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ABSTRACT

Image segmentation is a crucial component of medical imaging, facilitating pre-
cise analysis and diagnosis by identifying anomalies and structures across various
imaging modalities. Recent advancements have led to the development of founda-
tional medical image segmentation models such as MedSAM. Trained on a large
corpus of medical images, MedSAM generates segmentation masks based on user
prompts such as bounding boxes and points. For faster inference, LiteMedSAM,
a lightweight variant of MedSAM, offers a computationally more practical solu-
tion, while maintaining comparable performance. However, manually providing
bounding boxes for each 2D slice in volumetric imaging remains cumbersome and
hinders the automatic processing of large datasets. To address this, we introduce
LangMedSAM, a multi-modal text-based segmentation model that leverages natu-
ral language prompts for mask generation in radiological images. LangMedSAM
is trained on 20 publicly available medical datasets and evaluated both on these
datasets and on 4 additional external datasets to assess generalizability. Build-
ing on LiteMedSAM’s architecture, it supports segmentation via both text-based
prompts and conventional inputs such as bounding boxes. Our results show that
text-based prompts provide a scalable and effective solution for multi-modal and
multi-region medical image segmentation, offering a practical alternative to con-
ventional prompting methods in MedSAM—particularly for the automated pro-
cessing of large collections of scans.

1 INTRODUCTION

Segmentation is a fundamental process in medical imaging that enables precise delineation of
anatomical structures, including tissues, organs, and pathological anomalies. This improves diag-
nostic accuracy, enhances clinical workflows, and supports various research applications. Advances
in deep learning have significantly simplified this complex task, with methods such as nnU-Net
(Isensee et al., 2018)) achieving remarkable accuracy in segmenting regions of interest (ROIs), in-
cluding various anatomical structures and pathologies. However, most of these algorithms are highly
task-specific and exhibit limited generalizability, often performing suboptimally when applied to the
segmentation of out-of-domain ROIs. This lack of generalizability has been a persistent issue that
poses significant challenges to researchers in the field.

Segment Anything (SAM) (Kirillov et al.}2023) is a foundation model trained on the SA-1B dataset
to overcome task-specific limitations of traditional segmentation models in natural images. By lever-
aging user-provided prompts, such as bounding boxes or points, SAM enables flexible segmentation
across diverse tasks, constituting a major advancement in image segmentation techniques. However,
medical imaging presents unique challenges, including large image sizes, small and sparse regions
of interest, and object classes that are distinguishable only by subtle differences (Xu et al., |2024),
resulting in weaker performance than natural images. MedSAM (Ma et al} |2024a) addresses these
limitations by fine-tuning SAM on over one million medical image-mask pairs, enhancing segmen-
tation performance across various medical imaging modalities and tasks.
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Medical images, especially radiological scans such as Magnetic Resonance (MR) and Computed To-
mography (CT), are not a single image but volumetric data composed of multiple 2D slices viewed
in axial, coronal, and sagittal planes. Although these slices can be visualized individually as 2D
images, segmentation using MedSAM requires input prompts for each slice, since the ROI varies in
shape and location across different images. This process becomes impractical, as manually creating
bounding boxes or points for each 2D slice is time-consuming and tedious. However, using text
prompts instead of conventional prompts can significantly reduce the effort required for segmen-
tation. Text-based prompts allow for automatic segmentation across multiple slices, while images
with suboptimal masks can still be manually refined using bounding boxes or points. In addition,
text prompts can simultaneously segment multiple ROIs from the same or multiple scans, provid-
ing a more scalable solution. Leveraging natural language as a primary mode of interaction, our
approach moves beyond purely visual prompting, laying the groundwork for a new generation of
flexible and efficient medical image segmentation models.

MedSAM is a large transformer model, and while it provides exceptional segmentation performance,
its high computational requirements pose a challenge for experiments in resource-constrained en-
vironments. To address this, the developers of MedSAM introduced LiteMedSAM, a lightweight
version trained using knowledge distillation (Hinton et al.l [2015)) with performance comparable to
the original model. LiteMedSAM uses a Tiny ViT (Dosovitskiy et al.,[2021) as its image encoder,
significantly reducing computational overhead.

To move beyond conventional bounding box prompts, we develop LangMedSAM, a model that
builds upon LiteMedSAM and incorporates natural language prompts for medical image segmenta-
tion. This design not only preserves compatibility with traditional inputs but also unlocks scalable,
text-driven segmentation, demonstrating superior flexibility and generalizability across modalities
and datasets. Our main contributions are threefold:

1. We introduce LangMedSAM, a new model for medical image segmentation that leverages
natural language prompts to directly specify regions of interest, offering a scalable alterna-
tive to conventional bounding box—based prompting.

2. Through comparative analysis, we show that LangMedSAM consistently outperforms ex-
isting models, even when tested with language prompts of varying phrase lengths, high-
lighting its robustness to prompt formulation.

3. We study the impact of different text encoders: SAPBERT (Liu et al., 2021), PubMedBERT
(Gu et al.,[2021), BERT (Devlin et al.| 2019) on segmentation performance, and as part of
our ablation analysis, we further evaluate LangMedSAM with a contrastive loss mechanism
to align image and language embeddings.

