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ABSTRACT

Zero-shot hyper-parameter optimization refers to the process of selecting hyper-
parameter configurations that are expected to perform well for a given dataset
upfront, without access to any observations of the losses of the target response.
Existing zero-shot approaches are posed as initialization strategies for Bayesian
Optimization and they often rely on engineered meta-features to measure dataset
similarity, operating under the assumption that the responses of similar datasets
behaves similarly with respect to the same hyper-parameters. Solutions for zero-
shot HPO are embarrassingly parallelizable and thus can reduce vastly the required
wallclock time of learning a single model. We propose a very simple HPO model
called Gray-box Zero(O)-Shot Initialization (GROSI) as a conditional parametric
surrogate that learns a universal response model by exploiting the relationship
between the hyper-parameters and the dataset meta-features directly. In contrast to
existing HPO solutions, we achieve transfer of knowledge without engineered meta-
features, but rather through a shared model that is trained simultaneously across all
datasets. We design and optimize a novel loss function that allows us to regress
from the dataset/hyper-parameter pair unto the response. Experiments on 120
datasets demonstrate the strong performance of GROSI, compared to conventional
initialization strategies. We also show that by fine-tuning GROSI to the target
dataset, we can outperform state-of-the-art sequential HPO algorithms.

1 INTRODUCTION

Within the research community, the concentration of efforts towards solving the problem of hyper-
parameter optimization (HPO) has been mainly through sequential model-based optimization
(SMBO), i.e. iteratively fitting a probabilistic response model, typically a Gaussian process (Ras-
mussen (2003)), to a history of observations of losses of the target response, and suggesting the next
hyper-parameters via a policy, acquisition function, that balances exploration and exploitation by
leveraging the uncertainty in the posterior distribution (Jones et al. (1998); Wistuba et al. (2018);
Snoek et al. (2012)). However, even when solutions are defined in conjunction with transfer learning
techniques (Bardenet et al. (2013); Wistuba et al. (2016); Feurer et al. (2015)), the performance of
SMBO is heavily affected by the choice of the initial hyper-parameters. Furthermore, SMBO is
sequential by design and additional acceleration by parallelization is not possible.

In this paper, we present the problem of zero-shot hyper-parameter optimization as a meta-learning
objective that exploits dataset information as part of the surrogate model. Instead of treating HPO
as a black-box function, operating blindly on the response of the hyper-parameters alone, we treat
it as a gray-box function (Whitley et al. (2016)), by capturing the relationship among the dataset
meta-features and hyper-parameters to approximate the response model.

In this paper, we propose a novel formulation of HPO as a conditional gray-box function optimization
problem, Section 4, that allows us to regress from the dataset/hyper-parameter pair directly onto the
response. Driven by the assumption that similar datasets should have similar response approximations,
we introduce an additional data-driven similarity regularization objective to penalize the difference
between the predicted response of similar datasets. In Section 5, we perform an extensive battery of
experiments that highlight the capacity of our universal model to serve as a solution for: (1) zero-shot
HPO as a stand-alone task, (2) zero-shot as an initialization strategy for Bayesian Optimization (BO),
(3) transferable sequential model-based optimization. A summary of our contributions is:
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• a formulation of the zero-shot hyper-parameter optimization problem in which our response
model predicts upfront the full set of hyper-parameter configurations to try, without access
to observations of losses of the target response;

• a novel multi-task optimization objective that models the inherent similarity between datasets
and their respective responses;

• three new meta-datasets with different search spaces and cardinalities to facilitate the
experiments and serve as a benchmark for future work;

• an empirical demonstration of the performance of our approach through a battery of ex-
periments that address the aforementioned research aspects, and a comparison against
state-of-the-art HPO solutions for transfer-learning.

2 RELATED WORK

The straightforward zero-shot approaches for HPO consist of random search (Bergstra & Bengio
(2012)), or simply selecting hyper-parameters that perform well on general tasks (Brazdil et al.
(2003)). Some recent work has also shown that simply selecting random hyper-parameters from a
restricted search space significantly outperforms existing solutions, and improves the performance of
conventional SMBO approaches (Perrone et al. (2019)). The restricted search space is created by
eliminating regions that are further away from the best hyper-parameters of the training tasks.

Another prominent direction for zero-shot HPO depends heavily on engineered meta-features, i.e.
dataset characteristics (Vanschoren (2018)), to measure the similarity of datasets. Following the
assumption that the responses of similar datasets behave similarly to the hyper-parameters, it has
been shown that even the simplest of meta-features (Bardenet et al. (2013)) improve the performance
of single task BO algorithms (Feurer et al. (2014; 2015)). The target response is initialized with
the top-performing hyper-parameters of the dataset nearest neighbor in the meta-feature space. The
shortcomings of using engineered meta-features are that they are hard to define (Leite & Brazdil
(2005)), and are often selected through trial-and-error or expert domain knowledge. As a remedy,
replacing engineered meta-features with learned meta-features (Jomaa et al. (2019)) compensates for
such limitations, by producing expressive meta-features agnostic to any meta-task, such as HPO.

Zero-shot HPO is also posed as an optimization problem that aims to minimize the meta-loss over
a collection of datasets (Wistuba et al. (2015a)) by replacing the discrete minimum function with
a differentiable softmin function as an approximation. The initial configurations boost the single
task BO without any meta-features. In (Wistuba et al. (2015b)), hyper-parameter combinations are
assigned a static ranking based on the cumulative average normalized error, and dataset similarity is
estimated based on the relative ranking of these combinations. Winkelmolen et al. (2020) introduce
a Bayesian Optimization solution for zero-shot HPO by iteratively fitting a surrogate model over
the observed responses of different tasks, and selecting the next hyper-parameters and datasets that
minimize the aggregated observed loss.

Aside from zero-shot HPO, transfer learning is employed by learning better response models (Wistuba
et al. (2016)) based on the similarity of the response. Feurer et al. (2018) propose an ensemble model
for BO by building the target response model as a weighted sum of the predictions of base models
as well as the target model. In addition to the transferable response models, Volpp et al. (2019)
design a transferable acquisition function as a policy for hyper-parameter optimization defined in a
reinforcement learning framework. As a replacement to the standard Gaussian process, Perrone et al.
(2018) train a multi-task adaptive Bayesian linear regression model with a shared feature extractor
that provides context information for each independent task.

