

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 BINDWEAVE: SUBJECT-CONSISTENT VIDEO GENERATION VIA CROSS-MODAL INTEGRATION

Anonymous authors

Paper under double-blind review

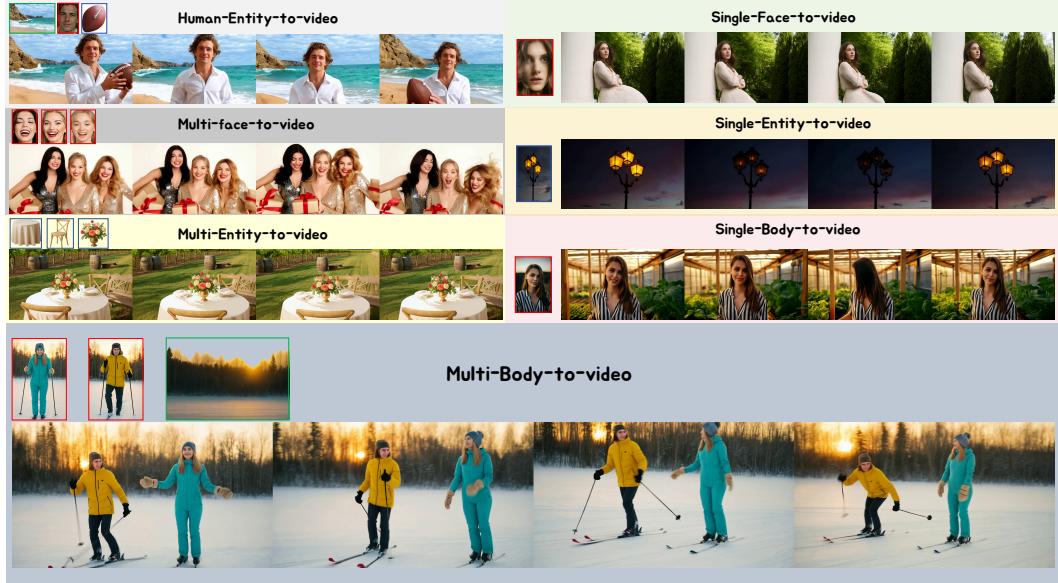


Figure 1: Examples of subject-to-video generation results of our proposed BindWeave, demonstrating its ability to produce high-fidelity, subject-consistent videos across a broad spectrum of scenarios from single-subject inputs to complex multi-subject compositions.

ABSTRACT

Diffusion Transformer has shown remarkable abilities in generating high-fidelity videos, delivering visually coherent frames and rich details over extended durations. However, existing video generation models still fall short in subject-consistent video generation due to an inherent difficulty in parsing prompts that specify complex spatial relationships, temporal logic, and interactions among multiple subjects. To address this issue, we propose BindWeave, a unified framework that handles a broad range of subject-to-video scenarios from single-subject cases to complex multi-subject scenes with heterogeneous entities. To bind complex prompt semantics to concrete visual subjects, we introduce an MLLM-DiT framework in which a pretrained multimodal large language model performs deep cross-modal reasoning to ground entities and disentangle roles, attributes, and interactions, yielding subject-aware hidden states that condition the diffusion transformer for high-fidelity subject-consistent video generation. Experiments on the OpenS2V benchmark demonstrate that our method achieves superior performance across subject consistency, naturalness, and text relevance in generated videos, outperforming existing open-source and commercial models.

1 INTRODUCTION

Recent advances in diffusion models (Ho et al., 2020; Peebles & Xie, 2023; Wang et al., 2025) have enabled significant breakthroughs in video generation (Wan et al., 2025; Yang et al., 2024; Hu et al.,

054 2025; Kong et al.; Polyak et al., 2024; Zheng et al., 2024), achieving outstanding performance on
 055 various tasks ranging from text-to-video (T2V) (HaCohen et al., 2024; Wan et al., 2025; Chen et al.,
 056 2025a) to image-to-video (I2V) (Blattmann et al., 2023; Mao et al., 2025). Foundation models such
 057 as Wan (Wan et al., 2025) and HunyuanVideo (Kong et al.) now demonstrate the ability to produce
 058 high-fidelity, long-duration, and content-rich videos, showcasing immense technological potential.
 059 However, despite these advances in visual quality, their practical utility remains constrained by
 060 limited controllability. Specifically, current models struggle to exert precise and stable control over
 061 key elements within a video, such as the identity of a specific person, the appearance of an object,
 062 or a brand logo. This lack of controllability constitutes a core limitation that significantly impedes
 063 deployment in customized applications, including personalized content creation, brand marketing,
 064 pre-visualization, and virtual try-on.

065 To address the above challenges, subject-to-video (S2V) (Liu et al., 2025) has garnered increasing
 066 attention. The core objective of S2V is to ensure that one or more subjects within a video maintain
 067 high fidelity in their identity and appearance with respect to the given reference images throughout
 068 the entire dynamic sequence. This capability directly addresses the controllability shortcomings
 069 of existing general-purpose models, making it possible to generate customized videos based on
 070 user-provided subjects. To achieve subject-consistent video generation, some existing works (Yuan
 071 et al., 2024b; Chen et al., 2025b; Huang et al., 2025; Liu et al., 2025; Jiang et al., 2025) extend
 072 a video foundation model to accept multiple reference images as conditioning input. For instance,
 073 Phantom (Liu et al., 2025) introduces a dual-branch architecture to separately process the text prompt
 074 and reference images, subsequently injecting the resulting features into the attention layers of a
 075 Diffusion Transformer (DiT) (Peebles & Xie, 2023) as conditioning. VACE (Jiang et al., 2025)
 076 designs a video condition unit to unify inputs (text, image/video references, mask) into a unified
 077 format, then inject these context signals via residual blocks to guide video generation.

078 Despite their promising results, these methods share a common limitation: they rely on a separate-
 079 then-fuse shallow information processing paradigm. Specifically, these models typically use sepa-
 080 rate encoders to extract features from images and text independently, followed by a post-hoc fusion
 081 through simple concatenation or cross-attention mechanisms. While this mechanism may suffice
 082 for simple instructions involving only appearance preservation, its ability to understand and rea-
 083 son falters when faced with text prompts involving complex interactions, spatial relationships, and
 084 temporal logic among multiple subjects. Due to a lack of deep semantic association across the mul-
 085 timodal inputs, the model struggles to accurately parse the instructions, often leading to problems
 086 like identity confusion, action misplacement, or attribute blending.

087 To overcome this bottleneck, we propose BindWeave, a novel framework designed for subject-
 088 consistent video generation. To establish the deep cross-modal semantic associations, BindWeave
 089 leverages a Multimodal Large Language Model (MLLM) as an intelligent instruction parser to re-
 090 place the conventional shallow fusion mechanism. Specifically, we first construct a unified, inter-
 091 leaved sequence from reference images and text prompt. This sequence is then processed by a
 092 pre-trained MLLM to parse complex spatio-temporal relationships and bind textual commands to
 093 their corresponding visual entities. Through this process, the MLLM generates a set of hidden states
 094 encoding both the precise identity of each subject and their prescribed interactions. These hidden
 095 states then serve as conditioning inputs to our generator, bridging high-level parsing with diffusion-
 096 based generation. To provide subject-grounded semantic anchors and further reduce identity drift,
 097 we also incorporate CLIP (Radford et al., 2021b) features from the reference images. Accordingly,
 098 our DiT (Peebles & Xie, 2023) based generator is jointly conditioned on these hidden states and
 099 CLIP features. Together, these conditioning inputs provide comprehensive relational and semantic
 100 guidance. To preserve fine-grained appearance details, we augment the video latents during diffu-
 101 sion with VAE (Esser et al., 2021) features extracted from the reference images. This collective
 102 conditioning on high-level reasoning, semantic identity, and low-level detail ensures the generation
 103 of videos with exceptional fidelity and consistency.