2 RELATED WORK

Medical image segmentation has long been a focal area of research, attracting significant attention
from the scientific community. Numerous models such as nnU-Net (Isensee et al.| [2018), SAM-
Med2D (Cheng et al., |2023), and MedSAM (Ma et al., [2024a) have been proposed to generate
segmentation masks for ROIs. Among these, MedSAM stands out as a versatile and promptable
foundational segmentation model. MedSAM fine-tunes Meta’s Segment Anything Model (SAM)
(Kirillov et al., |2023) on medical image datasets, achieving state-of-the-art results. Furthermore,
these foundational models have been integrated with open-source DICOM viewers to enhance ac-
cessibility and facilitate a wider adoption in medical imaging applications (Yildiz et al.|[2024alb; Ma
et al.,|2024b). However, it relies exclusively on bounding boxes and point-based prompts, making
manual annotation across multiple images a tedious task. This highlights the need to incorporate
text-based prompting into segmentation models to improve efficiency and scalability.

Recent research has explored the use of text-based prompts for object detection and segmentation
in both natural and medical images. Grounding DINO (Liu et al. 2024) detects objects in natu-
ral images by combining localization losses such as L1 and GIoU (Rezatofighi et al.l [2019) with a
contrastive loss that aligns predicted objects with language embeddings. While effective in natural
image domains, its generalization to medical images is limited due to differences in texture, scale,
and complexity. To address this gap, SimTxtSeg (Xie et al., [2024) adapts textual cues for medical
images by generating pseudo-bounding boxes with a text-to-visual converter, refining them with
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SAM, and training a hybrid text—vision attention decoder, achieving promising results in polyp and
brain tumor segmentation. Complementary to these approaches, CRIS (CLIP-Driven Referring Im-
age Segmentation) (Wang et al.| |2022) leverages contrastive learning to align textual features with
pixel-level representations, enabling segmentation based on natural language queries; however, its
applicability to medical images remains unexplored, motivating our ablation study to assess its ef-
fectiveness in this domain. More recently, MedCLIP-SAM (Koleilat et al.,2024) introduces another
design pathway by deriving bounding boxes from saliency maps refined with a Conditional Random
Field (Kraehenbuehl & Koltun, 2013), which are then used as prompts for MedSAM to perform
segmentation.

However, approaches that rely on text prompts to generate bounding boxes face notable limitations
when used for segmentation. Bounding boxes often cover overly large regions, especially when the
regions of interest (ROIs) are spatially separated, leading to the inclusion of unintended areas. They
also struggle to capture fine anatomical details, such as thin-walled structures like the myocardium
(see Figure[I). Point-based prompts provide more localized guidance, but they require precise place-
ment of both positive and negative points—a process that is labor intensive and time-consuming,
ultimately reducing annotation efficiency.

Ground Truth LiteMedSAM Prediction

Figure 1: Example of imprecise segmentation using bounding box prompting: the bounding box
provided for the myocardium leads to segmentation of the entire heart region, highlighting the limi-
tations of spatial prompts in isolating fine-grained anatomical structures.

Another recent advancement is BiomedParse (Zhao et al.,[2024), a segmentation model developed by
Microsoft that supports text-based prompts. Trained on over three million image-mask-text triplets,
BiomedParse leverages GPT-4 to align unstructured textual information with established biomedical
object ontologies. However, BiomedParse is limited to textual inputs, and architecturally lacks sup-
port for visual prompts such as bounding boxes or point-based annotations. Additionally, Biomed-
Parse is computationally expensive, requiring 16 GB of VRAM during inference, which limits its
usability across different platforms and its integration with open-source DICOM viewers. In con-
trast, we introduce LangMedSAM, a lightweight segmentation model that supports both natural
language and visual prompts, providing flexible interaction modes for medical image analysis. Its
efficiency allows seamless deployment on widely available hardware and straightforward integra-
tion into existing medical software and DICOM viewers, offering a more practical alternative to
large-scale models such as BiomedParse.

3 METHODOLOGY

Current SAM-based methods in the medical domain rely on bounding boxes or point-based prompts,
both of which limit scalability due to annotation effort and precision requirements. To overcome
these limitations, we extend LiteMedSAM into a text-driven framework—LangMedS AM—that uni-
fies language and vision, enabling segmentation directly from textual descriptions. The model con-
sists of three key components: an image encoder, a prompt encoder, and a mask decoder.

The image encoder Ej,,, processes an input image [ HXWXC to produce a corresponding image
embeddings I, € RH/4xW/4xD.

Iemb :Eimg(IHXWXC) (1)

Here H, W and C are the height, width and number of channels of the input image I, respectively.
D refers to the output dimension of the image encoder. We introduce a multimodal prompt encoder
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Figure 2: Overview of LangMedSAM - Block 1 presents the overall architecture of LangMedSAM.
Block 2 details the incorporation of text prompts within the prompt encoder. Block 3 illustrates the
mask decoder for text-guided segmentation

Ablation
Dice Loss + Focal Loss

that extends LiteMedSAM beyond spatial inputs, incorporating text embeddings from pre-trained
text encoders such as BERT, PubMedBERT, or SAPBERT. Unlike prior SAM-based methods re-
stricted to bounding boxes or points, this architecture enables segmentation to be guided directly by
natural language prompts (Pje,:). The text encoder (Eye,:) produces a global sentence-level repre-
sentation (Se,mp € RY), which captures the overall semantics of the prompt and serves as a high-level
guidance signal for segmentation. Beyond this global embedding, E'.,: also generates token-level
embeddings that preserve the granularity of individual words. By incorporating both sentence- and
token-level information, LangMedSAM can attend not only to the overall intent of a prompt but also
to fine-grained cues such as explicit class names or anatomical terms. This dual-level design enables
robust segmentation even when prompts are long (50 words or longer), as the model can still reliably
identify and localize the relevant structures if the target class appears anywhere within the descrip-
tion. To accommodate prompts of varying lengths, we adopt the standard padding mechanism used
in transformer-based encoders (e.g., BERT). This ensures that token-level embeddings are produced
in a consistent format across the batch. For a sentence with n tokens (including padding), the token
embeddings are denoted as T,,,;, € R™*? where d is again the output dimension of text encoder.
Thus, the encoding process can be summarized as:

