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Input Video
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Figure 1: Video in, sound effect out: our AutoSFX automatically generates sounds guided by visual information and further
optimizes them to output a soundtrack with seamess transition and harmonious mixing. Our system consists of two modules,
i.e. Sound Generation (§ 4) and Sound Optimization (§ 5). We also develop an interface (§ 6) for users to simplify sound design
for video making and facilitate personalized requirements.

ABSTRACT
Sound Effect (SFX) generation, primarily aims to automatically
produce sound waves for sounding visual objects in images or
videos. Rather than learning an automatic solution to this task,
we aim to propose a much broader system, AutoSFX, significantly
applicable and less time-consuming, i.e. automating sound design
for videos.Our key insight is that ensuring consistency between
auditory and visual information, performing seamless transitions
between sound clips, and harmoniously mixing sounds playing
simultaneously, is crucial for creating a unified audiovisual expe-
rience. AutoSFX capitalizes on this concept by aggregating multi-
modal representations by cross-attention and leverages a diffusion
model to generate sound with visual information embedded. Au-
toSFX also optimizes the generated sounds to render the entire
soundtrack for the input video, leading to a more immersive and en-
gaging multimedia experience. We have developed a user-friendly
interface for AutoSFX enabling users to interactively engage in the
SFX generation for their videos with particular needs. To validate
the capability of our vision-to-sound generation, we conducted
comprehensive experiments and analyses using the widely recog-
nized VEGAS and VGGSound test sets, yielding promising results.
We also conducted a user study to evaluate the performance of the
optimized soundtrack and the usability of the interface. Overall, the
results revealed that ourAutoSFX provides a viable sound landscape
solution for making attractive videos.
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1 INTRODUCTION
Throughout the history of video making, sound effects (SFX) have
played a crucial role in enhancing storytelling and creating im-
mersive experiences for audiences [37]. The production of SFX
involves identifying the essential visual objects and expressing the
corresponding semantics with sounds. This process requires a deep
understanding of audiovisual consistency as through exposure to a
tremendous amount of visual-audio combinations, humans subcon-
sciously learn the intricate correlations between visual and audio
stimuli [14].

In recent years, significant advancements have been made in
the automated SFX generation, realizing sounds for a single object
in images or videos, such as dog barking, baby crying, and the
explosion sounds of fireworks. Thanks to deep learning techniques
and large-scale datasets (e.g., AudioSet [15]), many models applied
RNN, GAN, VQ-VAE, diffusion model, etc., to address the SFX gen-
eration task. However, relying solely on these strategies proves
unsatisfactory for practical scenarios, e.g., sound design for videos
and VR games. We then pose the question – can computers further
imitate the sound effect generation process like a sound designer,
converting a video from concrete visual information to auditory
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signals, i.e. elevating the SFX generation task to a comprehensive
and practical sound design (SD) task? For example, a child playing
in a garden should be synchronized with laughter, footsteps, bird
chirping, etc., with all these sounds blending harmoniously and
transiting seamlessly.

In this paper, we propose to compile the rich spatially and tempo-
rally audiovisual correlations into the prevalent sound generation
regime. Similar to how humans construct a perceptual space by
extracting information from visual objects, grouping objects by
distance, and incorporating mixed sounds, our key insight is that
visual information can further serve as strong learning signals for
the SD task. For instance, by leveraging segmented visual objects,
we can identify and localize the sound events; according to the
different distances of visual objects, we can layer the mixed sounds.

Building on this insight, we introduceAutoSFX, a new SDpipeline
that aims to achieve improved performance of sound generation
and automated practical sound design for videos (cf. Fig. 1). Specifi-
cally, we first extract compact features with pixel-wise audiovisual
features based on the Segment Anything Model (SAM) [24], which
has recently proven to be highly effective in image segmentation
tasks. We then employ adapters and cross-attention mechanisms to
learn the correlation between audio and visual information, i.e. fus-
ing pixel-wise audiovisual representations. For SFX generation, we
leverage a spectrogram autoencoder to predict self-supervised audi-
tory representation and a diffusion model to map visual information
to latent representations. To further refine AutoSFX ’s applicability
to sound design tasks, we devise two modules: i) Transition Module,
facilitates seamless transitions of generated sounds in alignment
with changes in visual objects or scenes; ii) Hierarchy Module, aims
to blend the sounds that playback simultaneously according to
their corresponding depths. These modules are designed to cir-
cumvent the labor-intensive processes typically associated with
text-prompted sound effect generation applications, such as Pika 1.
With AutoSFX, we are not only able to automate sound generation
but also contribute to the field of sound design for videos.

To evaluate the effectiveness of our approach, we first under-
took experiments on VEGAS [53] and VGGSound [4] to evaluate
AutoSFX ’s sound generation capabilities. We also conducted user
studies to qualitatively evaluate the generated sound effects and
the implemented interface. Experimental results demonstrate that
our AutoSFX achieves a new state-of-the-art performance of sound
generation and could provide promising results for videos featuring
diverse objects and scenes. Our main contributions are:

• WeproposeAutoSFX, a deep learning-based system to tackle
the problem of automatically generating sound effects for
videos with seamless transition and harmonious mixing.

• We model the SD task based on the Segment Anything
Model (SAM), leveraging adapter and cross attention in the
early stage to perform audiovisual fusion. Specifically, we
utilize a diffusion model to project visual information into
the auditory space.

• Extensive experiments have validated the effectiveness of
our AutoSFX, which exhibit solid performance gains on
sound generation models, such as VEGAS and VGGSound,

1https://pika.art/

and received positive feedback from both video creators
and sound designers.