104 We conduct a comprehensive evaluation of BindWeave on the fine-grained OpenS2V (Yuan et al.,
 105 2025) benchmark against a diverse set of existing approaches, including leading open-source meth-
 106 ods and commercial models. The evaluation assesses key aspects such as subject consistency, tem-
 107 poral naturalness, and text-video alignment. Extensive experiments demonstrate that BindWeave
 108 achieves state-of-the-art performance, consistently outperforming all competing methods in subject-
 109 consistent video generation. Qualitative results, illustrated in Figure 1, further demonstrate the
 110 superior quality of the generated samples. These findings highlight BindWeave’s effectiveness in

108 subject-consistent video generation and its potential as a high-performing solution for both research
 109 and commercial applications.
 110

111 2 RELATED WORK

113 2.1 VIDEO GENERATION MODEL

115 Diffusion models have enabled remarkable advancements in video generation. Early meth-
 116 ods (Singer et al., 2022; Blattmann et al., 2023; Guo et al., 2023) often extended text-to-image
 117 models (Rombach et al., 2022) for video generation by incorporating temporal modeling modules.
 118 More recently, the Diffusion Transformer (DiT) (Peebles & Xie, 2023) architecture, motivated by its
 119 excellent scaling properties, has inspired a new wave of models like Wan (Wan et al., 2025), Hun-
 120 yuanVideo (Kong et al., 2024a), and Goku (Chen et al., 2025a). However, these models focus on
 121 general-purpose video generation, and there is still considerable room for improvement in achieving
 122 fine-grained control.
 123

124 2.2 SUBJECT-CONSISTENT VIDEO GENERATION

125 To achieve more fine-grained control, subject-consistent video generation has garnered significant
 126 attention. Initial approaches often rely on per-subject optimization, where a pre-trained model is
 127 fine-tuned on images of a specific subject, as seen in methods like CustomVideo (Wang et al., 2024)
 128 and DisenStudio (Chen et al., 2024). While effective, this instance-specific tuning is computationally
 129 expensive and poses challenges for real-time applications. More recent works have shifted towards
 130 end-to-end methods that use conditioning networks or adapters to inject identity information during
 131 inference, allowing for generalization to new subjects without retraining. These models, such as
 132 IDAnimator (He et al., 2024) and ConsisID (Yuan et al., 2024a), initially focused on preserving
 133 facial identity. This capability was later extended to arbitrary objects and multiple subjects by works
 134 like ConceptMaster (Huang et al., 2025), SkyReels-A2 (Fei et al., 2025), Phantom (Liu et al., 2025),
 135 and VACE (Jiang et al., 2025). Despite this progress, significant challenges remain, particularly
 136 maintaining distinct identities and modeling complex interactions in multi-subject scenes.
 137

138 3 METHOD

140 3.1 PRELIMINARIES

141 **Diffusion Transformer Models for Text-to-Video Generation.** Transformer-based text-to-video
 142 diffusion models have shown substantial promise for video content generation. Our BindWeave
 143 builds upon a Transformer-based latent diffusion architecture that employs a spatio-temporal Varia-
 144 tional Autoencoder (VAE) (Wan et al., 2025) to map videos from the pixel level to a compact latent
 145 space, where the generative process is performed. Each Transformer block comprises spatiotempo-
 146 ral self-attention, text cross-attention, a time-conditioning MLP, and a feed-forward network (FFN).
 147 The cross-attention is conditioned on a text prompt embedding c_{text} obtained from a T5 encoder
 148 \mathcal{E}_{T5} (Raffel et al., 2020). We employ Rectified Flow (Liu et al., 2022; Esser et al., 2024) to define the
 149 diffusion dynamics, which enables stable training via ordinary differential equations (ODEs) while
 150 maintaining equivalence to maximum likelihood objectives. In the forward process of training, ran-
 151 dom noise is add to clean data z_0 to generate $z_t = (1-t)z_0 + t\epsilon$, where ϵ is sampled from a standard
 152 normal distribution, $\mathcal{N}(0, I)$, and the time coefficient t is sampled from $[0, 1]$. Accordingly, the
 153 learning objective becomes the estimation of ground truth velocity field $v_t = dz_t/dt = \epsilon - z_0$. The
 154 network u_{Θ} is trained to this end using the Flow Matching loss (Esser et al., 2024):
 155

$$\mathcal{L} = \mathbb{E}_{t, z_0, \epsilon, c_{\text{text}}} \|u_{\Theta}(z_t, t, c_{\text{text}}) - v_t\|_2^2. \quad (1)$$

156 **Video Generation with Image Conditioning.** Natural language offers an accessible interface for
 157 diffusion-based video synthesis, yet it often under-specifies subject identity and spatial layout. This
 158 motivates the incorporation of a reference image to anchor appearance and geometry in text-to-video
 159 pipelines Wan et al. (2025); Kong et al. (2024b). For instance, Wan (Wan et al., 2025) injects image
 160 information in two ways: first at the input level for fine-grained spatial detail, and second within the
 161 cross-attention mechanism for semantic guidance. First, to preserve fine-grained appearance, the

reference image \mathcal{I}_{img} is encoded by a VAE into a spatial latent z_{img} . This latent is concatenated with the current noisy video latent \mathbf{x}_t along the channel dimension. The combined latent is then patchified and linearly embedded to form the initial sequence of tokens for the DiT block:

$$H_{in} = \text{PatchEmbed}(\text{concat}_c(\mathbf{x}_t, z_{img})). \quad (2)$$

Then, semantic guidance is achieved by injecting multimodal conditioning via cross-attention. A pretrained vision encoder E_{vision} (e.g., CLIP) processes \mathcal{I}_{img} into semantic tokens \mathcal{H}_{img} , while a text encoder provides text tokens \mathcal{H}_{txt} . Within each cross-attention layer, queries (\mathbf{Q}) are derived from the evolving video tokens, denoted as H_{vid} (where H_{vid} is H_{in} for the first layer). The query, key, and value matrices are computed using dedicated linear projection layers (Φ_Q, Φ_K, Φ_V):

$$\mathbf{Q}_{vid} = \Phi_Q(H_{vid}), \quad \mathbf{K}_{img} = \Phi_K(\mathcal{H}_{img}), \quad \mathbf{V}_{img} = \Phi_V(\mathcal{H}_{img}), \quad (3)$$

and similarly for $\mathbf{K}_{txt}, \mathbf{V}_{txt}$ from the text stream. The output of the attention layer fuses these information sources using the standard scaled dot-product attention operator, $\text{Attn}(\cdot)$:

$$H_{out} = H_{vid} + \text{Attn}(\mathbf{Q}_{vid}, \mathbf{K}_{txt}, \mathbf{V}_{txt}) + \gamma \text{Attn}(\mathbf{Q}_{vid}, \mathbf{K}_{img}, \mathbf{V}_{img}), \quad (4)$$

where γ is a scalar balancing the image and text guidance.

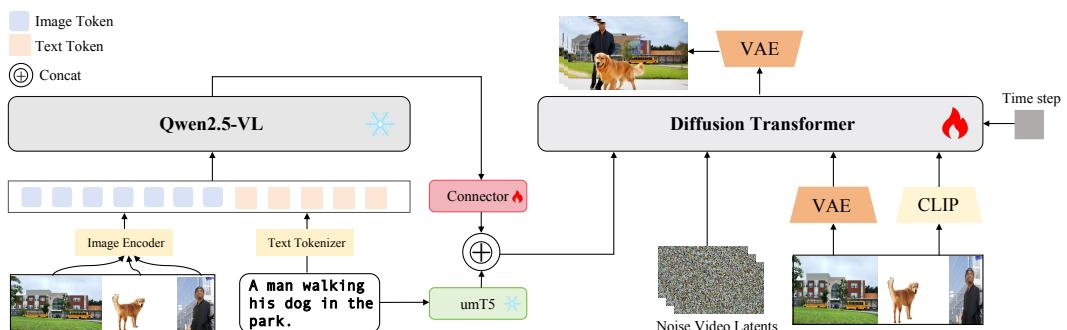


Figure 2: Framework of our method. A multimodal large language model performs cross-modal reasoning to ground entities and disentangle roles, attributes, and interactions from the prompt and optional reference images. The resulting subject-aware signals condition a Diffusion Transformer through cross-attention and lightweight adapters, guiding identity-faithful, relation-consistent, and temporally coherent video generation.

3.2 ARCHITECTURE

Our proposed BindWeave is designed to overcome the limitations of shallow fusion paradigms in subject-consistent video generation. The core principle of our approach is to replace shallow, post-hoc fusion with a deep, reasoned understanding of multimodal inputs *before* the generation process begins. To this end, BindWeave first leverages a Multimodal Large Language Model (MLLM) to act as an intelligent instruction parser. The MLLM thus generates a guiding schema, realized as a sequence of hidden states that encodes complex cross-modal semantics and spatio-temporal logic, then meticulously guides a Diffusion Transformer (DiT) throughout the synthesis process. Figure 2 provides a schematic overview of the BindWeave architecture.