Semba Temb = Etea:t (Ptext) (2)

To ensure compatibility with the image encoder and mask decoder, the sentence and token embed-
dings are each passed through dedicated linear projection layers, referred to as the sentence projec-
tion and token projection layers, respectively. These are followed by a GELU activation to introduce
non-linearity and preserve expressive capacity:

Sty = dGELU (MLP (Semb)) 3)
Tfmb = ¢aELU (MLP;T)];]‘ (Tems)) “4)

Here, M L P denotes a multilayer perceptron, ¢ g1y denotes the GELU activation function, S fmb €
RP and " € R™*P are projected sentence and token embeddings, respectively. D represents the
hidden dimensionality used by the transformer layers in the mask decoder, which matches that of the
image encoder. The transformed token embeddings are concatenated with any additional prompts
(such as bounding boxes), if provided, to form prompt embeddings:

Py = Concat(T? . Positional Enc(Box, Points)) ®)

emb’

Here, P.,,, € R"*P denotes the prompt embeddings. Our experiments are exclusively designed to
evaluate the effectiveness of text-based prompting; therefore, no other prompt types are employed.
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Consequently, the number of tokens produced by the text encoder directly corresponds to the number
of tokens in the prompt embedding.

Finally, the image, sentence, and prompt embeddings are jointly processed by the mask decoder,
which has been adapted to fuse both visual and textual cues. While the underlying design draws
inspiration from LiteMedSAM, our modifications extend its capabilities to language-driven repre-
sentations, enabling flexible multimodal segmentation. Similar to other text-based segmentation
and detection models (Xie et al., [2024; Liu et al. 2024)), our mask decoder builds on a two-way
transformer architecture with multi-head attention mechanisms, including both self-attention and
cross-attention. Unlike prior works, we extend this design by incorporating explicit attention mask-
ing (Vaswani et al.| [2023)), which not only handles padded tokens but also allows selective control
over information flow between text and visual features. This modification is particularly important
in our setting, as prompts may consist of long natural language descriptions, and masking ensures
that irrelevant or padded tokens do not interfere with the fine-grained alignment of language and
image features. As a result, the decoder also receives self and cross attention masks Mg & Mo
where M /s € {0,—00}. The —oo value masks the embedding of i token from attending to the
embedding of j token in the prompt, to ensure that padding tokens do not influence the attention
computations.

The two-way transformer itself comprises three key modules: the first module performs masked
multi-head self-attention (MHSA) among various types of prompts and tokens, enabling the model
to capture inter-dependencies between them:

P} Perp + LayerNorm(MHSA(Q = K =V = Peppy, Msg)) (6)

emb —

The second module conducts multi-head cross-attention (MHCA) between the computed prompt
embeddings and the image embeddings, which are augmented with sentence embeddings to form
global embeddings, allowing the model to learn how prompts and tokens attend to visual and textual
features:

P? LayerNorm(PL , + MHCA(Q = PLy, K = Loy + S? V= L, M) (7)

emb — emb emb> emb’

Conversely, the third module applies multi-head cross-attention in the opposite direction—from the
combined image and sentence embeddings to the prompts—enabling the model to understand how
image and textual information influence the prompts:

I} Layer Norm(Iempy + MHCA(Q = Iy, +S? ,, K = P2 ,, V=P, Mc) (8)

emb — emb’ emb’

Here, I}, , € RH/4*W/4xD While the mask decoder can be stacked with multiple two-way trans-
former blocks, we adopt the two-block configuration from LiteMedSAM, which provides a strong
balance between segmentation accuracy and computational efficiency. These transformer blocks
fuse visual and textual features into enriched image embeddings that capture both spatial structure
and semantic context. The fused embeddings are then passed through a lightweight upsampling
module, where transposed convolution layers progressively restore spatial resolution and reduce
channel dimensionality:

U = Upscale(I}, ;) ©)

emb

where, U € RH>*WxD/8  Finally, a multi-layer perceptron (MLP) is applied to the upsampled
embeddings to adjust the channel dimensions and generate the binary segmentation mask.

As an additional experiment, we explore a text-to-pixel contrastive learning strategy, inspired by
CRIS (Wang et all 2022), to examine whether explicit alignment between text embeddings and
pixel-level predictions can further improve segmentation. To this end, we introduce a contrastive
module (Figure[2)) that projects the sentence embedding into the image embedding space and learns
weights and biases to guide alignment:

W, =MLP(S" ) ; B;=MLP(S" ) (10)

Here, (W, € RP/8x3%3) and B, € R are weights and biases respectively. In essence, this process
transforms the sentence embeddings into a 3 X 3 convolutional kernel, which is then applied across
the upscaled feature map to produce a final segmentation mask.

Mask = (U ® W) + By (11)
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where ® denotes the convolution operation. This effectively allows for the sentence embeddings
to interact with each pixel in the upscaled embedding. Instead of the binary cross-entropy (BCE)
loss originally used in CRIS (Wang et al., 2022), we adopt focal loss (Lin et al.,|2020), which has
demonstrated success in segmentation tasks, while still serving the objective of aligning textual and
visual representations. For both contrastive and non-contrastive models, focal loss is combined with
dice loss to more effectively guide the training process.