2 RELATEDWORK
In this section, we first give a concise overview of the sound de-
sign industry. Then, we give a brief discussion on vision-to-audio
techniques and the segment anything model (SAM) that pertains
closely to our work.

2.1 Sound Design Industry
The use of sound in theater dates back centuries, however, the po-
sition of a sound designer emerged approximately 50 years ago
with the advancement of audio and recording technology2. Sound
design is the art of creating and manipulating sound for various
media productions, such as film, advertising, and interactive learn-
ing tools [48], which is a broad and evolving field that requires
both technical skills and sensitive vision [34]. It requires signifi-
cant human effort to leverage sound effects to enhance the mood,
atmosphere, realism, and storytelling of different visual media [8].

Typically, sound design involves understanding the visual con-
tent, i.e. the semantics of objects and scenes; recording sounds from
various sources, such as field recording, sampling, synthesis, or
using sound libraries, for initialization of the soundtrack for the
visual media; editing and manipulating sounds to make them fit
the desired visual context; mixing and balancing sounds to create a
coherent and immersive audio experience3. The cost of professional
sound design is high. For example, adding sound effects to a game
project requires 48 hours of sound design work, with an average
sound designer rate of $30 to $100 per hour4; the sound design costs
are expected to fall in the range from $1,440 to $4,800.

On the other hand, when an amateur aspires to create a video
enriched with sound effects, he/she may encounter constraints,
such as having to choose from a limited repository of sound effects
offered by platforms (e.g., TikTok), without the ability to generate
sounds that are optimal to their specific recordings. Alternatively,
they could use text-prompted sound effects generation applications
(e.g., Pika), which may require multiple attempts with different
descriptions and subsequently editing the results, e.g.trimming
the waveform to have an appropriate segment to match the video
content. These processes can be cumbersome and limit creative
freedom. Therefore, we desire to explore the possibility of devising
a computational approach to sound design.

2.2 Vision-to-Sound
With advancements in technology and research in multimedia,
human-computer interaction, computer vision, and graphics, the
concept of converting visual information into sound has been im-
plemented in recent years. Previous works on this topic can be
divided into two categories: natural sound generation and music
generation. As music is commonly used to enhance the atmosphere
of the visual content [43] and our goal is to generate authentic
sound effects for video, our discussions in this section will focus
on natural sound generation endeavors.

2https://www.nfi.edu/sound-design/
3https://www.coursera.org/courses?query=sound%20design
4https://www.visartech.com/blog/sound-effects-in-games-development/
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For physics-based techniques, they aimed to improve the audio-
visual consistency of computer-animated phenomena, i.e. synthe-
sizing natural sounds for rain [28], fire [46], rigid bodies [9, 42],
etc. Moreover, image sonification techniques synthesize auditory
interpretations of visual stimuli, e.g., mapping pixel value to var-
ious sound parameters (e.g., pitch and loudness), thus enhancing
scientific discovery [48] and visual accessibility to people who have
visual impairments [22]. A similar idea to our AutoSFX is Audible
Panorama [20], where suitable sound effects are chosen from a pre-
collected dataset for objects in static panorama images, considering
object depth and audio source placement.

On the other hand, several promising works have emerged, lever-
aging deep learning techniques to generate waveforms for specific
objects [5, 6, 23, 29, 35, 51] and soundscapes of wild scenes [21, 50,
53]. More recently, diffusion-based models have achieved state-of-
the-art sample quality in the field of audio generation. For example,
Luo et al. [31] proposed to train a latent diffusion model with tem-
porally and semantically aligned features on spectrogram latent
space. Liu et al. [26], Yang et al. [45], and Ghosal et al. [16] leveraged
diffusion models to generate sound conditioned on a text prompt.
While these methods strive to provide precise representations of
real-world soundscapes, their application is constrained to short
video clips, rather than the diverse and vast videos uploaded online.

Additionally, the realm of text-to-audio generation has captured
significant interest [2, 7, 25]. However, the challenge of automatic
sound design differs from these works – it involves not only encod-
ing visual content and producing a corresponding soundtrack with
multiple waveforms, but also performing seamless transitions and
harmonious blending.

2.3 Segment Anything
Segment-Anything Model (SAM) [24], a large foundation model
trained on one billion masks from 11M images, supports flexible
and interactive prompts in real time to achieve image segmentation.
SAM represents a revolutionary method for image segmentation,
demonstrating remarkable generalization capabilities when applied
to different datasets. There have been recent proposals for exten-
sive applications based on SAM [49], such as image editing [47]
and style transfer [30]. Such visual segmentation techniques have
inspired researchers to integrate SAM into audiovisual segmen-
tation pipelines. For example, Mo et al. [32] and Wang et al. [44]
proposed to extract visual features by utilizing the pre-trained im-
age encoder in SAM and aggregating them with auditory features,
i.e. following the encoder-fusion-prompt-decoder paradigm. Liu et
al. [27] simply employed adapters to inject the audio information
into the pre-trained SAM, achieving deep audio-visual fusion in
the encoding stage. Following the bidirectional generation strategy,
Hao et al. [17] proposed to use the generated segmentation masks
to reconstruct audio features and minimize auditory reconstruction
errors during training. Inspired by these studies, we propose to
leverage SAM as the fundamental feature extraction model to con-
tribute to audiovisual representation learning and further design a
diffusion-based model to generate sound effects for visual objects.

