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Abstract

Generating realistic and diverse graph structures is a challenge with broad appli-
cations across various scientific and engineering disciplines. A common approach
involves learning a compressed latent space where graphs are represented by a col-
lection of node-level embeddings, often via methods such as a Graph Autoencoder
(GAE). A fundamental challenge arises when we try to generate new graphs by
sampling from this space. While many deep learning methods like Diffusion, Vari-
ational Autoencoders (VAEs), and Generative Adversarial Networks (GANSs) can
successfully generate new points in the latent space, they fail to capture the inher-
ent relational dependencies between the node embeddings. This leads to decoded
graphs that lack structural coherence and fail to replicate essential real-world prop-
erties. Alternatively, generating a single graph-level embedding and then decod-
ing it to new node embeddings is also fundamentally limited, as pooling methods
needed to create the graph level embedding are inherently lossy and discard cru-
cial local structural information. We present a three-stage hierarchical framework
called Hierarchical Autoencoder for Graph Generation and Latent-space Expres-
sivity (HAGGLE) that addresses these limitations through systematic bridging of
node-level representations with graph-level generation. The framework trains a
Graph Autoencoder for node embeddings, employs a Pooling Autoencoder for
graph-level compression, and utilizes a size-conditioned GAN for new graph gen-
eration. This approach generates structurally coherent graphs while providing
useful graph-level embeddings for downstream tasks.

1 Introduction

The generation of realistic and diverse graph structures is a challenge in modern machine learning,
with implications across fields from computational biology to social network analysis [4, 18, 20].
The ability to generate graphs that adhere to the statistical and structural properties of real-world
networks is important for tasks like molecular design, dataset augmentation, and system simula-
tion [2, 6, 11]. While early statistical models like Erds-Rényi and Barabdsi-Albert fail to cap-
ture complex dependencies and community structures, more sophisticated statistical models such as
Stochastic Block Models and Exponential Random Graph Models emerged to better address these
limitations. However, more recently, deep learning has led to a paradigm shift, with generative
models learning to map from compressed, continuous latent spaces to discrete graph spaces [18].

The dominant strategy for creating this latent representation is to use Graph Neural Networks
(GNNs) as an encoder [17, 5]. Unlike traditional neural networks, GNNs are designed to operate on
graph-structured data by a process of “message passing,” where nodes aggregate information from
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their neighbors. This allows GNNs to effectively encode a graph’s topology and node features into a
continuous vector space, forming the foundation of a Graph Autoencoder (GAE) framework [12, 3].
The geometry of this latent space is a critical design choice, as it dictates how structural properties
are preserved. For instance, the assumption that structurally similar nodes should be closer in Eu-
clidean space is a common principle that influences the properties of the generated networks [21].
However, a limitation persists in many current methods, particularly those that adapt traditional gen-
erative models like Variational Autoencoders (VAEs) and Generative Adversarial Networks (GANSs)
to the graph domain. While these models have been successfully applied to learn a continuous la-
tent space for graphs, they often treat the node embeddings as independent points within this space
[16, 13]. Crucially, node-level generative models represent essential building blocks for graph gen-
eration — they provide the fundamental machinery for creating realistic individual node representa-
tions that capture local structural properties and semantic information. The power of these models
lies in their ability to learn rich, expressive distributions over node embeddings that encode both
topological and feature-based similarities. However, the critical challenge lies not in the individual
node-level generation itself, but in how to properly combine GAEs with these node-level generative
models to sample coherent collections of node embeddings that maintain graph-level structure.

Models like GraphVAE [13] and its variants focus on learning a simple prior over the node embed-
dings, such as a Gaussian distribution, and then sample from this distribution to generate new graphs
[13, 6]. While the individual node embeddings may be realistic, when sampled independently, the
models fail to capture the crucial relational dependencies that define a coherent graph structure. Con-
sequently, when new graphs are generated by sampling from this latent space, the decoded graphs
often lack structural integrity, exhibiting disconnected components or illogical connections, and fail
to replicate essential real-world properties, as the models focus on the embeddings themselves rather
than the relationships between them [16, 21]. This problem has led to alternative approaches, such
as those that work with discrete latent spaces to better preserve combinatorial properties [10] or use
subtree-centric methods to avoid information loss from global compression [1].