4 DATASET AND EXPERIMENTS

To train LangMedSAM, we utilize 20 publicly available radiological datasets (mentioned in Table/I))
encompassing two imaging modalities: magnetic resonance (MR) and computed tomography (CT).
From each dataset, we extract representative 2D slices to construct the training set, ensuring cover-
age of diverse anatomical regions and pathologies. CT images have intensity values ranging from
-2000 to 2000, while MR images range from 0 to 3000. To standardize intensity values, CT images
are normalized using typical window width and level settings. Most CT datasets use a window width
of 400 and a level of 40. However, specific anatomies and pathologies require tailored contrast set-
tings. For example, the HaN-Seg (Podobnik et al.,2024) dataset, focused on head and neck regions,
uses a window width of 1500 and a level of -500. Datasets targeting lung abnormalities, such as
MSD-LungTumor (Antonelli et al., 2022) and COVID-19-CT-Seg (Ma et al., [2021])), apply a width
of 1500 and a level of -600. For hepatic vessel segmentation in the MSD-Hepatic dataset (Antonelli
et al.| 2022)), the window width and level are set to 300 and 120, respectively. For MR images,
intensity values are clipped between the 0.5th and 99.5th percentiles. Both CT and MR images are
then rescaled to the [0, 255] range. To satisfy the dimensionality requirement of the image encoder,
all images were resized to a fixed dimension of 256 x 256 x 3. As CT and MR images typically
contain only one channel, we duplicate the single channel three times to match the required input
format.

Table 1: List of datasets used for model training. Datasets marked with * were used exclusively as
part of the external test set

TotalSegmentator (Wasserthal et al.| [2023) ACDC (Bernard et al.,[2018)

CHAOS (Kavur et al., 2021)
MSD-Prostate (Antonelli et al.,|2022)
PROMISE (Litjens et al.[[2014)
AMOS (J1 et al .} [2022)
MSD-Lung (Antonelli et al.| 2022)
MSD-Hepatic Vessel (Antonelli et al.| [2022)
ATLAS Bourgogne (Quinton et al.| [2023)
CrossMoDA (Dorent et al., [2023)
EMIDEC (Lalande et al.,|2020)
M&Ms* (Campello et al.| [2021)
SegTHOR* (Lambert et al.;|2019)

MSD-Heart (Antonelli et al.|[2022)
HaN-Seg (Podobnik et al.|[2024)
QUBIQ (Becker et al.| 2019)
MSD-Brain (Antonelli et al.|[2022)
MSD-Pancreas (Antonelli et al.} [2022)
MSD-Colon (Antonelli et al.,[2022)
Covid-19-CT Seg (Cohen et al.|[2020)
KiTS23 (Heller et al.,[2023)
MRBrainS18 (Kuyjf et al.;,|2024)
BTCV* (Gibson et al., 2018)
WORD* (Luo et al.,[2022)

To ensure effective training, we exclude images with very small masks (fewer than 100 pixels) and
those containing multiple disjoint masks for the same structure. For text prompts, we use a diverse
set of phrasings, such as “Extract the {class name} from the image”, “Highlight and extract {class
name} from the scan” and “Separate {class name} from surrounding structures” among others (see
Appendix Table [6). These prompts are processed through the text encoder, which tokenizes them
and computes the corresponding text embeddings. The maximum length of each text prompt is
limited to 256 tokens. Our training dataset contains 180 unique classes (see Appendix Table 3). In
total, 1 million image-text-mask triplets are selected, with 750,000 used for training and 250,000
for validation. The model is trained on a single H200 GPU of 144 GB memory, till convergence
using the AdamW optimizer (8; = 0.9 and S = 0.999), with an initial learning rate of le-4 and
a weight decay of 0.01. The batch size is set to 32. We train the entire pipeline while keeping the
pre-trained text encoder frozen. During inference, LangMedSAM requires only 700 MB of VRAM
to segment the ROI. Further information about the inference speed of different models is mentioned
in Appendix Table|[§]

We evaluate LangMedSAM against state-of-the-art segmentation models, including MedSAM and
its lighter variant LiteMedSAM. Unlike prior works that rely on text-to-box generation or pseudo-
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mask supervision, we exclude such approaches from our main comparison. Because MedSAM is
explicitly trained on bounding boxes, it naturally serves as an upper bound for evaluation metrics
and thus provides a more meaningful benchmark than methods that derive bounding boxes indirectly
from text. To ensure consistency and rigor, we construct two large-scale evaluation sets: (i) an
internal set with 200,000 unseen 2D scans from training datasets and (ii) an external set with 20,000
unseen 2D scans from the external datasets, where all models are assessed under identical conditions.

Beyond bounding-box—based models, we further compare LangMedSAM with BiomedParse, a seg-
mentation model that directly leverages text prompts. For this comparison, we assemble a bench-
mark of 15,000 2D slices drawn from diverse datasets (ACDC, AMOS, MSD-Brain, and KiTS23),
covering a wide spectrum of anatomies and pathologies including myocardium, liver, aorta, brain
tumors, and kidney tumors. Both LangMedSAM and BiomedParse are evaluated with identical
prompts of varying lengths, where 1-3 word prompts correspond to class names, and longer prompts
include five sentence variants per class to assess consistency across phrasing styles. For evaluation,
we report the mean dice similarity coefficient (DSC) and normalized surface dice (NSD) to assess
pixel-wise overlap and boundary alignment between predicted and ground truth masks. Additional
details on the datasets has been provided in the Appendix material (see Appendix Table ).

