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ABSTRACT

Compositional generalization (the ability to respond correctly to novel combina-
tions of familiar components) is thought to be a cornerstone of intelligent behavior.
Compositionally structured (e.g. disentangled) representations are essential for
this; however, the conditions under which they yield compositional generalization
remain unclear. To address this gap, we present a general theory of compositional
generalization in kernel models with fixed, compositionally structured representa-
tions, a tractable framework for characterizing the impact of dataset statistics on
generalization. We find that these models are constrained to adding up values as-
signed to each combination of components seen during training (“conjunction-wise
additivity”). This imposes fundamental restrictions on the set of tasks composi-
tionally structured kernel models can learn, in particular preventing them from
transitively generalizing equivalence relations. Even for compositional tasks that
they can in principle learn, we identify novel failure modes in compositional
generalization that arise from biases in the training data and affect important
compositional building blocks such as symbolic addition and context dependence
(memorization leak and shortcut bias). Finally, we empirically validate our the-
ory, showing that it captures the behavior of deep neural networks (convolutional
networks, residual networks, and Vision Transformers) trained on a set of com-
positional tasks with similarly structured data. Ultimately, this work provides a
theoretical perspective on how statistical structure in the training data can affect
compositional generalization, with implications for how to identify and remedy
failure modes in deep learning models.

1 INTRODUCTION

Humans’ understanding of the world is inherently compositional: once familiar with the concepts
“pink” and “elephant,” we can immediately imagine a pink elephant. Stitching together concepts in
this way lets humans generalize far beyond our prior experience, allowing us to cope with unfamiliar
situations and imagine things that do not yet exist (Lake et al., 2017; Frankland & Greene, 2020).
Understanding the basis of compositional generalization in humans and animals, and building it into
machine learning models, is a long-standing and historically vexing problem (Fodor & Pylyshyn,
1988; Battaglia et al., 2018; Lake & Baroni, 2018). While a wide range of studies have investigated
the conditions under which compositionally structured (i.e. “disentangled”) representations can be
learned (Hinton et al., 2011; Higgins et al., 2017; Träuble et al., 2021; Whittington et al., 2023; Ren
et al., 2023), it remains unclear when learning these representations is actually useful to a downstream
neural network. Some work suggests that disentangled representations improve compositional
generalization (Esmaeili et al., 2019; van Steenkiste et al., 2019). However, others challenge this view
(Locatello et al., 2019; Schott et al., 2022). In general, it remains unclear why insights from some
compositional tasks fail to generalize to others, and a systematic understanding of the relationships
among compositional tasks remains elusive (Hupkes et al., 2020).

To make progress on this question, we focus on standard statistical learning, a fundamental basis for
generalization that affects almost any machine learning model. Generalization in statistical learning
depends on the similarities between different inputs. In compositionally structured representations,
inputs that have components in common (say, a red circle and a blue circle) are more similar to each
other than inputs that do not (say, a red circle and a blue square). As a result, the compositional
structure of a task is reflected in its dataset statistics, influencing the model’s generalization behavior.
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To understand when and how statistical learning leads to successful compositional behavior, we
developed a theory for the behavior of kernel models on compositional tasks. Kernel models are an
important class of statistical models that are able to provide a simplified approximation to neural
networks while maintaining analytical tractability (Jäkel et al., 2008; 2009). For example, kernel
models accurately describe the behavior of learning and fine-tuning in neural networks under certain
conditions (Jacot et al., 2018; Malladi et al., 2023). More broadly, they provide a tractable framework
for characterizing the impact of dataset statistics on generalization (Canatar et al., 2021a;b).

Despite their broad relevance and relative simplicity, it has remained unclear how even kernel models
generalize on compositional tasks (though see Abbe et al., 2023; Lippl et al., 2024, see Section 2). To
address this gap, we present a theory of compositional generalization in kernel models. We define a
general class of “compositionally structured representations” and a general family of compositional
tasks with no constraints on the input-output mapping (ensuring broad applicability of our theory).
We then theoretically characterize the compositional behavior of compositionally structured kernel
models trained on such tasks, and go beyond kernel models to empirically validate our theory in
several relevant deep neural network architectures. Our specific contributions are as follows:

• In Section 4, we show that kernel models with compositionally structured inputs are con-
strained to summing up values implicitly assigned to each component or combination of
components seen during training. We call such computations “conjunction-wise additive.”

• In Section 5, we then characterize how representational geometry determines whether
kernel models will generalize successfully on conjunction-wise additive compositional
tasks, highlighting two important failure modes (memorization leak and shortcut bias). This
highlights that disentangled representations are not sufficient for downstream compositional
generalization (even on conjunction-wise additive tasks) and explains why.

• Finally, in Section 6, we validate our theory in several deep neural network architectures,
showing that it captures their behavior on conjunction-wise additive tasks.

Overall, we take a step towards a general theory of compositional generalization. Our theory
systematically clarifies the compositional generalization behavior of deep networks and lays a
foundation for the design of new learning mechanisms that overcome their limitations.

2 RELATED WORK

Compositional generalization. Compositionality is an important theme in both human and machine
reasoning problems, including visual reasoning (Lake et al., 2015; Johnson et al., 2017; Schwarten-
beck et al., 2023), language production (Hupkes et al., 2020), and rule learning (Ito et al., 2022;
Abdool et al., 2023). Recent breakthroughs have led to massive improvements in models’ compo-
sitional capacities, but in some cases, these models still fail spectacularly (Srivastava et al., 2023;
Lewis et al., 2023; West, 2023). Attempts to improve compositional generalization often leverage
meta-learning (Mitchell et al., 2021; Wu et al., 2023; Lake & Baroni, 2023) or modular architectures
(Andreas et al., 2017), in the hopes that different modules will specialize for different components.
Constraining a network’s compositional function can guarantee modular specialization and com-
positional generalization (Lachapelle et al., 2023; Wiedemer et al., 2023a;b; Schug et al., 2024).
However, these networks are extremely limited in the tasks they can learn (as we will show below)
and end-to-end training of modular architectures without such constraints often does not result in the
desired specialization (Bahdanau et al., 2019; Mittal et al., 2022; Jarvis et al., 2023).

Kernel regime. When using gradient descent, ridge regression, or similar learning algorithms to train
the readout weights of a model fw(x) = wTϕ(x), it can be shown that the resulting behavior of that
model can be described in terms of the kernel K(x, x′) = ϕ(x)Tϕ(x′) induced by the representation
ϕ(x) (Schölkopf, 2000). We will refer to such models as kernel models. Notably, when trained on a
dataset {(xi, yi)}ni=1, a kernel model can be written in its “dual form” as

fa(x) =
∑n

i=1 aiK(x, xi), for inferred dual coefficients a ∈ Rn. (1)

Prior work has shown that neural networks with large initial weights or wide architectures are well
approximated by gradient descent on a model with a fixed representation (a kernel model) (Jacot
et al., 2018). This is called the “kernel regime,” in contrast to the feature-learning regime, which is
brought forth, for example, by small initial weights or small width (Chizat et al., 2019).
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Norm minimization. Gradient descent, ridge regression, and neural networks in the kernel regime
learn the readout weights that describe the training data with minimal ℓ2-norm (Soudry et al., 2018;
Gunasekar et al., 2018; Ji et al., 2020). Norm minimization is a standard theoretical framework for
analyzing how representational geometry and dataset statistics influence generalization (Canatar et al.,
2021b; 2023) and we here apply it to the compositional task setting. This is similar to Lippl et al.
(2024) who characterize model behavior on a specific compositional task (transitive ordering) and
Abbe et al. (2023) who characterize the inductive bias of norm minimization for inputs with binary
components in the limit of infinite components. Compared to these prior works, we analyze a broader
range of compositional tasks and derive exact constraints for finite numbers of components.

Memorization leak. Machine learning models sometimes memorize (parts of) their training data
instead of learning a generalizable rule (Zhang et al., 2020; Dasgupta et al., 2022). This may improve
generalization on long-tailed data (Feldman, 2020), but often impairs out-of-distribution performance
(Elangovan et al., 2021). We find that models partially memorize their training data even when they
extract the correct rule. Jarvis et al. (2023) analyze a related phenomenon in deep linear networks.

Shortcut learning. Shortcut learning refers to models exploiting spurious correlations between certain
features of the input data and the target (Shah et al., 2020; Nagarajan et al., 2021). This substantially
impacts their performance out of distribution (where those correlations may not hold) (Geirhos et al.,
2020). We theoretically analyze how shortcut biases impact compositional generalization.

3 MODEL AND TASK SETUP

3.1 TASK SPACE

We consider an input x representing a set of underlying components z = (zc)
C
c=1, where each

component zc ∈ Zc is drawn from a discrete, finite set of possible components that is fixed across all
inputs. For example, x could be a simple concatenation of one-hot representations of all components
(Fig. 1a). More generally, we consider a broad range of possible representations x, but make a specific
assumption about how their trial-by-trial similarity relates to the underlying components z:

Definition 3.1. A representation x is “compositionally structured” iff its kernel K(x, x′) = xTx′

only depends on the number of components that are identical between z and z′, where z and z′ are
the components represented by x and x′ respectively.

In particular, the multi-hot representation described above is compositionally structured, but we
will see below that this concept captures a much richer set of representations as well. The target,
y ∈ R, is given by an arbitrary function of z, ensuring that our framework is agnostic to the
underlying compositional structure. After training models on certain combinations of components
Z train ⊂ Z =

∏C
c=1 Zc, we assess generalization on all other combinations Z test := Z \ Z train.

Our theory characterizes constraints on model behavior for arbitrary tasks within this family, regard-
less of the ground-truth input-output mapping. Below we describe three example tasks that represent
important building blocks for compositional reasoning in machine learning and cognitive science. We
will focus on these tasks in the main text, to illustrate our general theory and analyze its consequences
in more detail. In Appendix E, we describe additional tasks captured by our theory.

Symbolic addition. Many tasks involve inferring a magnitude associated with different underlying
components (e.g. adding handwritten digits) (Lorenzi et al., 2021; Sheahan et al., 2021). We consider
two components (z1, z2) with unobserved assigned values v1(z1) and v2(z2). The target is the sum
of those values: y = v1(z1) + v2(z2). After sufficient exposition to individual items, a model with
an additive structure can generalize to novel combinations of items. In particular, we consider nine
input elements [−4], [−3], . . . , [4] with associated values −4,−3, . . . , 4 and training sets containing
all pairs where at least one component is equal to a certain subset of values W (given by the rows
and columns in the training set in Fig. 1b). We vary the size of this subset (i.e. the number of
rows/columns) as well as whether the task requires only interpolation or also extrapolation.

