
LogicPro: Improving Complex Logical Reasoning via Program-Guided
Learning

Anonymous ACL submission

Abstract

In this paper, we propose a new data synthe-001
sis method called LogicPro, which leverages002
LeetCode-style algorithm Problems and their003
corresponding Program solutions to synthesize004
Complex Logical Reasoning data in text for-005
mat. First, we synthesize complex reasoning006
problems through source algorithm problems007
and test cases. Then, standard answers and008
intermediate variable outputs are obtained for009
each problem based on standard python solu-010
tions and test cases. Finally, with the guidance011
of code intermediate variables, we synthesize012
the text reasoning process for each reasoning013
problems. Through this method, we can syn-014
thesize data that is difficult, scalable, effective,015
and comes with golden standard answers and016
high-quality reasoning processes. As a result,017
with our 540K synthesized dataset constructed018
solely from 2,360 algorithm problems, our ap-019
proach achieves significant improvements in020
multiple models for the datasets BBH27, Log-021
icBench, DROP, AR-LSAT, and GSM8K, etc.022
outperforming a wide range of existing reason-023
ing datasets.024

1 Introduction025

With the rapid development of artificial intelli-026

gence, Large Language Models (LLMs) (Bi et al.,027

2024; Liu et al., 2024a) demonstrate excellent per-028

formance in reasoning tasks. The success of these029

models is inseparable from the support of large-030

scale and high-quality reasoning data. However,031

data acquisition and processing face numerous chal-032

lenges in the real world. As a viable alternative,033

synthetic data (Wang et al., 2024) can effectively034

alleviate this problem and further enhance (Dubey035

et al., 2024; Adler et al., 2024) the model’s reason-036

ing capabilities.037

Synthetic data (Liu et al., 2024b) has wide ap-038

plications in mathematics and code domains. For039

mathematical data, synthetic data can be gener-040

ated through problem-driven methods such as evol-041

You are given an integer array cards of
length 4. You have four cards, each
containing a number in the range [1, 9].
You should arrange the numbers on these
cards in a mathematical expression using
the operators ['+', '-', '*', '/'] and the
parentheses '(' and ')' to get the value
24. Please give code to solve it.

LeetCode 679. 24 Game

Imagine you are a contestant on a new game
show called "The Magic 24 Points", where your
task is to ... (Game Rules) ... you are given the
cards with numbers 8, 7, 6, 5. Your challenge
is to determine whether it's possible to arrange
these numbers and operations to achieve exactly
24. Can you find a valid expression, or prove
that reaching 24 is impossible with these cards?

Number Game: 24 Points

Expression: (6*(5-(8-7))) = 24. Result: True

Code Reasoning
Text Reasoning

✅ ❌

Figure 1: Left: LeetCode 679. 24 Game - original
algorithm problem and standard Python solution. Right:
Our synthesized complex reasoning problem: 24-point
and g4o-api response.

instruct (Luo et al., 2023a; Zeng et al., 2024), prob- 042

lem restatement (Yu et al., 2023), back-translation 043

(Lu et al., 2024), and few-shot examples (Dalvi 044

et al., 2021), or knowledge-driven methods based 045

on knowledge bases (Dalvi et al., 2021) and con- 046

cept graphs (Tang et al., 2024). For code data, it 047

generates diverse and high-quality instruction data 048

with self-evolutionary methods (Wang et al., 2023; 049

Luo et al., 2023b) or combined with open-source 050

references such as OSS-Instruct (Wei et al., 2024). 051

In the complex logical reasoning domain, there 052

is relatively less research on data synthesis. Previ- 053

ously, some work uses logical proposition-based 054

soft reasoning methods (Tafjord et al., 2021; Clark 055

et al., 2021) to synthesize training data, aiming 056

to improve models’ reasoning ability and inter- 057

pretability (Saeed et al., 2021; Dalvi et al., 2021). 058

Additionally, Sinha et al. (2019) and Tian et al. 059

(2021) use kinship graphs and first-order logic 060

to synthesize person relationship reasoning data 061

and logical entailment reasoning data respectively. 062

More recently, Morishita et al. (2023) using for- 063

mal logic theory, Parmar et al. (2024) covering 25 064

patterns across different logic types, and Morishita 065

1

et al. (2024) utilizing formal language programs to066

synthesise reasoning data.067

Previous methods primarily used propositional068

logic or formal languages as the source of logic.069

Instead, we find that algorithmic questions and pro-070

gramming languages like LeetCode provide a dif-071

ferent source of logic. Algorithmic problems typ-072

ically involve explicit input-output relationships,073

recursive and iterative structures, and operations074

on data structures. All of these constitute a unique075

pattern of reasoning. At the same time, algorithmic076

problems are naturally related to real-world task077

contexts, such as path-planning, data sorting, and078

resource allocation problems, which can often be079

mapped to real-world application scenarios.080

As shown in Figure 1, we discover that while081

an algorithm problem can be easily solved through082

code, LLMs often make mistakes when the same083

problem is transformed into a specific text reason-084

ing question. Inspired by this observation, we pro-085

pose a data synthesis method aimed at generating086

high-quality reasoning problems and reasoning pro-087

cesses by utilizing widely available algorithmic088

problems and their code solutions.089

Our approach consists of data collection and090

three steps. For data collection, we collect a large091

number of existing LeetCode algorithmic problems092

and their code solutions, while collecting or con-093

structing diverse test cases. First, by combining094

the original algorithm problem with test cases, it095

is transformed into a specific text reasoning prob-096

lem. Then, the original standard code solution is097

combined with the test cases to generate the cor-098

responding python code solution. By running the099

code, the final output result and the values of key100

intermediate variables can be obtained. Finally,101

based on the code output, the model is guided to102

synthesize the complete reasoning process for the103

current problem.104

This data synthesis method offers significant ad-105

vantages: sufficient difficulty, scalability, effective-106

ness, and high-quality reasoning paths. Specifi-107

cally, the sufficient difficulty is reflected in mod-108

els performing worse on LogicPro compared to109

other baseline data; scalability was demonstrated110

by collecting more algorithmic problems and con-111

structing more test cases to further scale the data;112

effectiveness is shown through performance im-113

provements across multiple models on multiple114

Out-of-Distribution (OOD) benchmarks.115

Our main contributions are summarized as fol-116

lows:117

1. We propose a novel data synthesis method 118

called LogicPro, which uses LeetCode-style 119

data as seeds to synthesize text-formatted com- 120

plex logical data through algorithmic prob- 121

lems and program solution. 122

2. With this approach, we can synthesise a 540K 123

dataset from just 2,360 algorithmic problems 124

that is sufficiently difficult, scalable, and ef- 125

fective, as well as having standard answer and 126

high-quality reasoning process. 127

3. The experimental results show that our ap- 128

proach achieves significant improvements 129

in multiple models for the datasets BBH27, 130

LogicBench, DROP, AR-LSAT, and GSM8K, 131

etc. outperforming a wide range of existing 132

datasets. 133

2 Approach 134

In this section, we elaborate on the LogicPro data 135

synthesis process. It mainly includes: data collec- 136

tion and construction of test cases (Section 2.1), 137

how to synthesize textual complex logical reason- 138

ing problems (Section 2.2), how to obtain interme- 139

diate variable outputs from code (Section 2.3), and 140

how to synthesize high-quality reasoning processes 141

based on intermediate variable outputs and synthe- 142

sized questions (Section 2.4). An overview of our 143

approach is shown in Figure 2. 144

2.1 Data Collection 145

In the data collection phase, source Leet data was 146

collected test cases were constructed. We collect 147

2,360 official LeetCode problems as initial seeds 148

for LogicPro’s synthetic data. However, due to the 149

limited number of test cases in the original data, 150

GPT-4 is used to reconstruct test cases for each 151

question. Specifically, we prompt GPT-4 to gen- 152

erate 150 test cases for each LeetCode problem, 153

sample three times, and then perform consolida- 154

tion, deduplication, and filtering on the three re- 155

sults. Eventually, 2,360 LeetCode algorithm prob- 156

lems were compiled with standard Python solu- 157

tions, each containing up to 300 test cases. 158

2.2 Step 1: Construct Complex Reasoning 159

Problem 160

In the first step, we synthesize complex reasoning 161

problems based on the original algorithm problems 162

and test cases. As shown in Figure 3, the input 163

includes the source LeetCode algorithm problems 164

2

Data Collection

LC1 LC70
LC

2360

......LC2

Input

Output

LogicPro

Step 3: Program-Guided Reason

Test Cases

Python Solution

Algorithmic Problem

You are climbing a staircase. It takes
"n" steps to reach the top. Each time
you can either climb "1" or "2" steps.
In how many distinct ways can you
climb to the top?

LeetCode 70: Climbing Stairs

n=17

Fail

Execution CheckPass

...
Step 1: a = 1, b = 2
Step 3: a = 1, b = 2
Step 4: a = 2, b = 3
Step 5: a = 3, b = 5
Step 6: a = 5, b = 8
...
Step 12: a = 89, b = 144
Step 13: a = 144, b = 233
Step 14: a = 233, b = 377
Step 15: a = 377, b = 610
Step 16: a = 610, b = 987
Step 17: a = 987, b = 1597
Final values: a = 1597, b = 2584
The final answer is 2584.

...

n=26

n=27

n=28

n=17

To find the number of distinct ways to climb staircase with

17 steps using 1-step and 2-step climbs, you can recognize

that this is a Fibonacci-like sequence problem.

Define f(n) as the number of ways to reach the n-th step.

The recurrence relation is:

f(n) = f(n - 1) + f(n - 2)

This relation holds because to reach the n-th step, you can

either come from the (n-1)-th step (with a 1-step climb) or

from the (n-2)-th step (with a 2-step climb).

...

Using these, calculate up to f(17):

f(3) = f(2) + f(1) = 2 + 1 = 3

f(4) = f(3) + f(2) = 3 + 2 = 5

...

f(16) = f(15) + f(14) = 987 + 610 = 1597

f(17) = f(16) + f(15) = 1597 + 987 = 2584

Thus, there are 2584 distinct ways to climb to the top of

the staircase with 17 steps.

...

n=17

n=26
n=27

n=28

Step 1: Construct Complex Reasoning Problem

Solvability CheckProblem-Program Consistency Check

...