An alternative approach, which attempts to summarize an entire graph into a single graph-level
embedding, is also fundamentally flawed for generative tasks. While methods that rely on global
pooling operations, such as summing or averaging node embeddings, are effective for graph classi-
fication and regression, they inevitably discard crucial local structural information [8]. The decoder
lacks the necessary fine-grained detail to reconstruct a diverse range of graph topologies [9], which
has led to efforts to enhance the latent space with subgraph information [14]. The challenge thus
lies in finding a middle ground: a latent representation that is structured enough to capture relational
dependencies but flexible enough to enable diverse graph generation.

To overcome these challenges, we present a three-stage hierarchical framework that systematically
addresses the limitations in current graph generation methods which we term as the Hierarchical
Autoencoder for Graph Generation and Latent-space Expressivity or HAGGLE.The framework con-
sists of: (1) a Graph Autoencoder that learns rich node-level embeddings, (2) a Pooling Autoencoder
that compresses node embeddings into graph-level representations while preserving structural infor-
mation, and (3) a size-conditioned GAN that operates in the learned graph-level embedding space.
This approach bridges node-level representations with graph-level generation, enabling the creation
of structurally coherent graphs while maintaining useful graph-level embeddings for downstream
tasks.

2 Background

Graph Autoencoders (GAEs) represent a fundamental approach to learning continuous represen-
tations of graph-structured data. A GAE consists of an encoder Ep : G — R"*9 that maps
a graph G = (V, E) with n nodes to a matrix of node embeddings Z € R"*%, and a decoder
Dy : R"™*4 _ G that reconstructs the graph structure. The encoder typically employs Graph Neural
Networks (GNNGs) that leverage message passing to aggregate neighborhood information:

z§l+1) = Update!) (zi(l),Aggregate(l) ({zj(.l) 1€ N(z)})) (1)
where N (z) denotes the neighbors of node ¢, and [ indicates the layer index. The resulting latent

space Z = {z1, 22,..., 2} is designed to preserve both local neighborhood structures and global
graph properties.
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Existing approaches to graph generation can be broadly categorized. Some methods, such as Vari-
ational Graph Autoencoders (VGAEs), are truly Graph Autoencoder (GAE) approaches that adapt
standard generative models to operate on node embeddings. Similarly, Generative Adversarial Net-
works (GANs) and some Diffusion Models can also be applied to learn distributions over node em-
beddings. However, most of these methods treat node embeddings as independent samples, ignoring
the relational structure that defines graph connectivity and focusing on marginal distributions rather
than the joint distribution that encodes structural relationships. An alternative class of methods op-
erates directly on the graph structure itself, including Sequential Graph Generation Models such
as GraphRNN [19] and GNN-Based Diffusion Models [7, 15]. Another distinct approach involves
learning a single graph-level embedding through pooling operations h¢ = POOL({z1, 22, ..., 2n})-
While this enables the use of standard generative models directly, it suffers from significant infor-
mation loss as the pooling operation necessarily discards fine-grained structural details, making it
impossible to reconstruct diverse graph topologies accurately. The fundamental trade-off between
compression and information preservation remains a critical challenge that our hierarchical frame-
work addresses.

3 HAGGLE

Given a graph G = (V, E) and its GAE-generated node embeddings Z = {z1,22,...,2,}, tra-
ditional generative approaches sample new embeddings Z = {Z1, 22, . .., Z,, } from a learned dis-
tribution p(z) without considering the relational constraints that govern valid graph structures. We
will use R(Z) as a short-hand for the intricate relationship between embeddings that encode the
graphs’s connectivity, community, structure, and other properties which are not local to nodes.'
The fundamental problem is that independent sampling from p(z) produces embeddings Z where
R(Z) % R(Z). This leads to decoded graphs G that lack structural coherence—meaning they fail
to adhere to the graph’s original and valid structural rules, resulting in connectivity loss, property
violations, and local structure degradation.