In contrast to the literature, we formulate the problem of zero-shot HPO as a gray-box function
optimization problem, by designing a universal response model defined over the combined domain
of datasets and hyper-parameters. We rely on the embeddings to estimate the similarities across
datasets and design a novel multi-task optimization objective to regress directly on the response. This
allows us to delineate from the complexity paired with Bayesian uncertainty, as well as the trouble of
engineering similarity measures.
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3 HYPER-PARAMETER OPTIMIZATION

Consider a dataset D = {
(
x(Train), y(Train)

)
,
(
x(Val), y(Val)

)
,
(
x(Test), y(Test)

)
} for a supervised learning

task, with training, validation and test splits of predictors x ∈ X and targets y ∈ Y . We aim at
training a parametric approximation of the target using ŷ := f(θ, λ) : X → Y , where θ ∈ Θ denotes
the parameters and λ ∈ Λ its hyper-parameters, by minimizing a loss function L : Y × Y → R as:

λ∗ = arg min
λ∈Λ

L
(
y(Val), f

(
x(Val); θ∗, λ

))
s.t. θ∗ = arg min

θ∈Θ
L
(
y(Train), f

(
x(Train); θ, λ

))
(1)

We hereafter denote the validation error as the response ` (λ) := L
(
y(Val), f

(
x(Val); θ∗, λ

))
. Un-

fortunately, a direct optimization of the response ` (λ) in terms of λ is not trivial, because θ∗ is
the result of the minimization problem and its gradients with respect to λ are not easy to com-
pute. Instead, in order to learn the optimal hyper-parameters λ we train a probabilistic surrogate
ˆ̀(λ;β) : Λ× B → R parameterized by β ∈ B, with B as the space of response model parameters,
that minimizes the log-likelihood of approximating the response `(λ) over a set of K evaluations
S := {(λ1, ` (λ1)) , . . . , (λK , ` (λK))}. We denote P as the probability of estimating the response
given a surrogate model. Given the surrogate, the next hyper-parameter to be evaluated λ(next) is
computed by maximizing an acquisition function A (e.g. EI (Močkus (1975)) as:

λ(next) := arg max
λ∈Λ

A(ˆ̀(λ;β∗)) s.t. β∗ := arg min
β∈B

K∑
k=1

lnP
(
`(λk), ˆ̀(λk;β)

)
(2)

4 META-LEARNING OF CONDITIONAL GRAY-BOX SURROGATES

Let us define a collection of T datasets as
{
D(1), . . . , D(T )

}
and let `(t) (λ) measure the response of

the hyper-parameter λ on the t-th dataset D(t). Furthermore, assume we have previously evaluated
K(t) many hyper-parameters λ(t)

k , k ∈ {1, . . . ,K(t)} on that particular dataset. We condition the
surrogate ˆ̀ to capture the characteristics of the t-th dataset, by taking as input the meta-features
representation of the dataset as φ(t). Therefore, a dataset-aware surrogate can be trained using
meta-learning over a cumulative objective function O (β) as:

O (β) :=

T∑
t=1

K(t)∑
k=1

(
`(t)
(
λ

(t)
k

)
− ˆ̀

(
λ

(t)
k , φ(t); β

))2

(3)

4.1 THE META-FEATURE EXTRACTOR

Introducing engineered meta-features has had a significant impact on hyper-parameter optimization.
However, learning meta-features across datasets of varying schema in a task-agnostic setting provides
more representative characteristics than to rely on hard-to-tune empirical estimates. The meta-feature
extractor is a set-based function (Zaheer et al. (2017)) that presents itself as an extended derivation of
the Kolmogorov-Arnold representation theorem (Krková (1992)), which states that a multi-variate
function φ can be defined as an aggregation of univariate functions over single variables, Appendix B.

Each supervised (tabular) dataset D(t) :=
(
x(t), y(t)

)
consists of instances x(t) ∈ X ∈ RN×M and

targets y(t) ∈ Y ∈ RN×C such that N , M and C represent the number of instances, predictors and
targets respectively. The dataset can be further represented as a set of smaller components, set of
sets, D(t) =

{(
x

(t)
i,m, y

(t)
i,c

)
| m ∈ {1, . . . ,M}, i ∈ {1, . . . , N}, c ∈ {1, . . . , C}

}
. A tabular dataset

composed of columns (predictors, targets) and rows (instances) is reduced to single predictor-target
pairs instead of an instance-target pairs. Based on this representation, a meta-feature extractor
parameterized as a neural network (Jomaa et al. (2019)), is formulated in Equation 4. For simplicity
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of notation, we drop the superscript (t) unless needed.

φ(D) = h

(
1

MC

M∑
m=1

C∑
c=1

g

(
1

N

N∑
i=1

f(xi,m, yi,c)

))
(4)

with f : R2 → RKf , g : RKf → RKg and h : RKg → RK represented by neural networks
with Kf , Kg, and K output units, respectively. This set-based formulation captures the correlation
between each variable (predictor) and its assigned target and is permutation-invariant, i.e. the output
is unaffected by the ordering of the pairs in the set. Other set-based functions such as (Edwards
& Storkey (2016); Lee et al. (2019)) can also be used for meta-feature extraction, however, we
focus on this deep-set formulation (Jomaa et al. (2019)) because it is proven to work properly for
hyper-parameter optimization.

4.2 THE AUXILIARY DATASET IDENTIFICATION TASK

The dataset identification task introduced previously as dataset similarity learning (Jomaa et al.
(2019)), ensures that the meta-features of similar datasets are colocated in the meta-feature space,
providing more expressive and distinct meta-features for every dataset.

Let pD a joint distribution over dataset pairs such that (D(t), D(q), s) ∈ T × T ×{0, 1} with s being
a binary dataset similarity indicator. We define a classification model ŝ : T × T → R+ that provides
an unnormalized probability estimate for s being 1, as follows:

ŝ(D(t), D(q)) = e−γZ(φ(t),φ(q)) (5)

where Z : Rk × Rk → R+ represents any distance metric, and γ a tuneable hyper-parameter. For
simplicity, we use the Euclidean distance to measure the similarity between the extracted meta-
features, i.e. Z

(
φ(t), φ(q)

)
= ‖φ(t) − φ(q)‖, and set γ = 1. The classification model is trained by

optimizing the negative log likelihood:

P(β) := −
∑

(t,q)∼pD+

log
(
ŝ(D(t), D(q))

)
−

∑
(t,q)∼pD−

log
(

1− ŝ(D(t), D(q))
)

(6)

with pD+ as the distribution of similar datasets, pD+ = {(D(t), D(q), s) ∼ pD | s = 1}, and pD− as
the distribution of dissimilar datasets, pD− = {(D(t), D(q), s) ∼ pD | s = 0}. Similar datasets are
defined as multi-fidelity subsets (batches) of each dataset.