Step 2: Obtain Intermediate Variable From Program

...

n=2
7

Imagine you are climbing a staircase with 26
steps. You can climb either 1 or 2 steps at a
time. How many distinct ways can you climb to
the top of the staircase, considering all
possible combinations of 1-step and 2-step
climbs?

n=2
6...

n=2
8

Imagine you are on a fitness challenge where you
need to climb a staircase to reach the top. The
staircase has a total of 17 steps. Each time you can
either climb 1 step or 2 steps. In how many distinct
ways can you reach the top of the staircase by the
end of the challenge ? Consider all combinations of
1-step and 2-step moves.

n=1
7

Figure 2: An overview of LogicPro (Example: LeetCode-70 Climbing Stairs): 1. Construct Complex Reason
Problem (Section 2.2 Step 1), based on source algorithm problems and test cases to synthesize complex reasoning
problems. 2. Obtain Intermediate Variable From Program (Section 2.3 Step 2) 3. Program-Guided Reason (Section
2.4 Step 3), synthesizing the final Input-Output from complex reasoning problems and intermediate variable outputs.

Step 1:
... rewrite the algorithmic question to a text logical
reasoning problem ...
1. incorporate the test case into ... 2.
3. randomly introduce some background information
to diversify the question ...
Input:
{souce_algorithmic_problem}
{test_case}
Output:
{synthetic_complex_reasoning_problem}

Figure 3: Schematic Diagram of Step 1.

and specific test case. In this process, the LLM165

needs to combine test cases and algorithm prob-166

lems, while randomly adding some background167

information, to synthesize a complex reasoning168

problem. Referring to the example in Figure 2, the169

model combine LeetCode Problem 70 "Climbing170

Stairs" and the test case input n=17 into a specific171

text reasoning problem.172

For the data flow in this step, 699K complex173

reasoning problems in text format are generated.174

Subsequently, after conducting consistency check175

(5K+) and solvability check, we select 595K quali-176

fied problems for the next step.177

Problem-Program Consisitency Check The 178

purpose of this module is to examine the consis- 179

tency between code and text reasoning problem. 180

In the second step, we rewrite the original stan- 181

dard Python solution and generate test case spe- 182

cific python code. To ensure consistency between 183

the rewritten Python code and the text reasoning 184

problems generated in the first step, we perform 185

consistency checks on the code and problems. Af- 186

ter inspection, 5K+ data entries are filtered out. 187

Prompt is in Appendix D.2 Figure 12. 188

Solvability Check This check module is de- 189

signed to check whether the synthesised questions 190

are solvable. In the first step, a large number of 191

textual reasoning problems were generated by com- 192

bining the original LeetCode problems with the 193

test cases generated by GPT-4. However, some 194

of these problems are unsolvable or meaningless. 195

This is mainly because the test cases generated by 196

GPT-4 are not entirely perfect. Although GPT-4 197

ensures that the generated test cases comply with 198

the problem requirements and code format, these 199

test cases may still deviate from the core testing 200

points of the problems, or the sample length is too 201

long, resulting in unsolvable synthesized problems. 202

After detection, we have screened out and filtered 203

3

98K unsolvable problems. Prompt is in Appendix204

D.2 Figure 13.205

2.3 Step2: Obtain Intermediate Variable from206

Program207

Step 2:
...provide the test case specifc Python code
solution ...
1. Print the final result ... 2. ...
3. ... print key intermediate variables ...
Input:
{source_python_solution}
{test_case}
{synthetic_complex_reasoning_problem}
Output:
{test_case_specific_code_with_process_print}

Figure 4: Schematic Diagram of Step 2.

In the second step, we input Python code solu-208

tions, test cases, and synthesized reasoning prob-209

lems to generate test case specific python code. As210

shown in Figure 4, we require the model to gener-211

ate python code solutions related to the test cases212

and ensure that the code prints the final result to the213

result variable. In addition, to simulate the human214

reasoning process, the model is required to print215

key intermediate variables in the code.216

For example, for the climbing stairs problem217

shown in Figure 2, the model needs to generate218

python code for the specific test case of climbing 17219

stairs, and print intermediate variables in the code,220

namely the calculation process of the Fibonacci se-221

quence at each step. Finally, by executing the code,222

the output of the intermediate variables can be ob-223

tained, which will assist in the reasoning synthesis224

for the next step.225

For the data flow of this step, the final answer226

to each problem is obtained by running the com-227

bined code that integrates the test cases with the228

standard Python solution. Meanwhile, we modify229

the code to print important intermediate variable230

values. Then, through execution check, we finally231

obtain 544K data points, including standard an-232

swers and code intermediate variable outputs for233

each problem.234

Execution Check This check module is designed235

to detect errors that occur during code execution.236

In the step 2, the output of intermediate variables237

in the code was obtained by modifying the original238

standard Python solution For these errors, we per-239

form data filtering, which can be divided into two240

categories: The first category involves modified 241

code that encounters errors during execution and 242

still fails to run properly after multiple sampling 243

attempts; The second category involves code that 244

executes correctly but still contains error messages 245

in the intermediate variable outputs due to the use 246

of try-catch functionality. After detection, these 247

two types of issues result in the filtering of 50K 248

error codes. 249

2.4 Step3: Program-Guided Reasoning 250

Step 3:
... analyze and identify the key intermediate
variables ... to solve complex logical reasoning
problems. ... modify the code to print these key
intermediate variables to simulate the step-by-step
process of problem-solving as a human would do.
Input:
{synthetic_complex_reasoning_problem}
{intermediate_variable_output}
Output:
{final_reasoning_process}

Figure 5: Schematic Diagram of Step 3.

