommodate prompts of varying lengths, we adopt the standard padding mechanism used in transformer-based encoders (e.g., BERT). This ensures that token-level embeddings are produced in a consistent format across the batch. For a sentence with n tokens (including padding), the token embeddings are denoted as $T_{emb} \in \mathbb{R}^{n \times d}$ where d is again the output dimension of text encoder. Thus, the encoding process can be summarized as:

$$S_{emb}, T_{emb} = E_{text}(P_{text}) \tag{2}$$

To ensure compatibility with the image encoder and mask decoder, the sentence and token embeddings are each passed through dedicated linear projection layers, referred to as the sentence projection and token projection layers, respectively. These are followed by a GELU activation to introduce non-linearity and preserve expressive capacity:

$$S_{emb}^{p} = \phi_{GELU}(MLP_{proj}^{sent}(S_{emb}))$$

$$T_{emb}^{p} = \phi_{GELU}(MLP_{proj}^{tok}(T_{emb}))$$
(3)

$$T_{emb}^{p} = \phi_{GELU}(MLP_{proj}^{tok}(T_{emb})) \tag{4}$$

Here, MLP denotes a multilayer perceptron, ϕ_{GELU} denotes the GELU activation function, $S^p_{emb} \in$ \mathbb{R}^D and $T^p_{emb} \in \mathbb{R}^{n \times D}$ are projected sentence and token embeddings, respectively. D represents the hidden dimensionality used by the transformer layers in the mask decoder, which matches that of the image encoder. The transformed token embeddings are concatenated with any additional prompts (such as bounding boxes), if provided, to form prompt embeddings:

$$P_{emb} = Concat(T_{emb}^{p}, PositionalEnc(Box, Points))$$
(5)

Here, $P_{emb} \in \mathbb{R}^{n \times D}$ denotes the prompt embeddings. Our experiments are exclusively designed to evaluate the effectiveness of text-based prompting; therefore, no other prompt types are employed.

Consequently, the number of tokens produced by the text encoder directly corresponds to the number of tokens in the prompt embedding.

Finally, the image, sentence, and prompt embeddings are jointly processed by the mask decoder, which has been adapted to fuse both visual and textual cues. While the underlying design draws inspiration from LiteMedSAM, our modifications extend its capabilities to language-driven representations, enabling flexible multimodal segmentation. Similar to other text-based segmentation and detection models (Xie et al., 2024; Liu et al., 2024), our mask decoder builds on a two-way transformer architecture with multi-head attention mechanisms, including both self-attention and cross-attention. Unlike prior works, we extend this design by incorporating explicit attention masking (Vaswani et al., 2023), which not only handles padded tokens but also allows selective control over information flow between text and visual features. This modification is particularly important in our setting, as prompts may consist of long natural language descriptions, and masking ensures that irrelevant or padded tokens do not interfere with the fine-grained alignment of language and image features. As a result, the decoder also receives self and cross attention masks M_S & M_C where $M_{C/S}^{ij} \in \{0, -\infty\}$. The $-\infty$ value masks the embedding of i^{th} token from attending to the embedding of j^{th} token in the prompt, to ensure that padding tokens do not influence the attention computations.

The two-way transformer itself comprises three key modules: the first module performs masked multi-head self-attention (MHSA) among various types of prompts and tokens, enabling the model to capture inter-dependencies between them:

$$P_{emb}^{1} = P_{emb} + LayerNorm(MHSA(Q = K = V = P_{emb}, M_S))$$

$$\tag{6}$$

The second module conducts multi-head cross-attention (MHCA) between the computed prompt embeddings and the image embeddings, which are augmented with sentence embeddings to form global embeddings, allowing the model to learn how prompts and tokens attend to visual and textual features:

$$P_{emb}^{2} = LayerNorm(P_{emb}^{1} + MHCA(Q = P_{emb}^{1}, K = I_{emb} + S_{emb}^{p}, V = I_{emb}, M_{C}))$$
 (7)

Conversely, the third module applies multi-head cross-attention in the opposite direction—from the combined image and sentence embeddings to the prompts—enabling the model to understand how image and textual information influence the prompts:

$$I_{emb}^{1} = LayerNorm(I_{emb} + MHCA(Q = I_{emb} + S_{emb}^{p}, K = P_{emb}^{2}, V = P_{emb}^{2}, M_{C})$$
 (8)

Here, $I^1_{emb} \in \mathbb{R}^{H/4 \times W/4 \times D}$. While the mask decoder can be stacked with multiple two-way transformer blocks, we adopt the two-block configuration from LiteMedSAM, which provides a strong balance between segmentation accuracy and computational efficiency. These transformer blocks fuse visual and textual features into enriched image embeddings that capture both spatial structure and semantic context. The fused embeddings are then passed through a lightweight upsampling module, where transposed convolution layers progressively restore spatial resolution and reduce channel dimensionality:

$$U = Upscale(I_{emb}^1) \tag{9}$$

where, $U \in \mathbb{R}^{H \times W \times D/8}$. Finally, a multi-layer perceptron (MLP) is applied to the upsampled embeddings to adjust the channel dimensions and generate the binary segmentation mask.

As an additional experiment, we explore a text-to-pixel contrastive learning strategy, inspired by CRIS (Wang et al., 2022), to examine whether explicit alignment between text embeddings and pixel-level predictions can further improve segmentation. To this end, we introduce a contrastive module (Figure 2) that projects the sentence embedding into the image embedding space and learns weights and biases to guide alignment:

$$W_t = MLP(S_{emb}^p) \quad ; \quad B_t = MLP(S_{emb}^p) \tag{10}$$

Here, $(W_t \in \mathbb{R}^{D/8 \times 3 \times 3})$ and $B_t \in \mathbb{R}$ are weights and biases respectively. In essence, this process transforms the sentence embeddings into a 3×3 convolutional kernel, which is then applied across the upscaled feature map to produce a final segmentation mask.

$$Mask = (U \circledast W_t) + B_t \tag{11}$$

where ® denotes the convolution operation. This effectively allows for the sentence embeddings to interact with each pixel in the upscaled embedding. Instead of the binary cross-entropy (BCE) loss originally used in CRIS (Wang et al., 2022), we adopt focal loss (Lin et al., 2020), which has demonstrated success in segmentation tasks, while still serving the objective of aligning textual and visual representations. For both contrastive and non-contrastive models, focal loss is combined with dice loss to more effectively guide the training process.

4 DATASET AND EXPERIMENTS

To train LangMedSAM, we utilize 20 publicly available radiological datasets (mentioned in Table 1) encompassing two imaging modalities: magnetic resonance (MR) and computed tomography (CT). From each dataset, we extract representative 2D slices to construct the training set, ensuring coverage of diverse anatomical regions and pathologies. CT images have intensity values ranging from -2000 to 2000, while MR images range from 0 to 3000. To standardize intensity values, CT images are normalized using typical window width and level settings. Most CT datasets use a window width of 400 and a level of 40. However, specific anatomies and pathologies require tailored contrast settings. For example, the HaN-Seg (Podobnik et al., 2024) dataset, focused on head and neck regions, uses a window width of 1500 and a level of -500. Datasets targeting lung abnormalities, such as MSD-LungTumor (Antonelli et al., 2022) and COVID-19-CT-Seg (Ma et al., 2021), apply a width of 1500 and a level of -600. For hepatic vessel segmentation in the MSD-Hepatic dataset (Antonelli et al., 2022), the window width and level are set to 300 and 120, respectively. For MR images, intensity values are clipped between the 0.5th and 99.5th percentiles. Both CT and MR images are then rescaled to the [0,255] range. To satisfy the dimensionality requirement of the image encoder, all images were resized to a fixed dimension of $256 \times 256 \times 3$. As CT and MR images typically contain only one channel, we duplicate the single channel three times to match the required input format.