4.3 DATA-DRIVEN SIMILARITY REGULARIZATION

Our surrogate differs from prior practices, because we do not consider the response to be entirely
black-box. Instead, since we know the features and the target values of a dataset even before evaluating
any hyper-parameter, we model a gray-box surrogate by exploiting the dataset characteristics φ when
approximating the response `. As a result, if the surrogate faces a new dataset that is similar to one of
the T datasets from the collection it was optimized (i.e. similar meta-features φ extracted directly
from the dataset), it will estimate a similar response. Yet, if we know apriori that two datasets are
similar by means of the distance of their meta-features, we can explicitly regularize the surrogate to
produce similar response estimations for such similar datasets, as:

R (β) :=

T−1∑
t=1

T∑
q=t+1

K(t)∑
k=1

‖φ(t) − φ(q)‖
(

ˆ̀
(
λ

(t)
k , φ(t); β

)
− ˆ̀

(
λ

(t)
k , φ(q); β

))2

(7)

Overall we train the surrogate model to estimate the collection of response evaluations and explicitly
capture the dataset similarity by solving the following problem, Equation 8, end-to-end, where
α ∈ R controls the amount of similarity regularization, and δ ∈ R controls the impact of the dataset
identification task:

β∗ := arg min
β∈B

O (β) + α R (β) + δ P (β) (8)
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NETWORK ARCHITECTURE

Our model architecture is divided into two modules, l̂ := φ ◦ ψ, the meta-feature extractor φ, and
the regression head ψ. The meta-feature extractor φ : R2 → RKh is composed of three functions,
Equation 4, namely f , g and h. The regression head is also composed of two functions, i.e. ψ : ψ1◦ψ2.
We define by ψ1 : RKh × Λ → RKψ1 as the function that takes as input the meta-feature/hyper-
parameter pair, and by ψ2 : RKψ1 → R the function that approximates the response. Finally, let
Dense(n) define one fully connected layer with n neurons, and ResidualBlock(n,m) bem×Dense(n)
with residual connections (Zagoruyko & Komodakis (2016)). We select the architecture presented in
Table 1 based on the best observed average performance on the held-out validation sets across all
meta-datasets, Appendix E.1.

Table 1: The network architecture optimized for every meta-dataset.

Functions Architecture

f Dense(16);6×ResidualBlock(3,16);Dense(16)
g Layout: B with 3 layers and 16 Neurons
h Dense(16);3×ResidualBlock(3,16);Dense(16)
ψ1 Layout: B with 4 layers and 4 Neurons
ψ2 Layout: B with 4 layers and 16 Neurons

5 EXPERIMENTS

Our experiments are designed to answer three research questions1:

• Q1: Can we learn a universal response model that provides useful hyper-parameter initial-
izations from unseen datasets without access to previous observations of hyper-parameters
for the dataset itself?

• Q2: Do the proposed suggestions serve as a good initialization strategy for existing SMBO
algorithms?

• Q3: Aside from zero-shot HPO, does the performance of our method improve by refitting
the response model to the observations of the hyper-parameters for the target dataset and
how well does our approach compare to state-of-the-art methods in transfer learning for
HPO?2

5.1 TRAINING PROTOCOL

In Algorithm 1 we describe the pseudo-code for optimizing our response model via standard meta-
learning optimization routines. We use stochastic gradient descent to optimize the internal model,
and Adam optimizer (Kingma & Ba (2015)) to optimize the outer loop. We set the number of inner
iterations to v = 5, and use a learning rate of 0.001 for both optimizers. We use a batch size of 8
tasks sampled randomly with each iteration. The code is implemented in Tensoflow (Abadi et al.
(2016)). The performance of the various optimizers is assessed by measuring the regret, which
represents the distance between an observed response and the optimal response on a response surface.
For hyper-parameter optimization, the meta-datasets are provided beforehand, consequently, the
optimal response is known. Since we normalize the response surfaces between (0, 1), we observe the
normalized regret. The reported results represent the average over 5-fold cross-validation split for
each meta-dataset, with 80 meta-train, 16 meta-valid, and 24 meta-test sets, and one unit of standard
deviation.

5.2 META-DATASET

We create three meta-datasets by using 120 datasets chosen from the UCI repository (Asuncion
& Newman (2007)). We then create the meta-instances by training a feedforward neural network

1For a better understanding of the different problem settings, see Appendix A
2The associated code and meta-dataset described will be available upon acceptance.
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and report the validation accuracy. Each dataset is provided with a predefined split 60% train, 15%
validation, and 25% test instances. We train each configuration for 50 epochs with a learning rate of
0.001. The hyper-parameter search space is described in Table 2.

Table 2: Hyper-parameter search space for the meta-datasets. The name of each the meta-datasets is
inspired by the most prominent hyper-parameter, highlighted in red.

Hyper-parameter Layout Md Regularization Md Optimization Md

Activation ReLU, SeLU ReLU, SeLU, LeakyReLU ReLU, SeLU, LeakyReLU
Neurons 4, 8, 16, 32 4, 8, 16, 32 4, 8, 16
Layers 1, 3, 5, 7 1, 3, 5, 7 3, 5, 7
Layout �,C,B,�,4 � C,B,�,4
Dropout 0, 0.5 0, 0.2, 0.5 0
Normalization False False, True False
Optimizer ADAM ADAM ADAM, RMSProp, GD

The layout hyper-parameter (Jomaa et al. (2019)) corresponds to the overall shape of the neural
network, and provides information regarding the number of neurons in each layer. For example, all
the layers in the neural network with a � layout share the same number of neurons. We introduce
an additional layout, 4, where the number of neurons in each layer is successively halved until it
reaches the corresponding number of neurons in the centeral layer, then doubles successively.We
also use dropout (Srivastava et al. (2014)) and batch normalization (Ioffe & Szegedy (2015)) as
regularization strategies, and stochastic gradient descent (GD), ADAM (Kingma & Ba (2015)) and
RMSProp (Tieleman & Hinton (2012)) as optimizers. SeLU (Klambauer et al. (2017)) represents
the self-normalizing activation unit. The search space consists of all possible combinations of the
hyper-parameters. After removing redundant configurations, the resulting meta-datasets have 256,
288 and 324 unique configurations respectively. For the purposes of our algorithm, we need access to
the datasets used to generate the meta-features3. Further details are available in Appendix C.

