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Abstract

Generating realistic and diverse graph structures is a challenge with broad appli-1

cations across various scientific and engineering disciplines. A common approach2

involves learning a compressed latent space where graphs are represented by a col-3

lection of node-level embeddings, often via methods such as a Graph Autoencoder4

(GAE). A fundamental challenge arises when we try to generate new graphs by5

sampling from this space. While many deep learning methods like Diffusion, Vari-6

ational Autoencoders (VAEs), and Generative Adversarial Networks (GANs) can7

successfully generate new points in the latent space, they fail to capture the inher-8

ent relational dependencies between the node embeddings. This leads to decoded9

graphs that lack structural coherence and fail to replicate essential real-world prop-10

erties. Alternatively, generating a single graph-level embedding and then decod-11

ing it to new node embeddings is also fundamentally limited, as pooling methods12

needed to create the graph level embedding are inherently lossy and discard cru-13

cial local structural information. We present a three-stage hierarchical framework14

called Hierarchical Autoencoder for Graph Generation and Latent-space Expres-15

sivity (HAGGLE) that addresses these limitations through systematic bridging of16

node-level representations with graph-level generation. The framework trains a17

Graph Autoencoder for node embeddings, employs a Pooling Autoencoder for18

graph-level compression, and utilizes a size-conditioned GAN for new graph gen-19

eration. This approach generates structurally coherent graphs while providing20

useful graph-level embeddings for downstream tasks.21

1 Introduction22

The generation of realistic and diverse graph structures is a challenge in modern machine learning,23

with implications across fields from computational biology to social network analysis [4, 18, 20].24

The ability to generate graphs that adhere to the statistical and structural properties of real-world25

networks is important for tasks like molecular design, dataset augmentation, and system simula-26

tion [2, 6, 11]. While early statistical models like Erdős-Rényi and Barabási-Albert fail to cap-27

ture complex dependencies and community structures, more sophisticated statistical models such as28

Stochastic Block Models and Exponential Random Graph Models emerged to better address these29

limitations. However, more recently, deep learning has led to a paradigm shift, with generative30

models learning to map from compressed, continuous latent spaces to discrete graph spaces [18].31

The dominant strategy for creating this latent representation is to use Graph Neural Networks32

(GNNs) as an encoder [17, 5]. Unlike traditional neural networks, GNNs are designed to operate on33

graph-structured data by a process of “message passing,” where nodes aggregate information from34
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their neighbors. This allows GNNs to effectively encode a graph’s topology and node features into a35

continuous vector space, forming the foundation of a Graph Autoencoder (GAE) framework [12, 3].36

The geometry of this latent space is a critical design choice, as it dictates how structural properties37

are preserved. For instance, the assumption that structurally similar nodes should be closer in Eu-38

clidean space is a common principle that influences the properties of the generated networks [21].39

However, a limitation persists in many current methods, particularly those that adapt traditional gen-40

erative models like Variational Autoencoders (VAEs) and Generative Adversarial Networks (GANs)41

to the graph domain. While these models have been successfully applied to learn a continuous la-42

tent space for graphs, they often treat the node embeddings as independent points within this space43

[16, 13]. Crucially, node-level generative models represent essential building blocks for graph gen-44

eration – they provide the fundamental machinery for creating realistic individual node representa-45

tions that capture local structural properties and semantic information. The power of these models46

lies in their ability to learn rich, expressive distributions over node embeddings that encode both47

topological and feature-based similarities. However, the critical challenge lies not in the individual48

node-level generation itself, but in how to properly combine GAEs with these node-level generative49

models to sample coherent collections of node embeddings that maintain graph-level structure.50

Models like GraphVAE [13] and its variants focus on learning a simple prior over the node embed-51

dings, such as a Gaussian distribution, and then sample from this distribution to generate new graphs52