Table 1: List of datasets used for model training. Datasets marked with * were used exclusively as part of the external test set

TotalSegmentator (Wasserthal et al., 2023)
CHAOS (Kavur et al., 2021)
MSD-Prostate (Antonelli et al., 2022)
PROMISE (Litjens et al., 2014)
AMOS (Ji et al., 2022)
MSD-Lung (Antonelli et al., 2022)
MSD-Hepatic Vessel (Antonelli et al., 2022)
ATLAS Bourgogne (Quinton et al., 2023)
CrossMoDA (Dorent et al., 2023)
EMIDEC (Lalande et al., 2020)
M&Ms* (Campello et al., 2021)
SegTHOR* (Lambert et al., 2019)
ACDC (MSD-Hearth MSD-Pancre MSD-Color Covid-19-CT)
Covid-19-CT
MRBrains
MRBrains
BTCV*

ACDC (Bernard et al., 2018)
MSD-Heart (Antonelli et al., 2022)
HaN-Seg (Podobnik et al., 2024)
QUBIQ (Becker et al., 2019)
MSD-Brain (Antonelli et al., 2022)
MSD-Pancreas (Antonelli et al., 2022)
MSD-Colon (Antonelli et al., 2022)
Covid-19-CT Seg (Cohen et al., 2020)
KiTS23 (Heller et al., 2023)
MRBrainS18 (Kuijf et al., 2024)
BTCV* (Gibson et al., 2018)
WORD* (Luo et al., 2022)

To ensure effective training, we exclude images with very small masks (fewer than 100 pixels) and those containing multiple disjoint masks for the same structure. For text prompts, we use a diverse set of phrasings, such as "Extract the {class name} from the image", "Highlight and extract {class name} from the scan" and "Separate {class name} from surrounding structures" among others (see Appendix Table 6). These prompts are processed through the text encoder, which tokenizes them and computes the corresponding text embeddings. The maximum length of each text prompt is limited to 256 tokens. Our training dataset contains 180 unique classes (see Appendix Table 5). In total, 1 million image-text-mask triplets are selected, with 750,000 used for training and 250,000 for validation. The model is trained on a single H200 GPU of 144 GB memory, till convergence using the AdamW optimizer ($\beta_1 = 0.9$ and $\beta_2 = 0.999$), with an initial learning rate of 1e-4 and a weight decay of 0.01. The batch size is set to 32. We train the entire pipeline while keeping the pre-trained text encoder frozen. During inference, LangMedSAM requires only 700 MB of VRAM to segment the ROI. Further information about the inference speed of different models is mentioned in Appendix Table 8.

We evaluate LangMedSAM against state-of-the-art segmentation models, including MedSAM and its lighter variant LiteMedSAM. Unlike prior works that rely on text-to-box generation or pseudo-

mask supervision, we exclude such approaches from our main comparison. Because MedSAM is explicitly trained on bounding boxes, it naturally serves as an upper bound for evaluation metrics and thus provides a more meaningful benchmark than methods that derive bounding boxes indirectly from text. To ensure consistency and rigor, we construct two large-scale evaluation sets: (i) an internal set with 200,000 unseen 2D scans from training datasets and (ii) an external set with 20,000 unseen 2D scans from the external datasets, where all models are assessed under identical conditions.

Beyond bounding-box-based models, we further compare LangMedSAM with BiomedParse, a segmentation model that directly leverages text prompts. For this comparison, we assemble a benchmark of 15,000 2D slices drawn from diverse datasets (ACDC, AMOS, MSD-Brain, and KiTS23), covering a wide spectrum of anatomies and pathologies including myocardium, liver, aorta, brain tumors, and kidney tumors. Both LangMedSAM and BiomedParse are evaluated with identical prompts of varying lengths, where 1–3 word prompts correspond to class names, and longer prompts include five sentence variants per class to assess consistency across phrasing styles. For evaluation, we report the mean dice similarity coefficient (DSC) and normalized surface dice (NSD) to assess pixel-wise overlap and boundary alignment between predicted and ground truth masks. Additional details on the datasets has been provided in the Appendix material (see Appendix Table 4).

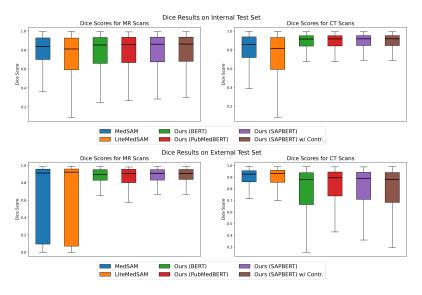


Figure 3: Dice Score Comparison on Internal and External Test Sets: Each plot presents the Dice scores achieved by different models across different datasets. The left subplot shows performance on MR scans, while the right subplot shows performance on CT scans. Results are reported separately for the internal test set (top plot)which was held-out from training datasets, and the external test set (bottom plot), comprising entirely unseen datasets. In each plot, the center line within each box indicates the median, while the lower and upper edges of the box represent the 25th and 75th percentiles, respectively. "w/ Contr." refers to model trained with text-to-pixel contrastive learning, respectively.

Table 2: Performance comparison of LangMedSAM and baselines in terms of Dice similarity coefficient (DSC) and normalized surface dice (NSD, 2 mm tolerance) on internal and external test sets for MR and CT modalities.

	Internal Dataset				External Dataset			
Models	MR		CT		MR		CT	
	DSC	NSD	DSC	NSD	DSC	NSD	DSC	NSD
MedSAM	0.77	0.58	0.79	0.61	0.63	0.76	0.88	0.68
LiteMedSAM	0.71	0.55	0.71	0.55	0.63	0.77	0.86	0.70
Ours (BERT)	0.73	0.57	0.85	0.74	0.86	0.82	0.74	0.56
Ours (PubMedBERT)	0.74	0.58	0.85	0.74	0.86	0.82	0.77	0.59
Ours (SAPBERT)	0.74	0.59	0.85	0.75	0.86	0.82	0.77	0.59
Ours (SAPBERT) w/ Contr.	0.75	0.59	0.85	0.75	0.86	0.83	0.75	0.57

Table 3: Dice similarity coefficients for LangMedSAM and BiomedParse evaluated with equivalent text prompts of different lengths.

	Word count in text prompts							
Model	1~3		$10 \sim 12$		$25 \sim 30$		$50 \sim 60$	
	MR	CT	MR	CT	MR	CT	MR	CT
Ours(SAPBERT)	0.72	0.88	0.72	0.88	0.72	0.88	0.71	0.87
Ours (PubMedBERT)	0.72	0.88	0.72	0.88	0.72	0.88	0.69	0.82
Ours (BERT)	0.72	0.88	0.72	0.88	0.72	0.88	0.71	0.87
BiomedParse	0.52	0.81	0.51	0.67	0.48	0.35	0.47	0.33

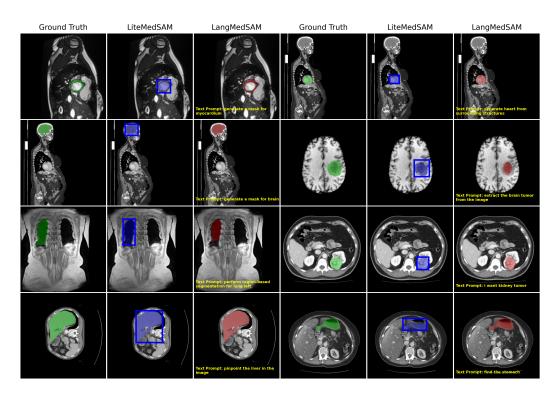


Figure 4: Qualitative comparison of segmentation results. Each row displays a set of samples arranged in a grid of 6 columns. Columns 1 and 4 show the original images with ground truth masks overlaid. Columns 2 and 5 present the segmentation outputs from LiteMedSAM, where bounding box prompts are provided. Columns 3 and 6 illustrate the results from LangMedSAM (SAPBERT) using natural language prompts, with relevant text highlighted. The first three rows correspond to examples from the internal test set, while the final row showcases samples from the external test set.

5 RESULTS AND ANALYSIS

We evaluated different versions of LangMedSAM incorporating textual prompts and compared them with the baseline MedSAM and LiteMedSAM models, both of which rely on visual prompts—specifically, oracle bounding boxes derived directly from segmentation masks. Figure 3 (top plot) provides a visual comparison of model performance across MR and CT modalities on the internal test set. As expected, LiteMedSAM demonstrates lower performance compared to its larger counterpart, MedSAM, reflecting the performance trade-offs inherent in knowledge distillation. In contrast, all LangMedSAM variants perform competitively on MR scans, achieving mean dice scores between 0.73 and 0.75. The performance of different models on internal test set are also tabulated in Table 2. It shows that each language-prompted model outperforms the visually prompted LiteMedSAM, which averages at a dice score of 0.71. The normalized surface dice (NSD) at a 2mm tolerance is also consistent across language-prompted models and slightly exceeds that of LiteMedSAM. On CT scans, the advantage of language prompts becomes even more pronounced.

LangMedSAM variants achieve a dice score of 0.85 compared to 0.71 from LiteMedSAM—a relative improvement of approximately 20%. This trend is mirrored in NSD values as well.