3.3 INTELLIGENT INSTRUCTION PLANNING VIA MLLM

To effectively foster joint cross-modal learning between the text prompt and reference images, we introduce a unified multimodal parsing strategy. Given a text prompt \mathcal{T} and K user-specified subjects, each with a reference image I_k , we constructs a multimodal sequence \mathcal{X} by appending one image placeholder for each reference image after the text prompt. The MLLM is then provided with this sequence along with the corresponding list of images \mathcal{I} :

$$\mathcal{X} = [\mathcal{T}, \langle \text{img} \rangle_1, \langle \text{img} \rangle_2, \dots, \langle \text{img} \rangle_K], \quad (5)$$

$$\mathcal{I} = [I_1, I_2, \dots, I_K], \quad (6)$$

216 where $\langle \text{img} \rangle_k$ is a special placeholder token that the MLLM internally aligns with the k -th image, I_k .
 217 This unified representation, which preserves the crucial contextual links between textual descriptions
 218 and their corresponding visual subjects, is then fed into a pre-trained MLLM. By processing the
 219 multimodal inputs $(\mathcal{X}, \mathcal{I})$, the MLLM generates a sequence of hidden states, H_{mllm} , that embodies
 220 a high-level reasoning of the scene, effectively binding textual commands to their specific visual
 221 identities:

$$H_{\text{mllm}} = \text{MLLM}(\mathcal{X}, \mathcal{I}). \quad (7)$$

223 To align the feature space between the frozen MLLM and our diffusion model, these hidden states
 224 are projected through a trainable lightweight connector, $\mathcal{C}_{\text{proj}}$, to yield a feature-aligned condition
 225 c_{mllm} :

$$c_{\text{mllm}} = \mathcal{C}_{\text{proj}}(H_{\text{mllm}}). \quad (8)$$

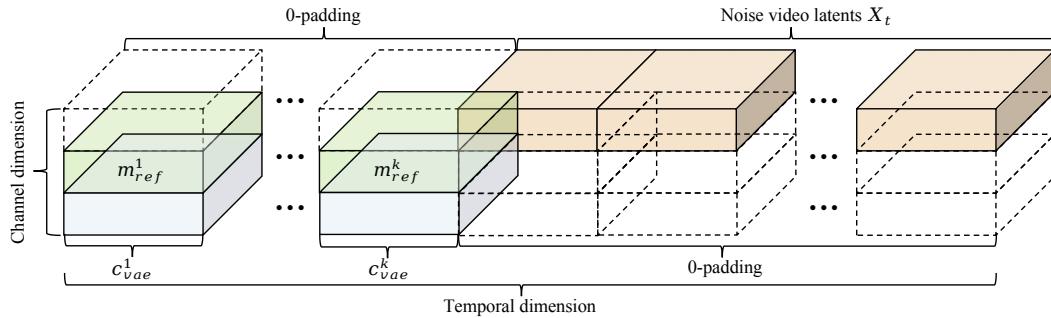
227 While this MLLM-derived condition provides invaluable high-level, cross-modal reasoning, we rec-
 228ognize that diffusion models are also highly optimized to interpret fine-grained textual semantics.
 229 To provide this complementary signal, we encode the original prompt independently using the T5
 230 text encoder (\mathcal{E}_{T5}) (Raffel et al., 2020) to produce a dedicated textual embedding c_{text} :

$$c_{\text{text}} = \mathcal{E}_{\text{T5}}(\mathcal{T}). \quad (9)$$

233 We then concatenate these two complementary streams to form our final relational conditioning
 234 signal c_{joint} :

$$c_{\text{joint}} = \text{Concat}(c_{\text{mllm}}, c_{\text{text}}). \quad (10)$$

236 This composite signal thus encapsulates not only the explicit textual commands but also the deep
 237 reasoning about subject interactions and spatio-temporal logic, providing a robust foundation for the
 238 subsequent generation phase.



251 Figure 3: Illustration of our adaptive multi-reference conditioning strategy.

253 3.4 COLLECTIVELY CONDITIONED VIDEO DIFFUSION

255 In the instruction planning process, we integrate useful semantics into c_{joint} . Now, we need to inject
 256 c_{joint} as a condition into the DiT module to guide video generation. Our generation backbone u_{Θ}
 257 operating in the latent space of a pre-trained spatio-temporal Variational Autoencoder (VAE). To
 258 ensure high-fidelity and consistent video generation, we employ a collective conditioning me-
 259 chanism that synergistically integrates multiple streams of information. As described in Section 3.1,
 260 our collective conditioning mechanism also operates at two synergistic levels: conditioning the
 261 spatio-temporal input and the cross-attention mechanism. To maintain fine-grained appearance
 262 details from the reference images, we design an adaptive multi-reference conditioning strategy as
 263 shown in Figure 3. Specifically, we encode the references into low-level VAE features, denoted as
 264 $c_{\text{vae}} = \mathcal{E}_{\text{VAE}}(\{I_{\text{ref}}^i\})$. Since S2V differs from I2V, the reference images are not treated as actual video
 265 frames. We first expand the temporal axis of the noisy video latent, padding K additional slots with
 266 zeros: $\tilde{x}_t = \text{pad}_T(x_t, K)$. We then place the VAE features of the reference images c_{vae} onto these
 267 K padded time positions (zeros elsewhere), and further concatenate the corresponding binary masks
 268 m_{ref} along the channel dimension to emphasize the subject regions. The final input to the DiT block
 269 is obtained via channel-wise concatenation before patch embedding:

$$H_{\text{vid}} = \text{PatchEmbed}(\text{concat}_c(\tilde{x}_t, \tilde{c}_{\text{vae}}, \tilde{m}_{\text{ref}})), \quad (11)$$

270 where \tilde{c}_{vae} and \tilde{m}_{ref} are zero outside the K padded temporal slots and carry the reference conditioning
 271 only within those slots. This design preserves the temporal integrity of the original video while
 272 injecting fine-grained appearance and subject emphasis through channel-wise conditioning. Then,
 273 high-level semantic guidance is injected via the cross-attention layers. This involves two distinct
 274 signals: the relational condition c_{joint} from the MLLM for scene composition, and the CLIP image
 275 features $c_{\text{clip}} = \mathcal{E}_{\text{CLIP}}(\{I_{\text{ref}}^i\})$ for subject identity. Within each DiT block, the evolving video to-
 276 tokens H_{vid} generate the queries \mathbf{Q}_{vid} . The conditioning signals c_{joint} and c_{clip} are projected to form
 277 their respective key and value matrices. The final output of the attention layer is a sum of these
 278 information streams, extending Equation 4:

$$279 \quad H_{\text{out}} = H_{\text{vid}} + \text{Attn}(\mathbf{Q}_{\text{vid}}, \mathbf{K}_{\text{joint}}, \mathbf{V}_{\text{joint}}) + \text{Attn}(\mathbf{Q}_{\text{vid}}, \mathbf{K}_{\text{clip}}, \mathbf{V}_{\text{clip}}), \quad (12)$$

280 where $(\mathbf{K}_{\text{joint}}, \mathbf{V}_{\text{joint}})$ and $(\mathbf{K}_{\text{clip}}, \mathbf{V}_{\text{clip}})$ are derived from c_{joint} and c_{clip} using linear projection layers,
 281 respectively. By integrating high-level relational reasoning (c_{joint}), semantic identity guidance
 282 (c_{clip}), and low-level appearance details (c_{vae}) in this structured manner, BindWeave effectively steers
 283 the diffusion process to generate videos that are not only visually faithful to the subjects but also
 284 logically and semantically aligned with complex user instructions.

286 3.5 TRAINING AND INFERENCE

288 **Training Setup.** Following the rectified flow formulation described in Section 3.1, our model is
 289 trained to predict the ground truth velocity. The overall training objective for BindWeave can be
 290 formulated as mean squared error (MSE) between the model output and v_t :

$$291 \quad \mathcal{L}_{\text{mse}} = \|u_{\Theta}(z_t, t, c_{\text{joint}}, c_{\text{clip}}, c_{\text{vae}}) - v_t\|_2^2. \quad (13)$$

293 Our training data is curated from the 5 million publicly available OpenS2V-5M dataset (Yuan et al.,
 294 2025). Through a series of filtering strategies, we distill a final, high-quality dataset of approximately
 295 1 million video-text pairs. The training process then follows a two-stage curriculum learning strategy
 296 on this data. All training processes are conducted on 512 xPUs, with a global batch size of 512,
 297 utilizing a constant learning rate of 5e-6 and the AdamW optimizer. The initial stabilization phase,
 298 lasting for approximately 1,000 iterations, utilizes a smaller, core subset selected from the 1 million
 299 data for its exceptional quality and representativeness. This initial phase is crucial for adapting the
 300 model to the specific demands of the Subject-to-Video (S2V) task, primarily focusing on learning
 301 to faithfully preserve a subject’s visual identity while aligning it with the corresponding textual
 302 motion commands. This establishes a robust foundation for the subsequent large-scale training.
 303 Subsequently, the training transitions to a full-scale phase for an additional 5,000 iterations, where
 304 the model is exposed to the entirety of the 1 million curated dataset. This second stage allows the
 305 model to build upon its stable foundation and learn from a broader range of high-quality examples,
 306 significantly enhancing its generative capabilities and generalization performance.

307 **Inference settings.** During inference, our BindWeave accepts a flexible number of reference images
 308 (typically 1-4), while a text prompt steers the generation by describing the desired scene and behav-
 309 iors. Similar to Phantom (Liu et al., 2025), we use a prompt rephraser during inference to ensure
 310 the text accurately describes the provided reference images. Generation is performed over 50 steps
 311 using a rectified flow Liu et al. (2022) trajectory, guided by Classifier-Free Guidance (CFG) Ho &
 312 Salimans (2022) with a scale of ω . The guided noise estimate at each step t is computed as:

$$312 \quad \hat{\epsilon}_{\theta}(x_t, c) = \epsilon_{\theta}(x_t, \emptyset) + \omega (\epsilon_{\theta}(x_t, c) - \epsilon_{\theta}(x_t, \emptyset)) \quad (14)$$

313 where $\epsilon_{\theta}(x_t, c)$ is the noise prediction conditioned on the prompt c , and $\epsilon_{\theta}(x_t, \emptyset)$ is the uncondi-
 314 tional prediction. This estimate is then used by the scheduler to derive x_{t-1} .