5.3 BASELINES

We introduce two sets of baselines to evaluate against the different aspects of our approach:

ZERO-SHOT HYPER-PARAMETER OPTIMIZATION

• Random search (Bergstra & Bengio (2012)) is the simplest approach where the hyper-
parameters are selected randomly.

• Average Rank represents the top hyper-parameters that had on average the highest-ranking
across the meta-train datasets.

• NN-〈METAFEATURE〉 (Feurer et al. (2015)) refers to the process of selecting the top-
performing hyper-parameters of the nearest neighboring dataset based on their meta-
features. We use two sets of well-established engineered meta-features, which we refer to
as MF1 (Feurer et al. (2015)) and MF2 (Wistuba et al. (2016)), as well as learned meta-
features (Jomaa et al. (2019)), which we denote by D2V. The similarity is measured by the
Euclidean distance.

• Ellipsoid (Perrone et al. (2019)) is also a random search approach, however the hyper-
parameters are sampled from a hyper-ellipsoid search space that is restricted to encompass
as many optimal hyper-parameters from the training dataset as possible.

SEQUENTIAL-MODEL BASED OPTIMIZATION FOR TRANSFER LEARNING

• GP (Rasmussen (2003)) is standard Gaussian process response model with a Matern 3/2 and
automatic relevance determination. This approach is trained independently on each dataset.

3Unfortunately, we could not evaluate our approach on some of the published meta-datasets (Schilling
et al. (2016)) due to the unavailability of the associated datasets (original predictors and target values) used for
generation of the meta-instances
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• SMFO (Wistuba et al. (2015b)) is a sequential model-free approach that provides a collection
of hyper-parameters by minimizing the ranking loss across all the tasks in the meta-train
datasets.

• TST-R (Wistuba et al. (2016)) is a two-stage approach where the parameters of the target
response model are adjusted via a kernel-weighted average based on the similarity of the
hyper-parameter response between the target dataset and the training datasets. We also
evaluate the variant of this approach that relies on meta-features, by replacing the engineered
meta-features with learned meta-features, TST-D2V.

• RGPE (Feurer et al. (2018)) is an ensemble model that estimates the target response model
as a weighted combination of the training datasets’ response models and the target itself.
The weights are assigned based on a ranking loss of the respective model.

• ABLR (Perrone et al. (2018)) is a multi-task ensemble of adaptive Bayesian linear regression
models with all the tasks sharing a common feature extractor.

• TAF-R (Wistuba et al. (2018)) learns a transferable acquisition function, unlike the afore-
mentioned algorithms that focus on a transferable response model, that selects the next
hyper-parameter based on a weighted combination of the expected improvement of the target
task, and predicted improvement on the source tasks.

• MetaBO (Volpp et al. (2019)) is another transferable acquisition function, optimized as
a policy in a reinforcement learning framework. This approach, however, demands a
pre-computed target response model as part of the state representation.

In our approach, we learn a universal response model based on the underlying assumption that the
response is not only dependent on the hyper-parameters, as is assumed in black-box optimization
techniques, but also on the dataset itself, presenting the problem as a gray-box function optimization.

5.4 RESULTS AND DISCUSSION

Q1: ZERO-SHOT HPO AS A STAND-ALONE PROBLEM

In Table 3 we report the final normalized regret achieved by the different zero-shot approaches for
the first 20 hyper-parameters (Feurer et al. (2015)). Our method provides dataset-conditioned hyper-
parameters that perform better than heuristics for small budgets4. The use of engineered meta-features
to represent datasets for HPO solutions is not reliable, as the results achieved by NN-〈MF1〉 and
NN-〈MF2〉 are no better than random. On the other hand, using the meta-features extracted from the
dataset directly, NN-〈D2V〉serves as a better approximation. Furthermore, random sampling from the
restricted hyper-ellipsoid also outperforms the use of initialization strategies based on meta-features.
We obtain the zero-shot hyper-parameters via Algorithm 2. The D2V meta-features are obtained via
Algorithm 5.

Table 3: Results on several zero-shot HPO benchmarks. The numbers reported are the average
normalized regret for 120 tasks on each meta-dataset evaluated as the average of a 5-fold cross-
validation scheme. We report the best results in bold and underline the second best.

Zero-shot @5 Zero-shot @20

Method Layout Md Regularization Md Optimization Md Layout Md Regularization Md Optimization Md
Random 13.988 ± 2.629 15.105 ± 1.550 12.836 ± 1.781 6.900 ± 1.274 8.909 ± 0.440 7.185 ± 0.738
Average Rank 13.103 ± 2.679 11.339 ± 1.216 11.843 ± 1.647 6.660 ± 1.947 5.362 ± 0.772 7.128 ± 1.148
NN-MF1 13.544 ± 1.999 12.970 ± 2.157 12.300 ± 1.722 7.430 ± 1.443 7.542 ± 0.809 7.164 ± 1.404
NN-MF2 14.350 ± 2.181 12.137 ± 1.008 12.717 ± 2.228 7.621 ± 1.025 6.788 ± 1.122 8.055 ± 1.868
NN-D2V 12.278 ± 2.430 13.831 ± 3.556 11.568 ± 0.671 6.526 ± 2.215 6.820 ± 1.932 6.695 ± 0.942
Ellipsoid 11.497 ± 2.236 11.114 ± 1.433 10.713 ± 1.061 5.713 ± 1.776 6.592 ± 1.047 6.665 ± 1.154

GROSI 10.945 ± 1.602 10.779 ± 1.626 11.298 ± 1.086 5.707 ± 1.539 5.903 ± 1.655 6.242 ± 1.223

4We depict the surrogate with the response model in F.2 as a plausibility check.
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Q2: ZERO-SHOT HPO AS AN INITIALIZATION STRATEGY FOR SINGLE-TASK SEQUENTIAL HPO
METHODS

We use the aforementioned initialization strategies to warm-start single task GP with a Matern 3/2
kernel and automatic relevance determination as the response model. The quality of our suggested
hyper-parameters is reflected in the improved performance of the response model at the early stages
compared to metafeature-based initialization and random search, Figure 1. The pseudo-code for
sequential model-based optimization is provided by Algorithm 3.
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Figure 1: Average normalized regret for single-task sequential HPO methods, a Gaussian process,
with different initialization strategies.