The true robustness of language-prompted segmentation models is tested on external datasets. As shown in Table 1, these include M&Ms, BTCV, SegTHOR, and WORD, of which only M&Ms offers MR scans. Model performance on the external test set is presented in Figure 3, with additional metrics provided in Table 2. The M&Ms dataset presents additional challenges due to its irregularly shaped myocardium structures (illustrated in Figure 1), leading to a broader dice score distribution for MedSAM and LiteMedSAM on MR images, as seen in Figure 3 (bottom plot). In contrast, LangMedSAM performs better by effectively learning the myocardium appearance from training data. The CT scans in the external test set span a diverse range of thoracic and abdominal organs, posing generalization challenges. Consequently, language-prompted models show a drop in performance relative to visual models. For instance, LiteMedSAM achieves a Dice score of 0.86, compared to 0.77 for LangMedSAM (SAPBERT). This discrepancy may stem from the inherent strengths of visual prompts, which offer direct spatial cues, whereas textual prompts require models to infer spatial regions from language hindering precise localization. This difficulty is also reflected through reduced NSD scores for language-guided models on external CT scans compared to their visually prompted counterparts. Although visual prompts retain an advantage in certain settings, the consistently strong Dice scores achieved by LangMedSAM demonstrate that language-driven prompting can provide a powerful and scalable pathway toward generalized medical image segmentation.

We further investigated the impact of different text encoders, experimenting with general-purpose BERT and its medically specialized variants, SAPBERT and PubMedBERT. Our results suggest that both medical-domain models offer slight advantages over standard BERT, particularly evident in CT scans from the external test set (Table 2), where they achieve marginally higher dice and NSD scores. Moreover, models using BERT tend to exhibit broader dice score distribution (as seen in Figure 3, bottom-right plot for CT), indicating less consistent performance compared to their domain-adapted counterparts. We also compared contrastive and non-contrastive training paradigms. As illustrated visually in Figure 3 and quantitatively in Table 2, contrastive learning did not yield noticeable improvements. We hypothesize that the multi-head self- and cross-attention mechanisms used to fuse text and image features are already sufficiently powerful for effective segmentation, making additional contrastive alignment redundant in this setting.

Finally, we also evaluated LangMedSAM against BiomedParse by providing both models with comparable text prompts of varying lengths. As shown in Table 3, LangMedSAM maintains consistently high segmentation performance across different prompt styles and complexities, demonstrating strong robustness to input variation. In contrast, BiomedParse exhibits a marked decline in CT segmentation accuracy as prompt length increases. We attribute LangMedSAM's stability to its dual use of token-level and global sentence embeddings, which together capture both fine-grained details and broader contextual cues—enabling reliable mask generation even with long or complex textual descriptions.

6 Conclusion

We introduced LangMedSAM, a lightweight text-driven segmentation model that extends beyond visual prompts to directly leverage natural language in medical image segmentation. Our experiments demonstrate that text prompts can achieve competitive accuracy while offering clear benefits in scalability and usability. By enabling entire scans to be segmented from text prompts—without manual slice-level annotations—LangMedSAM improves efficiency and also supports data annotation. Moreover, its speed and lightweight design allow seamless integration with DICOM viewers and clinical software, reducing barriers to deployment. By uniting linguistic reasoning with visual understanding, this work highlights the potential of language-driven interaction as a foundation for more flexible medical AI systems. Looking ahead, we aim to extend LangMedSAM within MedSAM-2 (Ma et al., 2024b), enabling seamless multi-modal prompting with text, bounding boxes, and points for improved segmentation of complex 3D volumetric scans. Together, these contributions open a promising path toward medical foundation models that combine efficiency, flexibility, and clinical usability. We will release the code for LangMedSAM after reviews to support further research and reproducibility.

REFERENCES

Michela Antonelli, Annika Reinke, Spyridon Bakas, Keyvan Farahani, Annette Kopp-Schneider, Bennett A. Landman, Geert Litjens, Bjoern Menze, Olaf Ronneberger, Ronald M. Summers, Bram van Ginneken, Michel Bilello, Patrick Bilic, Patrick F. Christ, Richard K. G. Do, Marc J. Gollub, Stephan H. Heckers, Henkjan Huisman, William R. Jarnagin, Maureen K. McHugo, Sandy Napel, Jennifer S. Golia Pernicka, Kawal Rhode, Catalina Tobon-Gomez, Eugene Vorontsov, James A. Meakin, Sebastien Ourselin, Manuel Wiesenfarth, Pablo Arbeláez, Byeonguk Bae, Sihong Chen, Laura Daza, Jianjiang Feng, Baochun He, Fabian Isensee, Yuanfeng Ji, Fucang Jia, Ildoo Kim, Klaus Maier-Hein, Dorit Merhof, Akshay Pai, Beomhee Park, Mathias Perslev, Ramin Rezaiifar, Oliver Rippel, Ignacio Sarasua, Wei Shen, Jaemin Son, Christian Wachinger, Liansheng Wang, Yan Wang, Yingda Xia, Daguang Xu, Zhanwei Xu, Yefeng Zheng, Amber L. Simpson, Lena Maier-Hein, and M. Jorge Cardoso. The medical segmentation decathlon. *Nature Communications*, 13(1), July 2022. ISSN 2041-1723. doi: 10.1038/s41467-022-30695-9. URL http://dx.doi.org/10.1038/s41467-022-30695-9.

- Anton S. Becker, Krishna Chaitanya, Khoschy Schawkat, Urs J. Muehlematter, Andreas M. Hötker, Ender Konukoglu, and Olivio F. Donati. Variability of manual segmentation of the prostate in axial t2-weighted mri: A multi-reader study. *European Journal of Radiology*, 121:108716, 2019. ISSN 0720-048X. doi: https://doi.org/10.1016/j.ejrad.2019.108716. URL https://www.sciencedirect.com/science/article/pii/S0720048X19303663.
- Olivier Bernard, Alain Lalande, Clement Zotti, Frederick Cervenansky, Xin Yang, Pheng-Ann Heng, Irem Cetin, Karim Lekadir, Oscar Camara, Miguel Angel Gonzalez Ballester, Gerard Sanroma, Sandy Napel, Steffen Petersen, Georgios Tziritas, Elias Grinias, Mahendra Khened, Varghese Alex Kollerathu, Ganapathy Krishnamurthi, Marc-Michel Rohé, Xavier Pennec, Maxime Sermesant, Fabian Isensee, Paul Jäger, Klaus H. Maier-Hein, Peter M. Full, Ivo Wolf, Sandy Engelhardt, Christian F. Baumgartner, Lisa M. Koch, Jelmer M. Wolterink, Ivana Išgum, Yeonggul Jang, Yoonmi Hong, Jay Patravali, Shubham Jain, Olivier Humbert, and Pierre-Marc Jodoin. Deep learning techniques for automatic mri cardiac multi-structures segmentation and diagnosis: Is the problem solved? *IEEE Transactions on Medical Imaging*, 37(11):2514–2525, 2018. doi: 10.1109/TMI.2018.2837502.
- Víctor M. Campello, Polyxeni Gkontra, Cristian Izquierdo, Carlos Martín-Isla, Alireza Sojoudi, Peter M. Full, Klaus Maier-Hein, Yao Zhang, Zhiqiang He, Jun Ma, Mario Parreño, Alberto Albiol, Fanwei Kong, Shawn C. Shadden, Jorge Corral Acero, Vaanathi Sundaresan, Mina Saber, Mustafa Elattar, Hongwei Li, Bjoern Menze, Firas Khader, Christoph Haarburger, Cian M. Scannell, Mitko Veta, Adam Carscadden, Kumaradevan Punithakumar, Xiao Liu, Sotirios A. Tsaftaris, Xiaoqiong Huang, Xin Yang, Lei Li, Xiahai Zhuang, David Viladés, Martín L. Descalzo, Andrea Guala, Lucia La Mura, Matthias G. Friedrich, Ria Garg, Julie Lebel, Filipe Henriques, Mahir Karakas, Ersin Çavuş, Steffen E. Petersen, Sergio Escalera, Santi Seguí, José F. Rodríguez-Palomares, and Karim Lekadir. Multi-centre, multi-vendor and multi-disease cardiac segmentation: The m&ms challenge. *IEEE Transactions on Medical Imaging*, 40(12):3543–3554, 2021. doi: 10.1109/TMI.2021.3090082.
- Junlong Cheng, Jin Ye, Zhongying Deng, Jianpin Chen, Tianbin Li, Haoyu Wang, Yanzhou Su, Ziyan Huang, Jilong Chen, Lei Jiang, Hui Sun, Junjun He, Shaoting Zhang, Min Zhu, and Yu Qiao. Sam-med2d, 2023. URL https://arxiv.org/abs/2308.16184.
- Joseph Paul Cohen, Paul Morrison, Lan Dao, Karsten Roth, Tim Q Duong, and Marzyeh Ghassemi. Covid-19 image data collection: Prospective predictions are the future. *arXiv* 2006.11988, 2020. URL https://github.com/ieee8023/covid-chestxray-dataset.
- Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep bidirectional transformers for language understanding, 2019. URL https://arxiv.org/abs/1810.04805.
- Reuben Dorent, Aaron Kujawa, Marina Ivory, Spyridon Bakas, Nicola Rieke, Samuel Joutard, Ben Glocker, Jorge Cardoso, Marc Modat, Kayhan Batmanghelich, Arseniy Belkov, Maria Baldeon Calisto, Jae Won Choi, Benoit M. Dawant, Hexin Dong, Sergio Escalera, Yubo Fan, Lasse Hansen, Mattias P. Heinrich, Smriti Joshi, Victoriya Kashtanova, Hyeon Gyu Kim, Satoshi

Kondo, Christian N. Kruse, Susana K. Lai-Yuen, Hao Li, Han Liu, Buntheng Ly, Ipek Oguz, Hyungseob Shin, Boris Shirokikh, Zixian Su, Guotai Wang, Jianghao Wu, Yanwu Xu, Kai Yao, Li Zhang, Sébastien Ourselin, Jonathan Shapey, and Tom Vercauteren. Crossmoda 2021 challenge: Benchmark of cross-modality domain adaptation techniques for vestibular schwannoma and cochlea segmentation. *Medical Image Analysis*, 83:102628, January 2023. ISSN 1361-8415. doi: 10.1016/j.media.2022.102628. URL http://dx.doi.org/10.1016/j.media.2022.102628.

- Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale, 2021. URL https://arxiv.org/abs/2010.11929.
- Eli Gibson, Francesco Giganti, Yipeng Hu, Ester Bonmati, Steve Bandula, Kurinchi Gurusamy, Brian Davidson, Stephen P. Pereira, Matthew J. Clarkson, and Dean C. Barratt. Multi-organ abdominal ct reference standard segmentations, February 2018. URL https://doi.org/10.5281/zenodo.1169361.
- Yu Gu, Robert Tinn, Hao Cheng, Michael Lucas, Naoto Usuyama, Xiaodong Liu, Tristan Naumann, Jianfeng Gao, and Hoifung Poon. Domain-specific language model pretraining for biomedical natural language processing. *ACM Transactions on Computing for Healthcare*, 3(1):1–23, October 2021. ISSN 2637-8051. doi: 10.1145/3458754. URL http://dx.doi.org/10.1145/3458754.
- Nicholas Heller, Fabian Isensee, Dasha Trofimova, Resha Tejpaul, Zhongchen Zhao, Huai Chen, Lisheng Wang, Alex Golts, Daniel Khapun, Daniel Shats, Yoel Shoshan, Flora Gilboa-Solomon, Yasmeen George, Xi Yang, Jianpeng Zhang, Jing Zhang, Yong Xia, Mengran Wu, Zhiyang Liu, Ed Walczak, Sean McSweeney, Ranveer Vasdev, Chris Hornung, Rafat Solaiman, Jamee Schoephoerster, Bailey Abernathy, David Wu, Safa Abdulkadir, Ben Byun, Justice Spriggs, Griffin Struyk, Alexandra Austin, Ben Simpson, Michael Hagstrom, Sierra Virnig, John French, Nitin Venkatesh, Sarah Chan, Keenan Moore, Anna Jacobsen, Susan Austin, Mark Austin, Subodh Regmi, Nikolaos Papanikolopoulos, and Christopher Weight. The kits21 challenge: Automatic segmentation of kidneys, renal tumors, and renal cysts in corticomedullary-phase ct, 2023.
- Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network, 2015. URL https://arxiv.org/abs/1503.02531.
- Fabian Isensee, Jens Petersen, Andre Klein, David Zimmerer, Paul F. Jaeger, Simon Kohl, Jakob Wasserthal, Gregor Koehler, Tobias Norajitra, Sebastian Wirkert, and Klaus H. Maier-Hein. nnunet: Self-adapting framework for u-net-based medical image segmentation, 2018. URL https://arxiv.org/abs/1809.10486.
- Yuanfeng Ji, Haotian Bai, Jie Yang, Chongjian Ge, Ye Zhu, Ruimao Zhang, Zhen Li, Lingyan Zhang, Wanling Ma, Xiang Wan, and Ping Luo. Amos: A large-scale abdominal multi-organ benchmark for versatile medical image segmentation, 2022. URL https://arxiv.org/abs/2206.08023.
- A. Emre Kavur, N. Sinem Gezer, Mustafa Barış, Sinem Aslan, Pierre-Henri Conze, Vladimir Groza, Duc Duy Pham, Soumick Chatterjee, Philipp Ernst, Savaş Özkan, Bora Baydar, Dmitry Lachinov, Shuo Han, Josef Pauli, Fabian Isensee, Matthias Perkonigg, Rachana Sathish, Ronnie Rajan, Debdoot Sheet, Gurbandurdy Dovletov, Oliver Speck, Andreas Nürnberger, Klaus H. Maier-Hein, Gözde Bozdağı Akar, Gözde Ünal, Oğuz Dicle, and M. Alper Selver. Chaos challenge combined (ct-mr) healthy abdominal organ segmentation. *Medical Image Analysis*, 69:101950, April 2021. ISSN 1361-8415. doi: 10.1016/j.media.2020.101950. URL http://dx.doi.org/10.1016/j.media.2020.101950.
- Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete Xiao, Spencer Whitehead, Alexander C. Berg, Wan-Yen Lo, Piotr Dollár, and Ross Girshick. Segment anything, 2023. URL https://arxiv.org/abs/2304.02643.
- Taha Koleilat, Hojat Asgariandehkordi, Hassan Rivaz, and Yiming Xiao. MedCLIP-SAM: Bridging Text and Image Towards Universal Medical Image Segmentation. In proceedings of Medical

Image Computing and Computer Assisted Intervention – MICCAI 2024, volume LNCS 15012. Springer Nature Switzerland, October 2024.

- Philipp Kraehenbuehl and Vladlen Koltun. Parameter learning and convergent inference for dense random fields. In Sanjoy Dasgupta and David McAllester (eds.), *Proceedings of the 30th International Conference on Machine Learning*, volume 28 of *Proceedings of Machine Learning Research*, pp. 513–521, Atlanta, Georgia, USA, 17–19 Jun 2013. PMLR. URL https://proceedings.mlr.press/v28/kraehenbuehl13.html.
- Hugo J. Kuijf, Edwin Bennink, Koen L. Vincken, Nick Weaver, Geert Jan Biessels, and Max A. Viergever. MR Brain Segmentation Challenge 2018 Data, 2024. URL https://doi.org/10.34894/E0U32Q.
- Alain Lalande, Zhihao Chen, Thomas Decourselle, Abdul Qayyum, Thibaut Pommier, Luc Lorgis, Ezequiel de la Rosa, Alexandre Cochet, Yves Cottin, Dominique Ginhac, Michel Salomon, Raphaël Couturier, and Fabrice Meriaudeau. Emidec: A database usable for the automatic evaluation of myocardial infarction from delayed-enhancement cardiac mri. *Data*, 5(4), 2020. ISSN 2306-5729. doi: 10.3390/data5040089. URL https://www.mdpi.com/2306-5729/5/4/89.
- Z. Lambert, C. Petitjean, B. Dubray, and S. Ruan. Segthor: Segmentation of thoracic organs at risk in ct images, 2019. URL https://arxiv.org/abs/1912.05950.
- Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár. Focal loss for dense object detection. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 42(2):318–327, 2020. doi: 10.1109/TPAMI.2018.2858826.
- Geert Litjens, Robert Toth, Wendy van de Ven, Caroline Hoeks, Sjoerd Kerkstra, Bram van Ginneken, Graham Vincent, Gwenael Guillard, Neil Birbeck, Jindang Zhang, Robin Strand, Filip Malmberg, Yangming Ou, Christos Davatzikos, Matthias Kirschner, Florian Jung, Jing Yuan, Wu Qiu, Qinquan Gao, Philip Edwards, Bianca Maan, Ferdinand van der Heijden, Soumya Ghose, Jhimli Mitra, Jason Dowling, Dean Barratt, Henkjan Huisman, and Anant Madabhushi. Evaluation of prostate segmentation algorithms for mri: The promise12 challenge. *Medical Image Analysis*, 18(2):359–373, 2014. ISSN 1361-8415. doi: https://doi.org/10.1016/j.media. 2013.12.002. URL https://www.sciencedirect.com/science/article/pii/S1361841513001734.
- Fangyu Liu, Ehsan Shareghi, Zaiqiao Meng, Marco Basaldella, and Nigel Collier. Self-alignment pretraining for biomedical entity representations, 2021. URL https://arxiv.org/abs/2010.11784.
- Shilong Liu, Zhaoyang Zeng, Tianhe Ren, Feng Li, Hao Zhang, Jie Yang, Qing Jiang, Chunyuan Li, Jianwei Yang, Hang Su, Jun Zhu, and Lei Zhang. Grounding dino: Marrying dino with grounded pre-training for open-set object detection, 2024. URL https://arxiv.org/abs/2303.05499.
- Xiangde Luo, Wenjun Liao, Jianghong Xiao, Jieneng Chen, Tao Song, Xiaofan Zhang, Kang Li, Dimitris N. Metaxas, Guotai Wang, and Shaoting Zhang. Word: A large scale dataset, benchmark and clinical applicable study for abdominal organ segmentation from ct image. *Medical Image Analysis*, 82:102642, November 2022. ISSN 1361-8415. doi: 10.1016/j.media.2022.102642. URL http://dx.doi.org/10.1016/j.media.2022.102642.
- Jun Ma, Yixin Wang, Xingle an, Cheng Ge, Ziqi Yu, Jianan Chen, Qiongjie Zhu, Guoqiang Dong, Jian He, Zhiqiang He, Tianjia Cao, Yuntao Zhu, Ziwei Nie, and Xiaoping Yang. Toward dataefficient learning: A benchmark for covid-19 ct lung and infection segmentation. *Medical Physics*, 48, 02 2021. doi: 10.1002/mp.14676.
- Jun Ma, Yuting He, Feifei Li, Lin Han, Chenyu You, and Bo Wang. Segment anything in medical images. *Nature Communications*, 15(1), January 2024a. ISSN 2041-1723. doi: 10.1038/s41467-024-44824-z. URL http://dx.doi.org/10.1038/s41467-024-44824-z.