Context dependence. The relevance of different stimuli often depends on our current context. Taking
this into account is a crucial aspect of cognition in humans and animals (Bouton et al., 1999; Taylor
& Ivry, 2013; Parker & Hollister, 2014; Ito et al., 2022). We therefore consider a task with three input
components (zco, zf1, zf2). The context (zco) has two possible values specifying whether zf1 or zf2

3
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Figure 1: a, Theoretical setup: a disentangled representation of the input, followed by a nonlinear
transform ϕ and a learned linear readout w. b, Example training sets for symbolic addition. The grid
represents nine components with associated values −4,−3, . . . , 4. The training set consists of certain
rows and columns of this grid. c, Context dependence. In context 1, feat. 1 determines the category;
in context 2, feat. 2 determines the category. The training sets leave out different subsets of the lower
right orthant. d, Transitive equivalence: six items are split up into two arbitrary equivalence classes
(e.g. A,B,C and D,E,F) and generalization requires transitive inference over equivalence classes.

determine the response. Both features have six possible values which are split up in two categories.
If the model has learned this context dependence, it should be able to generalize to novel feature
combinations. We evaluate on the subset of data for which zf1 indicates Cat. 2 and zf2 indicates Cat.
1. In the most extreme generalization test (CD-3), we leave out the entire subset; in easier versions,
we leave out combinations of two or one of those features (CD-2 and CD-1) (Fig. 1c).

Transitive equivalence. Relational reasoning is an important example of compositional generaliza-
tion and often involves extending learned relations to new item combinations (Halford et al., 2010;
Battaglia et al., 2018). Given an unobserved (and arbitrary) equivalence relation, the task is to deter-
mine whether two presented items (z1, z2) are equivalent. The model should generalize to novel item
pairs using transitivity (A = B and B = C imply A = C) (Fig. 1d). This is an important instance
of relational cognition (often studied as “associative inference” in cognitive science (Schlichting
& Preston, 2015; Spalding et al., 2018)). Although prior work has found that kernel models often
successfully generalize on a transitive ordered relation (A > B and B > C imply A > C, Lippl
et al., 2024), the behavior of kernel models on equivalence relations has remained unclear.

3.2 MODELS

Our theory characterizes kernel models with a compositionally structured input x ∈ Rd that apply
a transform ϕ(x) ∈ Rh and learn a linear readout, fw(x) := wTϕ(x), using gradient descent with
initial weights w0 = 0 (Fig. 1a). For ϕ, we consider a neural network with random weights (in the
infinite-width limit; see Appendix A.3). This captures the random feature model studied by Abbe
et al. (2023) and training via backpropagation in the kernel regime.

4 KERNEL MODELS ARE CONJUNCTION-WISE ADDITIVE

Our primary theoretical contribution is to characterize the full range of compositional computations
that can be implemented by kernel models with compositionally structured inputs. We find that even
though these models can learn arbitrary training sets, their test set behavior is restricted to adding up
values for each conjunction (combination of components) seen during training. We call this motif
“conjunction-wise additivity.” Below, we formally state our finding and explain its implications.

4.1 RANDOM NETWORKS YIELD COMPOSITIONALLY STRUCTURED REPRESENTATIONS

We first note that a linear readout of the multi-hot input constrains the model to adding up a value for
each component (“component-wise additivity”): f(x) =

∑C
c=1 fc(zc). Although models of this class

perfectly generalize on component-wise additive tasks, such as symbolic addition, they are incapable
of even learning the training data (much less generalizing) on tasks that are not component-wise

4
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additive. In particular, these models cannot learn context-dependent computations or equivalence
relations — both fundamental instances of compositional reasoning.

The nonlinear transform ϕ(x) can overcome this constraint; in particular, multi-layer nonlinear neural
networks can learn arbitrary training data (in the infinite-width limit) (Hornik et al., 1989; Cybenko,
1989; Rigotti et al., 2013). In general, the wide range of possible network architectures makes it
difficult to derive general statements about their representations, but in this case we can take advantage
of the fact that ϕ(x) will also be compositionally structured:

Proposition 4.1. For a random weights neural network ϕ with a compositionally structured input x
in the infinite-width limit, ϕ(x) is also compositionally structured.

Proposition 4.1 holds because in the infinite-width limit, the kernel of random weight neural networks
depends only on the input kernel (Cho & Saul, 2009, see Appendix A.3). We now consider the
constraints that compositional structure imposes on the models’ generalization behavior.

4.2 COMPOSITIONALLY STRUCTURED KERNEL MODELS ARE CONJUNCTION-WISE ADDITIVE

We find that any kernel model with a compositionally structured representation is constrained to
be conjunction-wise additive. To formally state this finding, we define, for each z ∈ Z, the set of
conjunctions for which z overlaps with some element in the training set ztr ∈ Z train,

Conj(z|Z train) :=
{
J ⊆ {1, . . . , C}|∃ztr ∈ Z train : ∀c ∈ J : zc = ztr

c

}
. (2)

Theorem 4.2. For any kernel model f with a compositionally structured representation, we can
find conjunction-wise functions fJ :

∏
c∈J Zc → R, where J ⊆ {1, . . . , C}, such that for any input

x ∈ Rd representing components z ∈ Z, the model response is given by

f(x) =
∑

J∈Conj(z|Z train) fJ(zJ), zJ := (zc)c∈J . (3)

This means that for a given test input, these models add up a value for each partial conjunction
(or single component) that was seen during training. We call this computation “conjunction-wise
additive.” In particular, for inputs with two components, the model’s behavior on the training set
can be expressed as f(x) = f1(z1) + f2(z2) + f12(z1, z2). Thus, f12(z1, z2) enables the model to
learn arbitrary training data. However, if x represents z ∈ Z test, the training set does not contain
any input with the conjunction (z1, z2) and so the model is constrained to be component-wise
additive: f(x) = f1(z1) + f2(z2). For inputs with more than two components, a conjunction-
wise additive computation additionally encodes partial conjunctions that it has seen before, e.g.:
f(x) = f1(z1) + f2(z2) + f3(z3) + f12(z1, z2) if the training set contains the conjunction (z1, z2).

4.3 CONJUNCTION-WISE ADDITIVITY CONSTRAINS THE TASKS KERNEL MODELS CAN SOLVE

Theorem 4.2 implies that compositionally structured kernel models can only solve task that can be
expressed in conjunction-wise additive terms. This highlights a fundamental computational restriction.
Intriguingly, these restrictions are not caused by an architectural constraint, as the model can learn
arbitrary training data (at least with a nonlinear transformation ϕ, see Section 5.1). Rather, we
highlight restrictions on how models – without any architectural constraints – can generalize (Zhang
et al., 2021). We now spell out the consequences of these restrictions.

First, for inputs with two components, we noted above that the model’s behavior on the test set
is component-wise additive. A striking consequence of this is that compositionally structured
models can only generalize on component-wise additive tasks. In particular, this implies that these
models cannot generalize on transitive equivalence — a fundamental instance of relational reasoning.
Intriguingly, transitive ordering – a superficially similar task – can be solved by a kernel model. This
highlights the importance of a formal perspective on compositional tasks.

More generally, to see whether a kernel model can, in principle, generalize on a task with more than
two input components, we must 1) identify the conjunctions seen during training, Conj(z|Z train),
for each z ∈ Z test, and 2) determine whether the target can be written as a conjunction-wise sum.
For example, for context dependence, for all new test inputs, we have seen the context-feature
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conjunctions 12 and 13, but not the feature-feature conjunction 23. As a result, model behavior on a
test trial x representing the components zco, zf1, zf2 can be written as f(x) = f1(zco) + f2(zf1) +
f3(zf2) + f12(zco, zf1) + f13(zco, zf2). Importantly, this conjunction-wise additive function can
encode context dependence: f12(zco, zf1) can encode the target when the context zco indicates the
zf1 as relevant and is zero otherwise; f13(zco, zf2) works in the opposite way. Thus, the model can,
in principle, identify a set of weights that would allow it to generalize correctly.

This example illustrates that conjunction-wise additivity tells us both whether kernel models with
compositionally structured representations can solve a certain task, and also how they solve it.
As we noted, these insights immediately transfer to any model with compositionally structured
representations that is trained or fine-tuned in the kernel regime. Because our theory determines the
compositional computations emerging from dataset statistics, it is also likely to shed light on other
learning models, including feature-learning deep neural networks (see Section 6).

Lastly, our theory tells us how to make a task non-additive: in Appendix E.2.3, we describe such a
modification to context dependence that tests generalization to novel context-feature conjunctions.
By helping us design hard benchmark tasks that are not solvable by kernel models, our framework
grounds research into learning mechanisms that can implement other compositional computations.

In this section, we considered compositionally structured inputs. This is an idealization of practically
relevant scenarios, where inputs will usually not be perfectly compositionally structured (even
when these inputs are extracted from pretrained models). Our theory does not directly apply to
these non-perfect cases. However, our results imply that even in the best-case scenario of perfectly
compositionally structured inputs (e.g. a simple multi-hot input), compositional generalization in
linear readout models faces fundamental restrictions. To further examine how these insights may
translate to non-compositionally structured representations, we theoretically prove that the same
limitation applies to randomly sampled representations that are only compositionally structured
in expectation (Proposition A.2). We also empirically investigate compositional generalization in
disentangled representation learning models trained on the DSprites dataset (Locatello et al., 2019),
finding that, when averaged across randomly sampled task instances, these models are also limited to
conjunction-wise additive computations (Appendix C). This indicates that the generalization class we
have highlighted in this section may be relevant beyond our theoretical setting.

5 REPRESENTATIONAL GEOMETRY STILL IMPACTS GENERALIZATION ON
CONJUNCTION-WISE ADDITIVE TASKS IN KERNEL MODELS

Conjunction-wise additivity only determines whether kernel models can, in principle, solve a certain
task. However, model generalization also depends on whether the model identifies the correct
conjunction-wise function. This depends on the model’s representational geometry and the dataset
statistics. As noted in Section 2, the behavior of kernel models depends on their representation
ϕ(x) only through the induced kernel Kϕ(x, x

′). In this section, we first investigate how different
choices in network architecture influence its induced kernel (Section 5.1). Then, we characterize task
performance on symbolic addition and context dependence across the full range of compositionally
structured representations (Section 5.2).

5.1 OVERLAP SALIENCE CHARACTERIZES COMPOSITIONAL REPRESENTATIONAL GEOMETRY

To characterize compositionally structured representations in this space, we introduce a new metric:
representational salience. We formally define this metric in Appendix B.1. Intuitively, for k =
1, . . . , C, the salience S(k;C) measures the unique contribution of the subpopulation representing a
conjunction of c components. Further, S(k;C) is normalized so that all saliences sum up to one. For
example, the multi-hot input only encodes single components and therefore S(1;C) = 1/C and, for
all k > 1, S(k;C) = 0. Note that the model can only use conjunctions whose salience is nonzero,
e.g. the multi-hot input is constrained to a component-wise sum.

S(c;C) is computed from the representational similarities K(z, z′). It is useful because unlike
those similarities, it makes immediately apparent how strongly different conjunctions are encoded
(Appendix B.2). Further, it reduces the set of C + 1 similarities characterizing the space of composi-
tionally structured representations to C − 1 free parameters: It removes the overall magnitude of the
representation (by normalizing) and the baseline activity (by excluding the similarity between inputs
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with no overlap). This choice reflects the fact that both of these parameters often have negligible
impact on model behavior (Appendix B.3).
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Figure 2: Representational salience (for three input
components) in a random weight neural network
with variable numbers of layers and nonlinearities.