[13, 6]. While the individual node embeddings may be realistic, when sampled independently, the53

models fail to capture the crucial relational dependencies that define a coherent graph structure. Con-54

sequently, when new graphs are generated by sampling from this latent space, the decoded graphs55

often lack structural integrity, exhibiting disconnected components or illogical connections, and fail56

to replicate essential real-world properties, as the models focus on the embeddings themselves rather57

than the relationships between them [16, 21]. This problem has led to alternative approaches, such58

as those that work with discrete latent spaces to better preserve combinatorial properties [10] or use59

subtree-centric methods to avoid information loss from global compression [1].60

An alternative approach, which attempts to summarize an entire graph into a single graph-level61

embedding, is also fundamentally flawed for generative tasks. While methods that rely on global62

pooling operations, such as summing or averaging node embeddings, are effective for graph classi-63

fication and regression, they inevitably discard crucial local structural information [8]. The decoder64

lacks the necessary fine-grained detail to reconstruct a diverse range of graph topologies [9], which65

has led to efforts to enhance the latent space with subgraph information [14]. The challenge thus66

lies in finding a middle ground: a latent representation that is structured enough to capture relational67

dependencies but flexible enough to enable diverse graph generation.68

To overcome these challenges, we present a three-stage hierarchical framework that systematically69

addresses the limitations in current graph generation methods which we term as the Hierarchical70

Autoencoder for Graph Generation and Latent-space Expressivity or HAGGLE.The framework con-71

sists of: (1) a Graph Autoencoder that learns rich node-level embeddings, (2) a Pooling Autoencoder72

that compresses node embeddings into graph-level representations while preserving structural infor-73

mation, and (3) a size-conditioned GAN that operates in the learned graph-level embedding space.74

This approach bridges node-level representations with graph-level generation, enabling the creation75

of structurally coherent graphs while maintaining useful graph-level embeddings for downstream76

tasks.77

2 Background78

Graph Autoencoders (GAEs) represent a fundamental approach to learning continuous represen-79

tations of graph-structured data. A GAE consists of an encoder Eθ : G → Rn×d that maps80

a graph G = (V,E) with n nodes to a matrix of node embeddings Z ∈ Rn×d, and a decoder81

Dϕ : Rn×d → G that reconstructs the graph structure. The encoder typically employs Graph Neural82

Networks (GNNs) that leverage message passing to aggregate neighborhood information:83

z
(l+1)
i = Update(l)

(
z
(l)
i ,Aggregate(l)

(
{z(l)j : j ∈ N (i)}

))
(1)

where N (i) denotes the neighbors of node i, and l indicates the layer index. The resulting latent84

space Z = {z1, z2, . . . , zn} is designed to preserve both local neighborhood structures and global85

graph properties.86
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Existing approaches to graph generation can be broadly categorized. Some methods, such as Vari-87

ational Graph Autoencoders (VGAEs), are truly Graph Autoencoder (GAE) approaches that adapt88

standard generative models to operate on node embeddings. Similarly, Generative Adversarial Net-89

works (GANs) and some Diffusion Models can also be applied to learn distributions over node em-90

beddings. However, most of these methods treat node embeddings as independent samples, ignoring91

the relational structure that defines graph connectivity and focusing on marginal distributions rather92

than the joint distribution that encodes structural relationships. An alternative class of methods op-93

erates directly on the graph structure itself, including Sequential Graph Generation Models such94

as GraphRNN [19] and GNN-Based Diffusion Models [7, 15]. Another distinct approach involves95

learning a single graph-level embedding through pooling operations hG = POOL({z1, z2, . . . , zn}).96

While this enables the use of standard generative models directly, it suffers from significant infor-97

mation loss as the pooling operation necessarily discards fine-grained structural details, making it98

impossible to reconstruct diverse graph topologies accurately. The fundamental trade-off between99

compression and information preservation remains a critical challenge that our hierarchical frame-100

work addresses.101

3 HAGGLE102

Given a graph G = (V,E) and its GAE-generated node embeddings Z = {z1, z2, . . . , zn}, tra-103

ditional generative approaches sample new embeddings Z̃ = {z̃1, z̃2, . . . , z̃m} from a learned dis-104

tribution p(z) without considering the relational constraints that govern valid graph structures. We105

will use R(Z) as a short-hand for the intricate relationship between embeddings that encode the106

graphs’s connectivity, community, structure, and other properties which are not local to nodes.1107

The fundamental problem is that independent sampling from p(z) produces embeddings Z̃ where108