- Jun Ma, Sumin Kim, Feifei Li, Mohammed Baharoon, Reza Asakereh, Hongwei Lyu, and Bo Wang. Segment anything in medical images and videos: Benchmark and deployment, 2024b. URL https://arxiv.org/abs/2408.03322.
- Gašper Podobnik, Bulat Ibragimov, Elias Tappeiner, Chanwoong Lee, Jin Sung Kim, Zacharia Mesbah, Romain Modzelewski, Yihao Ma, Fan Yang, Mikołaj Rudecki, Marek Wodziński, Primož Peterlin, Primož Strojan, and Tomaž Vrtovec. Han-seg: The head and neck organ-at-risk ct and mr segmentation challenge. *Radiotherapy and Oncology*, 198:110410, 2024. ISSN 0167-8140. doi: https://doi.org/10.1016/j.radonc.2024.110410. URL https://www.sciencedirect.com/science/article/pii/S0167814024006807.
- Félix Quinton, Romain Popoff, Benoît Presles, Sarah Leclerc, Fabrice Meriaudeau, Guillaume Nodari, Olivier Lopez, Julie Pellegrinelli, Olivier Chevallier, Dominique Ginhac, Jean-Marc Vrigneaud, and Jean-Louis Alberini. A tumour and liver automatic segmentation (atlas) dataset on contrast-enhanced magnetic resonance imaging for hepatocellular carcinoma. *Data*, 8(5), 2023. ISSN 2306-5729. doi: 10.3390/data8050079. URL https://www.mdpi.com/2306-5729/8/5/79.
- Hamid Rezatofighi, Nathan Tsoi, Jun Young Gwak, Amir Sadeghian, Ian Reid, and Silvio Savarese. Generalized intersection over union: A metric and a loss for bounding box regression, 2019. URL https://arxiv.org/abs/1902.09630.
- Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need, 2023. URL https://arxiv.org/abs/1706.03762.
- Zhaoqing Wang, Yu Lu, Qiang Li, Xunqiang Tao, Yandong Guo, Mingming Gong, and Tongliang Liu. Cris: Clip-driven referring image segmentation, 2022. URL https://arxiv.org/abs/2111.15174.
- Jakob Wasserthal, Hanns-Christian Breit, Manfred T. Meyer, Maurice Pradella, Daniel Hinck, Alexander W. Sauter, Tobias Heye, Daniel T. Boll, Joshy Cyriac, Shan Yang, Michael Bach, and Martin Segeroth. Totalsegmentator: Robust segmentation of 104 anatomic structures in ct images. *Radiology: Artificial Intelligence*, 5(5), September 2023. ISSN 2638-6100. doi: 10.1148/ryai.230024. URL http://dx.doi.org/10.1148/ryai.230024.
- Yuxin Xie, Tao Zhou, Yi Zhou, and Geng Chen. Simtxtseg: Weakly-supervised medical image segmentation with simple text cues, 2024. URL https://arxiv.org/abs/2406.19364.
- Yanqi Xu, Yiqiu Shen, Carlos Fernandez-Granda, Laura Heacock, and Krzysztof J. Geras. Understanding differences in applying detr to natural and medical images, 2024. URL https://arxiv.org/abs/2405.17677.
- Zafer Yildiz, Yuwen Chen, and Maciej A Mazurowski. Sam & sam 2 in 3d slicer: Segmentwithsam extension for annotating medical images. *arXiv*, 2024a.
- Zafer Yildiz, Hanxue Gu, Jikai Zhang, Jichen Yang, and Maciej A Mazurowski. Segmentwithsam: 3d slicer extension for segment anything model (sam). In *MIDL*, 2024b.
- Theodore Zhao, Yu Gu, Jianwei Yang, Naoto Usuyama, Ho Hin Lee, Sid Kiblawi, Tristan Naumann, Jianfeng Gao, Angela Crabtree, Jacob Abel, Christine Moung-Wen, Brian Piening, Carlo Bifulco, Mu Wei, Hoifung Poon, and Sheng Wang. A foundation model for joint segmentation, detection and recognition of biomedical objects across nine modalities. *Nature Methods*, 22(1):166–176, November 2024. ISSN 1548-7105. doi: 10.1038/s41592-024-02499-w. URL http://dx.doi.org/10.1038/s41592-024-02499-w.

A APPENDIX

In the following appendix, we present supplementary material to support our main findings. This includes a brief note on LLM usage during manuscript preparation, dataset details and accessibility, definitions of evaluation metrics, and additional experimental results.

A.1 LLM USAGE

In preparing this manuscript, we used publicly available large language models (ChatGPT, DeepSeek) as general-purpose writing assistants. Their role was limited to refining grammar, improving readability, and rephrasing text for clarity. No part of the research design, data analysis, experiments, or results relied on LLMs.

A.2 DATASET DETAILS AND ACCESSIBILITY

LangMedSAM was trained on 20 publicly available medical datasets and evaluated on 4 additional external datasets to assess its generalizability. A comprehensive list of these datasets is provided in Appendix Table 4. Together, they span a broad spectrum of anatomical structures and pathological conditions. In total, the dataset encompasses 180 unique classes, detailed in Appendix Table 5.

Table 4: Overview of the datasets used for training and evaluation. Each entry includes the imaging modality, number of scans, target segmentation regions, and a link to the corresponding dataset website. Datasets marked with * were used exclusively for testing.

Dataset	Modality (No. of Scans)	Target Segmentation (Modality)	Link
TotalSegmentator	CT (1228), MR (616)	117 different classes (CT), 50 different classes (MR)	TotalSegmentator
ACDC	MR (150)	Left Ventricle Cavity, Right Ventricle Cavity, Myocardium	ACDC
CHAOS	CT (30), MR (40)	Liver (CT, MR), Kidneys (MR), Spleen (MR)	CHAOS
HaN-Seg	CT (42)	Head and Neck Organs	HaN-Seg
PROMISE	MR (50)	Prostate	PROMISE
QUBIQ	CT (30), MR (50)	Pancreas (CT), Pancreatic Lesion (CT), Brain tumor (MR), Prostate(MR)	QUBIQ
AMOS	CT (500), MR (100)	15 Abdominal Organs	AMOS
ATLAS Bourgogne	MR (60)	Liver, Liver Tumor	Atlas Bourgogne
Covid-19-CT Seg	CT (20)	Covid Infection	Covid-19
CrossMoDA	MR (105)	Vestibular Schwannoma Tumor	CrossMoDA
KiTS23	CT (489)	Kidneys, Kidney Tumor	KITS23
EMIDEC	MR (100)	Myocardium, Infarcted Myocardium, No-Reflow Area	EMIDEC
MRBrainS18	MR (30)	Brain regions	MRBrainS18
MSD-Heart	MR (20)	Heart	MSD
MSD-Prostate	MR (48)	Prostate	MSD
MSD-Brain	MR (484)	Brain Tumor	MSD
MSD-Lung	CT (96)	Lung Tumor	MSD
MSD-Pancreas	CT (282)	Pancreas, Pancreatic Tumor	MSD
MSD-Hepatic Vessel	CT (303)	Hepatic Vessels, Hepatic Tumor	MSD
MSD-Colon	CT (126)	Colon Cancer	MSD
M&Ms*	MR (25)	Left Ventricle, Right Ventricle, Myocardium	M&M
BTCV*	CT (30)	14 Abdominal organs	BTCV
SegTHOR*	CT (40)	Heart, Aorta	SegThor
WORD*	CT (20)	15 Abdominal Organs	WORD

Table 6 outlines the diverse set of text prompts used during LangMedSAM training. Owing to this variety, the model learned to focus on key class names within prompts. As a result, it can effectively extract the target regions even when presented with novel phrasings—such as "I want {text}"—that were not explicitly seen during training. Additionally, Appendix Table 7 presents the number of samples included in the training, validation, test, and external test sets for each modality, MR and CT, respectively. Further, Appendix Table 8 provides comparison between the speeds of all the models that are compared. The results show that while LangMedSAM (SAPBERT) is slightly heavier than LiteMedSAM, it is still much faster and lighter than BiomedParse. Although we could not precisely compute GFLOPS for BiomedParse due to its modular architecture, its significantly higher inference time and more complex computation graph strongly suggest a substantially higher computational cost compared to both LiteMedSAM and LangMedSAM.