316 4 EXPERIMENTS

318 4.1 EXPERIMENTAL SETTINGS

320 **Benchmark and Evaluation Metrics.** To ensure a fair comparison, we adopt the OpenS2V-Eval
 321 benchmark (Yuan et al., 2025) and follow its official evaluation protocol, which provides fine-
 322 grained assessments of subject consistency and identity fidelity for subject-to-video generation. The
 323 benchmark comprises 180 prompts in **seven distinct categories**, covering scenarios from single-
 324 subject (face, body, entity) to multi-subject and human–entity interactions. To quantify performance,

324 we report the protocol’s automated metrics, with higher scores indicating better results across all
 325 metrics. These include **Aesthetics** (christophschuhmann, 2024) for visual appeal, **MotionSmooth-**
 326 **ness** (Bradski et al., 2000) for temporal smoothness, **MotionAmplitude** (Bradski et al., 2000) for
 327 motion magnitude, and **FaceSim** (Yuan et al., 2024a) for identity preservation. We also use three
 328 metrics introduced by OpenS2V-Eval (Yuan et al., 2025) that correlate highly with human perception:
 329 **NexusScore** (subject consistency), **NaturalScore** (naturalness), and **GmeScore** (text–video
 330 relevance).

331 **Implementation details.** BindWeave is fine-tuned from a foundation video generation model based
 332 on DiT architecture (Wan et al., 2025). The T2V and I2V pre-training stages are excluded from
 333 this evaluation. For the core instruction planning module, we employ Qwen2.5-VL-7B (Bai et al.,
 334 2025) as our Multimodal Large Language Model (MLLM). To align the multimodal control signal
 335 with the DiT conditioning space, we introduce a lightweight connector that projects the Qwen2.5-
 336 VL hidden states. Specifically, the connector features a two-layer MLP with GELU activation. We
 337 train our model using the Adam optimizer with a 5e-6 learning rate and a global batch size of 512.
 338 To mitigate copy-paste artifacts, we apply data augmentations (e.g., random rotation, scaling) to
 339 reference images. During inference, we use 50 denoising steps set the CFG guidance scale ω to 5.

340 **Baselines.** We compare BindWeave with the state-of-the-art video customization methods, includ-
 341 ing open-sourced methods (Phantom (Liu et al., 2025), VACE (Jiang et al., 2025), SkyReels-A2 (Fei
 342 et al., 2025), MAGREF (Deng et al., 2025)) and commercial products (Kling-1.6 (Kwai, 2024),
 343 Vido-2.0 (Bao et al., 2024), Pika (Lab, 2024), Hailuo (Team, 2024)).

344 4.2 QUANTITATIVE RESULTS

345 We conduct a comprehensive comparison on the OpenS2V-Eval benchmark (Yuan et al., 2025), as
 346 shown in Table 1, providing a broad and rigorous evaluation across diverse scenarios. Following the
 347 benchmark’s protocol, each method generates 180 videos for evaluation to ensure statistical reli-
 348 ability and coverage of all categories. We report eight automatic metrics as described in Section 4.1
 349 to ensure comprehensive assessment, thereby capturing visual quality, temporal behavior, and
 350 semantic alignment in a unified manner. As shown in Table 1, our BindWeave achieves a new state
 351 of the art on the overall Total Score, with notably stronger NexusScore that highlights its advantage
 352 on subject consistency. Notably, NexusScore (Yuan et al., 2025) is designed to address the limita-
 353 tions of prior global-frame CLIP (Radford et al., 2021a) or DINO (Oquab et al., 2023) comparisons
 354 and provide a semantically grounded, noise-resilient assessment that better reflects perceptual iden-
 355 tity fidelity. It achieves this via a detect-then-compare strategy that first localizes the true target,
 356 crops the relevant regions to suppress background interference, and then computes similarity within
 357 a retrieval-based multimodal feature space with confidence and text–image gating, finally aggregat-
 358 ing scores over the verified crops for a reliable summary. Importantly, BindWeave also maintains
 359 strong competitiveness on other metrics, including FaceSim, Aesthetics, GmeScore, motion-related
 360 measures such as MotionSmoothness and MotionAmplitude, and NaturalScore, which respectively
 361 reflect its strengths in identity preservation, visual appeal, text–video alignment, temporal coherence
 362 and motion magnitude, and overall naturalness across a wide range of prompts and categories.

363 4.3 QUALITATIVE RESULTS

364 To clearly demonstrate the effectiveness of our method, we present some typical subject-to-video
 365 scenarios in Figure 4 and Figure 5, including single-body-to-video, human-entity-to-video, single-
 366 object-to-video, and multi-entity-to-video. As shown in the left panel of Figure 4, commercial
 367 models such as Vido, Pika, Kling, and Hailuo produce visually appealing videos but struggle with
 368 subject consistency. Among open-source methods, SkyReel-A2 is comparatively competitive on
 369 subject consistency, yet its overall visual aesthetics lag behind our BindWeave. VACE and Phantom
 370 similarly exhibit weak subject consistency. In the right panel of Figure 4, our approach achieves
 371 markedly better subject consistency, text alignment, and visual quality. As shown in the left panel of
 372 Figure 5, in single-object-to-video scenarios, commercial models such as Vido and Pika still exhibit
 373 pronounced violations of physical and semantic plausibility—what we summarize as “common-
 374 sense violations” (e.g., a human walking with severely twisted legs). Kling achieves strong visual
 375 aesthetics but maintains poor subject consistency. SkyReels-A2 shows severe distortions and simi-
 376 larly weak subject consistency, and Phantom also struggles to preserve subject consistency. Among

378 Table 1: Quantitative comparison among different methods for subject-to-video task. Total score is
 379 the normalized weighted sum of other scores. “↑” higher is better.
 380

Method	Total Score↑	Aesthetics↑	MotionSmoothness↑	MotionAmplitude↑	FaceSim↑	GmeScore↑	NexusScore↑	NaturalScore↑
VACE-14B Jiang et al. (2025)	57.55%	47.21%	94.97%	15.02%	55.09%	67.27%	44.08%	67.04%
Phantom-14B Liu et al. (2025)	56.77%	46.39%	96.31%	33.42%	51.46%	70.65%	37.43%	69.35%
Kling1.6(20250503) Kwai (2024)	56.23%	44.59%	86.93%	41.60%	40.10%	66.20%	45.89%	74.59%
Phantom-1.3B Liu et al. (2025)	54.89%	46.67%	93.30%	14.29%	48.56%	69.43%	42.48%	62.50%
MAGREF-480P Deng et al. (2025)	52.51%	45.02%	93.17%	21.81%	30.83%	70.47%	43.04%	66.90%
SkyReels-A2-P14B Fei et al. (2025)	52.25%	39.41%	87.93%	25.60%	45.95%	64.54%	43.75%	60.32%
Vidu2.0(20250503) Bao et al. (2024)	51.95%	41.48%	90.45%	13.52%	35.11%	67.57%	43.37%	65.88%
Pika2.1(20250503) Lab (2024)	51.88%	46.88%	87.06%	24.71%	30.38%	69.19%	45.40%	63.32%
VACE-1.3B Jiang et al. (2025)	49.89%	48.24%	97.20%	18.83%	20.57%	71.26%	37.91%	65.46%
VACE-P1.3B Jiang et al. (2025)	48.98%	47.34%	96.80%	12.03%	16.59%	71.38%	40.19%	64.31%
Ours	57.61%	45.55%	95.90%	13.91%	53.71%	67.79%	46.84%	66.85%

381
 382
 383
 384
 385
 386
 387
 388
 389
 390 the baselines, VACE better maintains subject consistency but suffers from limited motion coherence
 391 and naturalness. In contrast, our BindWeave delivers strong subject consistency together with natu-
 392 ral and coherent motion. Notably, under multi-object and complex-instruction settings as shown in
 393 the right panel of Figure 5, methods like Vidu and Pika often miss key cues (e.g., “hot oil”), Kling
 394 shows severe physical implausibility (e.g., fries leaking directly out of the basket), and MAGREF
 395 fails to preserve subject consistency; other baselines also omit crucial prompt details. In contrast,
 396 our results deliver fine-grained detail while maintaining strong subject consistency. We attribute this
 397 to BindWeave’s explicit cross-modal integration of the reference image and textual prompt via an
 398 MLLM, which jointly parses entities, attributes, and inter-object relations. As a result, BindWeave
 399 preserves subtle yet crucial details (e.g., “hot oil”) and constructs a unified, temporally consistent
 400 scene plan to guide coherent generation. This deep cross-modal integration reliably enforces key
 401 prompt elements and embeds basic physical commonsense for multi-entity interactions, thereby re-
 402 ducing implausible outcomes. More visualizations can be found in Appendix Section A.5 and our
 403 supplementary materials, including additional qualitative examples and comparisons.
 404

405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431 Figure 4: Qualitative comparison on subject-to-video task, with four uniformly sampled frames
 shown in each case. Compared to other competing methods, our approach is superior in subject
 fidelity, naturalness, and semantic consistency with the caption.