R(Z̃) ̸≈ R(Z). This leads to decoded graphs G̃ that lack structural coherence—meaning they fail109

to adhere to the graph’s original and valid structural rules, resulting in connectivity loss, property110

violations, and local structure degradation.111

Our Hierarchical Autoencoder for Graph Generation and Latent-space Expressivity (HAGGLE)112

framework addresses this through a novel three-stage hierarchical approach that systematically113

bridges node-level embeddings with graph-level generation. Rather than viewing graph generation114

as either single-step graph-level generation or independent node sampling, we propose a hierar-115

chical compression-decompression paradigm that preserves GAE-generated structural information116

while enabling learnable graph-level representations through pooling autoencoders. Our framework117

integrates three sequential stages.118

Stage 1: Graph Autoencoder We employ a standard GAE architecture with encoder Eθ and de-119

coder Dϕ. The encoder uses Graph Convolutional Networks (GCNs) to generate node embeddings:120

Z = Eθ(X,A) = GCN(X,A) (2)

where X represents node features and A is the adjacency matrix. The decoder reconstructs the121

adjacency matrix through:122

Â = Dϕ(Z) = σ(ZZT ) (3)
This process is illustrated in Fig. 1.123

Node-level generative models form the foundation of this approach, providing the capability to124

generate realistic individual node embeddings that capture local structural patterns, semantic rela-125

tionships, and distributional properties. However, individual node-level models require systematic126

integration to ensure that collections of generated embeddings maintain the relational structure nec-127

essary for coherent graph reconstruction.128

Stage 2: Pooling Autoencoder This stage introduces a specialized Pooling Autoencoder that129

learns to compress collections of node embeddings into unified graph-level representations. The130

pooling encoder Pα aggregates node embeddings using sophisticated pooling mechanisms:131

g = Pα(Z) = Pool(fα(Z)) ∈ Rdg (4)

1In practice we measure R(Z) using graph-level embeddings as well as some standard graph structure
statistics which are described in Section 4.3.
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Dropout: 0.1
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Input: (N, 128)
Output: (N, 32)

Activation: None

MLP Decoder Input
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From (32) and (32) → (64)

MLP Layer 1
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Input: (64), Output: (64)

Activation: ReLU,
Dropout: 0.1

MLP Output Layer
Input: (64), Output: (1)

Activation: Sigmoid

Graph Structure
(Edge Index)

Figure 1: Stage 1: Graph Autoencoder (GAE) architecture showing the encoder-decoder structure
with node embeddings in latent space. The encoder uses Graph Convolutional Networks to transform
node features and graph structure into learned embeddings, while the MLP decoder reconstructs the
adjacency matrix from pairwise embedding interactions.

where fα represents learnable transformation layers and Pool(·) denotes the pooling opera-132

tion. Our framework uses attention-based pooling (Pool(Z) =
∑n

i=1 αizi where αi =133

softmax(Wa tanh(Wzzi))). The subscripts on the learnable weight matrices Wa and Wz denote134

their specific function in the attention mechanism, with Wz transforming the input node embedding135

and Wa projecting the result to a scalar attention score. The pooling decoder Qβ reconstructs the136

original node embedding collection:137

Ẑ = Qβ(g, n) ∈ Rn×dz (5)

This stage is trained with reconstruction loss Lpool = ∥Z − Ẑ∥2F , learning to preserve essential138

structural information in the compressed graph representation. The process is illustrated in Fig. 2.139

Attention Pooling

Reconstruction Decoder

Node Embeddings (Z)
From GAE Encoder

Shape: (N, 32)

Attention Features
Q/K/V Projections

Shape: (N, 32) Graph Embedding (g)
Pooled Representation

Shape: (128,)

Reconstructed Nodes
Node-level Reconstruction

Shape: (N, 32)

Q/K/V Projection
Input: (N, 32)

Output: (N, 32) each
Linear transformations

Multi-Head Attention
Heads: 4, d k: 8

Attention pooling mechanism

Global Pooling
Input: (N, 32), Output: (128)

Weighted sum aggregation

Decoder Input
Graph embedding broadcast

From (128) to N copies

Decoder Layer 1
Input: (128), Output: (64)

Activation: ReLU,
Dropout: 0.1

Decoder Layer 2
Input: (64), Output: (64)

Activation: ReLU,
Dropout: 0.1

Decoder Output
Input: (64), Output: (32)

Activation: None

Positional Info
(Optional Enhancement)

Figure 2: Pooling Autoencoder architecture for graph-level compression. The attention pooling
mechanism aggregates node embeddings into a unified graph representation, while the reconstruc-
tion decoder learns to recover the original node embedding collection from the compressed repre-
sentation.