Q3: SEQUENTIAL GRAY-BOX FUNCTION OPTIMIZATION

The proposed universal response model provides useful hyper-parameters upfront without access to
any observations of losses of the target responses. However, by iteratively refitting the model to the
history of observations, the response prediction is improved, as depicted in Figure 5, and summarized
in Table 4. We refit our algorithm by optimizing Equation 3, on the history of observed losses on the
target dataset, Algorithm 4. We evaluate two policies for selecting the next hyper-parameter after
refitting, (1) greedily selecting the hyper-parameter with the highest predicted response, GROSI(+1),
and (2) selecting the next hyper-parameter randomly from the top 5 hyper-parameters with the
highest predicted response, GROSI(+10), which achieved the best regret on average across the three
meta-datasets, Appendix E.2. In contrast to the baselines that select hyper-parameters through an
acquisition function that capitalizes on the uncertainty of the posterior samples, we incorporate
uncertainty by selecting the next hyper-parameter from the top-k hyper-parameters uniformly at
random and thus introduce a small trade-off between exploration and exploitation.

Furthermore, our method outperforms the state-of-the-art in transfer learning approaches for HPO in
several cases while demonstrating in general competitive performance across all three meta-datasets,
Table 45. The baselines are warm-started with 20 randomly selected hyper-parameters (Feurer et al.
(2015). For better readability, the uncertainty quantification can be found in Figure 4.
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Figure 2: Average normalized regret for state-of-the-art transfer learning HPO methods.

5For better visualization, some baselines are removed from Figure 2, but are still reported in Table 4
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Table 4: Normalized regret for state-of-the-art transfer learning HPO methods for up to 80 trials after
initialization with 20 configurations.

@50 after initialization @80 after initialization

Method Layout Md Regularization Md Optimization Md Layout Md Regularization Md Optimization Md
SMFO 2.129 ± 0.216 1.498 ± 0.572 2.081 ± 1.166 1.498 ± 0.480 1.183 ± 0.399 1.822 ± 0.873
TST-R 1.982 ± 0.329 1.879 ± 1.153 2.611 ± 0.852 1.168 ± 0.275 1.070 ± 0.989 1.947 ± 0.492
TST-D2V 1.921 ± 0.880 1.444 ± 0.698 2.747 ± 0.731 0.877 ± 0.501 0.942 ± 0.592 2.126 ± 1.037
RGPE 4.069 ± 0.515 4.706 ± 0.935 5.000 ± 0.572 4.004 ± 0.503 4.429 ± 0.742 4.736± 0.799
TAF-R 4.270 ± 0.805 3.969 ± 0.545 2.714 ± 1.013 4.131 ± 1.070 3.969 ± 0.545 2.059± 0.757
ABLR 2.770 ± 0.583 3.140 ± 1.654 3.775 ± 1.839 2.267 ± 0.549 1.824 ± 1.175 2.299± 0.799
MetaBO 7.422 ± 0.942 7.145 ± 1.222 6.468 ± 0.921 7.422 ± 0.942 7.127 ± 1.247 6.131 ± 1.036

GROSI 2.313 ± 0.828 1.621 ± 0.491 3.397 ± 0.915 1.274 ± 0.977 0.906 ± 0.258 2.806 ± 0.969
GROSI(+1) 1.599 ± 0.399 1.637 ± 0.752 2.598 ± 1.369 1.118 ± 0.635 1.000 ± 0.613 1.871 ± 1.208
GROSI(+10) 1.887 ± 0.546 1.631 ± 0.706 2.557 ± 1.035 0.956 ± 0.658 0.922 ± 0.308 1.950 ± 0.911

5.5 ABLATION STUDY

We perform several ablation experiments to analyze the contribution of each objective to the overall
performance. The results are detailed in Table 5. Treating zero-shot HPO as a simple regression
model by optimizing Equation 3 alone is suboptimal and does not scale across all meta-datasets.
We notice that adding the auxiliary dataset identification task, Equation 6 brings on significant
improvement, similarly with the similarity driven regularization, Equation 7. This reinforces the
notion that the responses of similar datasets behave similarly with regards to the hyper-parameters.
Both losses help generate more expressive meta-features, the former more directly, by optimizing
the inter- and intra-dataset similarities, and the latter indirectly by penalizing the difference in the
predicted response.

Table 5: Final results for zero-shot HPO for different variations of our model optimized with different
objectives. The numbers reported are the average normalized regret after 20 trials.

Method Layout Md Regularization Md Optimization Md

O 7.263 ± 1.309 5.961 ± 1.841 7.625 ± 0.546
O + αR 7.121 ± 1.133 6.217 ± 2.369 6.488 ± 0.609
O + δP 6.139 ± 1.654 6.105 ± 1.765 6.332 ± 1.516

Pretrained Meta-feature Extractor φ
O + αR 6.698 ± 1.099 5.887 ± 0.902 7.152 ± 1.287
O + αR+ δP 6.516 ± 0.911 5.650 ± 1.678 9.925 ± 7.130

GROSI 5.707 ± 1.539 5.903 ± 1.655 6.242 ± 1.223

We also initialize the meta-feature extractor, φ, by pretraining it independently, Algorithm 5. However,
we notice that this leads to generally poor performance as the model arrives quickly at a local optimum.
An artifact of the meta-dataset, we notice that pretraining GROSI for Regularization Md provides a
small lift. A small sensitivity analysis can be found in Appendix F.1.

6 CONCLUSION

In this paper, we formulate HPO as a gray-box function optimization problem that incorporates an
important domain of the response function, the dataset itself. We design a novel universal response
model for zero-shot HPO that provides good initial hyper-parameters for unseen datasets in the
absence of associated observations of hyper-parameters. We propose and optimize a novel multi-task
objective to estimate the response while learning expressive dataset meta-features. We also reinforce
the assumption that similar datasets behave similarly to hyper-parameters by introducing a novel
similarity-driven regularization technique. As part of future work, we will investigate the impact of
our approach within the reinforcement learning framework.
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A DETAILED PROBLEM SETTING

By a learning task we denote a pair (p, `) of an unknown distribution p of pairs (x, y) ∈ RM+L,
with M,L ∈ N, and a loss ` : RL × RL → R. A function ŷ : RM → RL is called a model for task
p and

`(ŷ; p) := E(x,y)∼p(`(y, ŷ(x)))

its (expected) loss.