A.3 EVALUATION METRICS

To evaluate and compare the performance of the proposed LangMedSAM with models like LiteMedSAM, MedSAM and BiomedParse, we use two metrics: Dice Similarity Coefficient (DSC), Normalized Surface Dice (NSD).

758

788 789

790

791

792

793

794

796 797 798

799

808

809

Table 5: List of 180 anatomical and pathological classes used for medical image segmentation. These classes span multiple organ systems and include both healthy structures and disease-related entities, covering a diverse range of anatomical regions for comprehensive segmentation tasks.

myocardium	left ventricle cavity	right ventricle cavity	right kidney
left kidney	buccalmucosa	glottis	parotid right
lips	eye posterior right	glnd submand left	glnd thyroid
cavity oral	glnd submand right	esophagus s	eye posterior left
larynx sg	spinalcord	bone mandible	parotid left
brainstem	cricopharyngeus	glnd leftacrimal right	opticnrv left
eye anterior left	artery carotid right	optienry right	pituitary
artery carotid left	opticchiasm	eye anterior right	cochlea left
glnd leftacrimal left	cochlea right	arytenoid	prostate
brain tumor	kidney	pancreas	pancreatic lesion
bladder	postcava	arota	duodenum
liver	gall bladder	stomach	spleen
left adrenal gland	right adrenal gland	esophagus	left atrium
prostate peripheral zone	prostate transitional zone	lung tumor	pancreatic tumor
hepatic tumor	hepatic vessel	colon cancer	liver without tumor
liver tumor	covid infection	vestibular schwannoma tumor	kidneys
kidney tumor	infarcted myocardium	no-reflow area	basal ganglia
cerebrospinal fluid in the extracerebral space	white matter	cortical gray matter	lung left
spinal cord	aorta	inferior vena cava	vertebrae
lung right	intervertebral discs	heart	colon
hip left	autochthon left	iliopsoas right	kidney right
gluteus maximus left	gluteus medius left	sacrum	hip right
iliopsoas left	kidney left	iliac vena right	gluteus maximus right
gluteus minimus left	iliac vena left	iliac artery right	gluteus medius right
small bowel	gallbladder	autochthon right	portal vein and splenic vein
scapula left	clavicula left	humerus left	clavicula right
humerus right	scapula right	brain	adrenal gland right
femur left	femur right	gluteus minimus right	urinary bladder
adrenal gland left	iliac artery left	lung upper lobe left	lung upper lobe right
lung lower lobe left	lung middle lobe right	vertebrae L3	vertebrae T11
lung lower lobe right	vertebrae T12	vertebrae L5	sternum
vertebrae L1	skull	vertebrae I.4	vertebrae T8
vertebrae S1	vertebrae T10	vertebrae L2	vertebrae T9
trachea	vertebrae T1	rib right 7	vertebrae T6
vertebrae C2	rib right 2	vertebrae T3	costal cartilages
vertebrae T7	superior vena cava	rib left 5	brachiocephalic vein left
vertebrae T5	rib right 6	rib left 8	rib right 11
vertebrae C4	rib right 10	vertebrae C7	kidney cyst left
rib left 10	rib right 1	rib left 7	vertebrae C5
vertebrae T2	vertebrae T4		rib left 6
	rib left 9	atrial appendage left vertebrae C3	rib left 4
rib right 5			
rib right 4	kidney cyst right vertebrae C1	thyroid gland	rib right 8
brachiocephalic vein right		vertebrae C6	rib right 9
subclavian artery right	common carotid artery left	pulmonary vein	rib left 1
rib right 3	subclavian artery left	rib left 2	rib left 3

Table 6: Examples of text prompts used during the training of the LangMedSAM model. In each prompt, the placeholder 'text' is substituted with one of the 180 anatomical segmentation classes.

```
Extract the {text} from the image
                                                                                                                       Isolate {text}
             Mark {text}
Segment {text}
                                                                  Identify {text}
Extract {text}
                                                                                                             Segment {text} from the image
                                                                                                            Highlight the {text} in the image
            Locate the {text}
                                                                 Find the {text}
                                                                                                                      Detect {text}
     Pinpoint the {text} in the image
                                                                Outline the {text}
                                                                                                                  Show the {text} region
           Where is the {text}?
                                                               Point out the {text]
                                                                                                                   Focus on the {text}
                                                                                                        Separate {text} from the rest of the image
         Crop around the {text}
                                                               Annotate the {text}
     Identify and segment the {text}
                                                        Perform segmentation on {text}
                                                                                                             Delimit the boundaries of {text}
Highlight and extract {text} from the scan
                                                    Find and mark {text} in the given image
                                                                                                              Automatically segment {text}
    Draw contours around the {text}
                                                  Classify and segment {text} within the image
                                                                                                               Generate a mask for {text}
                                                 Perform region-based segmentation for {text}
Extract the region corresponding to {text}
                                                                                                       Separate {text} from surrounding structures
Generate segmentation output for {text}
Highlight and classify {text} in the scan
                                                            Locate and outline {text}
                                                                                                        Perform instance segmentation for {text}
```

Table 7: Number of samples in the training, validation, test, and external test sets for Magnetic Resonance (MR) and Computed Tomography (CT) modalities.

	MR	CT
Training set	177,868	572,132
Validation set	43,177	206,823
Test set	45,748	154,252
External test set	414	19,386

The Dice Similarity Coefficient (DSC) quantifies the pixel-wise overlap between the predicted segmentation and the ground truth mask. It is defined as:

$$DSC = \frac{2|G \cap P|}{|G| + |P|} \tag{12}$$

Table 8: Detailed comparison of GFLOPS and inference times for all models, measured on an RTX A6000 GPU. Inference times were averaged over 100 runs for consistency.

Model	GFLOPS	Inference Time (ms/image)
MedSAM	488	107.85
LiteMedSAM	40	17.34
BiomedParse	-	4301.88
Ours (SAPBERT)	70	22.47

where P is the set of predicted pixels and G is the set of ground truth pixels.

The Normalized Surface Dice (NSD) evaluates how closely the boundaries of the predicted mask align with the ground truth, within a defined tolerance. For our experiments, the tolerance was fixed at 2mm. NSD is defined as:

$$NSD = \frac{|\{x \in \partial P \mid \exists y \in \partial G, \|x - y\| < \tau\}| + |\{y \in \partial G \mid \exists x \in \partial P, \|y - x\| < \tau\}|}{|\partial P| + |\partial G|}$$
(13)

where ∂P and ∂G are surface (boundary) points of predicted mask and ground truth mask respectively. τ refers to the tolerance threshold. The numerator counts the number of surface points that are within the tolerance distance from the other mask's surface. Whereas, the denominator is the total number of surface points from both masks.

A.4 FURTHER RESULTS

 As noted earlier, our model supports both text and bounding box prompts. After completing the main experiments with text inputs, we further trained the model using randomly mixed prompts (text, boxes, or both). Appendix Table 9 reports the results on the external test set when evaluated with bounding box or text prompts.

Table 9: Performance of LangMedSAM on the external test set when prompted with bounding boxes or text inputs.

Model		DSC		NSD	
		CT	MR	CT	
LangMedSAM (SAPBERT) Prompts: Bounding Box	0.80	0.88	0.80	0.69	
LangMedSAM (SAPBERT) Prompts: Text	0.86	0.74	0.83	0.74	

To facilitate detailed comparison, we plot the dice scores for each anatomical region and pathology across different models for internal (Appendix Figures 6 - 11) and external test sets (Appendix Figure 5). Appendix Figure 12 showcases segmentation results from LangMedSAM (SAPBERT) on a single image using different textual prompts that were not seen during training. We also present qualitative results comparing LiteMedSAM, which uses oracle bounding boxes, with LangMedSAM, which relies on textual prompts. For fair comparison, the corresponding ground truth images and masks are also included. Sample results from the internal test set are shown in Figs.13 and 14, while Figs.15–17 display results from the external test set.