Table 2: Quantitative ablation results comparing T5-only and T5+Qwen2.5-VL conditioning.

Method	Total Score↑	Aesthetics↑	MotionSmoothness↑	MotionAmplitude↑	FaceSim↑	GmeScore↑	NexusScore↑	NaturalScore↑
T5-only	55.16%	42.80%	95.39%	7.48%	53.02%	62.26%	45.79%	63.38%
T5+Qwen2.5-VL	57.61%	45.55%	95.90%	13.91%	53.71%	67.79%	46.84%	66.85%

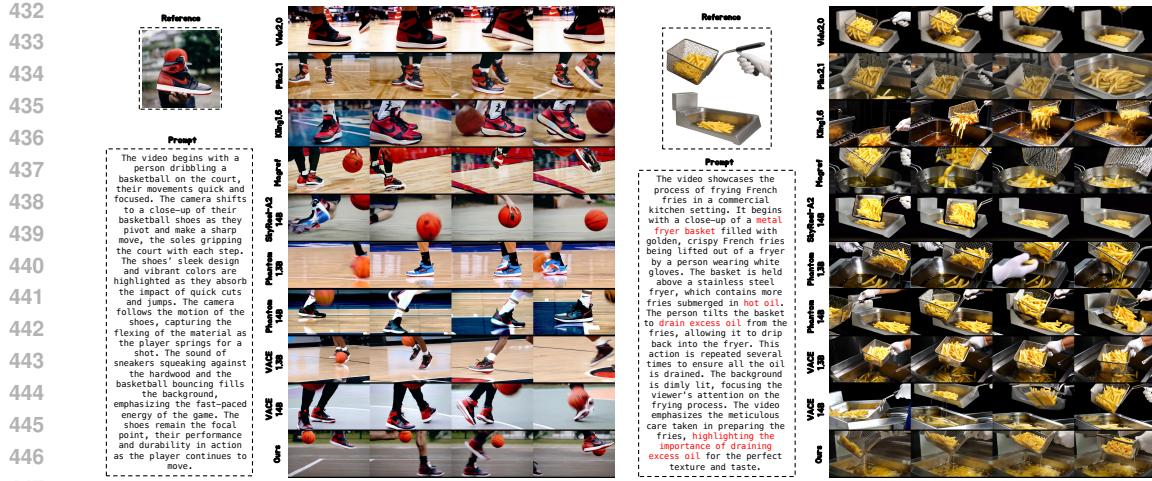


Figure 5: Qualitative comparison on subject-to-video task, with four uniformly sampled frames shown in each case. Compared with other methods, our approach better avoids implausible phenomena and produces more natural videos while maintaining strong subject consistency.

4.4 ABLATION STUDY

We ablate our control-conditioning that concatenates MLLM- and T5-derived signals to guide a DiT during generation. We compare a T5-only baseline with our T5+Qwen2.5-VL variant. The MLLM-only setup (Qwen2.5-VL + DiT) is omitted from this quantitative analysis because, as discussed in Section A.3, it proved to be unstable during training and failed to converge within our training budget. As shown in Table 2, T5+Qwen2.5-VL consistently outperforms T5-only across aesthetics, motion, naturalness, and text relevance. Qualitative comparisons in Figure 8 further corroborate these findings: when reference images exhibit scale mismatch, the T5-only baseline tends to produce unrealistic subject sizes (e.g., dog–bowl), and under complex instructions it often misparses action–object relations, whereas T5+Qwen2.5-VL remains well grounded and executes the intended interactions. We attribute these gains to complementary conditioning, the MLLM provides multi-modal, identity- and relation-aware cues that disambiguate subjects and improve temporal coherence, while T5 offers precise linguistic grounding that stabilizes optimization. Their concatenation yields a richer and more reliable control signal for DiT. More cases are provided in Section A.4.

Figure 6: Qualitative comparison of MLLM+T5 vs. T5-only. MLLM+T5 shows superior scale grounding, reliable action–object execution, and stronger temporal/textual coherence.

4.5 USER STUDY

We conducted a user study to evaluate our method, employing mean opinion scores (MOS) across four key criteria: subject consistency, prompt following, video quality, and motion quality. These dimensions provide a comprehensive assessment of the generated videos. We recruited 20 participants to perform anonymized comparisons across different methods. All generated samples are anonymized and randomly assigned to users, with each item scored on a 1–5 scale. The results are summarized in Table 3, and for clearer presentation we also visualize the data in Figure 7. The evaluation indicates that BindWeave achieves the best performance in subject consistency while maintaining leading results across all metrics.

Method	Subject Consistency ↑	Prompt Following ↑	Motion Quality ↑	Video Quality ↑	Total Score	Average ↑
SkyReels	3.47	3.52	3.60	3.23	3.46	
Vidu	3.40	3.55	3.63	3.50	3.52	
Magref	3.25	3.65	3.65	3.58	3.53	
Phantom	3.56	3.72	3.84	3.58	3.68	
Kling	3.62	3.58	3.90	3.75	3.71	
VACE	3.88	3.63	3.80	3.62	3.73	
BindWeave (Ours)	3.94	3.66	3.75	3.70	3.76	

Table 3: User study results comparing different methods. “Total Score” means the average score.

4.6 COPY-PASTE PROBLEM

We evaluate whether conditioning on reference images induces pixel-level “copy–paste” artifacts by constructing conflict–coherence scenarios that deliberately mismatch the reference and the prompted outcome. Beyond contrasting facial expressions (e.g., smiling reference → painful, tearful video; painful reference → joyful smiling video), we also test outfit changes and diverse pose settings to more comprehensively validate our approach. Across these cases, the model follows the instructions rather than pasting pixels; it adapts facial musculature, attire, and pose to match the prompt while preserving identity, maintains smooth temporal transitions without stuck frames, and produces coherent motion instead of static overlays.

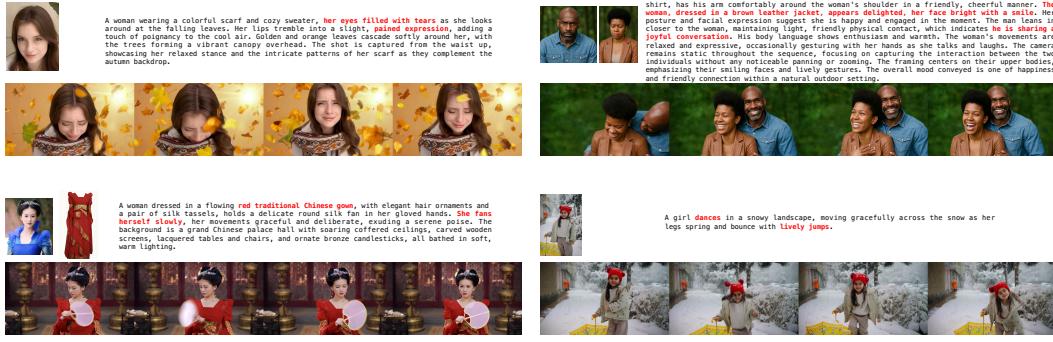


Figure 8: Evaluating copy–paste artifacts under conflict–coherence scenarios

5 CONCLUSION

In this paper, we introduce BindWeave, a novel subject-consistent video generation framework that delivers consistent, text-aligned, and visually compelling videos across single- and multi-entity settings through explicit cross-modal integration. By using an MLLM to deeply integrate information from reference images and textual prompts to facilitate joint learning, BindWeave effectively models entity identities, attributes, and relations, thereby achieving fine-grained grounding and strong subject preservation. The empirical results demonstrate that BindWeave has fully learned cross-modal fusion knowledge, enabling the generation of high-fidelity, subject-consistent videos. Moreover, on the OpenS2V benchmark, BindWeave achieves state-of-the-art performance, outperforming existing open-source methods and commercial models, clearly showcasing its strength. Overall, BindWeave offers a new perspective for the S2V task and points toward future advances in consistency, realism, and controllability.

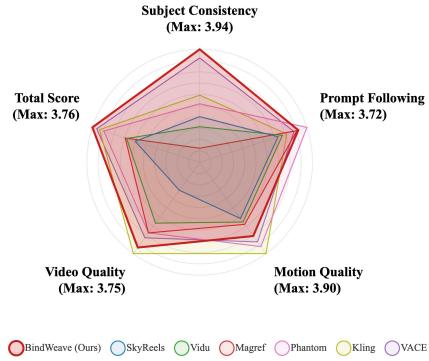


Figure 7: Visualization of user study scores across the evaluation criteria.

540 ETHICS STATEMENT
541

542 This work studies subject-to-video generation and related evaluation. All images appearing in this
543 paper are either generated by our models or sourced from publicly available datasets under their
544 respective licenses and are used solely to demonstrate the technical capabilities of our research. All
545 qualitative (visualized) results are provided solely for academic comparison and research discussion
546 and are not intended for commercial use.

548 REPRODUCIBILITY STATEMENT
549

550 In Section 3.2, we provide a detailed description of our network architecture and the interactions
551 among the variables. In Section 3.5, we disclose the detailed parameters for training and inference,
552 as well as the datasets used. In Section 4.1, we further present our model configurations and the
553 parameters for training and inference, including the benchmarks and metrics used for performance
554 evaluation. Through these efforts, we have made every possible attempt to ensure the reproducibility
555 of our method. Furthermore, we will open-source our code and models to facilitate reproducibility.