Our Hierarchical Autoencoder for Graph Generation and Latent-space Expressivity (HAGGLE)
framework addresses this through a novel three-stage hierarchical approach that systematically
bridges node-level embeddings with graph-level generation. Rather than viewing graph generation
as either single-step graph-level generation or independent node sampling, we propose a hierar-
chical compression-decompression paradigm that preserves GAE-generated structural information
while enabling learnable graph-level representations through pooling autoencoders. Our framework
integrates three sequential stages.

Stage 1: Graph Autoencoder We employ a standard GAE architecture with encoder Ey and de-
coder Dy. The encoder uses Graph Convolutional Networks (GCNs) to generate node embeddings:

7 = Eg(X, A) = GCN(X, A) )

where X represents node features and A is the adjacency matrix. The decoder reconstructs the
adjacency matrix through:

A=Dy(Z)=0(ZZ") 3)
This process is illustrated in Fig. 1.

Node-level generative models form the foundation of this approach, providing the capability to
generate realistic individual node embeddings that capture local structural patterns, semantic rela-
tionships, and distributional properties. However, individual node-level models require systematic
integration to ensure that collections of generated embeddings maintain the relational structure nec-
essary for coherent graph reconstruction.

Stage 2: Pooling Autoencoder This stage introduces a specialized Pooling Autoencoder that
learns to compress collections of node embeddings into unified graph-level representations. The
pooling encoder P, aggregates node embeddings using sophisticated pooling mechanisms:

9 = Pa(Z) =Pool(f(Z)) € R% 4)

'In practice we measure R(Z) using graph-level embeddings as well as some standard graph structure
statistics which are described in Section 4.3.
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Node Features (X)
Shape: (N, 8)

MLP Layer 1
Input: (64), Output: (64)
Activation: ReLU,
Dropout: 0.1

Activation: ReLU,
Dropout: 0.1

Latent Space ()
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Activation: ReLU,
Dropout: 0.1

Figure 1: Stage 1: Graph Autoencoder (GAE) architecture showing the encoder-decoder structure
with node embeddings in latent space. The encoder uses Graph Convolutional Networks to transform
node features and graph structure into learned embeddings, while the MLP decoder reconstructs the
adjacency matrix from pairwise embedding interactions.

where f, represents learnable transformation layers and Pool(-) denotes the pooling opera-
tion. Our framework uses attention-based pooling (Pool(Z) = > I, a;z; where a; =
softmax(W, tanh(W,z;))). The subscripts on the learnable weight matrices W, and W, denote
their specific function in the attention mechanism, with W, transforming the input node embedding
and W, projecting the result to a scalar attention score. The pooling decoder () reconstructs the
original node embedding collection:

7 = Qplg,n) € RV 5)

This stage is trained with reconstruction loss Lpo1 = [|Z — Z ||, learning to preserve essential
structural information in the compressed graph representation. The process is illustrated in Fig. 2.
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Activation: ReLU,
Dropout: 0.1
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). Output: (128)
sum aggregation
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Activation: None

Figure 2: Pooling Autoencoder architecture for graph-level compression. The attention pooling
mechanism aggregates node embeddings into a unified graph representation, while the reconstruc-
tion decoder learns to recover the original node embedding collection from the compressed repre-
sentation.