Let a be a learning algorithm that yields for every sample D of pairs (x, y) from a task (p, `) and
hyper-parameters λ ∈ RP a model ŷ for the task. We call

`(λ) := `(a(D,λ); p)

the loss (or the response) of hyper-parameters λ. We say validation loss for the loss estimated on
fresh validation data.

Sequential single-task hyper-parameter optimization problem. Given an initial number K of
pairs (λk, lk) of hyper-parameters and their (validation) losses and a budget B ∈ N of trials, find
sequentially B many hyper-parameters λK+1, . . . , λK+B , such that their smallest loss

min
k∈1:K+B

`(λk)

is minimal among all such sequences. To compute the next guess λk+1, the hyper-parameters
λ1, . . . , λk tried so far and their (validation) losses lk := `(λk) can be used.

Zero-shot cross-task hyper-parameter optimization problem. Let ptask be an unknown distribu-
tion of supervised learning tasks. Given a sample of triples ((p, `), λ, l) of learning tasks (p, `),
hyper-parameters λ and their losses l, find for a fresh task (p, `) and a budget B ∈ N — without any
observations of losses of hyper-parameters on this task — a set {λ1, . . . , λB} of hyper-parameters,
such that their smallest loss mink∈1:B `(λk) is minimal among all such sets.

Sequential cross-task hyper-parameter optimization problem. Given both, (i) a sample of triples
((p, `), λ, l) of learning tasks (p, `), hyper-parameters λ and their losses l, and (ii) a fresh task (p, `)
and a budget B ∈ N, find sequentially B many hyper-parameters λ1, . . . , λB , such that their smallest
loss mink∈1:B `(λk) is minimal among all such sequences. To compute the next guess λk+1, the
hyper-parameters λ1, . . . , λk tried so far and their (validation) losses lk := `(λk) as well as all data
on other tasks can be used.

B THE META-FEATURE EXTRACTOR

The meta-feature extractor is a set-based function, and is represented as an extended derivation of
the Kolmogorov-Arnold representation theorem (Krková (1992)), which states that a multi-variate
function φ can be defined as an aggregation of univariate functions over single variables:

φ(x1, . . . , xM ) ≈
2M∑
j=0

hm
( M∑
m=1

gm,j(xm)
)

(9)

It is important to note that φ is permutation invariant, i.e. unaffected by any permutation on the
input, which allows us to obtain the same output for the same multi-variate data regardless of the
order of input. As a simple variant of this formulation (Zaheer et al. (2017)), we can replace the set
of functions hm, with single function h, and gm,j with a function g. In this paper, we incorporate
the meta-feature extractor as part of the response model, effectively learning a conditional response
on the dataset meta-features directly such that the approximation is defined as ˆ̀(λ(t), φ(t);β), with
φ(t) = φ(D(t)).
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C META-DATASETS

C.1 LAYOUT HYPER-PARAMETER

Below are some examples of the number of neurons per layer for networks with different layout
hyper-parameters given 4 neurons and 5 layers:

• Layout �: [4,4,4,4,4]
• Layout C: [4,8,16,32,64]
• Layout B: [64,32,16,8,4]
• Layout �: [4,8,16,8,4]
• Layout4: [16,8,4,8,16]

The search space consists of all possible combinations of the hyper-parameters. After removing
redundant configurations, e.g. 4 layout with 1 layer is similar to a� layout with 1 layer, the resulting
meta-datasets have 256, 288, and 324 unique configurations respectively.

C.2 HYPER-PARAMETER ENCODING

Below is description of the encodings applied to our hyper-parameters. We also like to note that the
scalar values are normalized between (0, 1).

Table 6: Encoding of the different hyper-parameters used in the meta-dataset.

Hyper-parameter Encoding

Activation One-hot encoding
Neurons Scalar
Layers Scalar
Layout One-hot encoding
Dropout Scalar
Normalization Scalar
Optimizer One-hot encoding

C.3 THE UCI DATASETS

Table 7 is an overview of the UCI datasets used to generate the meta-datasets.
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Table 7: Summary of the 120 UCI datasets used to generate the meta-datasets.

UCI Dataset # Instances # Features # Classes UCI Dataset # Instances # Features # Classes

molec-biol-splice 2393 60 3 adult 32561 14 2
twonorm 5550 20 2 annealing 798 31 5
plant-texture 1199 64 100 molec-biol-promoter 80 57 2
ringnorm 5550 20 2 contrac 1105 9 3
spect 79 22 2 statlog-landsat 4435 36 6
energy-y2 576 8 3 conn-bench-sonar-mines-rocks 156 60 2
steel-plates 1456 27 7 musk-2 4949 166 2
vertebral-column-3clases 233 6 3 balloons 12 4 2
chess-krvk 21042 6 18 abalone 3133 8 3
statlog-shuttle 43500 9 7 statlog-vehicle 635 18 4
breast-cancer-wisc 524 9 2 page-blocks 4105 10 5
semeion 1195 256 10 heart-hungarian 221 12 2
connect-4 50668 42 2 ionosphere 263 33 2
monks-3 122 6 2 synthetic-control 450 60 6
wall-following 4092 24 4 plant-shape 1200 64 100
vertebral-column-2clases 233 6 2 pittsburg-bridges-MATERIAL 80 7 3
planning 137 12 2 breast-cancer-wisc-diag 427 30 2
cardiotocography-3clases 1595 21 3 spectf 80 44 2
plant-margin 1200 64 100 bank 3391 16 2
nursery 9720 8 5 pendigits 7494 16 10
titanic 1651 3 2 teaching 113 5 3
energy-y1 576 8 3 mushroom 6093 21 2
monks-1 124 6 2 optical 3823 62 10
arrhythmia 339 262 13 primary-tumor 248 17 15
breast-tissue 80 9 6 conn-bench-vowel-deterding 528 11 11
statlog-australian-credit 518 14 2 soybean 307 35 18
tic-tac-toe 719 9 2 oocytes merluccius states 2f 767 25 3
lymphography 111 18 4 chess-krvkp 2397 36 2
monks-2 169 6 2 audiology-std 171 59 18
waveform 3750 21 3 image-segmentation 210 18 7
fertility 75 9 2 led-display 750 7 10
lenses 18 4 3 heart-va 150 12 5
wine-quality-red 1199 11 6 pittsburg-bridges-SPAN 69 7 3
parkinsons 146 22 2 oocytes trisopterus nucleus 2f 684 25 2
wine-quality-white 3674 11 7 statlog-german-credit 750 24 2
pima 576 8 2 acute-inflammation 90 6 2
pittsburg-bridges-T-OR-D 77 7 2 car 1296 6 4
low-res-spect 398 100 9 horse-colic 300 25 2
musk-1 357 166 2 heart-switzerland 92 12 5
pittsburg-bridges-REL-L 77 7 3 oocytes trisopterus states 5b 684 32 3
breast-cancer 215 9 2 congressional-voting 326 16 2
spambase 3451 57 2 acute-nephritis 90 6 2
iris 113 4 3 credit-approval 518 15 2
thyroid 3772 21 3 hill-valley 606 100 2
mammographic 721 5 2 oocytes merluccius nucleus 4d 767 41 2
ilpd-indian-liver 437 9 2 seeds 158 7 3
blood 561 4 2 ozone 1902 72 2
waveform-noise 3750 40 3 magic 14265 10 2
statlog-heart 203 13 2 statlog-image 1733 18 7
pittsburg-bridges-TYPE 79 7 6 cylinder-bands 384 35 2
echocardiogram 98 10 2 lung-cancer 24 56 3
flags 146 28 8 dermatology 275 34 6
letter 15000 16 26 cardiotocography-10clases 1595 21 10
zoo 76 16 7 heart-cleveland 227 13 5
ecoli 252 7 8 haberman-survival 230 3 2
yeast 1113 8 10 balance-scale 469 4 3
hayes-roth 132 3 3 wine 134 13 3
libras 270 90 15 miniboone 97548 50 2
breast-cancer-wisc-prog 149 33 2 hepatitis 116 19 2
glass 161 9 6 post-operative 68 8 3
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D ALGORITHMS