Stage 3: Graph-Level Generation This stage employs a size-conditioned Generative Adversarial140

Network (GAN) operating in the learned graph-level embedding space. While other generative141

models (VAE, diffusion models) were explored, the GAN consistently provided the best results.142

The generative model Gγ learns the distribution of graph embeddings conditioned on graph size:143

gnew ∼ Gγ(· | n) ∈ Rdg (6)

The complete forward process for generating a new graph Ã is:144

Ã = Dϕ(Qβ(gnew, n)), (7)

where Qβ reconstructs node-level embeddings Z̃ = Qβ(gnew, n) from the generated graph embed-145

ding gnew, and Dϕ produces the adjacency matrix Ã from pairwise embedding interactions.146
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4 Experimental Design and Results147

4.1 Datasets148

We evaluate our framework on three classes of synthetic graphs: Stochastic Block Models (SBMs),149

Random Trees, and Disjoint Unions of Cycles (DUCs). Each dataset contains 10,000 graphs with150

variable node counts to assess structural coherence across scales. SBMs test community struc-151

ture preservation, Random Trees challenge hierarchical structure maintenance, and DUCs test local152

cyclical patterns and global disconnectedness. Detailed generation parameters are provided in the153

Appendix. Results focus primarily on SBMs with summary statistics across all datasets.154

(a) Random Trees
(b) Stochastic Block
Model

(c) Disjoint Union of
Cycles

Figure 3: Example graphs from each synthetic dataset used for evaluation. (a) Random trees exhibit
hierarchical structure without cycles. (b) Stochastic block models contain community structure with
dense intra-community and sparse inter-community connections. (c) Disjoint union of cycles consist
of multiple disconnected cyclic components.

4.2 Benchmarking155

4.2.1 Graph Autoencoder156

The Graph Autoencoder serves as the foundation of our hierarchical framework, establishing node-157

level representations for all subsequent generation methods. Our GAE baseline achieves high-158

fidelity reconstruction with greater than 95% edge prediction accuracy across all datasets, success-159

fully capturing local neighborhood patterns and global structural properties as evidenced by clear160

clustering in PCA projections.161

Figure 4 demonstrates the GAE’s structured representations. The PCA visualization shows that162

structurally similar nodes cluster together while maintaining sufficient separation for accurate re-163

construction. The embedding space exhibits structural preservation, smooth interpolation capabil-164

ities, and dimensionality efficiency with 32-dimensional embeddings that remain computationally165

tractable. We also see in Figure 4 that the foundational GAE’s reconstruction capabilities and em-166

bedding space structure. The visualization shows how the GAE successfully encodes graph topology167

into a continuous latent space while maintaining high-fidelity reconstruction, establishing the quality168

of node-level representations used by subsequent methods.169

(a) Original Graph (b) PCA Embeddings (c) Reconstructed Graph

Figure 4: Graph Autoencoder performance demonstration showing: (a) an original graph from the
testing dataset, (b) the learned node embeddings visualized via PCA projection into 2D space, and
(c) the decoded graph.

5



4.2.2 Independent Latent Space Sampling170

Independent sampling approaches represent traditional GAE-based methods that sample node em-171

beddings independently from learned distributions (Gaussian VAEs, GAN-based generators, diffu-172

sion models). These methods serve as our primary comparison to highlight structural coherence173

improvements achieved by our hierarchical framework.174

Independent sampling methods exhibit systematic failures in maintaining structural coherence, fre-175

quently producing disconnected graphs and deviating significantly from training distributions. This176

indicates fundamental failure to capture relational dependencies, as independent sampling cannot177

maintain correlations between adjacent nodes’ embeddings. As shown in Figure 5, the Independent178