Stage 3: Graph-Level Generation This stage employs a size-conditioned Generative Adversarial
Network (GAN) operating in the learned graph-level embedding space. While other generative
models (VAE, diffusion models) were explored, the GAN consistently provided the best results.
The generative model G, learns the distribution of graph embeddings conditioned on graph size:

Gnew ™~ G’y( | n) S R% (6)

The complete forward process for generating a new graph A is:

A= Dtb(QB(gnewan))’ )

where ()3 reconstructs node-level embeddings Z=Q 8(Gnew, n) from the generated graph embed-
ding gnew, and Dy produces the adjacency matrix A from pairwise embedding interactions.
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4 Experimental Design and Results

4.1 Datasets

We evaluate our framework on three classes of synthetic graphs: Stochastic Block Models (SBMs),
Random Trees, and Disjoint Unions of Cycles (DUCs). Each dataset contains 10,000 graphs with
variable node counts to assess structural coherence across scales. SBMs test community struc-
ture preservation, Random Trees challenge hierarchical structure maintenance, and DUCs test local
cyclical patterns and global disconnectedness. Detailed generation parameters are provided in the
Appendix. Results focus primarily on SBMs with summary statistics across all datasets.

e A
/ Nz
\/ /
Va \ J
/ N/
- | L /2&'
S
(b) Stochastic Block (c) Disjoint Union of

(a) Random Trees Model Cycles

Figure 3: Example graphs from each synthetic dataset used for evaluation. (a) Random trees exhibit
hierarchical structure without cycles. (b) Stochastic block models contain community structure with
dense intra-community and sparse inter-community connections. (c) Disjoint union of cycles consist
of multiple disconnected cyclic components.

4.2 Benchmarking
4.2.1 Graph Autoencoder

The Graph Autoencoder serves as the foundation of our hierarchical framework, establishing node-
level representations for all subsequent generation methods. Our GAE baseline achieves high-
fidelity reconstruction with greater than 95% edge prediction accuracy across all datasets, success-
fully capturing local neighborhood patterns and global structural properties as evidenced by clear
clustering in PCA projections.

Figure 4 demonstrates the GAE’s structured representations. The PCA visualization shows that
structurally similar nodes cluster together while maintaining sufficient separation for accurate re-
construction. The embedding space exhibits structural preservation, smooth interpolation capabil-
ities, and dimensionality efficiency with 32-dimensional embeddings that remain computationally
tractable. We also see in Figure 4 that the foundational GAE’s reconstruction capabilities and em-
bedding space structure. The visualization shows how the GAE successfully encodes graph topology
into a continuous latent space while maintaining high-fidelity reconstruction, establishing the quality
of node-level representations used by subsequent methods.
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(a) Original Graph

(b) PCA Embeddings (c) Reconstructed Graph

Figure 4: Graph Autoencoder performance demonstration showing: (a) an original graph from the
testing dataset, (b) the learned node embeddings visualized via PCA projection into 2D space, and
(c) the decoded graph.
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4.2.2 Independent Latent Space Sampling

Independent sampling approaches represent traditional GAE-based methods that sample node em-
beddings independently from learned distributions (Gaussian VAEs, GAN-based generators, diffu-
sion models). These methods serve as our primary comparison to highlight structural coherence
improvements achieved by our hierarchical framework.

Independent sampling methods exhibit systematic failures in maintaining structural coherence, fre-
quently producing disconnected graphs and deviating significantly from training distributions. This
indicates fundamental failure to capture relational dependencies, as independent sampling cannot
maintain correlations between adjacent nodes’ embeddings. As shown in Figure 5, the Independent
GAN method demonstrates poor distributional preservation at both node and graph levels.

Additional comparisons with other generative methods showing direct embedding generation are
provided in Appendix Figure 7. Note that all embeddings shown in Figure 5 represent the complete
forward process: generated graphs are first decoded to adjacency matrices, then re-encoded through
the GAE to obtain node embeddings, and finally processed through the pooling autoencoder to
obtain graph-level embeddings. This provides a more realistic assessment of end-to-end generation
quality compared to direct embedding generation.