We now analyze how S(c;C) evolves over dif-
ferent layers of a random network, using an in-
put with three components as an example (Fig. 2;
see Appendix B.4 for other values of C). At
the input stage, only individual components are
represented and so S(2; 3) and S(3; 3) are zero.
As the network gets deeper, these saliences in-
crease, whereas S(1; 3) decreases. In particular,
because S(3; 3) > 0 for all of these networks,
the resulting representations can learn arbitrary
training data (using the full conjunction). Even-
tually, the salience of the intermediate conjunc-
tion S(2; 3) decreases again, whereas S(3; 3)
continues to increase. Indeed, for ReLU net-
works, we prove the following statement:

Proposition 5.1. For a random neural network with a (leaky) ReLU nonlinearity, as L → ∞,
S(k;C) → 0 for k < C and S(C;C) → 1.

We prove the proposition in Appendix B.5. It implies that very deep networks only encode the full
conjunction. As a result, models effectively implement a look-up table, memorizing the training
data without generalizing to novel combinations of components. Indeed, we will see below that
the increasingly salient representation of the full conjunction will present significant challenges to
compositional generalization long before it fully dominates this representation.

5.2 KERNEL MODELS SUFFER FROM MEMORIZATION LEAK AND SHORTCUT BIAS

While there are many readout weights that can lead to minimal error, kernel models trained with
gradient descent or ridge regression learn the weights with minimal ℓ2-norm (see Section 2). We now
characterize how this inductive bias influences compositional generalization. To characterize the full
range of compositionally structured representations, we compute the behavior of the model directly
using the kernel (see Appendix D). Importantly, our analysis clarifies the behavior of all random
weight neural networks, including those covered in the previous section.

Symbolic addition suffers from a memorization leak. We first consider an example case (S(1; 2) =
0.4,W = {0}). We find that though the model perfectly learns the training cases, it underestimates
the test cases by a proportional factor (Fig. 3a). To understand why, we consider the model’s functional
form on the training cases: f(x) = f1(z1) + f2(z2) + f12(z) (see Section 4). Intuitively, ℓ2-norm
minimization tends to yield distributed weights. As a result, unless the salience of the conjunction
S(2; 2) is zero, the kernel model will associate some non-zero weight with it (i.e. f12(z1, z2) ̸= 0).
This, in turn, necessarily distorts the generalization on the test set, f(x) = f1(z1) + f2(z2).

We call this tendency to use the full conjunction (and its effect on generalization) “memorization
leak.” To characterize it more systematically (and add mathematical rigor to the intuition above), we
analytically characterize model behavior on a general family of symbolic addition tasks:

Proposition 5.2. Consider inputs z1, z2 ∈ {[v]}v∈V ,V ⊂ R, with associated values v. We assume
that the training set contains all pairs such that at least one component is zc ∈ {[w]}w∈W ,W ⊂ V
and that the average value in both V and W is zero. Then, model behavior on the test set is given by

f([v1], [v2]) = m(v1 + v2), m := p·S(1;2)
1+(p−2)S(1;2) , p := |W| (4)

We prove the proposition in Appendix E.1. It implies that for this entire task family, model gener-
alization is distorted by a proportional factor m (see Fig. 3b). The formula implies that m < 1 as
long as S(1; 2) < 1

2 (i.e. as long as S(2; 2) > 0). Further, m is smaller for lower S(1; 2) and smaller
training set size p. (Note that W corresponds to the rows/columns making up the example training
sets in Fig. 1b.) Interestingly, these are the only two factors that influence m. In particular, while
interpolation is often seen as easier than extrapolation, this does not impact model behavior here.
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Figure 3: Kernel models’ behavior on (a,b) symbolic addition and (c,d) context dependence. a, Model
predictions on training and test set plotted against ground truth for an example case (S(1; 2) = 0.4,
W = {0}). b, The slope of the test set as a function of S(1; 2) and the training set size p = |W|.
c, Generalization on context dependence as a function of representational salience. Trajectories of
networks with different nonlinearities are highlighted (color scale see Fig. 2). d, Coefficients of the
different conjunction types for two example networks with three layers and different nonlinearities.

More broadly, the memorization leak is a ubiquitous issue for statistical learning models trained on
compositional tasks: ℓ2-norm minimization tends to yield distributed weights and so if the conjunctive
population is represented, the model will generally end up partially relying on this conjunction. As
shown above, this necessarily distorts generalization. This issue also arises in tasks that involve
directly decoding specific components, a popular task for evaluating disentangled representations
(Locatello et al., 2019; Schott et al., 2022) (see also Appendix E.3 for a minimal example).

Context dependence suffers from a shortcut bias. Next, we empirically analyzed model gener-
alization on context dependence across different representational geometries and training sets. We
found that on a given task, each model either generalizes with 100% or 0% accuracy. For CD-3
(the task version leaving out the largest subset of feature combinations), the model only generalizes
when S(2; 3) is high relative to S(1; 3) (Fig. 3c, dark green area). As a result, whether the network
generalizes is highly sensitive to the nonlinearity and depth of the network. In contrast, for CD-2 and
CD-1, a much wider range of representational geometries generalizes successfully.

To understand this phenomenon, we determined the total magnitude of model weights associated with
the different conjunctions (Fig. 3d). We found that unsuccessful models (e.g. blue color in Fig. 3d)
had much larger magnitudes associated with the context component and the full conjunction. Notably,
on CD-3, context is highly correlated with the target and can predict 2/3 of the training data. Models
with high S(1; 3) (context) and S(3; 3) (full conjunction) exploit the context shortcut and use the
full conjunction to learn the remaining training data. This strategy explains why these models fail to
generalize to the test set. For CD-2, context is much less predictive on the training data (accuracy of
9
16 ). This explains why only very low S(2; 3) yields failure to generalize on CD-2 or CD-1.

Our analysis shows how model and task structure interact to either give rise to a generalizable rule or
a statistical shortcut (see Appendix E.3 for a minimal example). This highlights that for compositional
tasks with strong spurious correlations, model behavior will be highly sensitive to architectural details
affecting the representational geometry such as depth and nonlinearity. Indeed, this sensitivity to
minor experimental details could explain why the literature has been so divided on the usefulness of
disentangled representations.

6 OUR THEORY CAN DESCRIBE THE BEHAVIOR OF DEEP NETWORKS ON
CONJUNCTION-WISE ADDITIVE TASKS

So far, our analyses have been limited to simple kernel models, for their analytical tractability. We
next test whether the insights developed from these simple models extend to a broader class of
models: large-scale neural networks. We considered symbolic addition and context dependence
on inputs created by concatenations of images from MNIST (Lecun et al., 1998) or CIFAR-10
(Krizhevsky et al., 2009) (see Appendix D). Each component corresponds to random samples from a
particular category rather than the one-hot input considered so far and we study both in-distribution
and compositional generalization. Notably, different image categories are not necessarily equally
correlated with each other. To control for this, we randomly permuted the assignment of categories
to components for each (n = 10) experiment. We considered several relevant vision architectures,
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Figure 4: Testing our theory in deep networks trained on MNIST and CIFAR versions of compositional
tasks. Ranges indicate mean ± one std. error (often too small to be visible). a, S(1; 2) in an
intermediate ConvNet layer for different distances between digits. Lower distance yields a more
conjunctive representation. b, Average model prediction for each combination of components plotted
against the ground truth (MNIST, distance of zero, W = {0}). Generalization on the compositional
split is distorted by a proportional factor. c, d, Slope of this linear relationship across all datasets as a
function of c, distance (each line corresponding to a particular W) and d, training set (for a distance
of zero). For MSE instead of slope, see Fig. 12. e, Accuracy on all variants of context dependence.

which we all trained with backpropagation: convolutional networks (ConvNets, LeCun et al., 1989)
(trained on MNIST) and residual networks (ResNets, He et al., 2016) and Vision Transformers (ViTs,
Dosovitskiy et al., 2020) (trained on CIFAR-10).

Spatial distance of components impact salience in internal representations. First, we examined
how changes in the input structure impact the networks’ representational geometry. We hypothesized
that the ConvNets’ local weight structure should produce a more conjunctive representation for digits
that are closer together. To test this, we determined S(1; 2) in an intermediate layer of the network,
averaging over different instances of all digits. We found that S(1; 2) was indeed smaller for lower
distances (Fig. 4a), indicating a more conjunctive population. This suggests that varying the distance
between two digits provides a practical way of manipulating S(1; 2); below we use this insight to test
predictions about how conjunctivity influences generalization behavior.

Deep networks implement a conjunction-wise additive computation. Conjunction-wise additivity
imposes a substantial computational restriction: on test set inputs, models can only add up values
assigned to each conjunction of components seen during training. We therefore investigated whether
the deep networks’ computations could be captured in these terms. Remarkably, we found that
such a model was highly predictive of the model responses (see Appendix D.2). This indicates that
large-scale neural networks tend to implement conjunction-wise additive computations — at least
when trained on conjunction-wise additive tasks. Our theory suggests that they do so because the
statistical structure of the dataset makes such a computation natural.

Deep networks are impacted by a memorization leak on symbolic addition. Having found that
our theory captures the networks’ general computational structure, we investigated whether it was
also able to explain their specific performance. We first considered symbolic addition, training
the ConvNets on seven different training sets with 20,000 samples and the ResNets and ViTs on
three training sets with 40,000 samples. We varied both the size of the training set and whether
generalization required interpolation or also extrapolation (Appendix E.1.3).

We tested three theoretical predictions made by Proposition 5.2. First, our theory predicts that the
model’s test set response should be distorted by a proportional factor. To test this, we plotted the
average model prediction for each combination of categories against the ground truth. We found
that model predictions were indeed compressed relative to the ground truth, but still exhibited a
strong linear relationship (Fig. 4b). This was also the case for ResNets and ViTs, which exhibited a
slightly noisier linear relationship (Fig. 11). The memorization leak therefore affects generalization
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in large-scale networks as well. This is especially significant as our theoretical argument suggests
that memorization leaks likely arise for a broad range of compositional tasks.

We then estimated the slope of this linear dependency for each dataset. Our theory predicts that the
compositional generalization slope should increase with increasing S(1; 2) (i.e. increasing distance
between components, Fig. 4a). On ConvNets, we found that higher distance indeed increases the
slope (Fig. 4c). This was not due to an increase in task difficulty, as in-distribution generalization is
not systematically affected by distance. On ResNets and ViTs, higher distance also yielded a higher
slope on the compositional generalization set (though the effect was much subtler for ViTs). (Notably,
these networks did not perfectly predict the training split, which may affect the results.)

Finally, our theory predicts that larger training sets should increase the compositional generalization
slope. Our experiments confirmed this prediction (Fig. 4d). Further, whether the training set required
interpolation or also extrapolation did not systematically affect the resulting slope, as predicted by
our theory (though interestingly, it did affect in-distribution generalization). However, there was one
exception to this: for p = 4, the extrapolation dataset had a smaller slope than the interpolation data
set. Our theory can therefore explain much but not all of the deep network behavior.