GAN method demonstrates poor distributional preservation at both node and graph levels.179

Additional comparisons with other generative methods showing direct embedding generation are180

provided in Appendix Figure 7. Note that all embeddings shown in Figure 5 represent the complete181

forward process: generated graphs are first decoded to adjacency matrices, then re-encoded through182

the GAE to obtain node embeddings, and finally processed through the pooling autoencoder to183

obtain graph-level embeddings. This provides a more realistic assessment of end-to-end generation184

quality compared to direct embedding generation.185

4.2.3 Graph Diffusion Neural Network186

GNN-based diffusion models represent a state-of-the-art approach for generating graphs with strong187

structural coherence. These methods apply diffusion processes directly to graph structures and use188

Graph Neural Networks (GNNs) to preserve structural dependencies. In our experiments, we use189

a discrete denoising diffusion model for graph generation, a specific implementation known as Di-190

Gress [15]. While these models have shown impressive performance on molecular datasets, their191

need for end-to-end training limits their ability to leverage the pre-trained GAE representations foun-192

dational to our framework. As shown in Table 1 and Figure 5, this end-to-end training paradigm193

resulted in a significant loss of structural fidelity on our synthetic datasets, with poor embedding194

distribution preservation and a high average JS Divergence of 0.280. This suggests that while Di-195

Gress is highly effective at learning to generate complex, real-world graph distributions, it struggled196

to maintain the fine-grained structural properties of our specific synthetic datasets when compared197

to our hierarchical approach.198

4.3 Comparative Performance Metrics199

We employ a comprehensive evaluation framework that assesses graph generation quality across two200

complementary dimensions: embedding space fidelity and structural property preservation. This201

dual approach enables both direct evaluation of our hierarchical representation learning and assess-202

ment of the final generated graph quality.203

Graph-Level Embedding Metrics These metrics evaluate how well our framework preserves the204

distributional properties of the learned graph-level embeddings. Wasserstein Distance measures205

the optimal transport cost between true and generated graph embedding distributions, providing a206

measure of distributional similarity. Maximum Mean Discrepancy (MMD) computes distributional207

discrepancy using kernel methods, capturing differences in statistical moments of the distributions.208

Graph Structure Metrics These metrics evaluate the structural properties of the final generated209

graphs using Jensen-Shannon (JS) divergence to measure distributional similarity between generated210

and training graphs. All structural metrics range from 0 (identical distributions) to 1 (completely dif-211

ferent distributions), with lower values indicating better preservation of structural properties. Degree212

Distribution JS Divergence measures the similarity between degree distributions of generated and213

training graphs, assessing preservation of connectivity patterns and network topology. Clustering214

Coefficient JS Divergence evaluates the preservation of local clustering patterns by comparing the215

distributions of node clustering coefficients, measuring how well the generated graphs maintain local216

community structure and transitivity properties. Path Length JS Divergence compares shortest path217

length distributions to assess global connectivity patterns and the preservation of graph diameter and218

efficiency properties, computed on a subset of graphs for computational efficiency.219
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(a) GAE Baseline (b) Independent GAN (c) GNN Diffusion (d) HAGGLE

(e) GAE Baseline (f) Independent GAN (g) GNN Diffusion (h) HAGGLE

Figure 5: Comprehensive PCA comparison across all methods showing both node-level and graph-
level embedding distributions obtained through the complete forward process. Top row: Node-level
PCA projections comparing original (grey) vs. generated node embeddings, where generated em-
beddings are obtained by re-encoding the generated graphs through the GAE. Bottom row: Graph-
level PCA projections comparing original (grey) vs. generated graph-level embeddings, where gen-
erated embeddings are obtained by processing the GAE node embeddings through the pooling au-
toencoder.