4.2.3 Graph Diffusion Neural Network

GNN-based diffusion models represent a state-of-the-art approach for generating graphs with strong
structural coherence. These methods apply diffusion processes directly to graph structures and use
Graph Neural Networks (GNN5s) to preserve structural dependencies. In our experiments, we use
a discrete denoising diffusion model for graph generation, a specific implementation known as Di-
Gress [15]. While these models have shown impressive performance on molecular datasets, their
need for end-to-end training limits their ability to leverage the pre-trained GAE representations foun-
dational to our framework. As shown in Table 1 and Figure 5, this end-to-end training paradigm
resulted in a significant loss of structural fidelity on our synthetic datasets, with poor embedding
distribution preservation and a high average JS Divergence of 0.280. This suggests that while Di-
Gress is highly effective at learning to generate complex, real-world graph distributions, it struggled
to maintain the fine-grained structural properties of our specific synthetic datasets when compared
to our hierarchical approach.

4.3 Comparative Performance Metrics

We employ a comprehensive evaluation framework that assesses graph generation quality across two
complementary dimensions: embedding space fidelity and structural property preservation. This
dual approach enables both direct evaluation of our hierarchical representation learning and assess-
ment of the final generated graph quality.

Graph-Level Embedding Metrics These metrics evaluate how well our framework preserves the
distributional properties of the learned graph-level embeddings. Wasserstein Distance measures
the optimal transport cost between true and generated graph embedding distributions, providing a
measure of distributional similarity. Maximum Mean Discrepancy (MMD) computes distributional
discrepancy using kernel methods, capturing differences in statistical moments of the distributions.

Graph Structure Metrics These metrics evaluate the structural properties of the final generated
graphs using Jensen-Shannon (JS) divergence to measure distributional similarity between generated
and training graphs. All structural metrics range from O (identical distributions) to 1 (completely dif-
ferent distributions), with lower values indicating better preservation of structural properties. Degree
Distribution JS Divergence measures the similarity between degree distributions of generated and
training graphs, assessing preservation of connectivity patterns and network topology. Clustering
Coefficient JS Divergence evaluates the preservation of local clustering patterns by comparing the
distributions of node clustering coefficients, measuring how well the generated graphs maintain local
community structure and transitivity properties. Path Length JS Divergence compares shortest path
length distributions to assess global connectivity patterns and the preservation of graph diameter and
efficiency properties, computed on a subset of graphs for computational efficiency.
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Figure 5: Comprehensive PCA comparison across all methods showing both node-level and graph-
level embedding distributions obtained through the complete forward process. Top row: Node-level
PCA projections comparing original (grey) vs. generated node embeddings, where generated em-
beddings are obtained by re-encoding the generated graphs through the GAE. Bottom row: Graph-
level PCA projections comparing original (grey) vs. generated graph-level embeddings, where gen-
erated embeddings are obtained by processing the GAE node embeddings through the pooling au-
toencoder.

4.4 Results and Findings

Our hierarchical framework, HAGGLE, performs effective generation through the three-stage
pipeline: graph-level embedding generation, node-level embedding reconstruction, and final graph
structure recovery. A detailed end-to-end generation example is provided in Appendix Figure 6.
The comprehensive comparison in Figure 5 shows that our pooling autoencoder effectively pre-
serves embedding distributions at both hierarchical levels with substantial overlap between original
and generated distributions.

HAGGLE demonstrates superior performance across both embedding and structural metrics com-
pared to baseline approaches, as clearly illustrated in Figure 5. Independent Sampling consistently
performs poorly across all datasets, confirming fundamental limitations of independent node em-
bedding generation. GNN Diffusion shows mixed results with significant failures on clustering
coefficient preservation. The visual comparison shows that our method achieves the best distribu-
tional overlap between original and generated embeddings at both node and graph levels. The results
show that by explicitly modeling the relationships between node embeddings through our pooling
autoencoder, we achieve significantly better preservation of both local and global graph properties
while maintaining high-quality embedding space representations.