Dice Results on Internal Test Set
Dice Scores for MR Scans Dice Scores for CT Scans
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Dice Results on External Test Set
Dice Scores for MR Scans Dice Scores for CT Scans

FRTTTT TE

00

Dice Score

B MedSAM @ Ours (BERT) @ Ours (SAPBERT)
I LiteMedSAM B Ours (PubMedBERT)  EEE Ours (SAPBERT) w/ Contr.

Figure 3: Dice Score Comparison on Internal and External Test Sets: Each plot presents the Dice
scores achieved by different models across different datasets. The left subplot shows performance on
MR scans, while the right subplot shows performance on CT scans. Results are reported separately
for the internal test set (top plot)which was held-out from training datasets, and the external test
set (bottom plot), comprising entirely unseen datasets. In each plot, the center line within each
box indicates the median, while the lower and upper edges of the box represent the 25th and 75th
percentiles, respectively. “w/ Contr.” refers to model trained with text-to-pixel contrastive learning,
respectively.

Table 2: Performance comparison of LangMedSAM and baselines in terms of Dice similarity coef-
ficient (DSC) and normalized surface dice (NSD, 2 mm tolerance) on internal and external test sets
for MR and CT modalities.

Internal Dataset External Dataset

Models MR CT MR CT
DSC NSD | DSC NSD | DSC NSD | DSC NSD
MedSAM 0.77 058 | 079 061 | 063 0.76 | 0.88 0.68
LiteMedSAM 0.71 055 | 071 055 | 063 0.77 | 0.86 0.70
Ours (BERT) 073 057 | 085 074 | 0.86 0.82 | 0.74 0.56
Ours (PubMedBERT) 0.74 058 | 085 074 | 0.86 0.82 | 0.77 0.59
Ours (SAPBERT) 074 059 | 085 075 | 0.86 0.82 | 0.77 0.59
Ours (SAPBERT) w/ Contr. | 0.75 0.59 | 0.85 0.75 | 086 083 | 0.75 0.57
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Table 3: Dice similarity coefficients for LangMedSAM and BiomedParse evaluated with equivalent
text prompts of different lengths.

Word count in text prompts

Model 1~3 10~12 25~30 50~60

MR CT MR CT MR CT MR CT
Ours(SAPBERT) 072 0.88 | 0.72 0.88 | 0.72 0.88 | 0.71 0.87

Ours (PubMedBERT) | 0.72 0.88 | 0.72 0.88 | 0.72 0.88 | 0.69 0.82

Ours (BERT) 0.72 0.88 | 0.72 0.88 | 0.72 0.88 | 0.71 0.87
BiomedParse 052 0.81 | 051 0.67 | 048 035|047 033
Ground Truth LiteMedSAM LangMedSAM Ground Truth LiteMedSAM LangMedSAM

Text Prompt: pinpoint the liver in the
image

Figure 4: Qualitative comparison of segmentation results. Each row displays a set of samples ar-
ranged in a grid of 6 columns. Columns 1 and 4 show the original images with ground truth masks
overlaid. Columns 2 and 5 present the segmentation outputs from LiteMedSAM, where bounding
box prompts are provided. Columns 3 and 6 illustrate the results from LangMedSAM (SAPBERT)
using natural language prompts, with relevant text highlighted. The first three rows correspond to
examples from the internal test set, while the final row showcases samples from the external test set.

5 RESULTS AND ANALYSIS

We evaluated different versions of LangMedSAM incorporating textual prompts and compared
them with the baseline MedSAM and LiteMedSAM models, both of which rely on visual
prompts—specifically, oracle bounding boxes derived directly from segmentation masks. Figure
[3] (top plot) provides a visual comparison of model performance across MR and CT modalities
on the internal test set. As expected, LiteMedSAM demonstrates lower performance compared to
its larger counterpart, MedSAM, reflecting the performance trade-offs inherent in knowledge dis-
tillation. In contrast, all LangMedSAM variants perform competitively on MR scans, achieving
mean dice scores between 0.73 and 0.75. The performance of different models on internal test set
are also tabulated in Table 2| It shows that each language-prompted model outperforms the visually
prompted LiteMedSAM, which averages at a dice score of 0.71. The normalized surface dice (NSD)
at a 2mm tolerance is also consistent across language-prompted models and slightly exceeds that of
LiteMedSAM. On CT scans, the advantage of language prompts becomes even more pronounced.
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LangMedSAM variants achieve a dice score of 0.85 compared to 0.71 from LiteMedSAM—a rela-
tive improvement of approximately 20%. This trend is mirrored in NSD values as well.

The true robustness of language-prompted segmentation models is tested on external datasets. As
shown in Table E], these include M&Ms, BTCV, SegTHOR, and WORD, of which only M&Ms
offers MR scans. Model performance on the external test set is presented in Figure [3) with addi-
tional metrics provided in Table 2} The M&Ms dataset presents additional challenges due to its
irregularly shaped myocardium structures (illustrated in Figure [T}, leading to a broader dice score
distribution for MedSAM and LiteMedSAM on MR images, as seen in Figure 3| (bottom plot). In
contrast, LangMedSAM performs better by effectively learning the myocardium appearance from
training data. The CT scans in the external test set span a diverse range of thoracic and abdominal
organs, posing generalization challenges. Consequently, language-prompted models show a drop in
performance relative to visual models. For instance, LiteMedSAM achieves a Dice score of 0.86,
compared to 0.77 for LangMedSAM (SAPBERT). This discrepancy may stem from the inherent
strengths of visual prompts, which offer direct spatial cues, whereas textual prompts require models
to infer spatial regions from language hindering precise localization. This difficulty is also reflected
through reduced NSD scores for language-guided models on external CT scans compared to their
visually prompted counterparts. Although visual prompts retain an advantage in certain settings,
the consistently strong Dice scores achieved by LangMedSAM demonstrate that language-driven
prompting can provide a powerful and scalable pathway toward generalized medical image segmen-
tation.