4.4 Results and Findings220

Our hierarchical framework, HAGGLE, performs effective generation through the three-stage221

pipeline: graph-level embedding generation, node-level embedding reconstruction, and final graph222

structure recovery. A detailed end-to-end generation example is provided in Appendix Figure 6.223

The comprehensive comparison in Figure 5 shows that our pooling autoencoder effectively pre-224

serves embedding distributions at both hierarchical levels with substantial overlap between original225

and generated distributions.226

HAGGLE demonstrates superior performance across both embedding and structural metrics com-227

pared to baseline approaches, as clearly illustrated in Figure 5. Independent Sampling consistently228

performs poorly across all datasets, confirming fundamental limitations of independent node em-229

bedding generation. GNN Diffusion shows mixed results with significant failures on clustering230

coefficient preservation. The visual comparison shows that our method achieves the best distribu-231

tional overlap between original and generated embeddings at both node and graph levels. The results232

show that by explicitly modeling the relationships between node embeddings through our pooling233

autoencoder, we achieve significantly better preservation of both local and global graph properties234

while maintaining high-quality embedding space representations.235

The experimental results across all three datasets reveal several important insights about HAGGLE,236

as shown in Table 1. We note that the GAE baseline is not considered in the comparison as it isn’t237

itself a generative model, but we provide its performance in reconstructing the testing graphs as a238

point of comparison. HAGGLE demonstrates strong performance across different graph types. On239

SBMs, it achieves the best performance across all structural and embedding metrics, indicating240

excellent community structure preservation. On Trees, it achieves perfect clustering coefficient241

preservation, effectively capturing hierarchical structure. On Cycles, it achieves the best degree242

distribution preservation, demonstrating good cyclical pattern handling.243

Our hierarchical approach maintains competitive embedding space quality while achieving superior244

structural preservation. The framework offers practical computational efficiency 2 with training time245

(1974.9 seconds) significantly lower than GNN Diffusion (3474.4 seconds). The consistent strong246

2This work was performed using the CPU of an Apple M1 Max Chip and 32 GB of memory.
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Dataset Metric GAE
Baseline

Independent
Sampling

GNN
Diffusion

HAGGLE

SB
M

s

Embedding Space Metrics
Wasserstein Distance 0.7828 7.7295 3.3175 1.3826
Maximum Mean Discrepancy 0.0186 0.0298 0.0172 0.0077

Graph Structure Metrics (JS Divergence)
Degree Distribution 0.1181 0.2103 0.07426 0.06863
Clustering Coefficient 0.2992 0.2304 0.64067 0.06151
Path Length Distribution 0.0573 0.0917 0.13165 0.01523

Computation Time
Training (seconds) 1118.2 1406.7 3474.4 1974.9
Running (seconds/graph) 0.0018 0.0021 2.8911 0.0243

Tr
ee

s

Embedding Space Metrics
Wasserstein Distance 0.012681 0.132516 0.06416 0.258494
Maximum Mean Discrepancy 0.003438 0.047027 0.031715 0.081483

Graph Structure Metrics (JS Divergence)
Degree Distribution 0.0444 0.3717 0.3305 0.1795
Clustering Coefficient 0.1318 0.7900 0.1505 0.0000
Path Length Distribution 0.0761 0.3064 0.3161 0.1828

Computation Time
Training (seconds) 488.1 562.0 1510.0 701.9
Running (seconds/graph) 0.0011 0.0016 1.92 0.0194

C
yc

le
s

Embedding Space Metrics
Wasserstein Distance 0.011934 0.030425 0.098906 0.021444
Maximum Mean Discrepancy 0.045811 0.141704 1.176883 0.085173

Graph Structure Metrics (JS Divergence)
Degree Distribution 0.0502 0.3813 0.3665 0.1734
Clustering Coefficient 0.0449 0.3216 0.2115 0.0631
Path Length Distribution 0.0975 0.2006 0.1034 0.1663

Computation Time
Training (seconds) 465.6 558.9 1423.3 684.4
Running (seconds/graph) 0.0010 0.0016 2.14 0.0199

Table 1: Comprehensive comparison of graph generation methods across all three datasets. Results
show embedding fidelity and structural preservation metrics. Lower values indicate better perfor-
mance for all metrics. In the are most performative generative model not including the GAE baseline
as is is not generative.

performance across three structurally distinct datasets demonstrates the framework’s generalizability247

and ability to adapt to different graph topologies while maintaining structural coherence.248