In the third step, the input consists of the com- 251

plex reasoning problem generated in the first step 252

and the intermediate variable output obtained in the 253

second step. These elements are used to synthesize 254

the final reasoning process. As shown in Figure 5, 255

the model (Llama3.1-70B-Instruct) answers syn- 256

thesized complex reasoning questions by analyzing 257

intermediate variable data. 258

Taking the example in Figure 2, based on the 259

calculation process of the Fibonacci equation in the 260

intermediate variable output, the model success- 261

fully synthesized a high-quality reasoning process 262

as the final output of LogicPro data. The goal of 263

this step is to generate golden reasoning processes 264

with logic and accuracy, thereby ensuring the com- 265

pleteness and credibility of the reasoning. 266

For the data flow in this step, based on the 267

text-format complex reasoning problems and corre- 268

sponding code intermediate variable outputs ob- 269

tained from previous steps, we use this impor- 270

tant intermediate variable information to guide the 271

model in generating high-quality reasoning pro- 272

cesses for complex reasoning problems. Finally, a 273

high-quality resoning quetion-answer datasets with 274

540k input-output pairs is obtained. 275

4

3 Experiments276

3.1 Experimental Setup277

3.1.1 Training278

This section elaborates on the experimental settings279

related to training. We introduce: (1) the baseline280

datasets used for comparison with our LogicPro;281

(2) experimental design to verify the effect of dif-282

ferent synthetic data. (3) the model configurations283

used in training and analysis; (4) the parameters284

and implementation details of the training process.285

Baseline Data To comprehensively evaluate the286

effectiveness of our method, we select multiple287

mainstream logical reasoning data synthesis meth-288

ods as baseline comparisons, including RuleTakers289

(Clark et al., 2021), LogicNLI (Tian et al., 2021),290

ProofWriter (Tafjord et al., 2021), CLUTRR (Sinha291

et al., 2019), RuleBert (Saeed et al., 2021), Log-292

icBench (Parmar et al., 2024), and FLD (Morishita293

et al., 2023). The detailed information of these294

datasets can be found in Appendix B.1 Table 5.295

Experimental design To better simulate the ac-296

tual training scenarios of LLMs, we use two types297

of base data: first, 100K general domain data ex-298

tracted from OpenHermes-2.5 (Teknium, 2023),299

and second, LogiCoT (Liu et al., 2023) as the spe-300

cialized base data for logical reasoning domain.301

By mixing these different base data with baseline302

data and our synthetic data for training separately,303

we systematically analysed the impact of different304

synthetic data on model performance.305

Models We conduct systematic experimental re-306

search on foundation models of various scales and307

architectures. The main experiments employ four308

representative models: Qwen-7B and Llama3-8B309

as small-scale representatives, and Qwen2-72B and310

Llama3-70B as large-scale model representatives.311

For in-depth understanding of model behaviors, we312

select Qwen2-7B and Llama-8B for fine-grained313

analysis experiments.314

Training Details In terms of training implemen-315

tation, we use Megatron-LM as the training frame-316

work with the following configurations: a cosine317

learning rate schedule is adopted with an initial318

learning rate of 1e-5, a warmup ratio of 0.03, and319

the learning rate decays to 0; the maximum se-320

quence length is set to 8192, with a global batch321

size of 128, and the number of training epochs is322

set to 3. All experiments are completed with Su-323

pervised Fine-tuning (SFT) on a computing cluster 324

consisting of 32 NVIDIA A100 GPUs. 325

3.1.2 Evaluation 326

This section details the experimental setup asso- 327

ciated with the evaluation. We present: (1) the 328

benchmarks used to evaluate the different synthetic 329

data; and (2) the implementation details of the eval- 330

uation process. 331

Benchmarks To comprehensively evaluate the 332

model’s complex logical reasoning capabilities, 333

ten representative benchmark datasets for testing 334

are selected , including BBH27 (Suzgun et al., 335

2023), LogicBench (Parmar et al., 2024), DROP 336

(Dua et al., 2019), AR-LSAT (Zhong et al., 2021), 337

Boardgamqa (Kazemi et al., 2024), FOLIO (Han 338

et al., 2022), GSM8K (Cobbe et al., 2021), Multi- 339

LogicEval (Patel et al., 2024), ProofWriter (Tafjord 340

et al., 2021), and MATH (Hendrycks et al., 2020). 341

Notably, for our synthetic data LogicPro, all bench- 342

mark are out-of-domain tests. In comparison, some 343

baseline data, same as some benchmark, are syn- 344

thesized based on propositional logic or first-order 345

logic. Additionally, LogicBench’s training and 346

test sets are completely in-domain. Furthermore, 347

BBH, as a core benchmark for evaluating models’ 348

complex logical reasoning capabilities, includes 349

27 challenging reasoning tasks. Based on this, we 350

apply weights to all data subsets to calculate the 351

final average score. Due to space limitations, only 352

the evaluation results of seven benchmarks are pre- 353

sented in the main text, with complete results avail- 354

able in Appendix B.2 Table 6. 355

Evaluation Details In the inference phase, we 356

use the vLLM (Kwon et al., 2023) framework for 357

deployment. The inference configuration adopts 358

greedy decoding strategy and sets the maximum 359

generation length to 4096 tokens. For the evalua- 360

tion of model output, we adopt Qwen-2.5-72B as 361

the model evaluator to score. The specific evalua- 362

tion prompt template can be found in Figure 14. 363

3.2 Main Results 364

Table 1 shows the main results where LogicPro 365

outperforms previous synthesis methods across 366

multiple benchmarks. On the representative Big 367

Bench Hard benchmark, LogicPro improves the 368

average performance by 2.3% - 4.7% compared to 369

the previous best baseline across different model 370

type and scales, and shows at least 10% improve- 371

ment over general baseline data. On LogicBench 372

5

Model BBH27 LogicBench DROP ARLSAT #BoardQA FOLIO GSM8K #Avg

Qwen2-7B-RuleTakers 45.4 59.1 65.7 16.5 42.2 44.6 80.9 45.8
Qwen2-7B-LogicNLI 43.3 71.3 67.4 17.8 45.3 41.7 81.6 45.0
Qwen2-7B-ProofWriter 40.8 68.6 64.3 17.0 36.9 36.3 80.9 43.2
Qwen2-7B-CLUTRR 43.0 72.0 64.0 17.0 51.9 41.2 80.4 45.0
Qwen2-7B-RuleBert 46.2 69.1 67.4 16.5 43.8 40.7 81.7 47.3
Qwen2-7B-LogicBench 44.7 *95.9 67.4 17.8 41.4 38.7 82.1 46.6
Qwen2-7B-FLD 42.0 69.5 68.3 14.8 34.9 45.6 80.0 43.8

Qwen2-7B-LogicPro (ours) 50.9 73.5 68.3 19.1 48.1 46.1 81.5 51.2

Llama3-8B-RuleTakers 38.5 59.9 65.9 12.6 47.3 43.3 67.9 40.3
Llama3-8B-LogicNLI 40.4 54.0 65.3 12.6 41.0 56.0 69.3 41.8
Llama3-8B-ProofWriter 37.2 62.1 66.4 15.2 31.3 47.8 69.1 39.5
Llama3-8B-CLUTRR 40.5 61.1 66.6 10.4 43.7 56.0 69.5 42.2
Llama3-8B-RuleBert 34.7 48.8 66.5 15.2 43.6 51.5 68.9 37.4
Llama3-8B-LogicBench 41.0 *93.5 66.2 10.9 38.6 62.7 69.8 43.7
Llama3-8B-FLD 35.7 67.8 61.2 13.5 39.1 50.0 64.6 38.2

Llama3-8B-LogicPro (ours) 45.0 67.9 68.8 15.2 44.3 48.3 74.2 46.2

Qwen2-72B-RuleTakers 61.3 72.4 76.6 19.6 61.0 49.3 88.5 61.3
Qwen2-72B-LogicNLI 61.7 80.7 77.0 21.3 60.4 58.2 87.3 61.6
Qwen2-72B-ProofWriter 61.8 75.5 77.2 16.5 55.0 44.0 88.0 61.5
Qwen2-72B-CLUTRR 68.1 79.0 78.4 24.4 61.0 59.7 89.4 66.7
Qwen2-72B-RuleBert 67.8 74.1 76.5 19.6 55.2 62.7 88.0 66.5
Qwen2-72B-LogicBench 67.1 *97.0 77.9 24.8 57.3 60.5 88.4 67.2
Qwen2-72B-FLD 65.4 72.4 76.3 17.0 45.5 53.7 86.9 63.6

Qwen2-72B-LogicPro (ours) 72.4 81.7 79.6 27.4 66.4 55.2 89.1 70.4

Llama3-70B-RuleTakers 51.5 69.1 75.6 19.1 61.5 53.9 86.8 52.7
Llama3-70B-LogicNLI 58.5 69.9 78.0 17.8 58.5 58.3 84.5 57.8
Llama3-70B-ProofWriter 55.3 31.9 75.3 15.2 58.7 51.0 65.4 53.2
Llama3-70B-CLUTRR 57.8 71.8 74.0 20.9 62.1 61.3 75.1 57.3
Llama3-70B-RuleBert 56.0 68.7 75.0 13.9 51.5 51.0 85.4 55.1
Llama3-70B-LogicBench 61.4 *93.2 78.4 21.3 58.7 50.0 84.6 60.8
Llama3-70B-FLD 57.2 74.4 75.0 16.5 46.3 56.9 85.5 56.4

Llama3-70B-LogicPro (ours) 63.7 72.7 78.8 22.3 65.0 54.2 87.6 62.4

Table 1: Main results of LogicPro with baseline data. Where #BoardQA represents BoardgameQA and #Avg
represents Average. Bold denotes the best score in that baseline, underline denotes the second highest score, and *
denotes same-distribution data. See Table 6 for more details.

(a benchmark measuring propositional logic capa-373

bilities), LogicPro achieves the best performance374

except when LogicBench itself is used as the train-375

ing set. On FOLIO (a benchmark measuring first-376

order logic capabilities), except for Qwen2-7B, the377

performance of the other three models trained with378

LogicPro is inferior to other baseline data. This379

may be because some baseline synthetic data is es-380

sentially generated based on first-order logic, mak-381

ing their data distribution closer to FOLIO, leading382

to better performance. On GSM8K (mathematical383

reasoning benchmark), different synthetic data has384

relatively minor impact on model performance. On385

OOD benchmarks such as DROP (reading com-386

prehension reasoning) and ARLSAT (law school387

admission test reasoning), LogicPro also demon-388

strates advantages across multiple model founda-389

tions, further validating its performance on out-of- 390

distribution tasks. The weighted average results 391

across all benchmarks show that on the Qwen2 392

foundation, 7B and 72B models improve by 3.9%- 393

8% and 3.1%-9.1% respectively compared to base- 394

lines; on the Llama3 foundation, 8B and 70B mod- 395

els improve by 2.5%-8.8% and 1.6%-9.7% respec- 396

tively compared to baselines. 397

Additionally, for different scale models, we find 398

that our LogicPro still shows advantages on large- 399

scale models. This indicates that although large- 400

scale models possess stronger reasoning capabil- 401

ities, our data still provides important value for 402

improving their performance. It is speculated that 403

this may be related to the high difficulty level of 404

LogicPro itself, with detailed analysis in section 405

4.4. 406

6

4 Analysis407

4.1 Ablation Study408

Qwen2-7B BBH27 LogicBench #Avg

Source_LeetCode 41.0 63.4 42.2
LogicProw/o Inter-Var 48.2+7.2 69.6+6.2 49.0+6.8

LogicProw. Inter-Var 50.9+9.9 73.5+10.1 51.2+9.0

Llama3-8B BBH27 LogicBench #Avg

Source_LeetCode 36.6 51.4 38.5
LogicProw/o Inter-Var 44.0+7.4 63.6+12.2 45.1+6.6

LogicProw. Inter-Var 45.0+8.4 67.9+16.5 46.2+7.7

Table 2: Ablation study. Source_LeetCode is the source
2360 LeetCode algorithm questions and code solu-
tion. LogicProw/o Inter-Var and LogicProw. Inter-Var indi-
cate whether the construction process uses intermediate
variables. In other words, LogicProw/o Inter-Var is a di-
rect distillation of the text problems in LogicPro and
LogicProw. Inter-Var is our final LogicPro data. Llama3.1-
70B-Instruct is the model to distill and generate final
reasoning trajectories.

As shown in Table 2, we conduct ablation studies409

to validate LogicPro’s effectiveness in synthesizing410

questions and generating high-quality reasoning411

processes. First, we compare Source_LeetCode412

with LogicProw/o Inter-Var to analyze the effect413

on synthesizing text reasoning questions. For414

BBH, our method improves the performance of415

Qwen2-7B and Llama3-8B by 7.21% and 7.34%416

respectively, with significant improvements of417

6.8% and 6.6% on the Average metric. Sub-418

sequently, we compare LogicProw/o Inter-Var with419

LogicProw. Inter-Var to analyze the effect of code420

intermediate variables in the reasoning process.421

The results show that introducing code interme-422

diate variables as guidance can further improve423

data quality compared to directly distilling syn-424

thesized questions. Specifically, compared to425

LogicProw/o Inter-Var, it achieves improvements of426

2.68% and 1.04% on BBH, and improvements of427

2.2% and 1.1% on the Average metric.428

4.2 Performance Gain on All Baseline Data429

As shown in Table 3, we combine all baseline data430

to evaluate the effect of introducing LogicPro. The431

experimental results show that on top of integrating432

all baseline data, the addition of LogicPro can fur-433

ther improve model performance. On the BBH task,434

it brings improvements of 5.6% and 4.7% respec-435

tively, while for average performance, it improves436

by 5.2% and 3.6% respectively.437

Qwen2-7B BBH27 LogicBench #Avg

All_Baseline 43.1 92.8 47.1
All* + LogicPro 48.8+5.7 96.3+3.5 52.3+5.2

Llama3-8B BBH27 LogicBench #Avg

All_Baseline 42.9 94.3 47.6
All* + LogicPro 47.6+4.7 95.0+0.7 51.2+3.6

Table 3: Results of continuous performance improve-
ment on existing data. All_Baseline represents that we
mix all baseline data from the main experiment. All* +
LogicPro represents that we further mix LogicPro data
for comparison.

It is worth emphasizing that our goal is not to 438

propose a method to replace existing synthetic 439

data, but rather to introduce a novel data synthesis 440

strategy. Different from previous synthetic data, 441

our data’s logic comes from LeetCode algorithm 442

problems and programming languages, rather than 443

propositional logic and formal languages. As the 444

results above, our data complements existing data 445

to further enhance the model’s complex reasoning 446

capabilities. 447

4.3 Data Scaling Analysis 448

0 100 200 300 400 500

42

44

46

48

50

Ac
cu

ra
cy

 (%
)

Big Bench Hard

Data
Leetcode Problems
Test cases

0 100 200 300 400 500
Data-Amount (K)

42

44

46

48

50

Ac
cu

ra
cy

 (%
)

Average

Data
Leetcode Problems
Test cases

Figure 6: The results of the three scaling methods,
Data, Leetcode Problems and Test Cases, on BBH
and Average. Data means we randomly sample 10K-
50K-100K∼500K-540K from LogicPro; Leetcode Prob-
lemsmeans that we sample 2%-10%-20%∼90%-100%
according to the number of algorithmic problems; Test
cases means that we select all algorithmic problems
and sample the number of test cases for each problem
according to 2%-10%-20%∼90%-100%.