The experimental results across all three datasets reveal several important insights about HAGGLE,
as shown in Table 1. We note that the GAE baseline is not considered in the comparison as it isn’t
itself a generative model, but we provide its performance in reconstructing the testing graphs as a
point of comparison. HAGGLE demonstrates strong performance across different graph types. On
SBMs, it achieves the best performance across all structural and embedding metrics, indicating
excellent community structure preservation. On Trees, it achieves perfect clustering coefficient
preservation, effectively capturing hierarchical structure. On Cycles, it achieves the best degree
distribution preservation, demonstrating good cyclical pattern handling.

Our hierarchical approach maintains competitive embedding space quality while achieving superior
structural preservation. The framework offers practical computational efficiency ? with training time
(1974.9 seconds) significantly lower than GNN Diffusion (3474.4 seconds). The consistent strong

This work was performed using the CPU of an Apple M1 Max Chip and 32 GB of memory.
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Dataset | Metric GAE Independent GNN HAGGLE
Baseline Sampling Diffusion
Embedding Space Metrics
Wasserstein Distance 0.7828 7.7295 3.3175 1.3826
] Maximum Mean Discrepancy 0.0186 0.0298 0.0172 0.0077
§ Graph Structure Metrics (JS Divergence)
v Degree Distribution 0.1181 0.2103 0.07426 0.06863
Clustering Coefficient 0.2992 0.2304 0.64067 0.06151
Path Length Distribution 0.0573 0.0917 0.13165 0.01523
Computation Time
Training (seconds) 1118.2 1406.7 34744 1974.9
Running (seconds/graph) 0.0018 0.0021 2.8911 0.0243
Embedding Space Metrics
Wasserstein Distance 0.012681 0.132516 0.06416 0.258494
2 Maximum Mean Discrepancy 0.003438 0.047027 0.031715 0.081483
=4 Graph Structure Metrics (JS Divergence)
= Degree Distribution 0.0444 0.3717 0.3305 0.1795
Clustering Coefficient 0.1318 0.7900 0.1505 0.0000
Path Length Distribution 0.0761 0.3064 0.3161 0.1828
Computation Time
Training (seconds) 488.1 562.0 1510.0 701.9
Running (seconds/graph) 0.0011 0.0016 1.92 0.0194
Embedding Space Metrics
Wasserstein Distance 0.011934 0.030425 0.098906 0.021444
3 Maximum Mean Discrepancy 0.045811 0.141704 1.176883 0.085173
E Graph Structure Metrics (JS Divergence)
o Degree Distribution 0.0502 0.3813 0.3665 0.1734
Clustering Coefficient 0.0449 0.3216 0.2115 0.0631
Path Length Distribution 0.0975 0.2006 0.1034 0.1663
Computation Time
Training (seconds) 465.6 558.9 1423.3 684.4
Running (seconds/graph) 0.0010 0.0016 2.14 0.0199

Table 1: Comprehensive comparison of graph generation methods across all three datasets. Results
show embedding fidelity and structural preservation metrics. Lower values indicate better perfor-
mance for all metrics. In the are most performative generative model not including the GAE baseline
as is is not generative.

performance across three structurally distinct datasets demonstrates the framework’s generalizability
and ability to adapt to different graph topologies while maintaining structural coherence.

5 Conclusion and Future Directions

This work addresses a fundamental limitation in graph generation: traditional generative models fail
to maintain relational dependencies between node embeddings, resulting in structurally incoherent
graphs despite realistic individual embeddings. The HAGGLE framework provides a systematic
solution through a specialized Pooling Autoencoder that bridges node-level and graph-level repre-
sentations. This enables generative models to operate in compressed graph embedding spaces while
preserving structural relationships necessary for coherent reconstruction. Experimental evaluation
demonstrates consistent superior performance across structural metrics and embedding fidelity mea-
sures. HAGGLE achieves significant improvements over baseline approaches; particularly for JS
divergence scores, degree distribution, and path length distribution. The modular architecture al-
lows flexible integration of different generative models while maintaining computational efficiency.