We further investigated the impact of different text encoders, experimenting with general-purpose
BERT and its medically specialized variants, SAPBERT and PubMedBERT. Our results suggest that
both medical-domain models offer slight advantages over standard BERT, particularly evident in CT
scans from the external test set (Table[Z), where they achieve marginally higher dice and NSD scores.
Moreover, models using BERT tend to exhibit broader dice score distribution (as seen in Figure [3]
bottom-right plot for CT), indicating less consistent performance compared to their domain-adapted
counterparts. We also compared contrastive and non-contrastive training paradigms. As illustrated
visually in Figure [3|and quantitatively in Table [2] contrastive learning did not yield noticeable im-
provements. We hypothesize that the multi-head self- and cross-attention mechanisms used to fuse
text and image features are already sufficiently powerful for effective segmentation, making addi-
tional contrastive alignment redundant in this setting.

Finally, we also evaluated LangMedSAM against BiomedParse by providing both models with com-
parable text prompts of varying lengths. As shown in Table [3] LangMedSAM maintains consis-
tently high segmentation performance across different prompt styles and complexities, demonstrat-
ing strong robustness to input variation. In contrast, BiomedParse exhibits a marked decline in CT
segmentation accuracy as prompt length increases. We attribute LangMedSAM’s stability to its dual
use of token-level and global sentence embeddings, which together capture both fine-grained details
and broader contextual cues—enabling reliable mask generation even with long or complex textual
descriptions.

6 CONCLUSION

We introduced LangMedSAM, a lightweight text-driven segmentation model that extends beyond
visual prompts to directly leverage natural language in medical image segmentation. Our experi-
ments demonstrate that text prompts can achieve competitive accuracy while offering clear benefits
in scalability and usability. By enabling entire scans to be segmented from text prompts—without
manual slice-level annotations—LangMedSAM improves efficiency and also supports data anno-
tation. Moreover, its speed and lightweight design allow seamless integration with DICOM view-
ers and clinical software, reducing barriers to deployment. By uniting linguistic reasoning with
visual understanding, this work highlights the potential of language-driven interaction as a foun-
dation for more flexible medical Al systems. Looking ahead, we aim to extend LangMedSAM
within MedSAM-2 (Ma et al.| 2024b), enabling seamless multi-modal prompting with text, bound-
ing boxes, and points for improved segmentation of complex 3D volumetric scans. Together, these
contributions open a promising path toward medical foundation models that combine efficiency, flex-
ibility, and clinical usability. We will release the code for LangMedSAM after reviews to support
further research and reproducibility.
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A APPENDIX

In the following appendix, we present supplementary material to support our main findings. This
includes a brief note on LLM usage during manuscript preparation, dataset details and accessibility,
definitions of evaluation metrics, and additional experimental results.

A.1 LLM USAGE

In preparing this manuscript, we used publicly available large language models (ChatGPT,
DeepSeek) as general-purpose writing assistants. Their role was limited to refining grammar, im-
proving readability, and rephrasing text for clarity. No part of the research design, data analysis,
experiments, or results relied on LLMs.

A.2 DATASET DETAILS AND ACCESSIBILITY

LangMedSAM was trained on 20 publicly available medical datasets and evaluated on 4 additional
external datasets to assess its generalizability. A comprehensive list of these datasets is provided in
Appendix Table[d] Together, they span a broad spectrum of anatomical structures and pathological
conditions. In total, the dataset encompasses 180 unique classes, detailed in Appendix Table 5]

Table 4: Overview of the datasets used for training and evaluation. Each entry includes the imaging
modality, number of scans, target segmentation regions, and a link to the corresponding dataset
website. Datasets marked with * were used exclusively for testing.

Dataset Modality (No. of Scans) Target Segmentation (Modality) Link
TotalSegmentator CT (1228), MR (616) 117 different classes (CT), 50 different classes (MR) TotalSegmentator
ACDC MR (150) Left Ventricle Cavity, Right Ventricle Cavity, Myocardium ACDC
CHAOS CT (30), MR (40) Liver (CT, MR), Kidneys (MR), Spleen (MR) CHAOS
HaN-Seg CT (42) Head and Neck Organs HaN-Seg
PROMISE MR (50) Prostate PROMISE
QUBIQ CT (30), MR (50) Pancreas (CT), Pancreatic Lesion (CT), Brain tumor (MR), Prostate(MR) QUBIQ
AMOS CT (500), MR (100) 15 Abdominal Organs AMOS
ATLAS Bourgogne MR (60) Liver, Liver Tumor Atlas Bourgogne
Covid-19-CT Seg CT (20) Covid Infection Covid-19
CrossMoDA MR (105) Vestibular Schwannoma Tumor CrossMoDA!
KiTS23 CT (489) Kidneys, Kidney Tumor KITS23
EMIDEC MR (100) Myocardium, Infarcted Myocardium, No-Reflow Area EMIDEC
MRBrainS18 MR (30) Brain regions MRBrainS18
MSD-Heart MR (20) Heart MSD
MSD-Prostate MR (48) Prostate MSD
MSD-Brain MR (484) Brain Tumor MSD
MSD-Lung CT (96) Lung Tumor MSD
MSD-Pancreas CT (282) Pancreas, Pancreatic Tumor MSD
MSD-Hepatic Vessel CT (303) Hepatic Vessels, Hepatic Tumor MSD
MSD-Colon CT (126) Colon Cancer MSD
M&Ms* MR (25) Left Ventricle, Right Ventricle, Myocardium M&M
BTCV* CT (30) 14 Abdominal organs BTCV
SegTHOR* CT (40) Heart, Aorta SegThor
‘WORD* CT (20) 15 Abdominal Organs ‘WORD