We define pT as the task distribution that represents pairs of datasets and hyper-parameters, i.e.
T (t,k) = (D(t), λ

(t)
k ) ∈ T × Λ, and pD be the distribution of the datasets as defined in Section 4.2.

Algorithm 1 provides the overall optimization framework for GROSI, our approach.

Algorithm 1 Learn GROSI(D)

1: Require:pD: distribution over datasets,pT : distribution over tasks
2: Require:lrinner,lrouter: learning rates
3: Randomly initialize β ∈ B, the parameters of our response model l̂
4: while not done do
5: Set β′ ← β

6: Sample (D(t), λ
(t)
k ) = T (t,k) ∼ pT

7: for v steps
8: sample D(q) ∼ pD\(D(t)

9: Evaluate gradients G ← ∇β (O + α R+ δ P)
10: Compute adapted parameters with stochastic gradient descent: β′ ← β′ − lrinnerG
11: Update β ← β − lrouter (β − β′)
12: return β

After optimizing our objective via Algorithm D we apply Algorithm 2 to observe the results presented
in Tables 3 and 5.

Algorithm 2 Zero-shot HPO

1: Require: target dataset D(t) ; response model l̂; desired zero-shot hyper-parameters K
2: H ← arg minKλ∈Λ l̂

(
D(t), λ

)
3: return H

For sequential model-based optimization, a surrogate l̂ is fitted to the observed responses of the
unknown function. Several initialization strategies exist to expedite the transfer of information across
tasks, Section 5.4. In Algorithm 3, we present the generic pseudo-code for SMBO, that requires an
acquisition function, a, to sample the next iterate from the domain.

Algorithm 3 Sequential Model-based Optimization Warm-start

1: Require: target dataset D(t) ; response model l̂; desired zero-shot hyper-parameters K, number
of trials I , acquisition function a

2: Get initial hyper-parametersH0 ←Zero-shot HPO
3: λmin ← arg minλ∈H0

(
l(D(t), λ)

)
4: for i = 1 . . . I
5: fit l̂i toHi−1

6: λ← arg maxλ∈Λ a
(
l̂(D(t), λ)

)
7: Hi ← Hi−1

⋃
{λ}

8: if l
(
D(t), λ

)
< l
(
D(t), λmin

)
9: λmin ← λ

10: return λmin

In Section 5.4, we propose to initialize our response model on the target dataset, then iterativly tune
it to that particular dataset. Initially, we select top K configurations based on Algorithm 2, our
zero-shot approach. Then, via Algorithm 4, we sample uniformly at random from the top X ranking
configurations. If X = 1, then this represents the greedy policy.

Meta-feature learning from datasets with varying schema was initially proposed in (Jomaa et al.
(2019)). For our approach, we introduce a set-based meta-feature extractor module to handle datasets
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Algorithm 4 Learn GROSI(+X)

1: Require: target dataset D(t) ; response model l̂; desired zero-shot hyper-parameters K, number
of trials I , Number of top configurations to choose from, X

2: Get initial hyper-parametersH0 ←Zero-shot HPO
3: λmin ← arg minλ∈H0

(
l(D(t), λ)

)
4: for i = 1 . . . I
5: fit l̂i toHi−1 by optimizing Equation 3
6: λ ∼ Uniform

(
arg minXλ∈Λ\Hi−1

l̂
(
D(t), λ

))
7: Hi ← Hi−1

⋃
{λ}

8: if l
(
D(t), λ

)
< l
(
D(t), λmin

)
9: λmin ← λ

10: return λmin

of varying schema as well, however, we optimize Equation 8 and use the dataset identification task
as an auxiliary objective. However, to pre-train the meta-feature extractor for the Ablation study,
Section 5.5, as well as in order to extract meta-features for the NN-D2V, and TST-D2V, we follow
Algorithm 5, with pD+ as the distribution of similar datasets, pD+ = {(D(t), D(q), s) ∼ pD | s = 1},
and pD− as the distribution of dissimilar datasets, pD− = {(D(t), D(q), s) ∼ pD | s = 0}. Similar
datasets are defined as multi-fidelity subsets (batches) of each dataset.

Algorithm 5 Standalone Meta-feature Learning

1: Require:pD+ : distribution over similar datasets, pD− distribution over dissimilar datasets
2: Require:lrφ learning rate
3: Randomly initialize β ∈ B, the parameters of the meta-feature extractor φ
4: while not done do
5: Sample (D(t), D(q), 1) ∼ pD+ and (D(t), D(r), 0) ∼ pD− (Both samples share D(t))
6: Evaluate gradients G ← ∇β (P)
7: Compute adapted parameters with stochastic gradient descent: β′ ← β′ − lrφG
8: Update β ← β − lrφ (β − β′)
9: return β

16



Under review as a conference paper at ICLR 2021

E EXPERIMENTAL DETAILS

E.1 NETWORK ARCHITECTURE

Our model architecture is divided into two modules, l̂ := φ ◦ ψ, the meta-feature extractor φ, and
the regression head ψ. The meta-feature extractor φ : R2 → RKh is composed of three functions,
Equation 4, namely f , g and h. The regression head is also composed of two functions, i.e.ψ : ψ1◦ψ2.
We define by ψ1 : RKh × Λ → RKψ1 as the function that takes as input the meta-feature/hyper-
parameter pair, and by ψ2 : RKψ1 → R the function that approximates the response. Finally, let
Dense(n) define one fully connected layer with n neurons, and ResidualBlock(n,m) bem×Dense(n)
with residual connections (Zagoruyko & Komodakis (2016)).