3 OVERVIEW
As shown in Fig. 1, AutoSFX contains two main components:

A Sound Generation module, which formulates the visual-guides
sound generation task as a collaborative parallel generation problem
for both auditory and visual channels. In the training Dataset 𝐷 =

{𝑋𝑖 , 𝑦𝑖 }, 𝑋 = {𝑥𝑣, 𝑥𝑎} represents the video with continuous frames
(𝑥𝑣 ) and the corresponding audio clip’s spectrogram (𝑥𝑎), and 𝑦𝑖
represents the ground truth visual segmentation masks. Given the
input data 𝑋 , the goal of the Vision-to-Sound module is to generate
the audio spectrogram with the guidance from 𝑥𝑣 . Moreover, 𝑖
represents the sample index for a clearer explanation.

A Sound Optimization module, designed with constraints for
seamless transition and harmonious mixing, aims to synchronize
the generated sounds with video frames to create an immersive au-
diovisual experience. Let 𝐴𝑘 = {𝑎1, 𝑎2, ..., 𝑎𝑘 } denote the generated
sounds for the sounding object 𝑘 in the video clip. We choose the
optimal 𝑎 that minimizes the cost:

𝐶total (𝐴, 𝑥𝑣) = 𝐶tran (𝐴𝑘 , 𝐴𝑘+1) + 𝜆𝐶mix (𝐴𝑘 , 𝑥
𝑣), (1)

where𝐶tran (·) is the transition cost term, which measures the tran-
sition difficulty between two continuous sounds, constraining the
pitch and tempo. 𝐶mix (·) is the cost term for evaluating consis-
tency between the visual information and the generated results
based on the estimation of depth and emotion expression. 𝜆 is a
regularization factor to balance these two terms.

4 SOUND GENERATION
As shown in Fig. 2, the Sound Generation module has three parts:
First, we encode the visual and auditory representations from two
branches and fuse them in an attention manner; Second, we resort
to the diffusion model to map the audiovisual information to latent
representation and simultaneously to help model the conditional
distribution; Finally, spectrograms could be generated with the
projection of the visual prompt into the auditory space.

4.1 Audiovisual Fusion
For the visual branch, we sampled the input videos at intervals
of 1 second to obtain frames 𝑥𝑣 ∈ R𝑇𝑣×3×𝐻×𝑊 , where 𝑇𝑣 repre-
sents the number of frames. We extract visual features from the
ImageNet pre-trained SAM backbones, which is based on ViT [12]
and consists of 12 transformer layers. We also apply the visual
encoder with bottleneck adapters [19] and obtain the visual feature
𝐹𝑣 ∈ R𝑑𝑣×𝐻×𝑊 .

On the other hand, as a spectrogram (i.e. 1-channel 2D images)
autoencoder with reconstruction objective as self-supervision has
demonstrated the effectiveness of image-to-audio generation [44],
we transfer the audio mono-waveforms (with a sampling rate of
16kHz) into a sequence ofmel-spectrogram sample𝑥𝑎 ∈ [0, 1]𝐶𝑎×𝑇𝑎 ,
where𝐶𝑎 denotes the mel channels and𝑇𝑎 is the number of frames.
Then, we leverage the VGGish [18], a model designed for capturing
both temporal and spectral information, to extract auditory features
𝐹𝑎 ∈ R𝑇𝑎×𝑑𝑎 . 𝑑𝑎 is 128 as the default.

𝐹𝑎 includes auditory guidance for sound objects that is crucial
for image segmentation, and 𝐹𝑣 contains important visual context
information for consistent audiovisual sound generation. However,
𝐹𝑎 and 𝐹𝑣 extracted from different branches do not align well. To
address this, we apply an audiovisual cross-modal attention mod-
ule, shown in Fig. 3, to align the audio sources and visual locations

3
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Figure 3: AutoSFX ’s attention architectures for audiovisual
alignment.

by treating them as a joint attention space. The attention module
takes 𝐹𝑣 and 𝐹𝑎 as inputs. In the joint attention setting, attention
operates simultaneously over time and space. Moreover, we utilize
the multi-head attention (MHA) layer [41] to capture different as-
pects of the input, allowing for a more comprehensive and nuanced
representation of the relationships between 𝐹𝑣 and 𝐹𝑎 . At the 𝑙-th
layer, when considering a auditory query, the directional attention
operations can be described as:

𝑎
(𝑙 )
1 = MHA(𝐹 (𝑙−1)

𝑣 , 𝐹
(𝑙−1)
𝑎 ),

𝑎
(𝑙 )
2 = LN(𝑎 (𝑙 )1 + 𝐹

(𝑙−1)
𝑎 ),

𝐹
(𝑙 )
𝑎 = LN(𝑓 (Dropout(𝑎 (𝑙 )2 )) + 𝐹

(𝑙−1)
𝑎 )) .

For the auditory direction, we modulate the visual features 𝑣 (𝑙 )

using the auditory features 𝑎 (𝑙 ) by swapping 𝐹𝑣 and 𝐹𝑎 in the
above equation.