In Figure 6, we demonstrate the impact of three 449

data scaling methods on BBH and Average metrics 450

to analyze how the total data amount, number of 451

algorithm problems, and number of test cases in 452

7

Model #Rule LogicNLI #Proof CLUTRR RuleBert LogicBench FLD LogicPro

Qwen2-7B-Instruct 73.0 62.8 64.5 46.3 53.6 74.5 54.1 39.3
Qwen2-72B-Instruct 78.3 78.9 73.8 72.0 54.1 77.3 69.1 46.3
Llama3-8B-Instruct 69.0 63.3 62.1 67.0 47.8 75.5 51.5 41.2
Llama3-70B-Instruct 80.6 79.6 78.9 83.8 65.5 82.8 64.4 55.6

Average 75.2 71.2 69.8 67.3 55.2 77.5 59.8 45.6

Table 4: Results from different baseline data and LogicPro’s difficulty comparisons on four open source models.
#Rule represents RuleTakers and #Proof represents ProofWriter. The metrics for the results in the table are accuracy
rates, and smaller is better.

data synthesis methods affect model performance.453

Overall, the Data scaling method shows a steady454

upward trend, indicating that the synthesized data455

after mixing effectively improves model perfor-456

mance, while also revealing potential for further457

improvement through expanded data scale.458

In contrast, the Leetcode Problems scaling459

method shows more fluctuation. As the number of460

Leetcode problems increases from 30% to 100%,461

both BBH and Average metrics display multiple462

patterns of decline followed by increase. This may463

be due to distributional differences in the data gen-464

erated from different algorithm problems, leading465

to fluctuations in the mixed data results.466

The Test Cases method generally shows an up-467

ward trend, but model performance declines after468

the number of test cases increases to 80%. This469

may be attributed to two factors: First, there is470

diminishing marginal utility of test cases. With471

a fixed number of algorithm problems, simply in-472

creasing test cases may reach a performance im-473

provement bottleneck, and only further increasing474

the number of algorithm problems can effectively475

breakthrough. Second, the impact of test case qual-476

ity: The large number of testcases directly gen-477

erated by GPT4 are limited in quality. Although478

increasing quantity brings some improvement, con-479

structing higher-quality test cases is still needed for480

more significant optimization.481

In summary, to further improve the performance482

of the model, it is necessary to enhance the qual-483

ity of test cases while increasing the number of484

algorithmic problems. This can break through the485

bottleneck of data expansion. On this basis, the486

model’s capabilities can be continuously enhanced.487

4.4 Difficulty Comparison with Baseline Data488

As mentioned above, LogicPro is a sufficiently diffi-489

cult dataset. To further validate this point, in Table490

4 we compare the performance between various491

baseline datasets and LogicPro across four open-492

source models. Specifically, we randomly sample 493

5K samples from each baseline dataset and Log- 494

icPro for evaluation, where LogicPro uses a uni- 495

form sampling strategy to ensure each algorithm 496

problem is fairly selected. 497

The results show that four open-source models 498

Qwen2-7B-Instruct, Qwen2-72B-Instruct, Llama3- 499

8B-Instruct, and Llama3-70B-Instruct perform 500

quite well on existing baseline datasets, with aver- 501

age accuracy exceeding 50%, and some datasets 502

even reaching over 70%. However, their perfor- 503

mance drops significantly on the LogicPro dataset, 504

with an average accuracy of only 45.6%. Notably, 505

as mentioned in the "Main Results" section, Log- 506

icPro still poses significant challenges for Large 507

Language Models, which may explain why there 508

is still considerable space for improvement in their 509

performance on large-scale models. 510

5 Conclusion and Future Work 511

This paper presents a new data synthesis method 512

called LogicPro. This approach utilizes LeetCode- 513

style algorithm problems and solutions to gener- 514

ate complex logical reasoning data. By synthe- 515

sizing a 540K dataset from just 2,360 seed prob- 516

lems, our approach ensures scalability, difficulty, 517

and high-quality reasoning paths. Results show 518

that LogicPro enhances model performance across 519

multiple reasoning benchmarks, including BBH27, 520

LogicBench, DROP, AR-LSAT, and GSM8K, out- 521

performing a wide range of existing datasets. 522

For future work, considering the vast number 523

of algorithmic problems in the real world, such as 524

problems from Luogu, ACM competitions, and var- 525

ious online judges, we can collect more algorithmic 526

problem data to further expand LogicPro’s dataset. 527

Additionally, our data includes both result signals 528

(code execution results as standard answers) and 529

process signals (intermediate variables during code 530

execution), which may provide new insights for 531

reinforcement learning. 532

8

Limitations533

Our method explores an algorithm based on534

LeetCode-style approach to synthesize complex535

logical reasoning data. In the future, one of our536

improvement directions is to build more compre-537

hensive and diverse test cases. However, the gener-538

ation of test cases itself is an independent research539

field. More advanced test generation techniques540

are expected to further enhance the quality and541

generalization ability of synthetic datasets. Further-542

more, although LeetCode’s official 2,360 problems543

have achieved significant results, there are still nu-544

merous high-quality algorithm problems in the real545

world, such as Luogu, ACM competitions, and546

various Online Judge (OJ) platforms. Meanwhile,547

new algorithm problems continue to emerge. If548

these resources can be fully utilized, the quality549

and coverage of synthetic data will be further en-550

hanced, leading to a larger data scale and better551

performance.552

Ethics Statement553

This study is based on data from 2360 algorithmic554

questions on the fully open-source LeetCode plat-555

form. All data are from publicly available sources556

and do not involve any personal privacy informa-557

tion. Our study strictly adheres to the terms of use558

and privacy policies of the platforms from which559

the data was sourced. We ensure that the rights560

of all users and platform regulations are respected561

during data collection and processing. Through562

the use of publicly available data, we aim to ad-563

vance academic research and education, and pro-564

mote progress in the field of algorithms and com-565

puter science566

References567

Bo Adler, Niket Agarwal, Ashwath Aithal, Dong H Anh,568
Pallab Bhattacharya, Annika Brundyn, Jared Casper,569
Bryan Catanzaro, Sharon Clay, Jonathan Cohen, et al.570
2024. Nemotron-4 340b technical report. arXiv571
preprint arXiv:2406.11704.572

Xiao Bi, Deli Chen, Guanting Chen, Shanhuang Chen,573
Damai Dai, Chengqi Deng, Honghui Ding, Kai Dong,574
Qiushi Du, Zhe Fu, et al. 2024. Deepseek llm: Scal-575
ing open-source language models with longtermism.576
arXiv preprint arXiv:2401.02954.577

Peter Clark, Oyvind Tafjord, and Kyle Richardson. 2021.578
Transformers as soft reasoners over language. In Pro-579
ceedings of the Twenty-Ninth International Confer-580
ence on International Joint Conferences on Artificial581
Intelligence, pages 3882–3890.582

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, 583
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias 584
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro 585
Nakano, et al. 2021. Training verifiers to solve math 586
word problems. arXiv preprint arXiv:2110.14168. 587

Bhavana Dalvi, Peter Jansen, Oyvind Tafjord, Zhengnan 588
Xie, Hannah Smith, Leighanna Pipatanangkura, and 589
Peter Clark. 2021. Explaining answers with entail- 590
ment trees. In Proceedings of the 2021 Conference 591
on Empirical Methods in Natural Language Process- 592
ing, pages 7358–7370. 593

Dheeru Dua, Yizhong Wang, Pradeep Dasigi, Gabriel 594
Stanovsky, Sameer Singh, and Matt Gardner. 2019. 595
Drop: A reading comprehension benchmark requir- 596
ing discrete reasoning over paragraphs. In Proceed- 597
ings of the 2019 Conference of the North American 598
Chapter of the Association for Computational Lin- 599
guistics: Human Language Technologies, Volume 1 600
(Long and Short Papers), pages 2368–2378. 601

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, 602
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman, 603
Akhil Mathur, Alan Schelten, Amy Yang, Angela 604
Fan, et al. 2024. The llama 3 herd of models. arXiv 605
preprint arXiv:2407.21783. 606

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon, 607
Pengfei Liu, Yiming Yang, Jamie Callan, and Gra- 608
ham Neubig. 2023. Pal: Program-aided language 609
models. In International Conference on Machine 610
Learning, pages 10764–10799. PMLR. 611

Simeng Han, Hailey Schoelkopf, Yilun Zhao, Zhent- 612
ing Qi, Martin Riddell, Wenfei Zhou, James Coady, 613
David Peng, Yujie Qiao, Luke Benson, et al. 2022. 614
Folio: Natural language reasoning with first-order 615
logic. arXiv preprint arXiv:2209.00840. 616

Yilun Hao, Yang Zhang, and Chuchu Fan. 2024. Plan- 617
ning anything with rigor: General-purpose zero-shot 618
planning with llm-based formalized programming. 619
arXiv preprint arXiv:2410.12112. 620

Ioannis Hatzilygeroudis and Jim Prentzas. 2004. Neuro- 621
symbolic approaches for knowledge representation 622
in expert systems. International Journal of Hybrid 623
Intelligent Systems, 1(3-4):111–126. 624

Joy He-Yueya, Gabriel Poesia, Rose Wang, and Noah 625
Goodman. 2023. Solving math word problems by 626
combining language models with symbolic solvers. 627
In The 3rd Workshop on Mathematical Reasoning 628
and AI at NeurIPS’23. 629

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul 630
Arora, Steven Basart, Eric Tang, Dawn Song, and 631
Jacob Steinhardt. 2020. hendrycks2measuring. Sort, 632
2(4):0–6. 633

Yiming Huang, Xiao Liu, Yeyun Gong, Zhibin Gou, 634
Yelong Shen, Nan Duan, and Weizhu Chen. 2024. 635
Key-point-driven data synthesis with its enhance- 636
ment on mathematical reasoning. arXiv preprint 637
arXiv:2403.02333. 638

9

Mehran Kazemi, Quan Yuan, Deepti Bhatia, Najoung639
Kim, Xin Xu, Vaiva Imbrasaite, and Deepak Ra-640
machandran. 2024. Boardgameqa: A dataset for641
natural language reasoning with contradictory infor-642
mation. Advances in Neural Information Processing643
Systems, 36.644