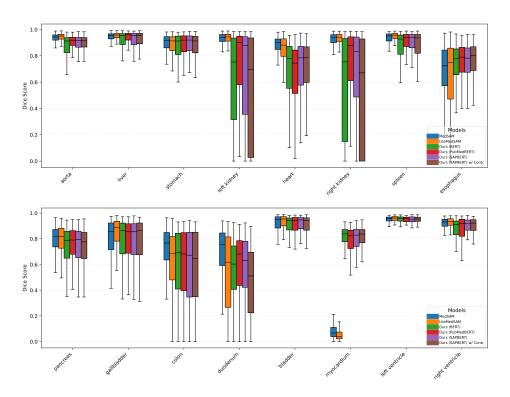


Figure 5: Box plots of Dice scores for each anatomical structure and pathology across all six models on the external test set. Each box plot shows the distribution of Dice scores, where the horizontal line indicates the median, and the lower and upper edges represent the 25th and 75th percentiles, respectively.

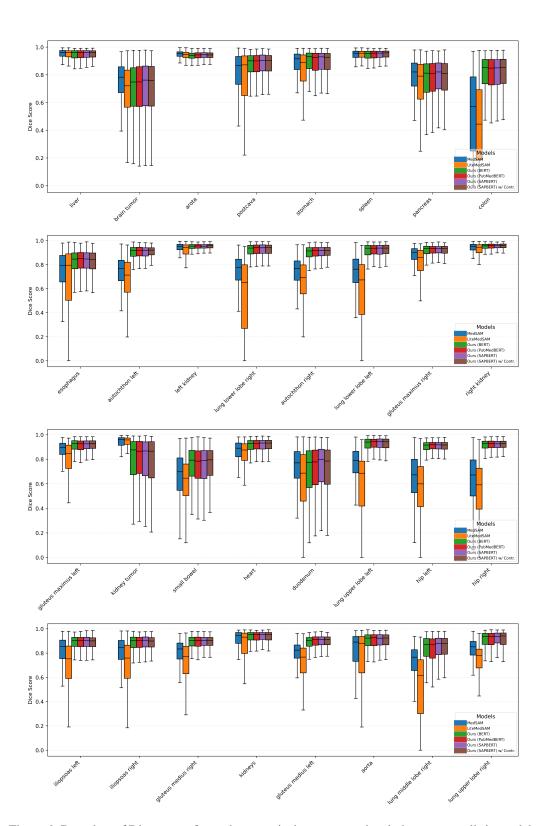


Figure 6: Box plots of Dice scores for each anatomical structure and pathology across all six models on the internal test set. Each box plot shows the distribution of Dice scores, where the horizontal line indicates the median, and the lower and upper edges represent the 25th and 75th percentiles, respectively.

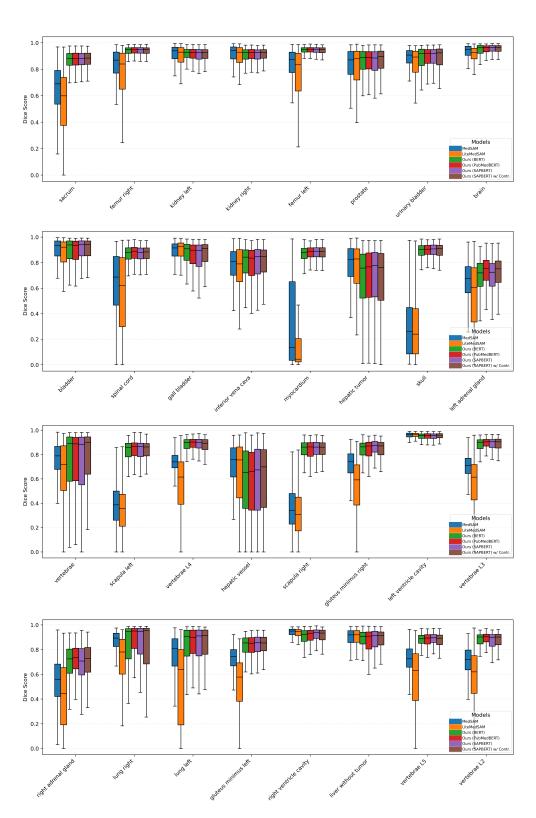


Figure 7: Box plots of Dice scores for each anatomical structure and pathology across all six models on the internal test set. Each box plot shows the distribution of Dice scores, where the horizontal line indicates the median, and the lower and upper edges represent the 25th and 75th percentiles, respectively.

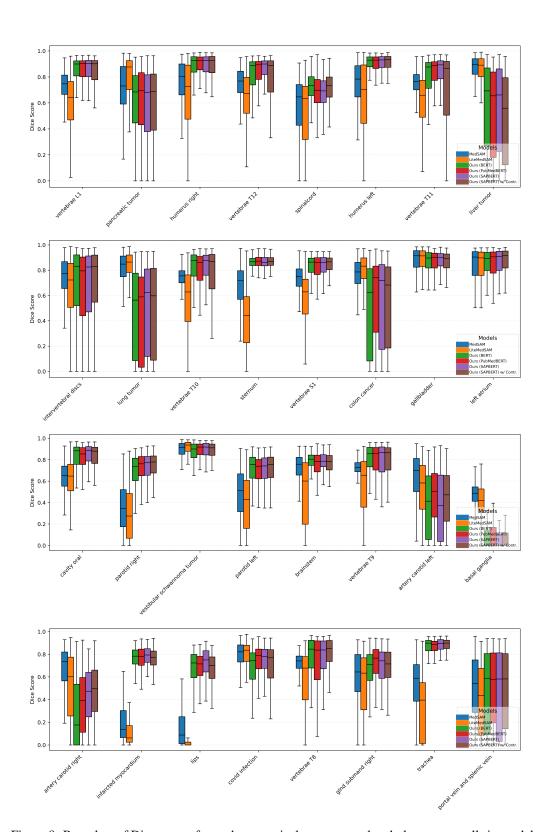


Figure 8: Box plots of Dice scores for each anatomical structure and pathology across all six models on the internal test set. Each box plot shows the distribution of Dice scores, where the horizontal line indicates the median, and the lower and upper edges represent the 25th and 75th percentiles, respectively.

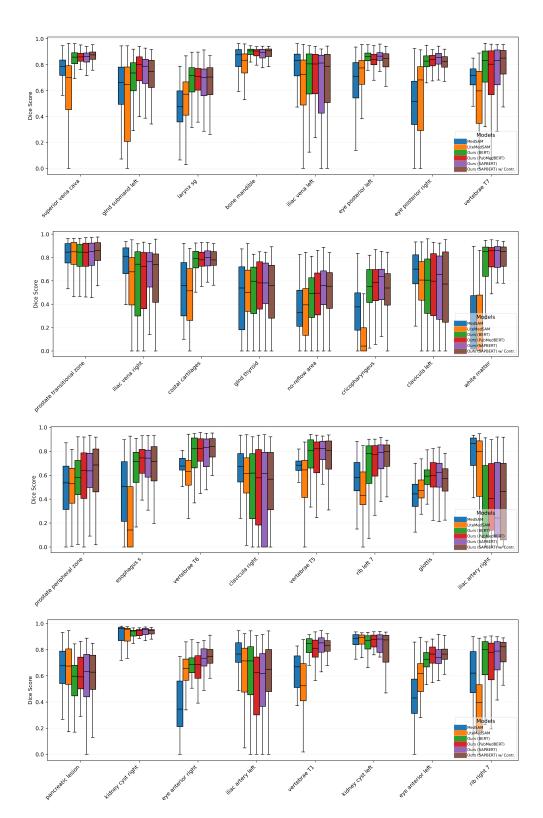


Figure 9: Box plots of Dice scores for each anatomical structure and pathology across all six models on the internal test set. Each box plot shows the distribution of Dice scores, where the horizontal line indicates the median, and the lower and upper edges represent the 25th and 75th percentiles, respectively.

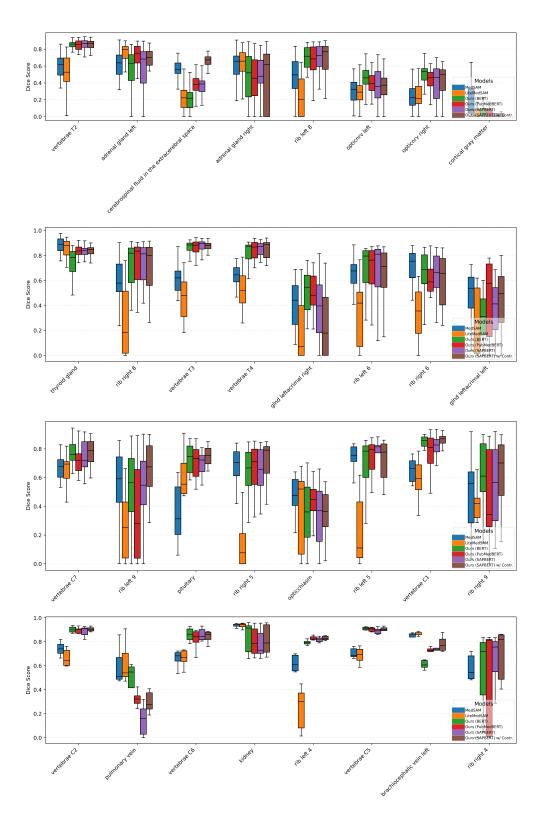


Figure 10: Box plots of Dice scores for each anatomical structure and pathology across all six models on the internal test set. Each box plot shows the distribution of Dice scores, where the horizontal line indicates the median, and the lower and upper edges represent the 25th and 75th percentiles, respectively.