4.2 Diffusion-Based Vision-to-Sound
Diffusion-based models, first transform a given data distribution
into unstructured noise (usually Gaussian noise) and then proceed
to learn how to reverse the forward process to recover the original
data distribution. In this paper, we deploy an AV-Diffusion Model
to bidirectionally generate we further propose a bidirectional mul-
timodal latent diffusion model, shown in the middle part of Fig. 2.
Our goal is to recover two consistent modalities within one diffu-
sion process. Specifically, the forward diffusion maps both audio
and video data to noise independently, while the reverse process
gradually reconstructs the original multimodal contents using a

unified model. With the paired visual and auditory feature (𝑎, 𝑣)
(i.e. the simplification of 𝐹 𝑙𝑎 and 𝐹 𝑙𝑣 ), the forward processes of each
modality are independent. Taking the auditory feature 𝑥𝑎 as an
example, the corresponding forward process is defined as:

𝑞(𝑎𝑡 |𝑎𝑡−1) = N𝑎 (𝑎𝑡 ;
√︁
1 − 𝛽𝑡𝑎𝑡−1, 𝛽𝑡 I) .

𝑡 ∈ [1,𝑇 ] is the time step. The forward process for visual represents
𝑣 a similar formulation. Let 𝑎𝑡 as the sample fitting standard Gauss-
ian distribution and is independent from 𝑎0 using the Markovian
forward process. We can calculate any 𝑎𝑡 through:

𝑞(𝑎1:𝑇 |𝑎0) =
𝑇∑︁
𝑡=1

𝑞(𝑎𝑡 |𝑎𝑡−1) .

On the other hand, we utilize the joint reconstruction of audio-
visual pairs from independent Gaussian distributions [36]. The
coupled U-Net [36] 𝜃𝑎𝑣 takes both auditory and visual information
as inputs and reinforces generation quality for each other. Specifi-
cally, the reverse process 𝑝𝜃𝑎𝑣 (𝑣𝑡−1 | (𝑣𝑡 , 𝑎𝑡 )) for obtaining 𝑣𝑡−1 in
visual domain is defined as:

𝑝𝜃𝑎𝑣 (𝑎𝑡−1 | (𝑣𝑡 , 𝑎𝑡 )) = N(𝑎𝑡−1; 𝜇𝜃𝑎𝑣 (𝑣𝑡 ,𝑎𝑡 ,𝑡 ) ),

where 𝑎𝑡−1 is generated from a Gaussian distribution jointly deter-
mined by both 𝑣𝑡 and 𝑎𝑡 . The reverse process for visual represents
𝑣 a similar formulation.

Visual-Promted Sound Generation. As declared in previous
works [35], decoding in the auditory space with visual prompts can
enhance the model’s generalization ability. Our visual-promoting
module was designed to prompt the audio decoder to generate
sounds that are consistent with the objects/events from the visual
space. As shown in the third part of Fig. 2, we first feed 𝑣 , i.e. the
output of the visual branch from the coupled U-Nets, into an MLP.
We then leverage a bottleneck adapter ColA(·) to model the audio-
visual correlation, yielding the updated visual feature 𝐹𝑐 ∈ R𝑑𝑣 :

𝐹𝑐 = ColA(MLP(𝑣)) +MLP(𝑣) .

As the visual prompt, 𝐹𝑐 is further fed into the audio decoder. We
adopt WaveNet [40] as the decoder to convert the synthesized
spectrogram into waveform 𝐴. Simultaneously, we also obtain the
final visual output, i.e. mask embedding 𝐹𝑚 ∈ R𝑑𝑣×𝐻×𝑊 , which is
then upscaled by convolutional blocks.

4
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4.3 Training
Learning Objectives. AutoSFX highlights the potential opportuni-
ties arising from the visual segmentation into the audio generation
pipelines. The total loss has three terms:

i) Reconstruction Loss, i.e. the L2 error for measuring the gener-
ated spectrogram 𝑠′ and the ground truth 𝑠:

L𝑟𝑒𝑐𝑜𝑛 = | |𝑠′ − 𝑠 | |22;

ii) Segementaion Loss, we use the binary cross-entropy 𝐵𝐶𝐸 (·)
loss to measure the difference between the predicted mask𝑀𝑝 and
the ground truth𝑀𝑔 :

L𝑠𝑒𝑔 = BCE(𝑀𝑝 , 𝑀𝑔);

iii) Generation Loss, is defined as the mean squared error in the
noise space 𝜖 ∼ N(0, I). We leverage 𝜖-prediction to optimize the
network, i.e.

L𝜃𝑎𝑣 = E𝜖∼N{0,I}
[
𝜆𝑡 | |𝜖𝜃 (𝑎𝑡 , 𝑣𝑡 , 𝑡) − 𝜖 | |22

]
, 𝑡 ∈ [0,𝑇 ],

where 𝑡 represents a random term for stochastic gradient descent
and 𝜆𝑡 is an optional weighting function.

Therefore, the final loss function is

L𝑜𝑠𝑠 = 𝜆1L𝑟𝑒𝑐𝑜𝑛 + 𝜆2L𝑠𝑒𝑔 + 𝜆3L𝜃𝑎𝑣 . (2)

During the training phase, we only fix the parameters of both visual
and auditory encoders, and update others, e.g., the adapters, mask
decoder, and spectrogram decoder.

Dataset. We leverage AVSBench [52], a recently released video
segmentation dataset, providing masks for sounding objects with
audio signals, to train our Sound Generation module. It covers 23
object categories, e.g., animal and human-related sound events.
Specifically, the single-source subset, includes 4932 videos with
10,852 annotated frames.

5 SOUND OPTIMIZATION
When a soundtrack is out of sync with the visual content, such as
lagging behind or rushing ahead of the visual elements, it will result
in a discordant, disjointed, or confusing viewing experience [38].
As a result, sounds should be both temporally and content-wise
aligned with visual content, i.e. maintaining consistent changes
when visual content changes and sounds played at the same time
should be mixed properly.