Table [6] outlines the diverse set of text prompts used during LangMedSAM training. Owing to
this variety, the model learned to focus on key class names within prompts. As a result, it can
effectively extract the target regions even when presented with novel phrasings—such as “I want
{text}”—that were not explicitly seen during training. Additionally, Appendix Table|7|presents the
number of samples included in the training, validation, test, and external test sets for each modality,
MR and CT, respectively. Further, Appendix Table[§] provides comparison between the speeds of all
the models that are compared. The results show that while LangMedSAM (SAPBERT) is slightly
heavier than LiteMedSAM, it is still much faster and lighter than BiomedParse. Although we could
not precisely compute GFLOPS for BiomedParse due to its modular architecture, its significantly
higher inference time and more complex computation graph strongly suggest a substantially higher
computational cost compared to both LiteMedSAM and LangMedSAM.

A.3 EVALUATION METRICS
To evaluate and compare the performance of the proposed LangMedSAM with models like LiteMed-

SAM, MedSAM and BiomedParse, we use two metrics: Dice Similarity Coefficient (DSC), Normal-
ized Surface Dice (NSD).
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Table 5: List of 180 anatomical and pathological classes used for medical image segmentation.
These classes span multiple organ systems and include both healthy structures and disease-related
entities, covering a diverse range of anatomical regions for comprehensive segmentation tasks.

myocardium
left kidney
lips
cavity oral
larynx sg
brainstem
eye anterior left
artery carotid left
glnd leftacrimal left
brain tumor
bladder
liver
left adrenal gland
prostate peripheral zone
hepatic tumor
liver tumor
kidney tumor
cerebrospinal fluid in the extracerebral space
spinal cord
lung right
hip left
gluteus maximus left
iliopsoas left
gluteus minimus left
small bowel
scapula left
humerus right
femur left
adrenal gland left

left ventricle cavity
buccalmucosa
eye posterior right
glnd submand right
spinalcord
cricopharyngeus
artery carotid right
opticchiasm
cochlea right
kidney
postcava
gall bladder
right adrenal gland
prostate transitional zone
hepatic vessel
covid infection
infarcted myocardium
white matter
aorta
intervertebral discs
autochthon left
gluteus medius left
kidney left
iliac vena left
gallbladder
clavicula left
scapula right
femur right
iliac artery left

right ventricle cavity
glottis
glnd submand left
esophagus s
bone mandible
glnd leftacrimal right
opticnrv right
eye anterior right
arytenoid
pancreas
arota
stomach
esophagus
lung tumor
colon cancer
vestibular schwannoma tumor
no-reflow area
cortical gray matter
inferior vena cava
heart
iliopsoas right
sacrum
iliac vena right
iliac artery right
autochthon right
humerus left
brain
gluteus minimus right
lung upper lobe left

right kidney
parotid right
glnd thyroid
eye posterior left
parotid left
opticnrv left
pituitary
cochlea left
prostate
pancreatic lesion
duodenum
spleen
left atrium
pancreatic tumor
liver without tumor
kidneys
basal ganglia
lung left
vertebrae
colon
kidney right
hip right
gluteus maximus right
gluteus medius right
portal vein and splenic vein
clavicula right
adrenal gland right
urinary bladder
lung upper lobe right

lung lower lobe left lung middle lobe right vertebrae L3 vertebrae T11
lung lower lobe right vertebrae T12 vertebrae L5 sternum
vertebrae L1 skull vertebrae L4 vertebrae T8
vertebrae S1 vertebrae T10 vertebrae L2 vertebrae T9
trachea vertebrae T1 rib right 7 vertebrae T6
vertebrae C2 rib right 2 vertebrae T3 costal cartilages
vertebrae T7 superior vena cava rib left 5 brachiocephalic vein left
vertebrae TS5 rib right 6 rib left 8 rib right 11
vertebrae C4 rib right 10 vertebrae C7 kidney cyst left
rib left 10 rib right 1 rib left 7 vertebrae C5
vertebrae T2 vertebrae T4 atrial appendage left rib left 6
rib right 5 rib left 9 vertebrae C3 rib left 4
rib right 4 kidney cyst right thyroid gland rib right 8
brachiocephalic vein right vertebrae C1 vertebrae C6 rib right 9
subclavian artery right common carotid artery left pulmonary vein rib left 1
rib right 3 subclavian artery left rib left 2 rib left 3

Table 6: Examples of text prompts used during the training of the LangMedSAM model. In each
prompt, the placeholder ’text’ is substituted with one of the 180 anatomical segmentation classes.

Extract the {text} from the image
Mark {text}
Segment {text}

Locate the {text}
Pinpoint the {text} in the image
Where is the {text}?