Extensions to real-world datasets, attributed graphs, and dynamic networks represent important di-
rections for investigation. Alternative pooling mechanisms and theoretical analysis of the learned
embedding spaces could provide deeper insights. Our work establishes hierarchical representation
learning as a promising direction for graph generation, demonstrating that explicit modeling of re-
lational dependencies significantly improves structural coherence while maintaining efficiency.
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A Appendix

A.1 Dataset Generation Parameters

Stochastic Block Models (SBMs) Each graph contains 3 blocks with 5-14 nodes per block, re-
sulting in total node counts of 15-42. We sample distinct probability matrices for each graph: intra-
block edge probabilities are drawn from [0.75, 0.95] while inter-block probabilities are sampled
from [0.05, 0.15]. This parameterization ensures clear community separation with varying density
patterns. Edges are formed using Bernoulli processes based on these block-specific probabilities.

Random Trees We generate trees with 5-19 nodes using Priifer sequences, which provide a bijec-
tive mapping between labeled trees and integer sequences. This approach ensures uniform sampling
over all possible labeled trees of a given size, creating a diverse set of hierarchical structures for
evaluation.

Disjoint Union of Cycles (DUCs) Each graph contains 5-19 total nodes distributed across mul-
tiple disjoint cycles, with each cycle containing at least 3 nodes. The number of cycles and their
sizes are randomly determined while maintaining the target total node count, creating graphs that
challenge models to maintain both local structure and global topology.

A.2 End-to-End Generation Pipeline Example

Graph-Level PCA Node-Level PCA (Decoded) Generated Graph

° * / \\\_
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| g | N\

8
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=10 .‘
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~15{ @ GAN Generated Graph Level Embedding @ Generated Graph Node Level Embeddings
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Figure 6: End-to-end generation pipeline example for a single graph showing (left) the generated
graph-level embedding highlighted within the PCA projection of all training data graph embeddings,
(center) the decoded node-level embeddings for the same graph highlighted within the PCA projec-
tion of node embeddings across a sampled set of graphs, and (right) the final reconstructed graph
obtained by decoding the node embeddings into an adjacency matrix. This illustrates how a single
generated vector in the graph-level latent space expands into a coherent set of node embeddings and
ultimately a structured graph.

10



336

337

338

339
340

341

342

344

345

346

347

348
349
350
351

352

353
354

3 3 Training Data Training Data . o o Training Data Training Data
20 o ® 20
20 % %“‘E% 20 Sy &.\ ° o j‘.. o0
o
10 10 "ém“? P = 0], e % Jyeled
—~ 10 % — - A o — Y 55‘» 5
g o g g o e S ue g g 40N
g o 8 2 g ° g 0] ,mfum.. 5 g ° Sgsiata’e
~ ~ ~ & o % o°2 ~ -'.5 o o
£ 10 £ -10 o0l 93 0%". S g -1 LX) 2%,
% 3': Se .g.’z:.. 0
20 -20 -20 @ ®, -20
o e,
L]
-30 -30 -30 -30
=30 -20 -10 [ 10 20 30 -30 -20 -10 0 10 20 30 -30 -20 -10 0 10 20 30 -30 -20 -10 0 10 20
PC1 (37.0%) PC1 (37.0%) PC1 (37.0%) PC1 (37.0%)
(a) Diffusion Model (b) GAN Model (c) Mixture Density Net- (d) Variational Autoen-
work coder

Training Data Training Data Training Data

10 10 10 10

«
«
w

o

&
k 3
3.

.