Deep networks are impacted by a shortcut bias on context dependence. Lastly, we trained
the ConvNets on an MNIST version of context dependence using 30,000 training samples and the
ResNets and ViTs on a CIFAR-10 version of the task using 40,000 training samples. Again, their
behavior was aligned with the kernel theory’s predictions, having better-than-chance accuracy on
CD-1 and CD-2, but having worse-than-chance accuracy on CD-3 (Fig. 4e). This confirms that the
deep networks also suffered from a context-driven shortcut on CD-3.

7 DISCUSSION

Humans often generalize to new situations by stitching together concepts and knowledge from
prior experience in new ways. Despite the broad importance of this ability (both for cognitive
science and machine learning), a general theory of when and how neural networks accomplish
compositional generalization has remained elusive. Here we have taken a step towards formalizing
this relationship by characterizing kernel models with compositionally structured representations,
a framework that captures neural network training in the kernel regime and more broadly lets us
understand the impact of representational geometry on generalization. We found that they implement
a specific compositional computation (“conjunction-wise additivity”). We then investigated how
dataset statistics and representational geometry impact successful generalization, highlighting two
failure modes arising from the inductive bias of gradient descent (memorization leak and shortcut
bias). Finally, we validated our theory in deep neural networks trained on natural image data.

Our results show how simple statistical models can implement (or at least approximate) abstract
rules like context dependence. However, they also highlight that building in compositional structure
by itself is often insufficient for compositional generalization. Indeed, contextual generalization
is highly sensitive to the specific representational geometry and training data. This may explain
why investigations into compositional generalization and the benefits of disentangled representation
have yielded such inconsistent results. Overall, our insights highlight the utility of kernel models in
systematically investigating model generalization (or at least generating an initial hypothesis as to the
important factors). We here used these models to characterize deep neural networks, but they could
be equally useful for better understanding human compositional generalization.

While our work covers a broad range of different tasks, a number of limitations remain. We
demonstrate that our theory captures many qualitative phenomena in deep neural networks, but do not
provide any quantitative bounds. Further, though out of scope here, it would be interesting to test this
theory in extremely large-scale models, e.g. large language models. Future work should also consider
inputs and outputs with broader ranges of formats (e.g. sequences with variable length) as well as
representations that are not compositionally structured. Most importantly, our theory is limited to a
particular learning mechanism (fixed features with linear readout); other learning mechanisms could
either implement a conjunction-wise additive model that overcomes the failure modes highlighted
here or implement novel compositional computations beyond conjunction-wise additivity (we give an
initial example of this in Appendix F). By clarifying the general relationship between dataset statistics
and compositional generalization, our theory provides an important foundation for such advances.
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Figure 5: Schematic overview of our findings in Section 4. a, We consider compositional datasets
consisting of different categorical components, in this example dark vs. light shading, shape, and
color. b, We assume compositionally structured representations for which trials with the same number
of overlaps have identical similarities. c, We find that a random weights neural network conserves
compositional structure, i.e. if its input is compositionally structured then so is its output. d, We
find that under this condition, linear readout models trained with gradient descent are constrained to
implementing a conjunction-wise additive computation. This means that they add up values for each
conjunction they have seen during training. In our example, for instance, they have previously seen
inputs with l1 = 1 and l2 = 1, but they have not seen inputs with l1 = 1 and l3 = 1.

A MATHEMATICAL ANALYSIS

A.1 GENERALIZED COMPOSITIONALLY STRUCTURED REPRESENTATIONS

In the main text, we considered “compositionally structured” representations. This is the class
of representations ϕ(z) whose kernel Kϕ(z, z

′) = ϕ(z)Tϕ(z′) only depends on the number of
components z and z′ have in common. Here we define a slightly more general class of representations
whose kernel depends on the identity of the components they have in common, i.e.

O(z, z′) := {c = 1, . . . , C|zc = z′c}. (5)

Thus, pairs of representations overlapping in the first component may have a different similarity
than pairs of representations overlapping in the second component, but any pair of representations
overlapping in the first component still need to have the same similarity. This case captures, for
example, cases where one feature is more salient than another and therefore influences the representa-
tional similarity more strongly, or where conjunctions between certain components are more saliently
represented than conjunctions between other components. For example, perhaps our input consists of
two objects with different shapes and colors. In that case, we may wish to represent the conjunction
between shape and color of the first object more strongly than the conjunction between the shape of
the first object and the color of the second.

Note that we consider the constrained definition of compositionally structured representations in the
main text purely for didactical purposes. In particular, our observations in Appendices A.3 and A.4
extend to all generalized compositionally structured representations.

A.2 WHY ARE WE CONSIDERING COMPOSITIONALLY STRUCTURED REPRESENTATIONS?

So far, we have motivated the concept of compositionally structured representations in terms of
the fact that disentangled representations as well as many nonlinear transforms of disentangled
representations are compositionally structured. Here we discuss a more conceptual motivation for
them: compositionally structured representations guarantee that the only basis for generalization is
the compositional nature of the data. This is because we ensure that the model has no knowledge
about certain components that may be more similar to each other. Otherwise, the component-wise
similarity could serve as a basis for generalization. For example, in transitive equivalence (Fig. 1d), if
items that are in the same equivalence class are represented as more similar to each other, that would
serve as a basis for generalization on the task that is not compositional in nature. For this reason, we
are particularly interested in compositionally structured representations, as they ensure that kernel
models are only able to generalize compositionally.
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Characterizing compositional generalization in non-compositionally structured representations re-
quires us to meaningfully distinguish between compositional and non-compositional aspects of
their generalization. We present an example of such an analysis in Appendix A.5, proving that if
the non-compositional representational components are random, the models still generalize in a
conjunction-wise additive manner in expectation.

A.3 NONLINEAR TRANSFORMATIONS AND COMPOSITIONAL STRUCTURE

A broad range of transforms ϕ induces a kernel Kϕ(z, z
′) = ϕ(z)Tϕ(z′) that only depends on

the input similarity K(z, z′) = zT z′. In particular (as noted in the main text), this condition is
satisfied by the hidden layers and neural tangent kernel of randomly initialized neural networks (in
the infinite-width limit) (Han et al., 2022):
Definition A.1. Given an input z ∈ Rd, a network depth L ≥ 2, and a set of widths H1, . . . ,HL ∈ N,
we define a neural network by recursively defining the operation ϕ(l) of the lth layer as

a(0) := z, a(l) := ϕ(l)(a(l−1)) := σ
(

1√
Hl

(
W (l)a(l−1) + b(l)

))
, W (l) ∈ RHl×Hl−1 (6)

where W (l) and b(l) are i.i.d. sampled from a random distribution and σ : R → R is a nonlinearity.
The complete transform is then given by ϕ := ϕ(L) ◦ · · · ◦ ϕ(1).

The infinite-width limit is characterized by H1, . . . ,HL−1 → ∞ (the order of these limits does not
matter). This setup includes, in particular, the random feature model investigated by Abbe et al.
(2023).

Further, the condition is met by most commonly used kernel functions including any radial basis
function that depends on the Euclidean ℓ2-norm (e.g. the Gaussian kernel). Any nonlinear transform
that meets this condition also conserves compositional structure, i.e. if z is compositionally structured
then so is ϕ(z). This allows us to derive computational restrictions on this broad range of models.

A.4 PROOF OF THEOREM 4.2

Theorem 4.2. For any kernel model f with a compositionally structured representation, we can
find conjunction-wise functions fJ :

∏
c∈J Zc → R, where J ⊆ {1, . . . , C}, such that for any input

x ∈ Rd representing components z ∈ Z, the model response is given by

f(x) =
∑

J∈Conj(z|Z train) fJ(zJ), zJ := (zc)c∈J . (3)

Proof. Because the kernel K is compositionally structured, its similarity K(z, z′) only depends on
the overlap O(z, z′) ⊆ {1, . . . , C} (see definition in Eq. (5)). We denote the similarity for inputs
overlapping in S ⊆ {1, . . . , C} by κS and define set of training items overlapping with z ∈ Z test in
S as

Z train(z, J) :=
{
ztr ∈ Z train|∀c∈Jzc = ztr

c

}
. (7)

The key idea is to decompose Z train into these different overlaps in order to separate the sum into its
components. However, by our definition, the datasets Z train(z, J) are not disjoint. Indeed, S ⊆ S′

implies Z train(z, J) ⊆ Z train(z, J ′) and in particular Z train(z, ∅) = Z train. To adjust for this, we define
δJ as the similarity added by κS to the similarity between conjunctions with one component fewer,
recursively defining

δ∅ = κ∅, δJ = κJ −
∑
J′⊊J

δJ′ . (8)

We then decompose

f(z) =
∑

ztr∈Z train

aztrK(z, ztr) =
∑

J⊆{1,...,C}

δS
∑

ztr∈Z train(z,J)

aztr . (9)

This equality obtains because for each z ∈ Z, ztr ∈ Z train,∑
J:ztr∈Z train(z,J)

δJ = δO(z,ztr) +
∑

J′⊊O(z,ztr)

δJ′ = κO(z,ztr) = K(z, ztr), (10)
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which is true by definition. We note that for J /∈ Conj(z|Z train), Z train(z, J) = ∅. Defining

fJ(z) := δJ
∑

ztr∈Z train(z,J)

aztr , (11)

proves the proposition.

A.5 NON-COMPOSITIONALLY STRUCTURED REPRESENTATIONS

So far, we have considered representations that are compositionally structured. In practice, however,
representations will almost never be exactly compositionally structured. Even when there is no
specific similarity structure within components, there will be random noise in the representations.
Here we characterize one such scenario, demonstrating that in expectation, these representations still
yield conjunction-wise additive computations.
Proposition A.2. Consider an input with C components. We consider a representation that represents
each component and conjunction of components zJ , J ⊆ {1, . . . , C} by a random vector xJ [zJ ] ∈
Rd, xJ ∼ N (0, σ2

k), σ
2
k > 0, where k = |J |. The representation itself is given by the sum of

all these vectors: x =
∑

J⊆{1,...,C} xJ [zJ ]. All xJ [zJ ] are sampled independently from each
other. This means that the similarity between different components as well as the entanglement
of different components varies randomly. As a result, the kernel regression estimator f(z) is not
conjunction-wise additive. However, its expectation, E[f(z)], is conjunction-wise additive, indicating
that all deviations from conjunction-wise additivity arise from random noise and cannot be used for
systematic generalization.