Crop around the {text}

Identify and segment the {text}
Highlight and extract {text} from the scan
Draw contours around the {text}
Extract the region corresponding to {text}
Generate segmentation output for {text}
Highlight and classify {text} in the scan

{text}

Identify {text}

Extract {text}

Find the {text}
Outline the {text}
Point out the {text}
Annotate the {text}

Perform segmentation on {text}

Find and mark {text} in the given image
Classify and segment {text} within the image
Perform region-based segmentation for {text}

Locate and outline {text}

Isolate {text}

Segment {text} from the image
Highlight the {text} in the image
Detect {text}

Show the {text} region
Focus on the {text}

Separate {text} from the rest of the image
Delimit the boundaries of {text}
Automatically segment {text}
Generate a mask for {text}
Separate {text} from surrounding structures
Perform instance segmentation for {text}

Table 7: Number of samples in the training, validation, test, and external test sets for Magnetic
Resonance (MR) and Computed Tomography (CT) modalities.

MR |

CT

Training set 177,868 | 572,132
Validation set 43,177 | 206,823
Test set 45,748 | 154,252
External test set 414 19,386

The Dice Similarity Coefficient (DSC) quantifies the pixel-wise overlap between the predicted seg-
mentation and the ground truth mask. It is defined as:

2|IGNP

DSC = ———.
Gl + P
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Table 8: Detailed comparison of GFLOPS and inference times for all models, measured on an RTX
A6000 GPU. Inference times were averaged over 100 runs for consistency.

Model GFLOPS Inference Time (ms/image)
MedSAM 488 107.85
LiteMedSAM 40 17.34
BiomedParse - 4301.88
Ours (SAPBERT) 70 22.47

where P is the set of predicted pixels and G is the set of ground truth pixels.

The Normalized Surface Dice (NSD) evaluates how closely the boundaries of the predicted mask
align with the ground truth, within a defined tolerance. For our experiments, the tolerance was fixed
at 2mm. NSD is defined as:

{z € 0P |3y € 0G, [z —y|| <7} + {y € 0G | 3z € P, |ly — x| < 7}
|OP| + |0G]|

where P and OG are surface (boundary) points of predicted mask and ground truth mask respec-

tively. 7 refers to the tolerance threshold. The numerator counts the number of surface points that

are within the tolerance distance from the other mask’s surface. Whereas, the denominator is the
total number of surface points from both masks.

NSD =

13)

A.4 FURTHER RESULTS

As noted earlier, our model supports both text and bounding box prompts. After completing the
main experiments with text inputs, we further trained the model using randomly mixed prompts
(text, boxes, or both). Appendix Table [9] reports the results on the external test set when evaluated
with bounding box or text prompts.

Table 9: Performance of LangMedSAM on the external test set when prompted with bounding boxes
or text inputs.

DSC NSD
Model MR CT | MR CT
LangMedSAM (SAPBERT) Prompts: Bounding Box | 0.80 0.83 | 0.80 0.69
LangMedSAM (SAPBERT) Prompts: Text 0.86 0.74 | 0.83 0.74

To facilitate detailed comparison, we plot the dice scores for each anatomical region and pathology
across different models for internal (Appendix Figures [6]- [IT)) and external test sets (Appendix Fig-
ure [5). Appendix Figure [I2] showcases segmentation results from LangMedSAM (SAPBERT) on
a single image using different textual prompts that were not seen during training. We also present
qualitative results comparing LiteMedSAM, which uses oracle bounding boxes, with LangMed-
SAM, which relies on textual prompts. For fair comparison, the corresponding ground truth images
and masks are also included. Sample results from the internal test set are shown in Figs[I3]and [T4]
while Figs[T5SHI7]display results from the external test set.
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Figure 5: Box plots of Dice scores for each anatomical structure and pathology across all six models
on the external test set. Each box plot shows the distribution of Dice scores, where the horizontal
line indicates the median, and the lower and upper edges represent the 25th and 75th percentiles,
respectively.
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Figure 7: Box plots of Dice scores for each anatomical structure and pathology across all six models
on the internal test set. Each box plot shows the distribution of Dice scores, where the horizontal
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on the internal test set. Each box plot shows the distribution of Dice scores, where the horizontal
line indicates the median, and the lower and upper edges represent the 25th and 75th percentiles,
respectively.

22



Under review as a conference paper at ICLR 2026

0.8

. 5

Dice Score
o
=
[ ]
=]
b

0.2

0.0

Models
I vedsAm
- [ LiteMedsam

— [ ours (sAPBERT)
I Ours (SAPBERT) w/ Contr:

° &L & &

2
<
S
o
S K3

Figure 11: Box plots of Dice scores for each anatomical structure and pathology across all six models
on the internal test set. Each box plot shows the distribution of Dice scores, where the horizontal
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Figure 12: Segmentation results from LangMedSAM (SAPBERT) on a single MR image from inter-
nal test set using different textual prompts (unseen during training). Ground truth masks are shown
for comparison. The results demonstrate the model’s ability to distinguish between anatomical struc-

tures and pathologies based on the provided text prompts.
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Figure 13: Qualitative comparison of segmentation results on the internal test set between LiteMed-
SAM (using oracle bounding boxes) and LangMedSAM (SAPBERT).
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Figure 14: Qualitative comparison of segmentation results on the internal test set between LiteMed-
SAM (using oracle bounding boxes) and LangMedSAM (SAPBERT).
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Figure 15: Qualitative comparison of segmentation results on the external test set between LiteMed-
SAM (using oracle bounding boxes) and LangMedSAM (SAPBERT).
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Figure 16: Qualitative comparison of segmentation results on the external test set between LiteMed-
SAM (using oracle bounding boxes) and LangMedSAM (SAPBERT).
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Figure 17: Qualitative comparison of segmentation results on the external test set between LiteMed-
SAM (using oracle bounding boxes) and LangMedSAM (SAPBERT).
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