557 REFERENCES
558

559 Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
560 Shijie Wang, Jun Tang, et al. Qwen2. 5-vl technical report. *arXiv preprint arXiv:2502.13923*,
561 2025.

562 Fan Bao, Chendong Xiang, Gang Yue, Guande He, Hongzhou Zhu, Kaiwen Zheng, Min Zhao,
563 Shilong Liu, Yaole Wang, and Jun Zhu. Vidu: a highly consistent, dynamic and skilled text-to-
564 video generator with diffusion models. *arXiv preprint arXiv:2405.04233*, 2024.

565 Andreas Blattmann, Tim Dockhorn, Sumith Kulal, Daniel Mendelevitch, Maciej Kilian, Dominik
566 Lorenz, Yam Levi, Zion English, Vikram Voleti, Adam Letts, et al. Stable video diffusion: Scaling
567 latent video diffusion models to large datasets. *arXiv preprint arXiv:2311.15127*, 2023.

568 Gary Bradski, Adrian Kaehler, et al. Opencv. *Dr. Dobb's journal of software tools*, 3(2), 2000.

570 Hong Chen, Xin Wang, Yipeng Zhang, Yuwei Zhou, Zeyang Zhang, Siao Tang, and Wenwu Zhu.
571 Disenstudio: Customized multi-subject text-to-video generation with disentangled spatial control.
572 In *Proceedings of the 32nd ACM International Conference on Multimedia*, pp. 3637–3646, 2024.

573 Shoufa Chen, Chongjian Ge, Yuqi Zhang, Yida Zhang, Fengda Zhu, Hao Yang, Hongxiang Hao,
574 Hui Wu, Zhichao Lai, Yifei Hu, et al. Goku: Flow based video generative foundation models.
575 In *Proceedings of the Computer Vision and Pattern Recognition Conference*, pp. 23516–23527,
576 2025a.

577 Tsai-Shien Chen, Aliaksandr Siarohin, Willi Menapace, Yuwei Fang, Kwot Sin Lee, Ivan Sko-
578 rokhodov, Kfir Aberman, Jun-Yan Zhu, Ming-Hsuan Yang, and Sergey Tulyakov. Multi-subject
579 open-set personalization in video generation. *arXiv preprint arXiv:2501.06187*, 2025b.

581 christophschuhmann. improved-aesthetic-predictor. *improved-aesthetic-predictor*
582 Lab, 2024. URL [https://github.com/christophschuhmann/](https://github.com/christophschuhmann/improved-aesthetic-predictor/tree/main)
583 improved-aesthetic-predictor/tree/main.

584 Yufan Deng, Xun Guo, Yuanyang Yin, Jacob Zhiyuan Fang, Yiding Yang, Yizhi Wang, Shenghai
585 Yuan, Angtian Wang, Bo Liu, Haibin Huang, et al. Magref: Masked guidance for any-reference
586 video generation. *arXiv preprint arXiv:2505.23742*, 2025.

587 Patrick Esser, Robin Rombach, and Bjorn Ommer. Taming transformers for high-resolution image
588 synthesis. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recogni-
589 tion*, pp. 12873–12883, 2021.

591 Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini, Yam
592 Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, et al. Scaling rectified flow transformers
593 for high-resolution image synthesis. In *Forty-first international conference on machine learning*,
2024.

594 Zhengcong Fei, Debang Li, Di Qiu, Jiahua Wang, Yikun Dou, Rui Wang, Jingtao Xu, Mingyuan
 595 Fan, Guibin Chen, Yang Li, et al. Skyreels-a2: Compose anything in video diffusion transformers.
 596 *arXiv preprint arXiv:2504.02436*, 2025.

597
 598 Yuwei Guo, Ceyuan Yang, Anyi Rao, Zhengyang Liang, Yaohui Wang, Yu Qiao, Maneesh
 599 Agrawala, Dahua Lin, and Bo Dai. Animatediff: Animate your personalized text-to-image diffu-
 600 sion models without specific tuning. *arXiv preprint arXiv:2307.04725*, 2023.

601 Yoav HaCohen, Nisan Chiprut, Benny Brazowski, Daniel Shalem, Dudu Moshe, Eitan Richardson,
 602 Eran Levin, Guy Shiran, Nir Zabari, Ori Gordon, et al. Ltx-video: Realtime video latent diffusion.
 603 *arXiv preprint arXiv:2501.00103*, 2024.

604
 605 Xuanhua He, Quande Liu, Shengju Qian, Xin Wang, Tao Hu, Ke Cao, Keyu Yan, and Jie
 606 Zhang. Id-animator: Zero-shot identity-preserving human video generation. *arXiv preprint*
 607 *arXiv:2404.15275*, 2024.

608 Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. *arXiv preprint*
 609 *arXiv:2207.12598*, 2022.

610 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. *Advances in*
 611 *neural information processing systems*, 33:6840–6851, 2020.

612
 613 Teng Hu, Zhentao Yu, Zhengguang Zhou, Sen Liang, Yuan Zhou, Qin Lin, and Qinglin Lu. Hun-
 614 yuancustom: A multimodal-driven architecture for customized video generation. *arXiv preprint*
 615 *arXiv:2505.04512*, 2025.

616 Yuzhou Huang, Ziyang Yuan, Quande Liu, Qiulin Wang, Xintao Wang, Ruimao Zhang, Pengfei
 617 Wan, Di Zhang, and Kun Gai. Conceptmaster: Multi-concept video customization on diffusion
 618 transformer models without test-time tuning. *arXiv preprint arXiv:2501.04698*, 2025.

619
 620 Zeyinzi Jiang, Zhen Han, Chaojie Mao, Jingfeng Zhang, Yulin Pan, and Yu Liu. Vace: All-in-one
 621 video creation and editing. *arXiv preprint arXiv:2503.07598*, 2025.

622 W Kong, Q Tian, Z Zhang, R Min, Z Dai, J Zhou, J Xiong, X Li, B Wu, J Zhang, et al. Hun-
 623 yuanyvideo: A systematic framework for large video generative models, 2025. URL <https://arxiv.org/abs/2412.03603>.

624
 625 Weijie Kong, Qi Tian, Zijian Zhang, Rox Min, Zuozhuo Dai, Jin Zhou, Jiangfeng Xiong, Xin Li,
 626 Bo Wu, Jianwei Zhang, et al. Hunyuanyvideo: A systematic framework for large video generative
 627 models. *arXiv preprint arXiv:2412.03603*, 2024a.

628
 629 Weijie Kong, Qi Tian, Zijian Zhang, Rox Min, Zuozhuo Dai, Jin Zhou, Jiangfeng Xiong, Xin Li,
 630 Bo Wu, Jianwei Zhang, et al. Hunyuanyvideo: A systematic framework for large video generative
 631 models. *arXiv preprint arXiv:2412.03603*, 2024b.

632
 633 Kwai. Keling. *Kwai*, 2024. URL <https://h5.kwaiying.com/officialWebsite>.

634 Pika Lab. Pika-2.0 lab discord server. *Pika Lab*, 2024. URL <https://www.pika.art/>.

635
 636 Lijie Liu, Tianxiang Ma, Bingchuan Li, Zhuowei Chen, Jiawei Liu, Qian He, and Xinglong
 637 Wu. Phantom: Subject-consistent video generation via cross-modal alignment. *arXiv preprint*
 638 *arXiv:2502.11079*, 2025.

639 Xingchao Liu, Chengyue Gong, and Qiang Liu. Flow straight and fast: Learning to generate and
 640 transfer data with rectified flow. *arXiv preprint arXiv:2209.03003*, 2022.

641
 642 Xiaofeng Mao, Zhengkai Jiang, Fu-Yun Wang, Jiangning Zhang, Hao Chen, Mingmin Chi, Yabiao
 643 Wang, and Wenhan Luo. Osv: One step is enough for high-quality image to video generation.
 644 In *Proceedings of the Computer Vision and Pattern Recognition Conference*, pp. 12585–12594,
 645 2025.

646 Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov,
 647 Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, et al. Dinov2: Learning
 robust visual features without supervision. *arXiv preprint arXiv:2304.07193*, 2023.

648 William Peebles and Saining Xie. Scalable diffusion models with transformers. In *Proceedings of*
 649 *the IEEE/CVF international conference on computer vision*, pp. 4195–4205, 2023.
 650

651 Adam Polyak, Amit Zohar, Andrew Brown, Andros Tjandra, Animesh Sinha, Ann Lee, Apoorv
 652 Vyas, Bowen Shi, Chih-Yao Ma, Ching-Yao Chuang, et al. Movie gen: A cast of media founda-
 653 tion models. *arXiv preprint arXiv:2410.13720*, 2024.

654 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 655 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
 656 models from natural language supervision. In *International conference on machine learning*, pp.
 657 8748–8763. PMLR, 2021a.