Proof. We consider the training representation X = (x[zJ ])z∈Ltrain , X ∈ RNtrain×d and the test
representation X̃ = (x[zJ ])z∈Ltest , X̃ ∈ RNtest×d. This gives rise to the training kernel K = XXT

and the train-test kernel, K̃ = X̃XT . The dual coefficients are given by a = K−1y. We now
consider a test set input x̃ = x̃[z̃] representing the underlying components z̃. Denoting the similarity
to the training set by k(x̃, X) = Xx̃ ∈ RNtrain , the test set behavior is given by

f(x̃) = aT k(x̃, X) =
∑

J∈Conj(z̃|Z train)

aTXxJ [zJ ] +
∑

J /∈Conj(z̃|Z train)

aTXxJ [zJ ] =: f1(x̃) + f2(x̃),

(12)
where we’ve simply split up the sum into the conjunction-wise additive part and the remainder.
Clearly, this remainder, f2(x̃) :=

∑
J /∈Conj(z̃|Z train) a

TXxJ [zJ ], will generally not be zero. However,
we will now prove that E[f2(x̃)] = 0. As f1(x̃) is conjunction-wise additive, this will prove the
proposition. To do so, we note that we can assume that we have first sampled all Gaussian vectors
relevant for the training set (we will denote this set of random variables by X train) and subsequently
sample the set of Gaussian vectors only relevant for the test trial, i.e. (x̃J)J /∈Conj(z̃|Z train) (we will
denote this set of random variables by X test). Then,

E[f2(x̃)] = EX train

[
EX test

[
f2(x̃)|X train]] = ∑

J /∈Conj(z̃|Z train)

EX train

[
aTXEZ test

[
xJ [z̃J ]|Z train]] . (13)

This is zero, as EX test [xJ [zJ ]] = EX test

[
xJ [zJ ]|X train

]
= 0, which follows from the fact that xJ [zJ ]

for J /∈ Conj(z̃|Z train) is sampled independently from X train.

To test our theory empirically, we sample a range of Gaussian representations and train them on
symbolic addition, transitive equivalence, and context dependence. For symbolic addition and
transitive equivalence, we consider representations with expected S(1; 2) ∈ [0.1, 1] using ten equally
spaced values (i.e. 0.1, 0.2, . . . ). For context dependence, we consider two types of representation:
rep. 1, where σ1 = 1, σ2 = 0.5, σ3 = 0.1, (i.e. single components are most saliently represented),
and rep. 2, where σ1 = 0.5, σ2 = 1, σ3 = 0.1 (i.e. conjunctions of two components are most
saliently represented). We consider representations with d = 100 and sample 100 instances of each
representations. We then fit each representation to these three tasks.

We first estimate these models’ additivity on symbolic addition and context dependence. We find that
while many model instance are highly additive, some can be highly non-additive (Fig. 6a). However,
when averaging across the model behavior 100 randomly sampled representations, this average
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Figure 6: Analysis of randomly sampled representations as considered in Proposition A.2. In all
cases we sample 100-dimensional representations. For addition, we consider representations with
weights that explore S(1; 2) ∈ [0.1, 1] and for context dependence, we consider representations
where (σ1, σ2, σ3) ∈ {(0.5, 1, 0.1), (1, 0.5, 0.1)}, where σk indicates the standard deviation of the
Gaussian vector representing conjunctions of k components. a, We compare the additivity of
individual models to the additivity of the model behavior averaged across 100 randomly sampled
representations. While individual models may be severely non-additive, their average behavior is
consistently highly additive, empirically confirming our proposition. b, As a result, when these
models are trained on transitive equivalence, they also systematically exhibit chance performance,
as they are still, on average, constrained to be conjunction-wise additive. c, We then estimated the
slope of the model trained on symbolic addition for each random instance of a representation against
corresponding representation’s S(1; 2). The individual slope estimates are depicted by the small
translucent dots, whereas the average across all random instances is depicted by the larger points.
Finally, our theoretical predictions in the exactly compositionally structured case are depicted by the
lines. The average model behaviors are well described by our theory. d, We plot the distribution of
generalization accuracies on context dependence across different model seeds, the two considered
representations, and for CD-3 and CD-2. On CD-3, the representation with a higher salience for
individual components (rep. 1, (σ1, σ2, σ3) = (0.5, 1, 0.1) performs systematically below chance,
whereas the representation with a higher salience for conjunctions of two components (rep. 2,
(σ1, σ2, σ3) = (1, 0.5, 0.1)) generalizes above chance. In contrast, on CD-2, both representation
exhibit better-than-chance-accuracy.
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behavior is perfectly described by a conjunction-wise additive function. This empirically confirms
our proposition.

Our proposition implies that these non-compositionally structured representations can still only
systematically generalize on conjunction-wise additive tasks. To confirm this insight, we plotted the
distribution of accuracies on the transitive equivalence problem across all random model instances.
We found that while the models consistently learned the training set, they were indeed unable to
generalize to the test set (Fig. 6b).

Finally, we investigated whether our analysis in Section 5 predicted the behavior of randomly sampled
representations. Importantly, we have no theoretical guarantees for this scenario. Interestingly,
however, the model behaviors were still well predicted by our theory. Specifically, we estimated
the slopes that best described the compositional generalization behavior on symbolic addition for
different training sets (as in Fig. 4). We found that across different model instances, these slopes were
highly varied (Fig. 6c). However, the average slope across all random samples was well predicted by
our analytical theory.

Similarly, our theoretical insights on context dependence provided meaningful insight into the
generalization behavior of these randomly sampled models. Specifically, on CD-3, the model more
saliently representing the single components failed to generalize, whereas the model more saliently
representing conjunctions of two components generalized above chance. In contrast, on CD-2, both
models generalized above chance. This indicates that our insights on how prevalent shortcut biases
are for different training datasets extends to randomly sampled representations.

B REPRESENTATIONAL SALIENCE: A METRIC FOR COMPOSITIONALLY
STRUCTURED REPRESENTATIONS

B.1 DEFINITION

Below we formally define representational salience. To do so, we denote the similarity between
two trials z, z′ by Sim(O(z, z′)) := K(z, z′). Note that this is well-defined for compositionally
structured representations, as K(z, z′) is identical for all pairs of trials with the same O(z, z′). We
then define:
Definition B.1. For a generalized compositionally structured representation with kernel K and a
conjunction J ⊆ {1, . . . , C}, we recursively define

S(∅) := K(∅), S(J) := Sim(J)−
∑

J′⊊J S(J ′), S(J) = S(J)∑
∅̸=J⊆{1,...,C} S(J)

. (14)

When emphasizing the total number of components, we denote S(J ;C) = S(J). Further, for
compositionally structured representation, the similarity only depends on the total number of overlaps
|J |. We therefore write S(k;C) = S(J), where k := |J |.

To illustrate how salience would be computed in practice, we consider an example representation
X ∈ Rn×d. This representation gives rise to a kernel K = XXT ∈ Rn×n. We can also understand
the trial-by-trial similarity in terms of the components it is overlapping in — denoting the set of all
subsets of {1, . . . , C} by J , we denote this by O ∈ J n×n. In particular, Oii = {1, . . . , C}. For
example, if data points 1 and 2 overlap in the third component, O12 = {3}. Sim(J) is then defined as
the entries Kij where Oij = J . Note that in a compositionally structured representation, whenever
Oij = J , Kij takes on the same value, but more generally, we can define Sim(J) by taking the
average similarity. We can then define the unnormalized salience S by recursively computing it from
Sim(J) using Eq. (14). We then normalize the salience to get our final estimate.

B.2 WHY IS REPRESENTATIONAL SALIENCE A USEFUL METRIC?

Intuitively, the representational salience captures the unique contribution of a population representing
a particular conjunction J (as in our informal definition in the main text). As we noted in the main
text, distinguishing these unique contributions from the similarities directly would be more difficult.
For example, changes in the similarity between inputs having two components in common could arise
from changes in how saliently single components or conjunctions of two components are represented.
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Figure 7: Extended analysis of overlap salience in random neural networks. a, Salience of the
first component (1), the second component (2), and their conjunction (12), where we vary the two
components’ saliences in the input. b, Salience for inputs with four components.

To distinguish between these cases, we’d have to additionally look at the similarity between inputs
having a single component in common. Our definition of representational salience avoids this issue;
we therefore believe that this perspective could more broadly be useful for analyzing representations
of compositional data.

B.3 WHY DOES REPRESENTATIONAL SALIENCE LEAVE OUT MAGNITUDE AND BASELINE
ACTIVITY?

Notably, many learning models are largely invariant to a constant rescaling of their representation.
For limit behavior (e.g. in the limit of infinite training in gradient descent), this scale has no impact.
We see this, for instance, in Proposition 5.2, where the scaling turns out to be entirely irrelevant. For
regularized models, on the other hand, the scale of the representation is confounded with the strength
of the regularization and so we suggest that it is again best seen as separate from the representational
geometry.

The baseline activity, on the other hand, may determine how easily an intercept is learned. However,
many linear readout models (e.g. support vector machines) do not regularize their intercept, again
rendering this parameter entirely irrelevant. Notably, in the case of gradient descent, the magnitude
of the baseline activity does influence how easily an intercept is learned. However, the impact of this
is often negligible; for example, in Proposition 5.2, we again find that the baseline activity is entirely
irrelevant.

B.4 EXTENDED REPRESENTATIONAL ANALYSIS

We computed the saliences by iteratively computing the representational similarities using the kernels
derived in prior work (Cho & Saul, 2009; Tsuchida et al., 2018; 2019; Han et al., 2022). In Fig. 7b,
we plot the different saliences for an input with four components. Now the salience of overlap 2
and 3 both first increase and then decrease and, just like for inputs with three components (Fig. 2), a
Gaussian and rectified quadratic nonlinearity yields a particularly high salience for these intermediate
conjunctions. Notably, they appear to be trading off the salience of these conjunctions differently: the
rectified quadratic nonlinearity more strongly emphasizes overlaps of three whereas the Gaussian
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nonlinearity more strongly emphasizes overlaps of two. This highlights that for larger numbers of
components, the dependence of generalization behavior on specific architectural choices will likely
be even stronger.

Finally, we consider an example of a generalized compositionally structured representation. Here
we assume that the different input components have different magnitudes. In particular, we consider
a disentangled representation whose first component has a salience between s ∈ [0.1, 0.5] and
whose second component accordingly has a salience 1− s (Fig. 7a). As the random weight neural
network becomes deeper, the more salient component (in this case component 2) increasingly
dominates the representation. While the salience of the full conjunction still eventually converges
to one for most nonlinearities, it takes longer to do so for a less balanced input representation.
Further, for a Gaussian nonlinearity, an imbalanced representation actually decreases the limit
salience the representation appears to be converging to for the full conjunction. This highlights
that for disentangled representations that do not represent all components with equal magnitude,
compositional generalization behavior may vary strongly with different neural network architectures.

B.5 PROOF OF PROPOSITION 5.1

Proposition 5.1. For a random neural network with a (leaky) ReLU nonlinearity, as L → ∞,
S(k;C) → 0 for k < C and S(C;C) → 1.

Proof. Note that the proof is a minor extension of Lemma S1.3 in Lippl et al. (2024). We present it
here in a self-contained manner. We consider a nonlinearity

σ(u) := Amin(u, 0) + max(u, 0), A ∈ [0, 1). (15)

By prior work (Cho & Saul, 2009; Tsuchida et al., 2018; 2019; Han et al., 2022),

Ew

[
ϕ(wTh(l)(z))ϕ(wTh(l)(z′))

]
= σ2∥h(l)(z)∥2∥h(l)(z′)∥2k

(
ĥ(l)(z)T ĥ(l)(z′)

)
, (16)

where

k(u) =
(1−A)2

2π

(√
1− u2 + (π − cos−1(u))u

)
+Au, (17)

σ2 is the variance of the sampled weights, and ĥ = h/∥ĥ∥2.