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying645
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.646
Gonzalez, Hao Zhang, and Ion Stoica. 2023. Effi-647
cient memory management for large language model648
serving with pagedattention. In Proceedings of the649
ACM SIGOPS 29th Symposium on Operating Systems650
Principles.651

Zenan Li, Zhi Zhou, Yuan Yao, Xian Zhang, Yu-Feng652
Li, Chun Cao, Fan Yang, and Xiaoxing Ma. 2024.653
Neuro-symbolic data generation for math reasoning.654
In The Thirty-eighth Annual Conference on Neural655
Information Processing Systems.656

Aixin Liu, Bei Feng, Bin Wang, Bingxuan Wang,657
Bo Liu, Chenggang Zhao, Chengqi Dengr, Chong658
Ruan, Damai Dai, Daya Guo, et al. 2024a.659
Deepseek-v2: A strong, economical, and efficient660
mixture-of-experts language model. arXiv preprint661
arXiv:2405.04434.662

Hanmeng Liu, Zhiyang Teng, Leyang Cui, Chaoli663
Zhang, Qiji Zhou, and Yue Zhang. 2023. Logicot:664
Logical chain-of-thought instruction tuning. In Find-665
ings of the Association for Computational Linguistics:666
EMNLP 2023, pages 2908–2921.667

Ruibo Liu, Jerry Wei, Fangyu Liu, Chenglei Si, Yanzhe668
Zhang, Jinmeng Rao, Steven Zheng, Daiyi Peng, Diyi669
Yang, Denny Zhou, et al. 2024b. Best practices and670
lessons learned on synthetic data for language models.671
arXiv preprint arXiv:2404.07503.672

Donald W Loveland. 2016. Automated theorem proving:673
A logical basis. Elsevier.674

Zimu Lu, Aojun Zhou, Houxing Ren, Ke Wang,675
Weikang Shi, Junting Pan, Mingjie Zhan, and Hong-676
sheng Li. 2024. Mathgenie: Generating synthetic677
data with question back-translation for enhancing678
mathematical reasoning of llms. arXiv preprint679
arXiv:2402.16352.680

Haipeng Luo, Qingfeng Sun, Can Xu, Pu Zhao, Jian-681
guang Lou, Chongyang Tao, Xiubo Geng, Qingwei682
Lin, Shifeng Chen, and Dongmei Zhang. 2023a. Wiz-683
ardmath: Empowering mathematical reasoning for684
large language models via reinforced evol-instruct.685
arXiv preprint arXiv:2308.09583.686

Ziyang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xiubo687
Geng, Wenxiang Hu, Chongyang Tao, Jing Ma, Qing-688
wei Lin, and Daxin Jiang. 2023b. Wizardcoder:689
Empowering code large language models with evol-690
instruct. In The Twelfth International Conference on691
Learning Representations.692

Terufumi Morishita, Gaku Morio, Atsuki Yamaguchi, 693
and Yasuhiro Sogawa. 2023. Learning deductive rea- 694
soning from synthetic corpus based on formal logic. 695
In Proceedings of the 40th International Conference 696
on Machine Learning, pages 25254–25274. 697

Terufumi Morishita, Gaku Morio, Atsuki Yamaguchi, 698
and Yasuhiro Sogawa. 2024. Enhancing reasoning 699
capabilities of llms via principled synthetic logic cor- 700
pus. In The Thirty-eighth Annual Conference on 701
Neural Information Processing Systems. 702

Liangming Pan, Alon Albalak, Xinyi Wang, and 703
William Yang Wang. 2023. Logic-lm: Empower- 704
ing large language models with symbolic solvers for 705
faithful logical reasoning. In The 2023 Conference 706
on Empirical Methods in Natural Language Process- 707
ing. 708

Mihir Parmar, Nisarg Patel, Neeraj Varshney, Mutsumi 709
Nakamura, Man Luo, Santosh Mashetty, Arindam 710
Mitra, and Chitta Baral. 2024. Logicbench: Towards 711
systematic evaluation of logical reasoning ability of 712
large language models. In Proceedings of the 62nd 713
Annual Meeting of the Association for Computational 714
Linguistics (Volume 1: Long Papers), pages 13679– 715
13707. 716

Nisarg Patel, Mohith Kulkarni, Mihir Parmar, Aashna 717
Budhiraja, Mutsumi Nakamura, Neeraj Varshney, and 718
Chitta Baral. 2024. Multi-logieval: Towards eval- 719
uating multi-step logical reasoning ability of large 720
language models. In Proceedings of the 2024 Con- 721
ference on Empirical Methods in Natural Language 722
Processing, pages 20856–20879. 723

Mohammed Saeed, Naser Ahmadi, Preslav Nakov, and 724
Paolo Papotti. 2021. Rulebert: Teaching soft rules to 725
pre-trained language models. In Proceedings of the 726
2021 Conference on Empirical Methods in Natural 727
Language Processing, pages 1460–1476. 728

Yunfan Shao, Linyang Li, Yichuan Ma, Peiji Li, Demin 729
Song, Qinyuan Cheng, Shimin Li, Xiaonan Li, 730
Pengyu Wang, Qipeng Guo, et al. 2024. Case2code: 731
Learning inductive reasoning with synthetic data. 732
CoRR. 733

Koustuv Sinha, Shagun Sodhani, Jin Dong, Joelle 734
Pineau, and William L Hamilton. 2019. Clutrr: A di- 735
agnostic benchmark for inductive reasoning from text. 736
In Proceedings of the 2019 Conference on Empirical 737
Methods in Natural Language Processing and the 9th 738
International Joint Conference on Natural Language 739
Processing (EMNLP-IJCNLP), pages 4506–4515. 740

Mirac Suzgun, Nathan Scales, Nathanael Schärli, Se- 741
bastian Gehrmann, Yi Tay, Hyung Won Chung, 742
Aakanksha Chowdhery, Quoc Le, Ed Chi, Denny 743
Zhou, et al. 2023. Challenging big-bench tasks and 744
whether chain-of-thought can solve them. In Find- 745
ings of the Association for Computational Linguistics: 746
ACL 2023, pages 13003–13051. 747

Oyvind Tafjord, Bhavana Dalvi, and Peter Clark. 2021. 748
Proofwriter: Generating implications, proofs, and 749

10

abductive statements over natural language. In Find-750
ings of the Association for Computational Linguistics:751
ACL-IJCNLP 2021, pages 3621–3634.752

Zhengyang Tang, Xingxing Zhang, Benyou Wang, and753
Furu Wei. 2024. Mathscale: Scaling instruction tun-754
ing for mathematical reasoning. In Forty-first Inter-755
national Conference on Machine Learning.756

Teknium. 2023. Openhermes 2.5: An open dataset of757
synthetic data for generalist llm assistants.758

Jidong Tian, Yitian Li, Wenqing Chen, Liqiang Xiao,759
Hao He, and Yaohui Jin. 2021. Diagnosing the760
first-order logical reasoning ability through logicnli.761
In Proceedings of the 2021 Conference on Empiri-762
cal Methods in Natural Language Processing, pages763
3738–3747.764

Ke Wang, Jiahui Zhu, Minjie Ren, Zeming Liu, Shiwei765
Li, Zongye Zhang, Chenkai Zhang, Xiaoyu Wu, Qiqi766
Zhan, Qingjie Liu, et al. 2024. A survey on data syn-767
thesis and augmentation for large language models.768
arXiv preprint arXiv:2410.12896.769

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa770
Liu, Noah A Smith, Daniel Khashabi, and Hannaneh771
Hajishirzi. 2023. Self-instruct: Aligning language772
models with self-generated instructions. In The 61st773
Annual Meeting Of The Association For Computa-774
tional Linguistics.775

Yuxiang Wei, Zhe Wang, Jiawei Liu, Yifeng Ding, and776
Lingming Zhang. 2024. Magicoder: Empowering777
code generation with oss-instruct. In Forty-first Inter-778
national Conference on Machine Learning.779

Jiaxin Wen, Jian Guan, Hongning Wang, Wei Wu, and780
Minlie Huang. 2024. Codeplan: Unlocking reason-781
ing potential in large langauge models by scaling782
code-form planning. CoRR.783

Xi Ye, Qiaochu Chen, Isil Dillig, and Greg Durrett.784
2023. Satlm: satisfiability-aided language models785
using declarative prompting. In Proceedings of the786
37th International Conference on Neural Information787
Processing Systems, pages 45548–45580.788

Longhui Yu, Weisen Jiang, Han Shi, YU Jincheng,789
Zhengying Liu, Yu Zhang, James Kwok, Zhenguo Li,790
Adrian Weller, and Weiyang Liu. 2023. Metamath:791
Bootstrap your own mathematical questions for large792
language models. In The Twelfth International Con-793
ference on Learning Representations.794

Weihao Zeng, Can Xu, Yingxiu Zhao, Jian-Guang Lou,795
and Weizhu Chen. 2024. Automatic instruction796
evolving for large language models. arXiv preprint797
arXiv:2406.00770.798

Wanjun Zhong, Siyuan Wang, Duyu Tang, Zenan Xu,799
Daya Guo, Jiahai Wang, Jian Yin, Ming Zhou, and800
Nan Duan. 2021. Ar-lsat: Investigating analytical801
reasoning of text. arXiv preprint arXiv:2104.06598.802