5 Conclusion and Future Directions249

This work addresses a fundamental limitation in graph generation: traditional generative models fail250

to maintain relational dependencies between node embeddings, resulting in structurally incoherent251

graphs despite realistic individual embeddings. The HAGGLE framework provides a systematic252

solution through a specialized Pooling Autoencoder that bridges node-level and graph-level repre-253

sentations. This enables generative models to operate in compressed graph embedding spaces while254

preserving structural relationships necessary for coherent reconstruction. Experimental evaluation255

demonstrates consistent superior performance across structural metrics and embedding fidelity mea-256

sures. HAGGLE achieves significant improvements over baseline approaches; particularly for JS257

divergence scores, degree distribution, and path length distribution. The modular architecture al-258

lows flexible integration of different generative models while maintaining computational efficiency.259

Extensions to real-world datasets, attributed graphs, and dynamic networks represent important di-260

rections for investigation. Alternative pooling mechanisms and theoretical analysis of the learned261

embedding spaces could provide deeper insights. Our work establishes hierarchical representation262

learning as a promising direction for graph generation, demonstrating that explicit modeling of re-263

lational dependencies significantly improves structural coherence while maintaining efficiency.264
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A Appendix320

A.1 Dataset Generation Parameters321

Stochastic Block Models (SBMs) Each graph contains 3 blocks with 5-14 nodes per block, re-322

sulting in total node counts of 15-42. We sample distinct probability matrices for each graph: intra-323

block edge probabilities are drawn from [0.75, 0.95] while inter-block probabilities are sampled324

from [0.05, 0.15]. This parameterization ensures clear community separation with varying density325

patterns. Edges are formed using Bernoulli processes based on these block-specific probabilities.326

Random Trees We generate trees with 5-19 nodes using Prüfer sequences, which provide a bijec-327

tive mapping between labeled trees and integer sequences. This approach ensures uniform sampling328

over all possible labeled trees of a given size, creating a diverse set of hierarchical structures for329

evaluation.330

Disjoint Union of Cycles (DUCs) Each graph contains 5-19 total nodes distributed across mul-331

tiple disjoint cycles, with each cycle containing at least 3 nodes. The number of cycles and their332

sizes are randomly determined while maintaining the target total node count, creating graphs that333

challenge models to maintain both local structure and global topology.334

A.2 End-to-End Generation Pipeline Example335

Figure 6: End-to-end generation pipeline example for a single graph showing (left) the generated
graph-level embedding highlighted within the PCA projection of all training data graph embeddings,
(center) the decoded node-level embeddings for the same graph highlighted within the PCA projec-
tion of node embeddings across a sampled set of graphs, and (right) the final reconstructed graph
obtained by decoding the node embeddings into an adjacency matrix. This illustrates how a single
generated vector in the graph-level latent space expands into a coherent set of node embeddings and
ultimately a structured graph.
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(a) Diffusion Model (b) GAN Model (c) Mixture Density Net-
work

(d) Variational Autoen-
coder

(e) Diffusion (Simulated) (f) GAN (Simulated) (g) MDN (Simulated) (h) VAE (Simulated)

Figure 7: Complete comparison of embedding space characteristics across all generative methods.
Top Row: PCA comparison of original vs. generated node embeddings for each method. Each
subplot shows the 2D PCA projection, with original embeddings in blue and generated embeddings
in red. Bottom Row: Simulated decoded graph embeddings (after GAE decode and pooling encoder
re-embedding) compared to the original pooled embedding background (light gray). The GAN
model (shown in main text Figure 5) demonstrates the best performance with substantial overlap in
both node-level and graph-level embedding spaces.

A.3 Complete Generative Methods Comparison336

TAG-DS Paper Checklist337

1. Claims338

Question: Do the main claims made in the abstract and introduction accurately reflect the paper’s339

contributions and scope?340

Answer: Yes341

Justification: The claims in the abstract and introduction, which state that HAGGLE generates342

structurally coherent graphs by bridging node-level and graph-level representations, are directly343

supported by the experimental results and comparative analysis presented in the paper.344

2. Limitations345

Question: Does the paper discuss the limitations of the work performed by the authors?346