-5

PC2 (12.5%)
o
o®
e o
q?'o
(]
%
PC2 (12.5%)
o
PC2 (12.5%)
|
oo
°
)
o
PC2 (12.5%)
|
& o

Taining D
s ® Diffusion 15 GAN 15 o MON 15 o v

-20  -10 0 10 -20  -10 [ 10 -20  -10 0 10 -20  -10 0
PC1 (19.1%) PC1 (19.1%) PC1(19.1%) PC1(19.1%)

(e) Diffusion (Simulated) (f) GAN (Simulated) (g) MDN (Simulated) (h) VAE (Simulated)

Figure 7: Complete comparison of embedding space characteristics across all generative methods.
Top Row: PCA comparison of original vs. generated node embeddings for each method. Each
subplot shows the 2D PCA projection, with original embeddings in blue and generated embeddings
inred. Bottom Row: Simulated decoded graph embeddings (after GAE decode and pooling encoder
re-embedding) compared to the original pooled embedding background (light gray). The GAN
model (shown in main text Figure 5) demonstrates the best performance with substantial overlap in
both node-level and graph-level embedding spaces.

A.3 Complete Generative Methods Comparison
TAG-DS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope?
Answer: Yes

Justification: The claims in the abstract and introduction, which state that HAGGLE generates
structurally coherent graphs by bridging node-level and graph-level representations, are directly
supported by the experimental results and comparative analysis presented in the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: Yes

Justification: The conclusion discusses future directions for the work, such as extending the frame-
work to real-world datasets, attributed graphs, and dynamic networks, which implies these are cur-
rent limitations. The paper also provides a discussion of the computational efficiency of the frame-
work in Table 1.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a
complete (and correct) proof?
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Answer: NA

Justification: The paper does not include theoretical results, theorems, or formal proofs. It is a work
on a machine learning framework and experimental evaluation.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main exper-
imental results of the paper to the extent that it affects the main claims and/or conclusions of the
paper (regardless of whether the code and data are provided or not)?

Answer: Yes

Justification: The paper provides detailed descriptions of the datasets, including generation param-
eters in the Appendix, as well as the architectures and key components of the HAGGLE framework.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to
faithfully reproduce the main experimental results, as described in supplemental material?

Answer: No

Justification: The paper does not provide a link or instructions for accessing the code or data, but
there is sufficient information to reproduce the simulated data.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters,
how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: Yes

Justification: The majority of hyper-parameters were provided in the architecture diagrams and
dataset description; however, it does not specify key hyper-parameters like learning rate, batch size,
or the specific optimizer used.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate infor-
mation about the statistical significance of the experiments?

Answer: No

Justification: The paper’s main results are presented in Table 1 without any error bars or confidence
intervals.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the experi-
ments?

Answer: Yes

Justification: The paper provides training and running times in seconds and specifies the hardware
used (CPU), which is necessary to understand the computational cost.

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS
Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: Yes
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Justification: The research is focused on a generative model for synthetic graphs and does not
involve human subjects, sensitive data, or any other clear ethical risks.

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal
impacts of the work performed?
Answer: No

Justification: The paper does not contain a discussion of the potential positive or negative societal
impacts of the work.

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release of
data or models that have a high risk for misuse (e.g., pretrained language models, image generators,
or scraped datasets)?

Answer: NA

Justification: The paper focuses on a generative model for synthetic graph data, which does not
pose a high risk for misuse.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper,
properly credited and are the license and terms of use explicitly mentioned and properly respected?
Answer: NA

Justification: The paper does not use existing code, data, or models that require explicit license and
terms of use to be mentioned.

13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation pro-
vided alongside the assets?
Answer: NA

Justification: The paper does not introduce or release any new assets such as datasets or code
packages.

14. Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper include
the full text of instructions given to participants and screenshots, if applicable, as well as details
about compensation (if any)?

Answer: NA

Justification: The paper does not involve crowdsourcing or research with human subjects.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether such
risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an
equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: NA

Justification: The paper does not involve human subjects.

13



435

436
437

438

439

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard
component of the core methods in this research?

Answer: NA
Justification: The core methodology of the paper is not based on the use of LLMs.
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