This means that for any two inputs that have a certain similarity u, their similarity in the L-th layer is
given by k(L)(u), where k(L) denotes the L-times application of k. Let distinct trials in the input have
a similarity of κd and let identical trials have a similarity of κi. Any set of trials with overlapping
components will have a similarity κ, κd < κ < κi. We denote their corresponding similarity in the
L-th layer by κ

(L)
i , κ

(L)
d , κ(L). Our goal is now to show that

lim
L→∞

s(L) = 0, s(L) :=
κ(L) − κ

(L)
d

κ
(L)
i − κ

(L)
d

= 0. (18)

This implies directly that the salience of all partial conjunctions converges to zero, which in turn
implies that the salience of the full conjunction converges to one.

(16) implies that κ(L+1)
i = σ2κ

(L)
i k(1) = σ2κ

(L)
i

1+A2

2 . Notably, all inputs have the same magnitude

and therefore have the same magnitude through all layers; this is given by
√

κ
(L)
i . We can therefore

denote
κ(L+1) = σ2κ

(L)
i k

(
κ(L)/κ

(L)
i

)
. (19)

Thus,

s(L+1) =
k(κ(L)/κ

(L)
i )− k(κ

(L)
d /κ

(L)
i )

k(1)− k(κ
(L)
d /κ

(L)
i )

(20)

We thus define new normalized variables κ̂(L) := κ(L)/κ
(L)
i , κ̂

(L)
d := κ

(L)
d /κ

(L)
i , i.e.

s(L) =
κ̂(L) − κ̂

(L)
d

1− κ̂
(L)
d

, (21)
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and therefore
κ̂(L) = (1− κ̂

(L)
d )s(L) + κ̂

(L)
d . (22)

Note that κ̂(L+1) = k(κ̂(L))/k(1) and κ̂
(L+1)
d = k(κ̂

(L)
d )/k(1). We thus define

k̃(u) :=
k(u)

k(1)
= u+

ρ

π
(
√

1− u2 − cos−1(u)u), ρ :=
(1−A)2

(1 +A)2
. (23)

Note that

k̃′(u) = 1 +
ρ

π

(
− u√

1− u2
− cos−1(u) +

u√
1− u2

)
= 1− ρ

π
cos−1(u). (24)

Note that k(1) = 1 and as for all 0 ≤ u < 1, k̃′(u) < 1, this is the only fixed point and κ̂(L), κ̂
(L)
d →

∞. We can therefore define

s(L+1) =
k̃
(
(1− κ̂

(L)
d )s(L) + κ̂

(L)
d

)
− κ̂

(L)
d

1− κ
(L)
d

. (25)

We now determine the fixed mapping to this mapping assuming that κ̂(L)
d is fixed at some value d,

i.e.:

f(s, d) =
k̃((1− d)s+ d)− k̃(d)

1− k̃(d)
. (26)

s = 0 is a fixed point. Further,

∂f(s, d)

∂s
=

(1− d)k̃′((1− d)s+ d)

1− k̃(d)
=

(1− d)(1− ρ
π cos−1((1− d)s+ d)

1− d− ρ
π (

√
1− d2 − cos−1(d)d)

. (27)

We now prove that this for 0 < s ≤ 1
2 , this derivative is smaller than 1. Specifically,

(1− d)(1− ρ
π cos−1((1− d)s+ d) =

1− d− ρ
π (
√
1− d2 − cos−1(d)d) + ρ

π r(s, d),
(28)

where the residual is given by

r(s, d) := (d− 1) cos−1((1− d)s+ d) +
√
1− d2 − d cos−1 d. (29)

We now need to prove that r(s, d) < 0. Note that r(s, d) is monotonically increasing in s and
therefore

r(s, d) ≤ r( 12 , d) = (d− 1) cos−1( 12 + 1
2d) +

√
1− d2 − d cos−1 d < 0, (30)

where we infer the latter inequality by visual inspection of the plot of this function.

C DSPRITES REPRESENTATIONS

To investigate whether our theory can describe compositional generalization in practically used
disentangled models, we considered six different model architectures considered in Locatello et al.
(2019) and trained on the DSprites dataset, an important benchmark for disentangled representation
learning. This paper considers fifty random seeds for each model and further considers six different
possible hyperparameters per architectures, resulting in a total of 1,800 models. In our analysis, we
only analyze differences between architectures, pooling across all hyperparameter choices.

C.1 TASK SETUP

DSprites consists of small black-and-white shapes and has five different underlying components:
shape (three categories: hearts, ovals, and squares), size, x-position, y-position, and rotation. We
consistently consider the largest possible size and hold the rotation fixed at zero. While x- and
y-position can each take on 32 possible values, we only consider four different categories for each.
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Importantly, this is still a highly non-compositionally structured representation: not only do thes
disentangled representation learning methods often fail to discover the underlying factors of variation;
the model also likely represents x- and y-position that are closer to each other, as more similar,
violating our compositionally structured assumption. These representations therefore present a
particularly challenging test of our framework.

For symbolic addition and transitive equivalence, we consider x- and y-position as the two components.
For each task instance, we randomly determine which position takes on which component’s role.
In total, we consider 50 randomly sampled task instance for each of the 1,800 models. For context
dependence, we subsample two shapes and assume that these shapes provide the context cue. We then
consider x- and y-position as feature 1 and feature 2. While the context dependence considered in the
main text had six possible feature values for each feature, we now only consider four. As a result,
we only consider two different datasets: CD-2, which leaves out all trials where feature 1 indicates
category 2 and feature 2 indicates category 1; and CD-1 which only leaves out one conjunction of
features. Put differently, on a given trial, the task could for example look as follows: if we see a heart
shape, the model should output whether this object is in a certain x-position; if we see a square shape,
the model should output whether this object is in a certain y-position. While the model has seen all x-
and y-positions individually, it has not seen each combination of x- and y-positions.

Finally, we consider either a direct linear readout from the disentangled representation or an initial
transformation by a one-hidden-layer ReLU neural network with random weights.

C.2 THE MODELS ARE WELL DESCRIBED BY A CONJUNCTION-WISE ADDITIVE COMPUTATION

We first investigated whether the model predictions on the test set were well characterized by a
conjunction-wise additive computation (see Appendix D.2), averaging this model behavior across
the fifty random task instances. We found that they were generally well captured, though they were
certainly not perfectly conjunction-wise additive (Fig. 8a). Further, none of these models were able
to systematically generalize on transitive equivalence (Fig. 8b). This indicates that conjunction-wise
additivity may characterize the generalization class of these highly non-compositionally structured
representations as well — at least when averaged across task instances.

C.3 THE REPRESENTATIONS ARE PARTIALLY COMPOSITIONALLY STRUCTURED

We next investigated whether these representations exhibit compositional structure according to our
definition. To determine this, we computed their representational similarity matrix and computed
the average similarity for each set of overlaps. This instantiates the compositionally structured
representational similarity matrix that most closely described the empirical representational similarity.
We then determined the average squared deviation from this matrix, σ2

cs, comparing it to the overall
variance of this matrix, σ2

var. Overall, the variance ratio, σ2
cs/σ

2
var, characterizes the degree to which

the given representation is compositionally structured. In a fully non-compositionally structured
representation, the variance ratio will be roughly one, whereas in a fully compositionally structured
representation, it will be zero. For the disentangled representation learning models, we found that this
variance ratio took on value between 0.5 and 0.9 (Fig. 8c). Thus, the models’ representation partially
captured compositional structure, but also contained a lot of non-compositional structure.

C.4 THE NON-COMPOSITIONAL REPRESENTATIONAL STRUCTURE SUBSTANTIALLY IMPACTS
MODEL BEHAVIOR

Finally, we tested whether our representational geometry analysis in Section 5 extended to the DSprites
representations. We first estimated their salience S(1; 2) by computing the average representational
similarity for each overlap and then computing the salience using Eq. (14). Proposition 5.2 would
predict that the generalization error should decrease with increasing S(1; 2). However, we do not
observe such a trend (Fig. 8d). This indicates that our representationa geometry analysis does not
apply to the DSprites representations, due to the way in which they violate the compositional structure
assumption.

Finally, we determined generalization accuracy on CD-2 and CD-1. We found that most models
performed quite poorly, perhaps owing to the fact that shape is barely represented in these models.
Nevertheless, we found that most models performed systematically below chance for CD-2 but
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Figure 8: Conjunction-wise additivity in empirical disentangled models. a, Additivity across the
different model architectures and four different task settings. All of the model behaviors are gener-
ally highly additive. b, Distribution of accuracies on transitive equivalence when averaged across
different component roles. c, Variance ratio, capturing the ratio between the deviation between the
representational similarity matrix and its compositionally structured approximation and the general
variance of the representational similarity matrix. The numbers indicate that all disentangled models
discover some compositional structure in their representation, but still deviate substantially from
a compositionally structured representation. d, Generalization error on symbolic addition plotted
against the estimated S(1; 2). e, Average accuracy on two versions of context dependence with a
total of four features: CD-2 which now leaves out an entire orthant, and CD-1, which only leaves out
a single data point. Again, models generally perform below chance on CD-2 but above chance on
CD-1, though performance is generally really low.
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systematically above chance for CD-1. Our analysis of context dependence in compositionally
structured representations suggests that these may be because these models exploit a context-driven
shortcut on CD-2 but not CD-1.

Overall, our analysis therefore paints a nuanced picture of the applicability of our theory to practical
disentangled representations. Our findings suggest that these models may still be well approximated
by conjunction-wise additive computations and that this generalization class may therefore shed light
on fundamental limits to the generalization of linear readout models. At the same time, to understand
how these models generalize on conjunction-wise additive tasks, taking into account the specific
ways in which they violate the compositional structure assumption is likely important.

D DETAILED METHODS

D.1 MODELS

Kernel model. We fit the kernel models by hand-specifying the kernel and fitting either a support
vector regression or classification using scikit-learn (Pedregosa et al., 2011). Note that this is
equivalent to using a feature basis with the same resulting similarities. However, hand-specifying
these similarities enabled us to easily explore the full range of possible representations.

Rich and lazy ReLU networks. All networks were trained with Pytorch and Pytorch Lightning
Paszke et al. (2019). We consider ReLU networks with one hidden layer and H = 1000 units.
We initialize by σ

√
2/H , considering σ ∈ [10−6, 1]. In particular, when reporting results on rich

networks (without further specification), we assume σ = 10−6. When reporting results on lazy
network, we assume σ = 1.

Compositional MNIST/CIFAR-10. We create a compositional version of MNIST and CIFAR-10
by concatenating multiple images along different channels. For example, the input to the MNIST
version of the symbolic addition task had two channels, each containing one digit whereas the
CIFAR-10 version of the symbolic addition task had six channels, three for each digit. We further
varied the distance between the concatenated images either presenting them all on top of each other
or presenting them offset by a certain number of pixels. Each image category corresponded to a
certain component, where its role as ranodmly sampled for each task instance. The output was still
given by a single scalar: the total magnitude for symbolic addition and the two categories for context
dependence and transitive equivalence.