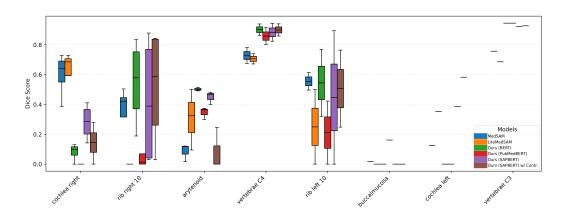


Figure 11: Box plots of Dice scores for each anatomical structure and pathology across all six models on the internal test set. Each box plot shows the distribution of Dice scores, where the horizontal line indicates the median, and the lower and upper edges represent the 25th and 75th percentiles, respectively.

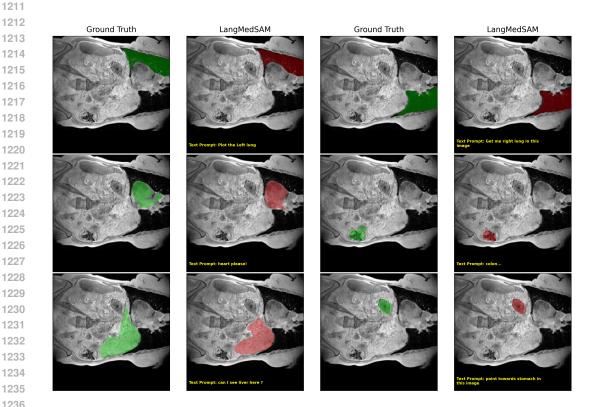


Figure 12: Segmentation results from LangMedSAM (SAPBERT) on a single MR image from internal test set using different textual prompts (unseen during training). Ground truth masks are shown for comparison. The results demonstrate the model's ability to distinguish between anatomical structures and pathologies based on the provided text prompts.

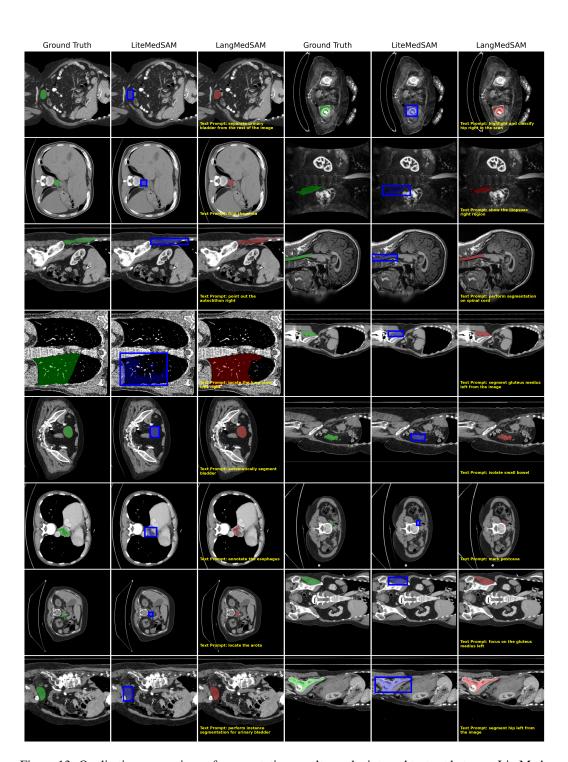


Figure 13: Qualitative comparison of segmentation results on the internal test set between LiteMed-SAM (using oracle bounding boxes) and LangMedSAM (SAPBERT).

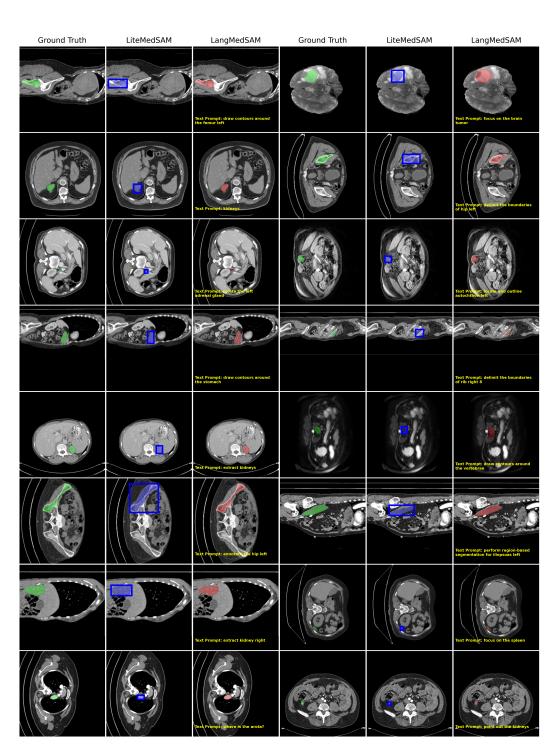


Figure 14: Qualitative comparison of segmentation results on the internal test set between LiteMed-SAM (using oracle bounding boxes) and LangMedSAM (SAPBERT).

Figure 15: Qualitative comparison of segmentation results on the external test set between LiteMed-SAM (using oracle bounding boxes) and LangMedSAM (SAPBERT).

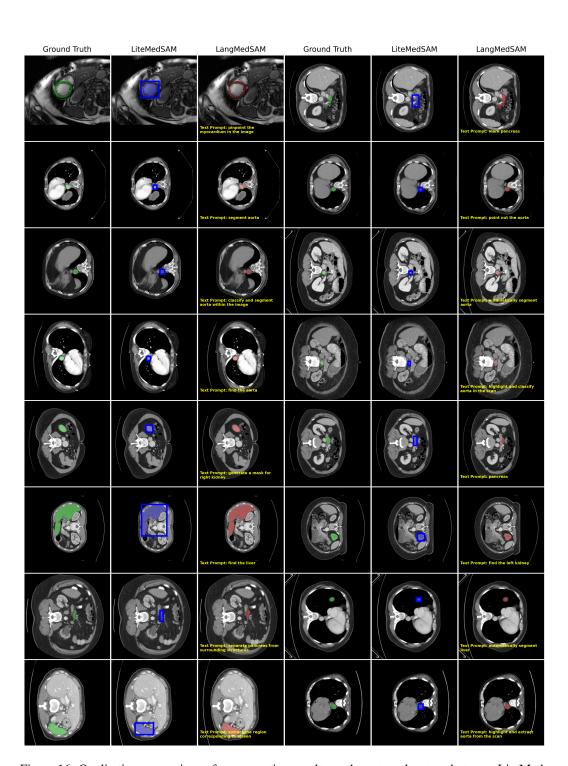


Figure 16: Qualitative comparison of segmentation results on the external test set between LiteMed-SAM (using oracle bounding boxes) and LangMedSAM (SAPBERT).

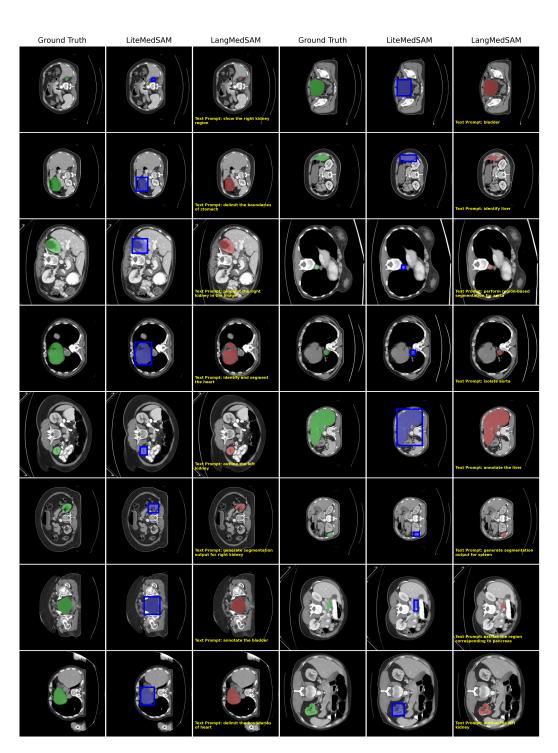


Figure 17: Qualitative comparison of segmentation results on the external test set between LiteMed-SAM (using oracle bounding boxes) and LangMedSAM (SAPBERT).