To improve the consistency between the generated audio and
input video, we formulate the synchronization process as an opti-
mization with several constraints. As depicted in equation 1, we
design two cost terms, i.e. transition cost and mixing cost.

5.1 Transition Cost
A key observation of our work is that a transition from sound effect
𝑎𝑘 to another one 𝑎𝑘+1 sounds natural when pitch and tempo are
similar [43]; and if the pitch is harmonious progressed. We compute
the transition cost Ctran (·) by combining these two cost terms:

Ctran (𝐴𝑘 , 𝐴𝑘+1) = 𝛼1Ctem (𝐴𝑘 , 𝐴𝑘+1) + 𝛼2Cpit (𝐴𝑘 , 𝐴𝑘+1),

where Ctem (·) is tempo cost, evaluating the BPM (beats per minute)
difference between two sounds. For pitch cost, Cpit (·), we estimate
pitch differences by computing chroma features [13] for each beat

Video
Frames

Sound
Effects

Time (s)-0.5

-0.5

Figure 4: Example video frames and the corresponding sound
effect’s peak.

in a sound clip, respectively. Then we compute the average cosine
distances between 𝐴𝑘 and 𝐴𝑘+1.

5.2 Mixing Cost
Driving content-wise audiovisual consistency, is not merely align-
ing sounds with visual elements; it is more about creating an im-
mersive experience that resonates with the audience on a deeper
level [6]. So we delve into mixing techniques commonly used in
the sound design process, meticulously analyzing and integrating
them to form the mixing cost Cmix (𝐴𝑘 , 𝑥

𝑣). Below we describe how
mixing guidelines are formulated and adapted to our setting.

Rhythm. Video with a greater rhythm-matched soundscape
is preferred in the viewing experience. We design a cost term,
Cr (𝐴𝑘 , 𝑥

𝑣), to find the best part of 𝐴𝑘 that matches the visual con-
tent progression. This cost has two elements:

i) Speed/Tempo, denoted by Cs (𝐴𝑘 , 𝑥
𝑣), influences the sense of

urgency, excitement, or contemplation, etc.: the faster the speed,
the higher the content tension. We apply the visual beats extraction
approach [11] to obtain the visual tempo of 𝑥𝑣 , and calculate the
absolute distance between it and the 𝐴𝑘 ’s BPM as Cs (·).

ii) Movement, whether it’s the action of subjects or the camera’s
motion, the consistent sound effects can significantly influence the
rhythm of the video. We believe that changes in motion should
consistently match the peak changes in sound effects. For each
segmented object, we first compute the homography transforma-
tion matrix linking consecutive frames 𝑓 and 𝑓 ′. We then use the
estimated homography matrics 𝐻 (𝑓 , 𝑓 ′) and 𝐻 (𝑓 ′, 𝑓 ′′) from three
consecutive frames to compute the movement𝑚𝑜𝑣 (𝑓 ) for frame 𝑓 :

𝑚𝑜𝑣𝑣 (𝑓 ) =
1
4

4∑︁
𝑛=1

| |𝐻 (𝑓 ′, 𝑓 ′′)𝑝 𝑓 ′ (𝑛)−𝑝 𝑓 ′ (𝑛)−(𝐻 (𝑓 , 𝑓 ′)𝑝 𝑓 (𝑛)−𝑝 𝑓 (𝑛)) | |2,

where 𝑝 𝑓 (𝑖), 𝑖 ∈ [1, 4] represents the 2D positions of the four cor-
ners of the sounding objects measured in pixels. For the sound
effect, we find 𝐴𝑘 ’s peak (a long-pitch plateau forming a flat turn)
𝑚𝑜𝑣𝑠 (𝑓 ) by binary search. Consequently, the movement cost term
Cm (𝐴𝑘 , 𝑥

𝑣) is defined as the Kullback–Leibler divergence between
𝑚𝑜𝑣 (𝑓 ) and𝑚𝑜𝑣 (𝑝), i.e.

Cm (·) =
∑︁
𝑓 ∈𝐹

𝑚𝑜𝑣𝑣 (𝑓 )𝑙𝑛
𝑚𝑜𝑣𝑣 (𝑓 )
𝑚𝑜𝑣𝑠 (𝑓 )

. (3)

As shown in Fig. 4, we demonstrate the comparison between video
keyframes and the corresponding sound effect’s peak.

Emotion. To address the significant gap between the visual
domain and the audio space, we leverage the color tone and fre-
quency distribution representing visual and auditory information,
respectively. These attributes have been demonstrated to be tightly
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related to emotion expression in video creation [3, 39]. For exam-
ple, low-frequency sounds might be more likely to induce sadness,
while high-frequency sounds can invoke happiness or excitement.
We first use color histograms to obtain the saturation and bright-
ness of frames and further compute the ratio 𝜉𝑣 (𝑓 ) of pixels within
high saturation and brightness regions, i.e. above 70% of the max-
imum value (i.e. 255). Similarly, we compute the ratio 𝜉𝑎 (𝑓 ) of
high-frequency regions, i.e. above 30% of the maximum value of
𝐴𝑘 . Therefore, Ce (𝐴𝑘 , 𝑥

𝑣) is defined as:

Ce (·) = | |𝜉 (𝑓 ) − 𝜉 (𝑓 ) | |2,
Distance. When mixing multiple sound effects that playback

overlapped, the relative depth should be considered – resulting in
a layered soundscape that enhances the perception of distance and
space within the audiovisual content [20]. We apply the approach
proposed by Dai et al. [10] to estimate the segmented objects’ three
translations in real time and calculate Euclidean distance between
each pair of sounding objects, yielding 𝑑𝑣 (𝑝, 𝑝 + 1), 𝑝 ∈ [1, 𝑁 ]. For
sound effects, we compute the corresponding loudness distance, i.e.
𝑑𝑎 (𝐴𝑝 , 𝐴𝑝+1). We normalize 𝑑𝑣 and 𝑑𝑎 into [−1, 1], and define the
distance cost as:

Cd (·) = − 𝑑𝑣 (𝑝, 𝑝 + 1)
𝑑𝑎 (𝐴𝑝 , 𝐴𝑝+1)

,

The goal of harmonious mixing is to find a sequence of generated
sound effects 𝐴𝑘 by selecting and ordering a subset of candidate
sounds, cutting within them, performing low/high-frequency pass,
and adjusting the loudness. The total mixing cost is

Cmix (𝐴𝑘 , 𝑥
𝑣) = 𝛽1Cr (𝐴𝑘 , 𝑥

𝑣) + 𝛽2Ce (𝐴𝑘 , 𝑥
𝑣) + 𝛽3Cd (𝐴𝑘 , 𝑥

𝑣),
Cr (·) = Cs (𝐴𝑘 , 𝑥

𝑣) + 𝛾Cm (𝐴𝑘 , 𝑥
𝑣).

𝛽 and 𝛾 are regularization factors to balance these cost terms.

5.3 Optimization
Since our optimization problem is combinatorial and the number of
combination items can vary, we adopt the Reversible Jump MCMC
(RJMCMC) framework to explore the space of possible soundtrack
extensively. To efficiently explore the solution space, we apply the
simulated annealing process in the optimization process. We define
a Boltzmann-like objective function:

𝑓 (𝐴∗) = exp(−1
𝑡
Ctotal (𝐴, 𝑥𝑣)), (4)

where 𝑡 is the temperature of the simulated annealing process,
which decreases gradually throughout the optimization. There are
three types of moves that can be selected by the optimizer:

(1) Modify Sound, including modifying the tempo, pitch, and
loudness of the current sound effect. Take tempo as an
example, the modification is defined as 𝑡𝑒𝑚′ = 𝑡𝑒𝑚0 +
△𝑡𝑒𝑚0, where △𝑡𝑒𝑚0 is sampled from a Gaussian distribu-
tion whose mean is zero and variance is 0.1𝑡𝑒𝑚0;

(2) Change Onset, i.e. randomly change the timestamp of play-
ing the current sound effect;

(3) Swap Sound, i.e. randomly change to another sound clip
from the generated sounds.

The selection probabilities of the moves are 𝑝𝑚 , 𝑝𝑐 , and 𝑝𝑠 , which
are set as 0.35, 0.3, and 0.35. Compared to existing sound effect
generation approaches discussed in § 2.2, this hybrid optimization

approach not only ensures the diversity of sound styles, but also
preserves seamless transition between sounds and harmonious
mixing consistent with the visual content.

6 AUTOSFX INTERFACE
As shown in Fig. 1, we develop an interface for video creators
or sound designers to facilitate automatic sound generation for
videos. Specifically, The Operation Panel offers users three options:
“Chapters”, displaying keyframes of video clips and allowing for
quick skipping; “Objects”, showing the segmentation heatmap of
each video clip and enabling users to specify their desired sounding
objects; “Sound Effects”, presenting our generated and optimized
results that match the visual content. Please refer to the demo for
detailed operation of our AutoSFX.

7 EXPERIMENTS
In this section, we first introduce the experiment setup (§ 7.1),
including datasets, evaluation metrics, and implementation details.
Then, we evaluate the performance of ourAutoSFX in comparison to
state-of-the-art methods for vision-to-sound (§ 7.2). We also provide
mass generated results and conduct user studies to evaluate our
generated sounds and the interface (§ 7.3).

7.1 Setup
Dataset.We leveraged two datasets to evaluate the performance
of the sound generation of our proposed AutoSFX.

i) VEGAS [53], containing 28,109 videos with both visual and
auditory information, is derived from AudioSet [15]. It covers 10
categories, such as dog barking, baby crying, and water flowing.

ii) VGGSound [4], contains over 200k clips for 309 different
sound categories, which are all downloaded from YouTube. Each
clip lasts at least 10 seconds and the corresponding label is flat (i.e.
no hierarchy architecture among labels).

Evaluation Metrics. We quantified the performance by adopt-
ing audio generation metrics outlined in [6, 29].

i) Quantitative evaluation involves: i) missing sound (Miss. S.),
i.e. when an event should produce sound but the model fails to
generate it; ii) redundant sound (Red. S.), the opposite of missing
sound, i.e. the model generates sound without any corresponding
visual stimuli; iii) mismatched sound (Mism. S.), i.e. the generated
sound does not match the video content; iv) objective similarity
grade (OSG), i.e. measuring the distance between ground truth and
the generated audio at the acoustic feature level.

ii) User study, primarily focuses on participants’ audiovisual
experience in user-uploaded YouTube videos with soundtracks
designed by different approaches, including our AutoSFX, online
tools, and professional sound design.

We also conducted comparisons between our AutoSFX and au-
diovisual segmentation approaches, demonstrating a comparable
capability on the task of video segmentation. Please refer to sup-
plementary materials for more details.