Answer: Yes347

Justification: The conclusion discusses future directions for the work, such as extending the frame-348

work to real-world datasets, attributed graphs, and dynamic networks, which implies these are cur-349

rent limitations. The paper also provides a discussion of the computational efficiency of the frame-350

work in Table 1.351

3. Theory assumptions and proofs352

Question: For each theoretical result, does the paper provide the full set of assumptions and a353

complete (and correct) proof?354
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Answer: NA355

Justification: The paper does not include theoretical results, theorems, or formal proofs. It is a work356

on a machine learning framework and experimental evaluation.357

4. Experimental result reproducibility358

Question: Does the paper fully disclose all the information needed to reproduce the main exper-359

imental results of the paper to the extent that it affects the main claims and/or conclusions of the360

paper (regardless of whether the code and data are provided or not)?361

Answer: Yes362

Justification: The paper provides detailed descriptions of the datasets, including generation param-363

eters in the Appendix, as well as the architectures and key components of the HAGGLE framework.364

5. Open access to data and code365

Question: Does the paper provide open access to the data and code, with sufficient instructions to366

faithfully reproduce the main experimental results, as described in supplemental material?367

Answer: No368

Justification: The paper does not provide a link or instructions for accessing the code or data, but369

there is sufficient information to reproduce the simulated data.370

6. Experimental setting/details371

Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters,372

how they were chosen, type of optimizer, etc.) necessary to understand the results?373

Answer: Yes374

Justification: The majority of hyper-parameters were provided in the architecture diagrams and375

dataset description; however, it does not specify key hyper-parameters like learning rate, batch size,376

or the specific optimizer used.377

7. Experiment statistical significance378

Question: Does the paper report error bars suitably and correctly defined or other appropriate infor-379

mation about the statistical significance of the experiments?380

Answer: No381

Justification: The paper’s main results are presented in Table 1 without any error bars or confidence382

intervals.383

8. Experiments compute resources384

Question: For each experiment, does the paper provide sufficient information on the computer385

resources (type of compute workers, memory, time of execution) needed to reproduce the experi-386

ments?387

Answer: Yes388

Justification: The paper provides training and running times in seconds and specifies the hardware389

used (CPU), which is necessary to understand the computational cost.390

9. Code of ethics391

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS392

Code of Ethics https://neurips.cc/public/EthicsGuidelines?393

Answer: Yes394
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Justification: The research is focused on a generative model for synthetic graphs and does not395

involve human subjects, sensitive data, or any other clear ethical risks.396

10. Broader impacts397

Question: Does the paper discuss both potential positive societal impacts and negative societal398

impacts of the work performed?399

Answer: No400

Justification: The paper does not contain a discussion of the potential positive or negative societal401

impacts of the work.402

11. Safeguards403

Question: Does the paper describe safeguards that have been put in place for responsible release of404

data or models that have a high risk for misuse (e.g., pretrained language models, image generators,405

or scraped datasets)?406

Answer: NA407

Justification: The paper focuses on a generative model for synthetic graph data, which does not408

pose a high risk for misuse.409

12. Licenses for existing assets410

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper,411

properly credited and are the license and terms of use explicitly mentioned and properly respected?412

Answer: NA413

Justification: The paper does not use existing code, data, or models that require explicit license and414

terms of use to be mentioned.415

13. New assets416

Question: Are new assets introduced in the paper well documented and is the documentation pro-417

vided alongside the assets?418

Answer: NA419

Justification: The paper does not introduce or release any new assets such as datasets or code420

packages.421

14. Crowdsourcing and research with human subjects422

Question: For crowdsourcing experiments and research with human subjects, does the paper include423

the full text of instructions given to participants and screenshots, if applicable, as well as details424

about compensation (if any)?425

Answer: NA426

Justification: The paper does not involve crowdsourcing or research with human subjects.427

15. Institutional review board (IRB) approvals or equivalent for research with human428

subjects429

Question: Does the paper describe potential risks incurred by study participants, whether such430

risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an431

equivalent approval/review based on the requirements of your country or institution) were obtained?432

Answer: NA433

Justification: The paper does not involve human subjects.434
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16. Declaration of LLM usage435

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard436

component of the core methods in this research?437

Answer: NA438

Justification: The core methodology of the paper is not based on the use of LLMs.439
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