658 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 659 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
 660 models from natural language supervision. In *International conference on machine learning*, pp.
 661 8748–8763. PMLR, 2021b.

662 Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
 663 Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
 664 transformer. *Journal of machine learning research*, 21(140):1–67, 2020.

665 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
 666 resolution image synthesis with latent diffusion models. In *Proceedings of the IEEE/CVF confer-
 667 ence on computer vision and pattern recognition*, pp. 10684–10695, 2022.

668 Uriel Singer, Adam Polyak, Thomas Hayes, Xi Yin, Jie An, Songyang Zhang, Qiyuan Hu, Harry
 669 Yang, Oron Ashual, Oran Gafni, et al. Make-a-video: Text-to-video generation without text-video
 670 data. *arXiv preprint arXiv:2209.14792*, 2022.

671 Hailuo Team. Hailuo. *Hailuo Lab*, 2024. URL <https://hailuoai.video/>.

672 Team Wan, Ang Wang, Baole Ai, Bin Wen, Chaojie Mao, Chen-Wei Xie, Di Chen, Feiwu Yu,
 673 Haiming Zhao, Jianxiao Yang, et al. Wan: Open and advanced large-scale video generative
 674 models. *arXiv preprint arXiv:2503.20314*, 2025.

675 Jianyi Wang, Zhijie Lin, Meng Wei, Yang Zhao, Ceyuan Yang, Chen Change Loy, and Lu Jiang.
 676 Seedvr: Seeding infinity in diffusion transformer towards generic video restoration. *arXiv preprint
 677 arXiv:2501.01320*, 2025.

678 Zhao Wang, Aoxue Li, Lingting Zhu, Yong Guo, Qi Dou, and Zhenguo Li. Customvideo: Customiz-
 679 ing text-to-video generation with multiple subjects. *arXiv preprint arXiv:2401.09962*, 2024.

680 Zhuoyi Yang, Jiayan Teng, Wendi Zheng, Ming Ding, Shiyu Huang, Jiazheng Xu, Yuanming Yang,
 681 Wenyi Hong, Xiaohan Zhang, Guanyu Feng, et al. Cogvideox: Text-to-video diffusion models
 682 with an expert transformer. *arXiv preprint arXiv:2408.06072*, 2024.

683 Shanghai Yuan, Jinfa Huang, Xianyi He, Yunyuan Ge, Yujun Shi, Liuhan Chen, Jiebo Luo, and
 684 Li Yuan. Identity-preserving text-to-video generation by frequency decomposition. *arXiv preprint
 685 arXiv:2411.17440*, 2024a.

686 Shanghai Yuan, Jinfa Huang, Xianyi He, Yunyuan Ge, Yujun Shi, Liuhan Chen, Jiebo Luo, and
 687 Li Yuan. Identity-preserving text-to-video generation by frequency decomposition. *arXiv preprint
 688 arXiv:2411.17440*, 2024b.

689 Shanghai Yuan, Xianyi He, Yufan Deng, Yang Ye, Jinfa Huang, Bin Lin, Jiebo Luo, and Li Yuan.
 690 Opens2v-nexus: A detailed benchmark and million-scale dataset for subject-to-video generation.
 691 *arXiv preprint arXiv:2505.20292*, 2025.

692 Zangwei Zheng, Xiangyu Peng, Tianji Yang, Chenhui Shen, Shenggui Li, Hongxin Liu, Yukun
 693 Zhou, Tianyi Li, and Yang You. Open-sora: Democratizing efficient video production for all.
 694 *arXiv preprint arXiv:2412.20404*, 2024.

695

702
703 A APPENDIX704
705 A.1 APPENDIX OVERVIEW706
707 This appendix comprises two sections:

- 708 • **Section A.2: LLM Usage Disclosure.** We disclose that we used large language models
709 (LLMs) solely for minor grammar checking after drafting the manuscript, with no contribu-
710 tion to research ideation, methods, experiments, or results.
- 711 • **Section A.3: Justification for Model Design.** In this section, we discuss our architectural
712 choices and provide a clear, empirical justification for our final model design.
- 713 • **Section A.4: Visual comparisons in complex multi-subject scenarios between T5-only**
714 **and MLLM+T5.** We present extended qualitative comparisons under complex multi-
715 subject settings.
- 716 • **Section A.5: Additional Subject-to-Video Quantitative Results.** We present extended
717 quantitative results for the subject-to-video setting.

718
719 A.2 LLM USAGE DISCLOSURE

720 We use large language models (LLMs) solely for minor grammar checking after drafting the
721 manuscript. LLMs did not contribute to research ideation, problem formulation, method design, the-
722 oretical development, experiments, implementation, result analysis, or the creation of figures/tables.
723 No code, data, or experimental results were generated by LLMs. All LLM-suggested edits were
724 manually reviewed and verified by us. We did not provide any LLM with non-public or sensitive
725 information.

726
727 A.3 JUSTIFICATION FOR MODEL DESIGN

728 During the development phase, we conducted a series of pilot experiments to explore various archi-
729 tectural designs for integrating the Multi-modal Large Language Model (MLLM) and the Diffusion
730 Transformer (DiT). These explorations served as an informal ablation study and directly informed
731 our final design choice. Specifically, we investigated several alternatives to our proposed **MLLM +**
732 **MLP + T5 + DiT** architecture, including:

- 733 1. **MLLM + MLP + DiT:** Using a simple Multi-Layer Perceptron (MLP) to project MLLM
734 features into the DiT.
- 735 2. **MLLM + Q-Former + DiT:** Employing a Q-Former structure to refine the MLLM outputs
736 before feeding them to the DiT.

737 Our key finding was that architectures relying solely on the MLLM for conditioning (i.e., those
738 without the T5 text encoder) were **unstable during training and failed to converge within our**
739 **available training budget.** These models struggled to effectively translate the nuanced visual
740 identity information from the MLLM into the precise conditional inputs required by the DiT for
741 high-fidelity video generation. In contrast, the inclusion of T5 provided a robust and stable text-
742 conditioning backbone, which, when combined with the identity features from the MLLM, yielded
743 the consistent and high-quality results presented in our paper. To provide concrete evidence of the
744 convergence issues, we have included a training loss curve for the **MLLM + MLP + DiT** archi-
745 tecture (Figure 9). This curve clearly illustrates the training instability, showing that the model’s loss
746 oscillates significantly and fails to reach convergence.

747
748 A.4 COMPARATIVE RESULTS OF T5-ONLY VERSUS MLLM+T5 (BINDWEAVE) UNDER
749 COMPLEX SCENARIOS

750 Figure 10 presents extensive challenging cases, including five-image reference setups and complex
751 multi-subject interactions, with side-by-side comparisons between T5-only and MLLM+T5. Across
752 these multi-reference cases, the T5-only model frequently exhibits distortions and temporal jitter,
753 leading to unstable videos. In contrast, MLLM+T5 reliably reasons about subject placement and
754 overall layout, yielding coherent spatial arrangements, stable motion, and higher visual quality. In

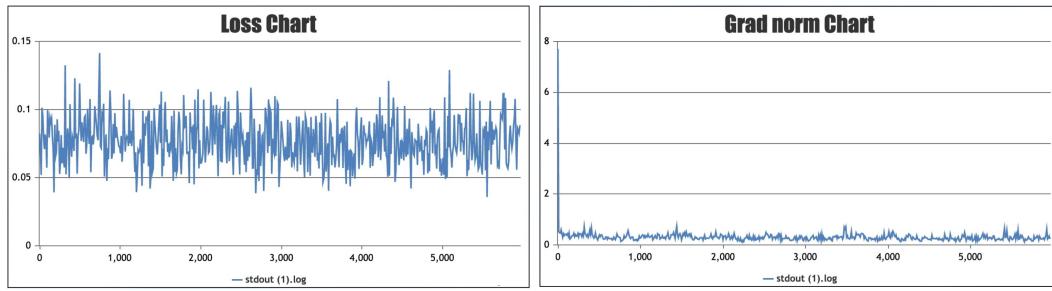


Figure 9: Training loss for the **MLLM + MLP + DiT** architecture, showing significant oscillation and failure to converge.