Convolutional neural networks. We considered networks with four convolutional layers (kernel
size is five, two layers have 32 filters, two have 64 filters) and two densely connected layers (with
512 and 1024 units). Each layer is followed by a ReLU nonlinearity, and the convolutional stage is
followed by a max pooling operation. All weights are initialized with He initialization (He et al.,
2015). We trained these networks with SGD using a learning rate of 10−4 and momentum of 0.9.

Residual neural networks. We trained a residual neural network with eight blocks in total, two
with 16, 32, 64, and 128 channels, respectively, using the Adam optimizer with a learning rate of
10−3 for 100 epochs.

Vision Transformers. Finally, we trained a Vision Transformer (ViT) with six attention heads, 256
dimensions for both the attention layer and the MLP, and a depth of four, using Adam with a learning
rate of 10−4 for 200 epochs.

Data augmentation. We did not use data augmentation for MNIST. For CIFAR-10, we used a
random flip and a random crop.

D.2 ADDITIVITY ANALYSIS

To analyze how well a conjunction-wise additive computation can describe network behavior, we
considered as the set of possible features a concatenation of one-hot vectors coding for each possible
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Figure 9: R2 of the conjunction-wise additive predictor on the test set as well as on both the training
and test set.

conjunction. We then removed all features that are constant at zero on the training dataset and used
linear regression to try and predict network behavior on both training and test set for all remaining
features. The resulting R2 defines the “additivity” of the network behavior (i.e. R2 = 1 indicates full
conjunction-wise additivity). Furthermore, we can use the inferred values assigned to these different
conjunctions to compare kernel models, feature-learning networks, and vision networks. Note that for
the vision networks, we first average the model predictions across all different images instantiating a
given compositional input.

Notably, our theory predicts that the constrained conjunction-wise additive function can predict
behavior on the test set, but not necessarily on the training set. To test this prediction in vision
network, we compared the additivity of the test set alone to the additivity of the entire dataset (Fig. 9).
First, we found that the predictivity on the test set was indeed generally very high. Second, we found
that it was substantially higher than on the training and test set taken together.

E COMPOSITIONAL TASK SPACE

E.1 SYMBOLIC ADDITION

E.1.1 PROOF OF PROPOSITION 5.2

Proposition 5.2. Consider inputs z1, z2 ∈ {[v]}v∈V ,V ⊂ R, with associated values v. We assume
that the training set contains all pairs such that at least one component is zc ∈ {[w]}w∈W ,W ⊂ V
and that the average value in both V and W is zero. Then, model behavior on the test set is given by

f([v1], [v2]) = m(v1 + v2), m := p·S(1;2)
1+(p−2)S(1;2) , p := |W| (4)

Proof. We split up the training data into

I(1) := {[w]|w ∈ W}2, (31)

and

I(2) :=
⋃

w∈W
I(1,w) ∪ I(2,w), (32)

I(1,w) := {([w], [v])|v ∈ V \W} , I(2,w) := {([v], [w])|v ∈ V \W} . (33)

We denote the dual coefficient associated with each training point ([i], [j]) by aij ∈ R. Note that the
problem is symmetric and therefore we know that aij = aji. We define a few summed coefficients:

bv :=
∑
w∈W

avw, bw :=
∑

v∈V\W

avw, cw :=
∑

w′∈W
aww′ , (34)

b :=
∑

v∈V\W

bv =
∑
w∈W

bw, c :=
∑
w∈W

cw. (35)
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Note that the sum over all dual coefficients is given by 2b+ c. Let p := |W| and q := |V| − |W|. We
denote by κc the similarity between inputs overlapping in c components. Then, setting δ2 := κ2 − κ0

and δ1 := κ1 − κ0, the set of dual equations is given by

([w], [w′]) ∈ I(1) : κ0(2b+ c) + δ1(bw + bw′ + cw + cw′) + (δ2 − 2δ1)aww′ = w + w′, (36)

([w], [v]) ∈ I(1,w) : κ0(2b+ c) + δ1(bv + bw + cw) + (δ2 − 2δ1)awv = w + v. (37)

(Note that the equation corresponding to ([v], [w]) is equivalent due to the problem’s symmetry.)

The prediction is given by

f([v1], [v2]) = κ0(2b+ c) + δ1(bv1 + bv2). (38)

We now sum (37) over w (setting w :=
∑

w∈W w):

w + pv = pκ0(2b+ c) + pδ1bv + δ1(b+ c) + (δ2 − 2δ1)bv

= ((p− 2)δ1 + δ2)bv + (2pκ0 + δ1)b+ (pκ0 + δ1)c
(39)

Thus,

δ1bv =
δ1p

(p− 2)δ1 + δ2
v + δ1(w − (2pκ0 + δ1)b− (pκ0 + δ1)c). (40)

Thus, setting

m :=
δ1p

(p− 2)δ1 + δ2
, d := 2δ1(w − (2pκ0 + δ1)b− (pκ0 + δ1)c) + κ0(2b+ c), (41)

we can write
f([v1], [v2]) = m(v1 + v2) + d. (42)

To simplify d, we sum (36) over all w,w′:

2pw = p2κ0(2b+ c) + 2pδ1(b+ c) + (δ2 − 2δ1)c

= 2p(pκ0 + δ1)b+ (p2κ0 + 2(p− 1)δ1 + δ2)c.
(43)

We further sum (39) over all v, setting v :=
∑

v∈V\W v:

((p+ q − 2)δ1 + δ2 + 2pqκ0)b+ q(pκ0 + δ1)c = qw + pv. (44)

We can now compute b and c from this system of equations and plug it into d.

Finally, w = v = 0 immediately implies that b = c = 0 and therefore d = 0.

E.1.2 BEHAVIOR OF DEEP RELU NETWORKS

Next, we examined the behavior of deep ReLU networks with varying depth (Fig. 10). On the
extrapolation task (W = {0}), these networks also had compressed model predictions on the
compositional split that were approximately linearly distorted (though for deeper networks, this
relationship seemed to have a slight S-shape). Intriguingly, these networks perfectly generalized
on the interpolation task (W = {−4, 4}). For W = {−2, 2}, they perfectly generalized on the
interpolation portion, but not the extrapolation portion.

E.1.3 BEHAVIOR OF VISION MODELS

We trained the Convnets on MNIST using seven different training sets W: {[0]}, {[−4], [4]},
{[−2], [2]}, {[−4], [0], [4]}, {[−1], [0], [1]}, {[−4], [−3], [3], [4]}, {[−2], [−1], [1], [2]}. This allowed
us to vary both the size of the training set and whether it involved only interpolation or also extrapo-
lation. We trained these networks for 100 epochs on 20,000 samples. We trained the ResNets and
ViTs on CIFAR-10 using the first three training sets listed above. We trained the ResNets for 100
epochs and the ViTs for 200 epochs, training all networks on 40,000 samples. Our findings on these
experiments are summarized in Section 6. Further, Fig. 11 depicts, for each training set, the average
prediction for each combination of components. We can see that the ConvNet predictions are highly
linearly correlated with the ground truth. The ResNet and ViT predictions are also linearly correlated,
but exhibit a slightly noisier relationship.
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Figure 10: Model prediction plotted against ground truth for different training sets and depths.
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Figure 11: Average prediction for each combination of components plotted against the ground
truth for a, ConvNets trained on MNIST, b, ResNets trained on CIFAR-10, and c, ViTs trained on
CIFAR-10.
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Figure 12: a, Mean squared error as a function of distance. b, Mean squared error as a function of
training set size p (different dots corresponding to interpolation versus extrapolation.
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Figure 13: a, S(1; 2) in the convolutional neural network’s neural tangent kernel, before and after
being trained on symbolic addition with W = {0}. b, The estimated slope for each model instance
plotted against S(1; 2). While increased S(1; 2) generally yields a larger slope (as predicted by
our theory), the relationship between S(1; 2) and the slope does not follow the exact quantitative
relationship predicted by our theory.

Additionally, we also plot the mean squared error of the networks on the different training sets
(Fig. 12). This provides a more conventional (but harder to interpret) measure of performance com-
pared to the slope depicted in Fig. 4. We again see that the mean squared error on the compositional
generalization set is decreasing with increasing distance (Fig. 12a). Further, it is decreasing with
increasing training set size (Fig. 12), though we note that the differences in the scales of the general-
ization set for different sets W renders it harder to directly to compare these values. In contrast, the
slopes described in the main text are more easily comparable.

Overall, our analysis indicates that our theory provides several valuable qualitative insights into the
behavior of deep neural network models. Importantly, however, we are not able to provide quantitative
bounds at the moment. To demonstrate this, we computed the salience S(1; 2) of the neural tangent
kernel of the convolutional neural networks before and after being trained on the MNIST version
of symbolic addition with W = {0} (Fig. 13a). Importantly, S(1; 2) changed substantially during
training, indicating that these networks are not trained in the kernel regime. As such, our theory does
not apply exactly. To see whether it provided appropriate quantitative bounds, we then estimated the
slope of each model instance on the compositional generalization dataset and plotted it against S(1; 2)
of the neural tangent kernel at the beginning of training. We found that higher S(1; 2) generally
resulted in a larger slope, as predicted by our theory. However, the relationship between S(1; 2) and
slope did not adhere exactly to the quantitative predictions made by our theory. This indicates that
while our theory can shed light on certain qualitative behaviors, it still leaves certain generalization
behaviors in deep neural networks unclear.

Finally, our analysis in Section 5.1 suggests that deeper models should yield more conjunctive repre-
sentations, and therefore exhibit worse generalization on symbolic addition. To test this prediction,
we varied the number of fully connected layers in the convolutional neural network and trained
these networks on the symbolic addition task with the training set W = {0}. We found that deeper
networks indeed generalized worse (Fig. 14).
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Figure 14: Mean squared error on the compositional generalization set for different depths of the
fully connected network at the end of the convolutional neural network architecture.

E.2 CONTEXT DEPENDENCE

E.2.1 GENERAL TASK DEFINITION

We consider inputs with three components, (zco, zf1, zf2). We assume that zco ∈ C1 ∪ C2, where C1

is the set of possible contexts under which zf1 is relevant and C2 is the set of possible contexts under
which zf2 is relevant. We further assume that there are decision functions d1(zf1), d2(zf2) ∈ R.
(For example, in the example in the main text, these function map three features to the first category
(i.e. y = −1) and three features to the second category (i.e. y = 1).) The target is then given by

y(zco, zf1, zf2) =

{
d1(zf1) if zco ∈ C1,

d2(zf2) if zco ∈ C2.
(45)

Note that in the main text, we consider C1 = {1}, C2 = {2}, and six possible values for zf1, zf2,
where the decision function maps three onto 1 and three onto −1.