A Related work 803

A.1 Synthetic Reasoning Data 804

Synthetic data has played an important role in en- 805

hancing LLMs’ reasoning capabilities (Dubey et al., 806

2024), especially in mathematics and coding do- 807

mains. 808

For mathematical reasoning, synthetic data gen- 809

eration includes problem-driven methods such 810

as evol-instruct (Luo et al., 2023a; Zeng et al., 811

2024), problem restatement (Yu et al., 2023), back- 812

translation (Lu et al., 2024), and few-shot examples 813

(Dalvi et al., 2021), as well as knowledge-driven 814

methods that rely on knowledge bases (Dalvi et al., 815

2021) or concept graphs (Tang et al., 2024) to gen- 816

erate new problems by sampling key reasoning 817

points (Huang et al., 2024). 818

In terms of code reasoning, from Code Alpaca’s 819

(Wang et al., 2023) use of self-instruct to generate 820

20K instruction data based on seed tasks, to Wiz- 821

ardCoder’s (Luo et al., 2023b) use of Code evol- 822

instruct to generate more complex tasks, to Magi- 823

coder’s use of oss-instruct (Wei et al., 2024) to ex- 824

tract 75K instructions from open source code. Syn- 825

thesizing data continuously improves the model’s 826

code reasoning capabilities. 827

In contrast, there is less research on synthetic 828

data for complex logical reasoning. Learning com- 829

bines formal logic theory (Morishita et al., 2023) 830

to synthesize data using basic reasoning rules to 831

train language models’ multi-step reasoning abil- 832

ities. LogicBench (Parmar et al., 2024) not only 833

constructs logical reasoning benchmark datasets 834

but also provides synthetic data based on formal 835

logic. 836

LeetCode-style algorithm problems contain rich 837

reasoning processes. This paper synthesizes high- 838

quality complex logical sreasoning data based on 839

the formal logic of programming languages to en- 840

hance models’ reasoning capabilities. 841

A.2 Symbolic Reason Enhances LLM Reason 842

Symbolic language was initially used for formal 843

logical reasoning, mathematical computation, and 844

program verification, playing a crucial role in early 845

artificial intelligence applications such as expert 846

systems (Hatzilygeroudis and Prentzas, 2004) and 847

automated theorem provers (Loveland, 2016). With 848

the rapid development of LLMs, symbolic reason- 849

ing, as a structured reasoning approach, has further 850

enhanced the reasoning capabilities of large models 851

through their integration. 852

11

https://huggingface.co/datasets/teknium/OpenHermes-2.5
https://huggingface.co/datasets/teknium/OpenHermes-2.5
https://huggingface.co/datasets/teknium/OpenHermes-2.5

There are two main approaches to combining853

symbolic reasoning with LLMs. The first approach854

utilizes symbolic language for planning and reason-855

ing. Some research combines LLMs with symbolic856

solvers like Python (Gao et al., 2023) and SAT (Ye857

et al., 2023) to solve mathematical (He-Yueya et al.,858

2023) and logical reasoning problems (Pan et al.,859

2023), reducing the reasoning burden on models.860

Additionally, some work employs symbolic lan-861

guage as a planning (Hao et al., 2024; Wen et al.,862

2024) tool to strengthen LLMs’ reasoning capabili-863

ties.864

The second approach involves using symbolic865

language to generate training data. Early research866

(Tafjord et al., 2021; Clark et al., 2021) adopted867

neural network-based soft reasoning methods to868

synthesize training data from logical rules ex-869

pressed in natural language, improving reasoning870

capabilities and interpretability (Saeed et al., 2021;871

Dalvi et al., 2021). Recently, more research has872

explored the application of symbolic methods in873

synthetic training data. Li et al. (2024) formal-874

izes seed data and replaces certain variables to875

synthesize mathematical reasoning data; Morishita876

et al. (2023) constructs synthetic corpora based877

on formal logic; Shao et al. (2024) generates in-878

ductive reasoning data through case-to-code map-879

ping; Parmar et al. (2024) provides more compre-880

hensive propositional logic benchmarks; Morishita881

et al. (2024) strengthens LLM reasoning capabili-882

ties through principled synthesis of logical corpora.883

These studies have advanced the development of884

logical reasoning capabilities.885

In this paper, we further explore the application886

of symbolic methods in data synthesis, utilizing887

formal logical information embedded in LeetCode888

algorithm problems to synthesize complex logical889

reasoning data.890

B Details of Experiment891

B.1 Baseline Data Statistics892

In Table 5, we statistics on the size of the baseline893

data, the logical sources of the synthetic data.894

B.2 Complete Main Results895

Given space constraints, we show the complete896

results for all benchmarks in Table 6.897

Results for All Subsets of BBH In the table 7,898

we give the histogram results for all baseline data899

and LogicPro on the 27 subsets of BBH.900

Dataset Size Logic Source Source

RuleTakers 480K Soft Rule (Clark et al., 2021)
LogicNLI 48K FOL (Tian et al., 2021)
ProofWriter 580K Soft Rule (proof) (Tafjord et al., 2021)
CLUTRR 50K Kinship Graph (Sinha et al., 2019)
RuleBert 310K Soft Rule (Saeed et al., 2021)
LogicBench 12K Propositional Logic (Parmar et al., 2024)
FLD 300K Formal Logic (Morishita et al., 2023)

LogicPro (ours) 540K Program Logic LogicPro

Table 5: Data Statistics.

Results for Base Data In section 3.1, paragraph 901

Experimental design, we mentioned that in order to 902

simulate the actual large model training manufac- 903

turers, we choose the generic domain and logical 904

reasoning domain data as the base data. The results 905

of the base data without adding any synthetic data 906

are given in Table 7. 907

C Details of Analysis 908

Complete results of the ablation study The 909

complete results on all benchmarks of the ablation 910

study are presented in Table 8. 911

Complete results of the Performance Gain The 912

complete results of Performance Gain on All Base- 913

line Data on all baselines are in Table 9. 914

D Prompts 915

D.1 Complete Prompts for The Three Steps in 916

The Main Methodology 917

The complete prompts for data collection and steps 918

1, 2, and 3 are in Figure 8, 9, 10, and 11. 919

D.2 Prompts in the remaining modules 920

The complete prompts for Problem-Program Con- 921

sisitency Check and Solvability Check are in Figure 922

12 and 13. 923

In the evaluations, the prompt used for model 924

evaluation is shown in Figure 14. 925

E LogicPro Examples 926

We give our synthetic data samples in figures 15 927

and 16, synthesised from two LeetCode algorithm 928

questions, game 24 and stair climbing. 929

12

Model BBH27 LogicBench DROP AR-LSAT BoardgameQA FOLIO GSM8K Multi-LogiEval ProofWriter MATH Average

Qwen2-7B-RuleTakers 45.4 59.1 65.7 16.5 42.2 44.6 80.9 53.8 20.0 40.8 45.8
Qwen2-7B-LogicNLI 43.3 71.3 67.4 17.8 45.3 41.7 81.6 48.7 36.5 40.6 45.0
Qwen2-7B-ProofWriter 40.8 68.6 64.3 17.0 36.9 36.3 80.9 43.4 63.5 40.3 43.2
Qwen2-7B-CLUTRR 43.0 72.0 64.0 17.0 51.9 41.2 80.4 56.3 36.9 40.1 45.0
Qwen2-7B-RuleBert 46.2 69.1 67.3 17.8 43.8 40.7 81.7 59.3 34.6 40.7 47.3
Qwen2-7B-LogicBench 44.7 95.9* 67.4 17.8 41.4 38.7 82.1 67.3 18.0 41.3 46.6
Qwen2-7B-FLD 42.0 69.5 68.3 14.8 34.9 45.6 80.0 50.5 37.3 40.6 43.8

Qwen2-7B-LogicPro (ours) 50.9 73.5 68.3 19.1 48.1 46.1 81.5 62.0 28.5 41.6 51.2

Llama3-8B-RuleTakers 38.5 59.9 65.9 12.6 47.3 43.3 67.9 64.2 29.4 19.8 40.3
Llama3-8B-LogicNLI 40.4 54.0 65.3 12.6 41.0 56.0 69.3 62.3 35.0 19.8 41.8
Llama3-8B-ProofWriter 37.2 62.1 66.4 15.2 31.3 47.8 69.1 62.8 45.4 19.5 39.5
Llama3-8B-CLUTRR 40.5 61.1 66.6 10.4 43.7 56.0 69.5 63.1 35.1 20.0 42.2
Llama3-8B-RuleBert 34.7 48.8 66.5 15.2 43.6 51.5 68.9 65.4 28.2 19.5 37.4
Llama3-8B-LogicBench 41.0 93.5* 66.2 10.9 38.6 62.7 69.8 65.2 38.9 20.2 43.7
Llama3-8B-FLD 35.7 67.8 61.2 13.5 39.1 50.0 64.6 60.0 38.4 17.8 38.2

Llama3-8B-LogicPro (ours) 45.0 67.9 68.8 15.2 44.3 48.3 74.2 68.0 37.7 23.0 46.2

Qwen2-72B-RuleTakers 61.3 72.4 76.6 19.6 61.0 49.3 88.5 60.7 70.6 54.6 61.3
Qwen2-72B-LogicNLI 61.7 80.7 77.0 21.3 60.4 58.2 87.3 64.3 48.9 53.6 61.6
Qwen2-72B-ProofWriter 61.8 75.5 77.2 16.5 55.0 44.0 88.0 63.0 70.7 55.0 61.5
Qwen2-72B-CLUTRR 68.1 79.0 78.4 24.4 61.0 59.7 89.4 59.2 54.0 56.2 66.7
Qwen2-72B-RuleBert 67.8 74.1 76.5 19.6 55.2 62.7 88.0 71.7 60.2 55.2 66.5
Qwen2-72B-LogicBench 67.1 97.0* 77.9 24.8 57.3 60.5 88.4 87.9 57.2 55.4 67.2
Qwen2-72B-FLD 65.4 72.4 76.3 17.0 45.5 53.7 86.9 60.0 56.5 54.7 63.6

Qwen2-72B-LogicPro (ours) 72.4 81.7 79.6 27.4 66.4 55.2 89.1 72.1 54.3 55.8 70.4

Llama3-70B-RuleTakers 51.5 69.1 75.6 19.1 61.5 53.9 86.8 74.4 33.1 36.3 52.7
Llama3-70B-LogicNLI 58.5 69.9 78.0 17.8 58.5 58.3 84.5 67.5 31.3 34.5 57.8
Llama3-70B-ProofWriter 55.3 31.9 75.3 15.2 58.7 51.0 65.4 50.3 49.3 24.6 53.2

Llama3-70B-LogicPro (ours) 63.7 72.7 78.8 22.3 65.0 54.2 87.6 72.3 33.5 40.5 62.4

Table 6: Complete evaluation results for all benchmark.