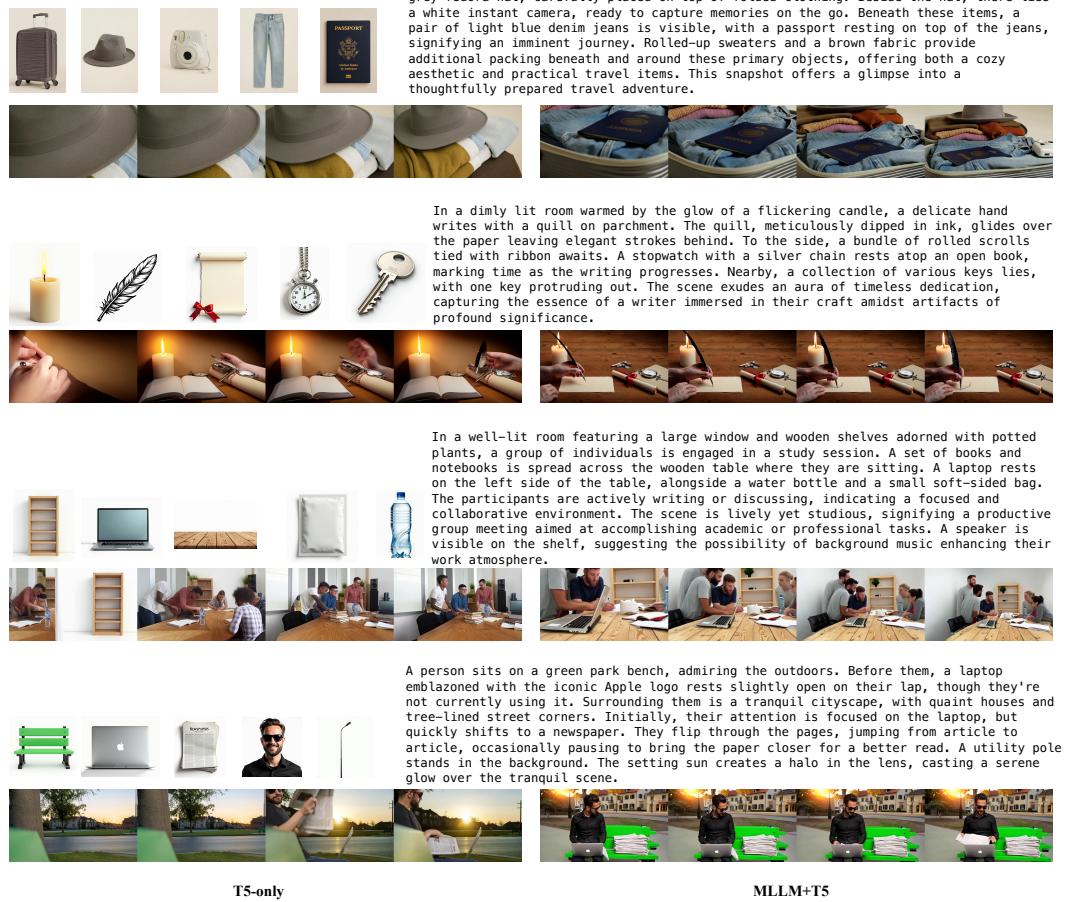


Figure 10: Qualitative comparison of T5-only vs. MLLM+T5.

essence, T5 provides dense captions that help structure prompt interpretation and offer a stable descriptive prior. However, relying on T5 alone is insufficient for compositional spatial/temporal reasoning and multi-subject role disambiguation: T5-only often misses cross-entity relations, produces inconsistent event ordering, and may conflate subject roles—leading to layout instability and drift in videos. The MLLM supplies compositional reasoning and cross-entity constraint satisfaction. With MLLM+T5, the model correctly resolves ordered cross-entity relations and better maintains relative positions and action dependencies.

810 A.5 MORE SUBJECT-TO-VIDEO QUANTITATIVE RESULTS
811

812 We present a set of comparative cases, as shown in Figure 11, in which the prompt specifies “a
813 man” whereas the reference image depicts a baby. Under this conflict, many methods (Vidu 2.0 Bao
814 et al. (2024), Pika 2.1 Lab (2024), Phantom Liu et al. (2025), VACE Jiang et al. (2025).) generate
815 a man as the subject rather than a baby. Other methods, such as Kling 1.6 Kwai (2024), Hailuo
816 and SkyReel-A2, retain some infant characteristics but still exhibit poor overall consistency with the
817 reference image. In contrast, our method is not perturbed by the prompt and faithfully preserves the
818 baby’s appearance from the reference image.

851
852 Figure 11: Comparisons under a prompt–reference ambiguity (prompt: “a man”; reference: baby).
853 Most baselines follow the prompt and generate an adult male, ignoring the features of the reference
854 image or retaining only partial infant traits, whereas our method faithfully preserves the reference
855 subject’s appearance.

856 As shown in Figure 12, under a relatively simple prompt, most baseline methods exhibit pronounced
857 copy-paste issues: the subject remains static across frames. In particular, Phantom-1.3B Liu et al.
858 (2025) and VACE-14B Jiang et al. (2025) essentially copy-paste the reference cat directly into the
859 video. In contrast, our method avoids the copy–paste issue while preserving subject consistency,
860 yielding natural and temporally coherent motion.

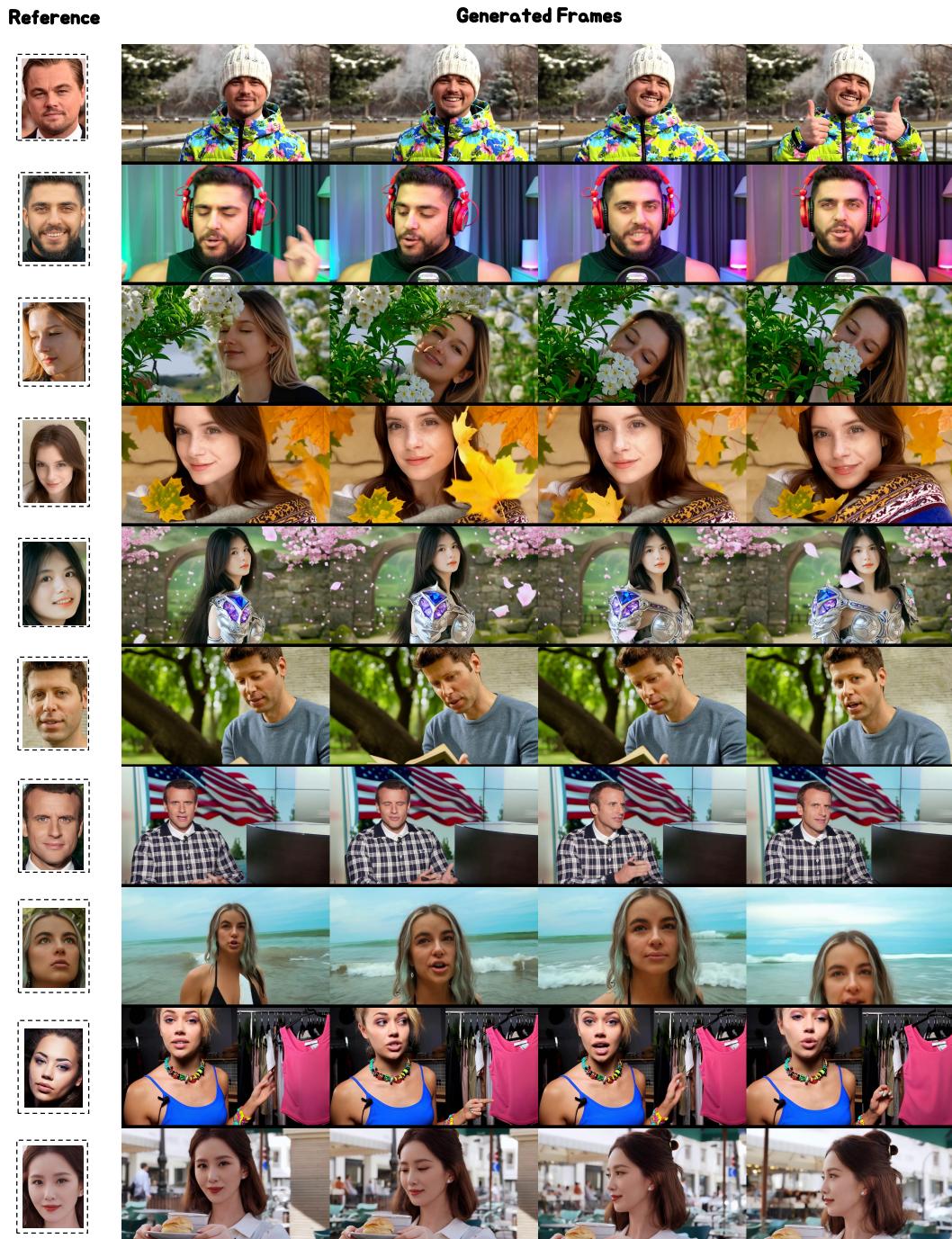
861 As shown in Figure 13, given only a single face reference image, BindWeave generates high-fidelity,
862 subject-consistent videos. It preserves fine-grained identity cues, including facial structure, skin
863 tone, hairstyle, while handling changes in pose, expression, and moderate viewpoint or illumination.

Figure 12: Comparisons in the subject-to-video setting illustrating the copy–paste issue under simple prompts. Many baselines directly copy the reference image into the video, causing the subject to remain static across frames, whereas our method preserves the subject’s temporal dynamics and natural motion.

The results avoid copy-paste artifacts and identity drift, delivering smooth, temporally coherent motion and maintaining alignment with the text prompt without overriding the reference appearance.

As shown in Figure 14, when provided with multiple reference subjects, BindWeave maintains consistent identity for each subject across frames and preserves fine-grained appearance details as well as their relative spatial layout. The method produces natural, coordinated interactions between subjects, keeps compositions visually pleasing and realistic, and avoids identity swapping or blending.

918
919
920
921

Reference

922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Figure 13: More generated results of BindWeave, demonstrating high fidelity and strong subject consistency.