Implementation Details. We resized all video frames to a size
of 1024× 1024 and extracted the log Mel-Spectrogram using 64 mel
filter banks over 1 second of audio data sampled at 16,000 kHz on
the training set of VEGAS and VGGSound. The weight for balancing
the three losses in Equation 2 was empirically set to 1. We employed
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Table 1: Quantitative results of models trained on two differ-
ent settings. The lower the value, the better the performance.

VEGAS Miss. S. Red. S. Mism. S. OSG

Chen et al. [6] 15.67% 16.26% 17.39% 11.2947
Liu et al. [29] 9.22% 10.30% 12.06% 9.8235
AutoSFX (Ours) 8.08% 10.27% 10.18% 9.0012

VEGAS & VGGSound Miss. S. Red. S. Mism. S. OSG

Iashin et al. [21] 11.37% 19.38% 24.22% 17.2234
Lou et al. [31] 8.81% 9.22% 14.02% 12.0321
AutoSFX (Ours) 7.44% 7.93% 15.11% 13.3287

Adam optimizer to optimize the model parameters with an initial
learning rate of 10−4 with cosine decay. The batch size was defined
as 8 and we trained for 40 epochs. Additionally, we utilized PyTorch
for model training on an NVIDIA A800 GPU.

7.2 Quantitative Evaluation
To fairly compared our AutoSFX and other vision-to-sound models,
we trained our diffusion-based Sound Generationmodule under two
settings: i) When comparing to models [6, 29], we utilized 80% of the
data from the VEGAS dataset to perform the training process. The
remaining 20% data was used for evaluation. Each video clip has
three corresponding sound effects generated by different models; ii)
When comparing to models [21, 31], we trained all models on both
VEGAS and VGGSound datasets. The same splitting strategy was
used for training and evaluation. Note that, some of the compared
models are not official implementations; however, we have made
efforts to reproduce their pipeline.

For the metrics of missing sound, redundant sound, and mis-
matched sound, we recruited 10 participants to evaluate the gen-
erated results of different models. The objective similarity grade
(OSG), consisting of maximum modulation spectrum (MMS), mean
spectral flux (MSF), and root mean square (RMS), is defined as:

𝑂𝑆𝐺 = 𝑟1 ·𝑀𝑀𝑆 + 𝑟2 ·𝑀𝑆𝐹 + 𝑟3 · 𝑅𝑀𝑆, (5)

where 𝑟1 = 0.57, 𝑟2 = 0.52, 𝑟3 = 0.45, as suggested in [29].
Results and Analysis.As shown in Table 1, we demonstrate the

evaluation results of different models under the two settings. The
lowest the value, the higher the performance. Overall, our AutoSFX
attains the lowest error for all metrics under the first setting. Similar
to the statistical results demonstrated in [6], the sound generation of
“sneeze” and “Cough” demonstrated relatively lower performance,
leading to the suboptimal results in our experiments.

For the results of the second setting, the model proposed by
Iashin et al. [21], which generates sound effects with a fixed length
of 10 seconds, yielded significantly lower performance than that of
the other two approaches, particularly for the mismatched sound.
On the other hand, our results are comparable to those of Diff-Foley
(i.e. Lou et al. [31]) – for example, AutoSFX outperformed in animal
sounds, while Diff-Foley excelled in instrument sounds. We believe
that such results could be improved with our Sound Optimization
module. In Fig. 5, we illustrate some sound effects generated by
different approaches along with the alignment cases, i.e. missing

Video
Frames

GT

Iashin et al.

AutoSFX

Luo et al.

… … …

missing sounds

redundant sounds

mismatched sounds

Figure 5: Examples of missing sound, redundant sound, and
mismatched sound in generated sound effects.

sound, redundant sound, and mismatched sound. We also provided
some sounds generated by different approaches in our demo.

7.3 User Study
In addition to the quantitative evaluation, we further evaluated the
effectiveness of our AutoSFX for practical sound design scenarios.

Different Approaches.We compared three approaches:
• AutoSFX, our generated and optimized sound effects;
• Pika5, an online tool for users to generate sound effects

based on generated videos or text prompts;
• professionally designed soundtrack by sound designers.

Dataset. We randomly selected 10 videos on YouTube from the
“Sound Design Tutorial” category. These videos cover different ob-
jects, styles, and themes, typically uploaded by professional sound
designers. Therefore, we leveraged the provided soundtrack as the
professional results. We then applied AutoSFX and Pika to auto-
matically generate sound effects for these videos. Please refer to
the demo for videos featuring different soundtracks “designed” by
different approaches.

Participants.We recruited 30 participants aged between 30 and
32, who reported normal or corrected-to-normal vision, with no
color blindness and normal hearing. 10 of them are video creators
who usually record, edit, and upload videos at least once a week
(referred to as Creators); and the rest are viewers of video streaming
platforms, like YouTube and TikTok (referred to as Viewers).

Procedures. The goal of this study is to evaluate how well the
soundtrack matches the visual content. We asked participants to
rate the authenticity of the sounds, audiovisual temporal consis-
tency, sound quality, and overall viewing experience, using a 1-5
Likert scale, where 1 indicates poor performance and 5 indicates the
opposite. For each video, the three corresponding soundtracks were
presented randomly so as to avoid bias. Participants were allowed
to view each video and play the corresponding soundtrack an un-
limited number of times. Finally, all participants were invited to use
our implemented interface. We then conducted a semi-structured
interview about their experience to explore nuanced insights into
our system design.

5https://pika.art/
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5
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Pika Pro.Ours

Authenticity
Pika Pro.Ours

Sound Quality
Pika Pro.Ours

Temporal
Consistency

Pika Pro.Ours
Overall
Experience

Creators Viewers

Figure 6: Participants’ ratings of sound effects generated by
different approaches, i.e. our AutoSFX, an online tool (Pika),
and professional sound design. We grouped ratings by Cre-
ators and Viewers.