bo
ole

an
_ex

pre
ssi

on
s

cau
sal

_ju
dg

em
en

t

da
te_

un
de

rst
an

din
g

dis
am

big
ua

tio
n_q

a

dy
ck_

lan
gu

ag
es

for
mal_

fal
lac

ies

ge
om

etr
ic_

sha
pe

s

hy
pe

rba
ton

log
ica

l_d
ed

uct
ion

_fiv
e_o

bje
cts

log
ica

l_d
ed

uct
ion

_se
ve

n_o
bje

cts

log
ica

l_d
ed

uct
ion

_th
ree

_ob
jec

ts

mov
ie_

rec
om

men
da

tio
n

mult
iste

p_a
rith

meti
c_t

wo

na
vig

ate

ob
jec

t_c
ou

nti
ng

pe
ng

uin
s_i

n_a
_ta

ble

rea
son

ing
_ab

ou
t_c

olo
red

_ob
jec

ts

rui
n_n

am
es

sal
ien

t_t
ran

sla
tio

n_e
rro

r_d
ete

cti
on

sna
rks

spo
rts

_un
de

rst
an

din
g

tem
po

ral
_se

qu
en

ces

tra
cki

ng
_sh

uff
led

_ob
jec

ts_
fiv

e_o
bje

cts

tra
cki

ng
_sh

uff
led

_ob
jec

ts_
sev

en
_ob

jec
ts

tra
cki

ng
_sh

uff
led

_ob
jec

ts_
thr

ee
_ob

jec
ts

web
_of

_lie
s

word
_so

rtin
g

Av
era

ge
0

20

40

60

80

100

Ac
cu

ra
cy

 (
%

)

Qwen Model Performance Across 27 BBH Subsets

Qwen2-7B-RuleTakers
Qwen2-7B-LogicNLI
Qwen2-7B-ProofWriter
Qwen2-7B-CLUTRR
Qwen2-7B-RuleBert
Qwen2-7B-LogicBench
Qwen2-7B-FLD
Qwen2-7B-LogicPro

bo
ole

an
_ex

pre
ssi

on
s

cau
sal

_ju
dg

em
en

t

da
te_

un
de

rst
an

din
g

dis
am

big
ua

tio
n_q

a

dy
ck_

lan
gu

ag
es

for
mal_

fal
lac

ies

ge
om

etr
ic_

sha
pe

s

hy
pe

rba
ton

log
ica

l_d
ed

uct
ion

_fiv
e_o

bje
cts

log
ica

l_d
ed

uct
ion

_se
ve

n_o
bje

cts

log
ica

l_d
ed

uct
ion

_th
ree

_ob
jec

ts

mov
ie_

rec
om

men
da

tio
n

mult
iste

p_a
rith

meti
c_t

wo

na
vig

ate

ob
jec

t_c
ou

nti
ng

pe
ng

uin
s_i

n_a
_ta

ble

rea
son

ing
_ab

ou
t_c

olo
red

_ob
jec

ts

rui
n_n

am
es

sal
ien

t_t
ran

sla
tio

n_e
rro

r_d
ete

cti
on

sna
rks

spo
rts

_un
de

rst
an

din
g

tem
po

ral
_se

qu
en

ces

tra
cki

ng
_sh

uff
led

_ob
jec

ts_
fiv

e_o
bje

cts

tra
cki

ng
_sh

uff
led

_ob
jec

ts_
sev

en
_ob

jec
ts

tra
cki

ng
_sh

uff
led

_ob
jec

ts_
thr

ee
_ob

jec
ts

web
_of

_lie
s

word
_so

rtin
g

Av
era

ge
0

20

40

60

80

100

Ac
cu

ra
cy

 (
%

)

LLaMA Model Performance Across 27 BBH Subsets

LLaMA3-8B-RuleTakers
LLaMA3-8B-LogicNLI
LLaMA3-8B-ProofWriter
LLaMA3-8B-CLUTRR
LLaMA3-8B-RuleBert
LLaMA3-8B-LogicBench
LLaMA3-8B-FLD
LLaMA3-8B-LogicPro

Figure 7: Qwen2-7B and Llama3-8B model performance across 27 BBH subset.

13

Model BBH LogicBench DROP ARLSAT BoardgameQA FOLIO GSM8K Multi-LogiEval ProofWriter MATH Average

Qwen2-7B-base 41.4 68.0 65.3 16.8 42.4 38.96 79.4 52.9 28.2 40.9 43.1
Qwen2-7B-LogicPro 50.9 73.5 68.3 19.1 48.1 46.1 81.5 62.0 28.5 41.6 51.2

Model BBH LogicBench DROP ARLSAT BoardgameQA FOLIO GSM8K Multi-LogiEval ProofWriter MATH Average

Llama3-8B-base 40.5 62.3 65.3 12.4 40.0 43.73 69.7 60.1 30.8 20.0 41.6
Llama3-8B-LogicPro 45.0 67.9 68.8 15.2 44.3 48.3 74.2 68.0 37.7 23.0 46.2

Table 7: Result of not adding any synthetic data (only two types of base data).

Qwen2-7B BBH LogicBench DROP AR-LSAT BoardgameQA FOLIO GSM8K Multi-LogiEval ProofWriter MATH Average

Source_LeetCode 41.0 63.4 58.4 18.3 32.8 38.2 79.7 54.8 26.2 40.6 42.2
LogicPro-w/o.Inter-Var 48.2 69.6 62.9 16.5 47.6 50.7 80.5 62.9 30.0 40.1 49.0
LogicPro-w.Inter-Var 50.9 73.5 68.3 19.1 48.1 46.1 81.5 62.0 28.5 41.6 51.2

Llama3-8B BBH LogicBench DROP AR-LSAT BoardgameQA FOLIO GSM8K Multi-LogiEval ProofWriter MATH Average

Source_LeetCode 36.6 51.4 62.1 12.8 38.9 48.2 69.5 62.4 31.6 20.5 38.5
LogicPro-w/o.Inter-Var 44.0 63.6 66.8 13.6 43.5 56.0 73.9 63.1 36.6 20.0 45.1
LogicPro-w.Inter-Var 45.0 67.9 68.8 15.2 44.3 48.3 74.2 68.0 37.7 23.0 46.2

Table 8: Complete results of the ablation study.

Qwen2-7B BBH LogicBench DROP ARLSAT BoardgameQA FOLIO GSM8K Multi-LogiEval ProofWriter MATH Average

All_Baseline_Data 43.1 92.8 63.6 15.2 48.4 60.5 79.2 65.7 67.9 39.9 47.1
All_Baseline_Data + LogicPro 48.8 96.3 66.8 20.4 55.4 64.2 80.6 71.1 67.9 41.0 52.3

Llama3-8B BBH LogicBench DROP AR-LSAT BoardgameQA FOLIO GSM8K Multi-LogiEval ProofWriter MATH Average

All_Baseline_Data 42.9 94.3 66.9 17.0 48.2 64.9 78.4 74.4 69.1 39.7 47.6
All_Baseline_Data + LogicPro 47.6 95.0 68.6 16.5 51.6 61.9 79.4 76.8 66.4 40.2 51.2

Table 9: Complete results of the Performance Gain.

14

Data Collection: Obtain Test Cases

I have an algorithmic problem and its python code, please help me
construct 150 different test case inputs.
1. The constructed test case inputs need to fulfill the requirements of the
algorithmic problem and be compatible with the provided Python code.
2. Please enclose the constructed test case inputs in the following python
format; please enclose each test case input individually.
   ```python
   # Test case input 1
   # Your input here
   ```
   ```python
   # Test case input 2
   # Your input here
   ```
 ...
   ```python
   # Test case input 150
   # Your input here
   ```
3. Ensure that all test cases are unique and as diverse as possible based
on the topic and Python code.
4. Consider various aspects of the input type to ensure diversity, such as:

- Range of values: Include small, medium, and large values, as well
as edge cases.

- Special cases: Consider cases like empty input, maximum allowed
input size, or inputs that might cause edge conditions.

- Pattern variations: If the input is a sequence, vary the sequence
patterns (e.g., sorted, reverse-sorted, random order).

- Combining elements: If the input is a composite data structure (e.g.,
array of strings), combine different types of elements.
5. Generate inputs with varying difficulty levels (low, medium, high)
considering the problem statement and the provided Python code:

- Low difficulty: Simple and straightforward inputs that cover basic
scenarios.

- Medium difficulty: Moderately complex inputs that include more
diverse and realistic scenarios.

- High difficulty: Complex inputs that test edge cases and challenging
conditions.
6. Ensure that all test cases adhere to the constraints provided in the
problem description.
7. Provide only the input for the test cases, do not include the output.
8. Please do not omit the output. Give each specific test cases.

Input:
{souce_algorithmic_problem}
{source_python_solution}
Output:
{test_cases}

Figure 8: Complete prompts for Data Collection: con-
struct test cases.

Step 1: Construct Complex Reasoning Problem

I have an algorithmic question and a corresponding test case.
Please rewrite the algorithmic question as a text-only logical
reasoning question based on the test case.

Instructions:
1. Please incorporate the test case into the description of the
algorithm question;
2. Please first give the name of this logical reasoning task; then
give the question that contains the test case.
3. Please randomly introduce some background information to
diversify the question, such as mentioning a hypothetical scenario,
a story, or real-life application related to the logical reasoning task.

Please rewrite the algorithmic question into a text-only logical
reasoning question based on test case:
Input:
{souce_algorithmic_problem}
{test_case}
Output:
{synthetic_complex_reasoning_problem}

Figure 9: Complete prompts for step 1.

Step 2: Obtain Intermediate Variable From Program

Step 2.2: Print Intermediate Variable
Please analyze and identify the key intermediate variables used in
the Python code to solve complex logical reasoning problems.
Based on your analysis, modify the code to print these key
intermediate variables to simulate the step-by-step process of
problem-solving as a human would do.
- Please give the final python code in the following format:
   ```python
   ```
Input:
{synthetic_complex_reasoning_problem}
{test_case_specific_code}
Output:
{test_case_specific_code_with_process_print}

Step 2.1: Obtain Test Case Specific Code
Please provide a Python code solution for the current complex
logical reasoning problem, referring to the given Python code.
- The code should print the final result.
- Please give the final python code in the following format:
   ```python
   ```
- Please ensure that after running the code, the output result of the
algorithm is returned through the variable `result`.

Input:
{synthetic_complex_reasoning_problem}
{source_python_solution}
Output:
{test_case_specific_code}

Figure 10: Complete prompts for step 2.

15

Step 3: Program-Guided Reasoning

Please analyze and identify the key intermediate variables used in
the Python code to solve complex logical reasoning problems.
Based on your analysis, modify the code to print these key
intermediate variables to simulate the step-by-step process of
problem-solving as a human would do.
- Please give the final python code in the following format:
   ```python
   ```
- No need to output Example Output.