To select a single universal response model, we evaluate the validation performance on the three
network architectures described in Table 8. We select the architecture that has the best average
performance between the three across the three meta-datasets, Table 9, which turns out to be
Architecture 3. The architectures assign a different number of trainable variables for the meta-feature
extractor and the coupled regression head.

Table 8: The network architecture optimized for every meta-dataset.

Functions Architecture 1

f Dense(32);6×ResidualBlock(3,32);Dense(32)
g Layout: B with 3 layers and 16 Neurons
h Dense(16);3×ResidualBlock(3,16);Dense(16)
ψ1 Layout: B with 4 layers and 4 Neurons
ψ2 Layout: B with 4 layers and 4 Neurons

Functions Architecture 2
f Dense(16);6×ResidualBlock(3,16);Dense(16)
g Layout: B with 3 layers and 16 Neurons
h Dense(32);3×ResidualBlock(3,32);Dense(32)
ψ1 Layout: B with 4 layers and 4 Neurons
ψ2 Layout: B with 4 layers and 16 Neurons

Functions Architecture 3
f Dense(16);6×ResidualBlock(3,16);Dense(16)
g Layout: B with 3 layers and 16 Neurons
h Dense(16);3×ResidualBlock(3,16);Dense(16)
ψ1 Layout: B with 4 layers and 4 Neurons
ψ2 Layout: B with 4 layers and 16 Neurons

Table 9: Final results of each model optimized on the different meta-datasets. The numbers reported
are the average normalized regret after 50 trials on held-out validation sets for the zero-shot task.

Architecture Layout Md Regularization Md Optimization Md Average Score

Architecture 1 0.942 ± 0.2074 1.697 ± 0.2897 2.935 ± 1.4562 1.858 ± 0.821
Architecture 2 0.973 ± 0.5338 1.849 ± 0.5397 3.215 ± 1.3578 2.012 ± 0.922
Architecture 3 1.041 ± 0.4134 1.715 ± 0.6354 2.579 ± 0.9865 1.779 ± 0.629

E.2 POLICY FOR SEQUENTIAL OPTIMIZATION

We propose GROSI as a zero-shot HPO solution. However, to emphasize the ability of our surrogate
model to quickly adapt to new target datasets, we extend it into a sequential optimization approach.
Starting with the proposed zero-shot configurations, we fine tune our model via Algorithm 4. We
select the X = 10 based on the best average performance observed on the held-out validation sets,
Table10.
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Table 10: Final results for different variants of our sequential model optimization policy. The numbers
reported are the average normalized regret after 80 trials on held-out validation after initialization
with the exact same 20 configurations suggested by the our zero-shot approach.

Sequential Policy Layout Md Regularization Md Optimization Md Average Score

GROSI(+1) 0.653±0.540 1.793±1.057 2.835±0.663 1.760±0.891
GROSI(+3) 0.204±0.265 1.845±1.252 2.738±1.038 1.596±1.049
GROSI(+5) 0.403±0.402 2.027±1.171 2.480±0.967 1.637±0.892
GROSI(+7) 0.675±0.416 1.576±0.845 2.476±1.129 1.576±0.735
GROSI(+10) 0.550±0.498 1.727±1.075 1.996±1.191 1.424±0.628

F ADDITIONAL EXPERIMENTAL RESULTS

F.1 HYPER-PARAMETER SENSITIVITY ANALYSIS

We optimize our response model by minimizing Equation 8, which includes the dataset identification
task, Equation 6, and the similarity-driven regularization task, Equation 7, with auxiliary weights δ and
α assigned to both respectively. We report below the performance of our universal response model for
different auxiliary weights. The results confirm the importance of emphasizing the auxiliary dataset
identification task in conjunction with the similarity-driven regularization loss, which reinforces the
intuition that similar datasets behave similarly to the hyper-parameter response. The reported results
throughout the paper are based on δ = 1 and α = 0.5. .

.

Table 11: Final results of our universal response model optimized with different auxiliary weights.
The numbers reported are the average normalized regret after 20 trials.

Method Layout Md Regularization Md Optimization Md

δ = 0.5;α = 0.1 6.016 ± 1.196 5.358 ± 1.676 6.744 ± 0.468
δ = 0.5;α = 0.5 6.973 ± 2.525 6.483 ± 1.614 6.401 ± 0.325
GROSI(Ours):δ = 1;α = 0.5 5.707 ± 1.539 5.903 ± 1.655 6.242 ± 1.223

F.2 ADDITIONAL RESULTS

Q1: ZERO-SHOT HPO AS A STAND-ALONE PROBLEM

As a plausibility argument for the usefulness of our zero-shot strategy, we depict in Figure 3 the
top 10 suggested hyper-parameters by our approach, as well as two initialization strategies on the
actual response surface. Our picks can be seen colocated near the different optima in the search space
whereas hyper-parameters of other strategies are dispersed.

Q3: SEQUENTIAL GRAY-BOX FUNCTION OPTIMIZATION

We refit the universal response model to the observations of the response on the target dataset by
optimizing Equation 3. We depict the improvement achieved over the zero-shot approach in Figure 5.
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Figure 3: Top 10 hyper-parameters suggested by our approach for test datasets from the three
different meta-datasets. We reduce the dimensionality of each search space into a 2D representation
via TSNE (Liu et al. (2016)). The first row represents the actual response surface. We notice that
the true response and the predicted response are similar, and the location of the predicted minima, in
green, overlaps with the minima of the actual response.
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Figure 4: Average normalized regret for state-of-the-art transfer learning HPO methods, with uncer-
tainty quantification.
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Figure 5: : Average normalized regret for GROSI, our zero-shot approach, and the refitted response
models GROSI(+1) and GROSI(+10). We shade in light blue the improvement over zero-shot
performance.
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