Results and Analysis. As shown in Fig. 6, we demonstrate the
ratings by different participant groups, i.e. Creators and Viewers.

Authenticity and Sound Quality, i.e. whether the sounds authen-
tically and plausibly express the video content. Overall, ratings for
all three approaches average around 4, with the professional results
exceeding 4.9. Our AutoSFX received an average rating of 𝑀 =

3.92, 𝑆𝐷 = 0.76 over all participants, i.e. 𝑀 = 3.68, 𝑆𝐷 = 0.86 for
Creators and𝑀 = 3.95, 𝑆𝐷 = 0.79 for Viewers. According to partici-
pants’ feedback, over 75% of our generated sound effects for visual
objects were largely successful in tricking humans into thinking
that these sounds were real. However, the ratings for Pika’s results
are relatively lower, yielding an average of 𝑀 = 3.41, 𝑆𝐷 = 0.92.
Such results could be explained by the fact that sound effects used
by professional designers are recorded or created using foley tech-
niques; whereas the other two kinds of sounds are generated. On
the other hand, when multiple objects appear in the video, Pika’s
results sometimes sound noisy, not to mention a soundscape with
depth distinctions; while our AutoSFX could generate soundS for
each segmented object and mix them through the optimization.

Similar ratings were received for the ratings of sound quality.
When we asked participants about the “fake” sounds or low-quality
ones, we found there were two main reasons for their judgments:

• Sounds can potentially convey significant information. Take
the baby crying as an example; it often indicates that the
baby has a need or discomfort that must be addressed. How-
ever, the generated sounds may not show diverse variations.

• Sound quality significantly influences the perception of
authenticity – whether for music, animal sounds, or even
human speeches.

Audiovisual Temporal Consistency. The professionally designed
sounds received the highest ratings, i.e. an average of𝑀 = 4.89, 𝑆𝐷 =

0.10, followed by the results by our system (𝑀 = 4.16, 𝑆𝐷 = 0.97).
On the contrary, Pika’s results showed relatively lower performance
(𝑀 = 3.94, 𝑆𝐷 = 1.05). Note that, the length of sound generated by
Pika is longer than that of the video, so we trimmed sounds to start
and stop with the video. Additionally, the ratings of Creators are
significantly lower than those of Viewers. Some Creators reported
being more rigorous on temporal consistency. We also observed
that these participants usually repeatedly played video segments
to check the alignment.

Overall Experience. To verify the above three factors contributed
to the overall experience, we computed Bivariate (Pearson) cor-
relation coefficients between their ratings and overall ratings, re-
spectively. As a result, we obtained positive correlations, i.e. 𝑟 =

.51, 𝑝 < .05 (authenticity), 𝑟 = .44, 𝑝 < .05 (temporal consistency),
and 𝑟 = .39, 𝑝 < .05 (sound quality). This further supports the ef-
fectiveness of our adopted Sound Optimization module. According
to the participants’ feedback, we observe that while some rated
authenticity, synchronization, and quality highly, they gave lower
ratings for overall consistency. They explained that sometimes the
high-frequency part of the generated sound is unclear, leading to
poor viewing experience.

About the Interface. After participants used our interface to
generate sound effects for videos, we asked them about their expe-
rience by giving a rating of “Not Helpful”, “Somewhat Helpful”, and
“Very Helpful”. 80% (16 out of 20) of the Viewers rated it as “Very
Helpful”, noting its significant helpfulness for amateur creators to
quickly produce videos with an appealing soundscape. 30% of Cre-
ators considered the system “Very Helpful” as they appreciated the
tool’s ability to automate the complex process of sound selection,
editing, and mixing; 60% found it "Somewhat Helpful," reducing
some efforts to produce videos; only two participants rated is as
“Not Helpful” due to the sound quality issues. All participants ex-
pressed a desire for a more comprehensive system like the Adobe
series to make such automation widely applicable.

8 CONCLUSION
Conditioned on visual content, automatic sound design is chal-
lenging but can streamline the video-making process, benefiting
video creators and sound designers. In this paper, we propose a
computational approach to automatically generate sound effects
for videos considering audiovisual consistency. Our AutoSFX is the
first attempt to integrate sound generation techniques into practical
sound design scenarios.

Limitation and Future Work. Videos, recorded by different cre-
ators may have different intended uses, themes, and styles featuring
different backgrounds, contextual storytelling, lighting, etc. Due to
the difficulty of learning effective representations of these factors
by computer vision techniques and obtaining accurate annotations,
we only generate sound effects for audiovisual consistent objects
and involve quantifiable cost terms during optimization. More-
over, when dealing with intricate scenarios, e.g., a crowded concert
with numerous individuals and instruments, our Sound Generation
module may encounter challenges in processing such visual infor-
mation. We also provide some failure examples of such issues in
supplementary materials.

Currently, our AutoSFX primarily focuses on generating sounds
for realistically sounding objects. However, sound design often
utilizes abstract sounds to enhance the atmosphere, emphasize
emotions, and convey subtle nuances. For example, a “woosh” sound
could be used to describe the camera movement. Inspired by text-
prompt techniques, e.g., text-guided music generation [1, 33], future
work could further incorporate text-prompt during the training
process of the generation module. We also believe there is room for
improvement in video understanding and in particular, generating
abstract, indescribable, and context-ware sound effects.
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