Input:
{synthetic_complex_reasoning_problem}
{intermediate_variable_output}
Output:
{final_reasoning_process}

Figure 11: Complete prompts for step 3.

Problem-Program Consistency Check

I have a programming problem statement and its corresponding code
implementation. Both the problem and the code have been rewritten. Please
carefully read the problem statement and the code, and verify if the rewritten
code fully matches the rewritten problem description.

Follow these steps to complete the task:
1. **Understand the problem statement**: Summarize the requirements of the
rewritten problem, including the input, output, and the functionality to be
implemented.
2. **Analyze the code logic**: Explain what the code does, including how it
handles input, its core logic/algorithm, and the output it produces.
3. **Check for consistency**: Compare the rewritten problem with the code
and determine whether they match. If they don't match, identify the
inconsistencies and explain why.

Return the result in **JSON format** with the following structure:
```json
{
"is_consistent": true, // or false
"issues": [            // If inconsistencies exist, list specific issues; if consistent,
leave the array empty
    {
    "type": "LogicMismatch", // Example issue types: LogicMismatch (logic
doesn't match), MissingDetails (problem lacks details), etc.
    "description": "Detailed description of the issue"
    }
]
}
```
Rewritten Problem Statement:
{synthetic_complex_reasoning_problem}

Rewritten Code:
{test_case_specific_code}

Please evaluate and return the verification result in the specified JSON format.

Figure 12: Prompts for Problem-Program Consisitency
Check.

Solvability Check

Your task is to act as a professional reasoning evaluator. Your goal is to
determine if the given problem is a valuable reasoning task. Consider
the following two aspects:

1. **Problem Type**: The given problem must pertain to logical or
inferential reasoning.
2. **Solvability**: The given reasoning problem must be solvable based
on the conditions provided in the problem. (You may attempt to solve it
step by step to verify its solvability.)

Please reason step by step and conclude with either ‘Yes’ or ‘No’.

Given Problem:
{synthetic_complex_reasoning_problem}

Figure 13: Prompts for Solvability Check.

Model Evaluation
[Instruction]
Please act as an impartial judge and evaluate the quality of the response
provided by an AI assistant to the user question displayed below. Your
evaluation should consider the correctness. You will be given a reference
answer and the assistant's answer. Begin your evaluation by comparing
the assistant's answer with the reference answer, you must identify
whether the response is correct or wrong by strictly following this format: "
<correct or wrong>", for example: "<correct>" or "<wrong>".

[Question]
{question}

[The Start of Reference Answer]
{answer}
[The End of Reference Answer]

[The Start of Assistant's Answer]
{completion}
[The End of Assistant's Answer]

Figure 14: Prompt for Model Evaluation.

16

Question:
 Imagine you are a participant in a mind-bending game show where the objective is to reach a target number using mathematical operations. You are
given four cards, each displaying a number between 1 and 9.
Your task is to arrange these numbers into a mathematical expression using the operators `+`, `-`, `*`, and `/`, as well as parentheses `(` and `)`, in
such a way that the result equals 24.
Keep the following rules in mind:

- The division operator `/` is used for real division, not integer division.
- Each operation must involve exactly two numbers (i.e., no unary operations are allowed).
- You cannot combine numbers to form multi-digit numbers.

Given the cards with numbers [9, 5, 8, 2], determine whether it is possible to create an expression that evaluates to 24. Can you devise such an
expression, or prove that it's impossible to do so?

Number Game: 24 Points

Answer:
Step 1: Understand the problem and the rules
The problem requires arranging four given numbers (9, 5, 8, 2) into a mathematical expression using the operators `+`, `-`, `*`, and `/`, as well as
parentheses, to get a result equal to 24. The division operator `/` performs real division, each operation involves exactly two numbers, and numbers
cannot be combined to form multi-digit numbers.

Step 2: Consider all possible combinations of numbers and operations
To find an expression that evaluates to 24, we need to consider all possible combinations of the given numbers and the allowed operations. This
includes trying different orders of operations and different pairings of numbers for each operation.

Step 3: Start with the first two numbers and try all possible operations
Begin with the numbers 9 and 5. We can try adding, subtracting, multiplying, or dividing these numbers. The results are:

- Addition: 9 + 5 = 14
- Subtraction: 9 - 5 = 4
- Multiplication: 9 * 5 = 45
- Division: 9 / 5 = 1.8

Step 4: Continue with the next numbers and try all possible operations
Now, we have the results from the previous step (14, 4, 45, 1.8) and the remaining numbers (8, 2). We need to try all possible operations between these
results and the remaining numbers.

Step 5: Analyze the results from Step 3 and continue with the most promising ones
From Step 3, we see that 14 is a promising result because it is closer to 24 than the other results. Let's continue with 14 and try operations with 8 and
2.

- Using 14 and 8: 14 + 8 = 22 (too high), 14 - 8 = 6 (too low), 14 * 8 = 112 (too high), 14 / 8 = 1.75 (not useful).
- Using 14 and 2: 14 + 2 = 16 (too high), 14 - 2 = 12 (too low), 14 * 2 = 28 (too high), 14 / 2 = 7 (not useful).

Step 6: Consider alternative combinations Since the direct approach with 14 did not yield a straightforward solution, let's consider alternative
combinations, such as using 8 and 2 first.

- 8 + 2 = 10
- 8 - 2 = 6
- 8 * 2 = 16
- 8 / 2 = 4

Step 7: Combine the results from alternative combinations with the remaining numbers
Now, let's combine these results with 9 and 5.

- Using 10 (from 8 + 2) and 9: 10 + 9 = 19 (too high), 10 - 9 = 1 (too low), 10 * 9 = 90 (too high), 10 / 9 = 1.11 (not useful).
- Using 10 (from 8 + 2) and 5: 10 + 5 = 15 (too high), 10 - 5 = 5 (too low), 10 * 5 = 50 (too high), 10 / 5 = 2 (not useful).

Step 8: Re-evaluate the approach based on the given intermediate variables Given the intermediate variables, we see a path that leads to 24: 9 + 5
= 14, then 8 + 2 = 10, and finally 14 + 10 = 24. This suggests a specific order of operations that achieves the target.

The final answer is: \boxed{Yes}

Figure 15: Data Example for 24 Game.

17

Question:
 Imagine you are climbing a staircase that has 22 steps. Each time you take a step, you can either move up 1 step or 2 steps. In how many distinct ways
can you reach the top of the staircase if you start from the bottom?
Consider the scenario where you are undergoing a physical fitness challenge that involves climbing stairs. The goal is to determine all possible step
combinations you can take to reach the 22nd step, starting from the ground level. How many unique ways can you complete this challenge?

Climbing Stairs

Answer:
To solve this problem, let's break it down into manageable steps and analyze the pattern of climbing the stairs.

Step 1: Understand the Problem
We have a staircase with 22 steps, and we can climb either 1 step or 2 steps at a time. We need to find out how many distinct ways we can reach the
top of the staircase, starting from the bottom.

Step 2: Identify the Base Cases
- If there's only 1 step, there's only 1 way to climb it (1 step at a time).
- If there are 2 steps, there are 2 ways to climb them (either 2 steps at once or 1 step at a time, twice).

Step 3: Recognize the Pattern For any step beyond the second, the number of ways to reach that step is the sum of the number of ways to reach
the step immediately before it (since we can climb 1 step from there) and the number of ways to reach the step 2 steps before (since we can climb 2
steps from there).

Step 4: Apply the Pattern to the Problem
Let's denote the number of ways to reach the nth step as W(n). Based on our pattern:

- W(1) = 1 (only one way to climb 1 step)
- W(2) = 2 (two ways to climb 2 steps: 1+1 or 2)
- For any n > 2, W(n) = W(n-1) + W(n-2) because we can reach the nth step from either the (n-1)th step (by taking 1 step) or the (n-2)th step (by

taking 2 steps).

Step 5: Calculate for n = 22
We need to calculate W(22) using the formula W(n) = W(n-1) + W(n-2), starting from the base cases W(1) = 1 and W(2) = 2, and iteratively applying the
formula until we reach W(22).

Step 6: Iterative Calculation
- W(3) = W(2) + W(1) = 2 + 1 = 3
- W(4) = W(3) + W(2) = 3 + 2 = 5
- W(5) = W(4) + W(3) = 5 + 3 = 8
- W(6) = W(5) + W(4) = 8 + 5 = 13
- W(7) = W(6) + W(5) = 13 + 8 = 21
- W(8) = W(7) + W(6) = 21 + 13 = 34
- W(9) = W(8) + W(7) = 34 + 21 = 55
- W(10) = W(9) + W(8) = 55 + 34 = 89
- W(11) = W(10) + W(9) = 89 + 55 = 144
- W(12) = W(11) + W(10) = 144 + 89 = 233
- W(13) = W(12) + W(11) = 233 + 144 = 377
- W(14) = W(13) + W(12) = 377 + 233 = 610
- W(15) = W(14) + W(13) = 610 + 377 = 987
- W(16) = W(15) + W(14) = 987 + 610 = 1597
- W(17) = W(16) + W(15) = 1597 + 987 = 2584
- W(18) = W(17) + W(16) = 2584 + 1597 = 4181
- W(19) = W(18) + W(17) = 4181 + 2584 = 6765
- W(20) = W(19) + W(18) = 6765 + 4181 = 10946
- W(21) = W(20) + W(19) = 10946 + 6765 = 17711
- W(22) = W(21) + W(20) = 17711 + 10946 = 28657

Step 7: Conclusion
There are 28657 distinct ways to climb a staircase of 22 steps, where you can climb either 1 step or 2 steps at a time, starting from the bottom.

Figure 16: Data Example for Climbing Stairs.

18

	Introduction
	Approach
	Data Collection
	Step 1: Construct Complex Reasoning Problem
	Step2: Obtain Intermediate Variable from Program
	Step3: Program-Guided Reasoning

	Experiments
	Experimental Setup
	Training
	Evaluation

	Main Results

	Analysis
	Ablation Study
	Performance Gain on All Baseline Data
	Data Scaling Analysis
	Difficulty Comparison with Baseline Data

	Conclusion and Future Work
	Related work
	Synthetic Reasoning Data
	Symbolic Reason Enhances LLM Reason

	Details of Experiment
	Baseline Data Statistics
	Complete Main Results

	Details of Analysis
	Prompts
	Complete Prompts for The Three Steps in The Main Methodology
	Prompts in the remaining modules

	LogicPro Examples