E.2.2 NOVEL STIMULUS COMPOSITIONS ARE CONJUNCTION-WISE ADDITIVE

If the test set consists in novel combinations of stimuli, this is a conjunction-wise additive computation.
Namely, suppose that for all test inputs (zco, zf1, zf2), the two features have never been observed in
conjunction, but both (zco, zf1) and (zco, zf2) have been. (This includes the case considered in the
main text.) In this case, we can define functions f12 and f13 to implement the appropriate mapping:

f12(zco, zf1) :=

{
d1(zf1) if zco ∈ C1,

0 if zco ∈ C2,
f13(zco, zf2) :=

{
0 if zco ∈ C1,

d2(zf2) if zco ∈ C2,
(46)

f(zco, zf1, zf2) = f12(zco, zf1) + f13(zco, zf2). (47)

E.2.3 NOVEL RULE COMPOSITIONS ARE NOT CONJUNCTION-WISE ADDITIVE

We could also imagine an alternative generalization rule in a task where there are multiple components
indicating the same context: C1 = {co1, co2} and C2 = {co3, co4}. We then leave out certain
features with certain contexts. For example, suppose we had never seen two values for zf1 and
zf2 in conjunction with zco ∈ {co2, co4}. In principle, if the model understood that zco = co1, co2
(and zco = co3, co4 resp.) signify the same context (i.e. learned to abstract the context from the
context cue), it could generalize successfully as it had observed these features in conjunction with
zco = co1, co3. However, the conjunction-wise additive mapping depends on having observed each
context in conjunction with each feature and this task is therefore non-additive.

E.2.4 COEFFICIENT GROUPS

In Fig. 3d, we grouped the inferred coefficients into categories. We here explain these categories:

• Right conj.: This is the correct conjunction the model should use to solve the task, i.e.
between zco = co1 and zf1 and between zco = co2 and zf2.

• Wrong conj.: This is the incorrect conjunction between context and feature, i.e. between
zco = co1 and zf2 and between zco = co2 and zf1.

• Sensory feat.: This is any conjunction involving sensory features, i.e. zf1, zf2, (zf1, zf2).

• Context only: This is the component zco by itself.
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Figure 15: Inferred values for different conjunctive groups on context dependence.

• Memorization: This is the full conjunction of all three components (zco, zf1, zf2).

We then compute the average absolute magnitude within each of these groups in order to determine
their overall relevance to model behavior.

E.2.5 FEATURE-LEARNING RELU NETWORKS

We find that feature-learning ReLU networks generalize consistently on CD-1 and CD-2 but not
CD-3. They are also perfectly conjunction-wise additive and fail due to a context shortcut (Fig. 15).

E.2.6 VISION NETWORKS

We additionally analyzed ConvNets for different distances between the digits. We found that
convolutional neural networks trained on MNIST successfully generalized on CD-1 and CD-2, but
not CD-3 (Fig. 16). For smaller distances between digits, the models tended to generalize worse on
CD-1 and CD-2 and gradually reverted to chance accuracy (i.e. 0.5) for CD-3. Further, the networks
were generally highly additive (R2 > 0.95), but became worse for lower distance (Fig. 16b). Finally,
across all distances, they had a high magnitude associated with the context cue, though this magnitude
decreased for small distances — consistent with the accuracy of the network increasing from below
chance to chance level (Fig. 16c).

E.3 INVARIANCE AND PARTIAL EXPOSURE

We consider invariance and partial exposure as simple case studies for the memorization leak and
shortcut bias. In both cases, the input consists of two components and the mapping only depends
on the first (Fig. 17a). In the invariance case, we don’t see the second component vary at all, in the
partial exposure case, we see one instance of the second component. Note that the partial exposure
task has previously been studied in the context of network generalization (Dasgupta et al., 2022;
Chan et al., 2022).

To understand the impact of different representational saliences, we consider the generalization
margin m := yŷ on the test set, where y is the ground-truth label and ŷ is the model’s estimate.
Because we consider support vector machines, the margin on the training set is one; a smaller margin
on the test set indicates worse performance. We determined a mathematical formula for the margins
as a function of S(1; 2). Below we first describe its implications and then how we derived this.

Invariance suffers from a memorization leak. On invariance, we find that the model’s test
margin is expressed as m = S(1;2)

1−S(1;2) . This means that for a fully compositional representation
(S(1; 2) = 0.5), its training and test margins are both one. However, as S(1; 2) decreases, the model
increasingly memorizes the training set, resulting in a decreased margin (Fig. 17b).

Shortcut distortion. On the partial exposure task, if the model used item 1 to solve the task, it
would get two out of three training examples correct and could memorize the last data point. This is
a statistical shortcut and we find that norm minimization (just as for context dependence) ends up
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Figure 16: Performance of convolutional neural networks trained on an MNIST version of context
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Figure 17: a, Schema for invariance and partial exposure. b, Generalization margin for the two tasks.

partially relying on this strategy as this decreases the ℓ2-norm of the readout weights. As a result,
the test margin for the partial exposure task decreases even more strongly as a function of S(1; 2):
m = 2S(1;2)2

1−2S(1;2)2 (where we assume that the similarity between identical trials is one and the similarity
between distinct trials is zero) (Fig. 17b).

Derivations. We analytically compute the kernel models’ test set prediction on the invariance task.
The training set is given by {(−1,−1), (−1, 1)} and its kernel is therefore

K =

(
κ2 κ1

κ1 κ2

)
, (48)

where κ2 is the similarity between identical trials and κ1 is the similarity between overlapping trials.
Hence, the dual coefficients are given by

a = K−1

(
1
−1

)
=

1

κ2
2 − κ2

1

(
κ2 −κ1

−κ1 κ2

)(
1
−1

)
=

1

κ2
2 − κ2

1

(
κ2 + κ1

−(κ2 + κ1)

)
. (49)

The test set is given by {(1,−1), (1, 1)} and its kernel with respect to the training set is therefore

K̃ =

(
κ1 κ0

κ0 κ1

)
, (50)
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where κ0 is the similarity between distinct trials. Hence the test set predictions are given by

ŷ = K̃a =
1

κ2
2 − κ2

1

(
(κ2 + κ1)(κ1 − κ0)

−(κ2 + κ1)(κ1 − κ0).

)
(51)

As the ground truth labels are y = {1,−1}, the margin m = yŷ is identical for both test set points:

m =
(κ2 + κ1)(κ1 − κ0)

κ2
2 − κ2

1

=
κ1 − κ0

κ2 − κ1
=

(κ2 − κ0)S(1; 2)

(κ2 − κ0)− (κ1 − κ0)
=

S(1; 2)

1− S(1; 2)
. (52)

For partial exposure, the training set is given by {(−1,−1), (−1, 1), (1,−1)} and its kernel is
therefore

K =

(
κ2 κ1 κ1

κ1 κ2 κ0

κ1 κ0 κ2

)
. (53)

The test set is given by {(1, 1)} and the test set kernel is therefore

K̃ = (κ0 κ1 κ1) (54)

The margin is therefore given by

m = yŷ = −ŷ = −K̃K−1

(
1
−1
1

)
. (55)

We solve this equation for the special case where κ0 = 0 and κ1 = 1 using Mathematica and find that

m =
2S(1; 2)2

1− 2S(1; 2)2
. (56)

E.4 OTHER MATHEMATICAL OPERATIONS

We could consider mathematical operations other than addition as well, considering unobserved
assigned values v1(z1) and v2(z2) together with some composition function C(v1(z1), v2(z2)). This
task will only be additive if the composition function is additive (e.g. if it is subtraction). If it is, e.g.
multiplication, division, or exponentiation, the task will be non-additive.

E.5 LOGICAL OPERATIONS

In this task, inputs with two components are presented. Each component zc has an unobserved truth
value T (zc) associated with it and the target is some logical operation over these two truth values, for
example AND: T (z1) ∧ T (z2). After inferring the truth value of each component, the model could
generalize towards novel item combinations. As long as the logical operation is additive (e.g. AND,
OR, NEITHER, . . . ), this is an additive task. If the logical operation is non-additive (e.g. XOR),
this would be a non-additive task. Indeed, the XOR case is structurally equivalent to the transitive
equivalence task.

E.6 TRANSITIVE ORDERING

Transitive ordering is a popular task in cognitive science (often called transitive inference, McGonigle
& Chalmers (1977)). Here the subject is presented with two items z1, z2 drawn from an unobserved
hierarchy >. It should then categorize whether z1 > z2 or z2 > z1. Crucially, this task can be solved
by assigning a rank r(zc) to each item and computing the response as f(z) = r(z1)− r(z2) Lippl
et al. (2024). It is therefore additive, in contrast to transitive equivalence. This is also the case if we
assume that there are multiple such hierarchies (e.g. a1 > . . . , a5 and b1 > . . . , b5). In this case, the
model would generalize to comparisons between these different hierarchies as well.
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Figure 18: Feature learning enables generalization on transitive equivalence. a, Learning curves
in the lazy and rich regime. b, The weights of the network in the subspace corresponding to one
underlying XOR-task. c, Weights for the same unit are plotted against each other and colored by
whether they correspond to equivalent items (purple) or non-equivalent items (green). d, Accuracy of
a ConvNet trained on an MNIST version of transitive equivalence.

F A FEATURE-LEARNING MECHANISM FOR NON-ADDITIVE COMPOSITIONAL
GENERALIZATION

We proved above that compositionally structured kernel models do not generalize on non-additive
tasks, including transitive equivalence. To see if feature learning can overcome this limitation, we
trained ReLU networks through backpropagation on transitive equivalence, using a disentangled and
uncorrelated input. By varying the initial weight magnitude, we either trained these networks in the
kernel/lazy regime or the feature-learning/rich regime. Notably, when trained on symbolic addition
and context dependence, the rich networks were well-described by a conjunction-wise additive model
(Figs. 10 and 15). On transitive equivalence, however, while the kernel-regime models failed to
generalize (as predicted by our theory), the rich networks generalized correctly (Fig. 18a).

To explain why this is the case, we leveraged the insight that rich neural networks are biased to
learning weights with a low overall ℓ2-norm (Lyu & Li (2020); Chizat & Bach (2020); cf. Vardi
& Shamir (2021)). In particular, a one-hidden-layer ReLU network tends to learn a sparse set of
features Savarese et al. (2019); Chizat & Bach (2020). Transitive equivalence consists of multiple
overlapping equality relations (e.g. A = B ̸= D = E). Notably, ReLU networks such an XOR-type
problem by specializing one unit to each conjunction (Brutzkus & Globerson (2019); Saxe et al.
(2022); Xu et al. (2023); Fig. 18b). Further, their sparse inductive bias incentivizes ReLU networks
to use identical units for overlapping conjunctions (e.g. (A,B), (A,C), and (B,C)). This causes
the unit to generalize to unseen item combinations (e.g. (A,C)), enabling the network to generalize.
Importantly, our theoretical argument is corroborated by empirical simulations: each network unit
has identical weights for equivalent items (Fig. 18c).

Thus, rich networks’ capacity for abstraction gives rise to an additional compositional motif, allowing
them to generalize on transitive equivalence. In particular, our findings highlight that transitive
equivalence and transitive ordering are solved by fundamentally different network motifs.

To see whether large-scale neural networks can also benefit from this feature-learning mechanism,
we trained ConvNets on an MNIST version of transitive equivalence. The networks were trained for
150 epochs on 20,000 samples. We found that if the digits were presented with a distance of zero, the
network did not generalize compositionally at all. However, with increasing distance, the network
started to improve its compositional generalization (Fig. 18d), demonstrating that a convolutional
network can benefit from this rich compositional motif.
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Figure 19: This figure composes the relevant theoretical insights and empirical experiments to
illustrate how they speak to each other.
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