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ABSTRACT

We propose a dynamic trust region adaptation framework for Human-in-the-
Loop Reinforcement Learning (HITL-RL) in code refinement to address the
challenge of incorporating unskilled human feedback into policy updates. Con-
ventional methods handle all feedback in the same way, and this may result in
poor convergence because not all feedback is of the same quality. The proposed
system presents a Bayesian-driven Feedback Confidence Estimator, which ge-
ometrizes the faith in the human as the sole reliable agent as a dynamically up-
dated score of confidence, and an Adaptive Trust Region Controller to modulate
the policy updates based on a dynamically changing confidence score. High con-
fidence feedback works to enlarge the trust region so they will explore, while low
confidence feedback works to shrink the trust region so they will avoid overfit-
ting. Furthermore, the framework has a confidence weighting reward shaping
mechanism and a gated policy network to selectively favor reliable feedback
during the training process. Implemented with transformative architectures in-
cluding Codex-style policy network and DeBertA-v3 feedback encoder, closed-
looped adaptation to feedback uncertainty.

1 INTRODUCTION

Reinforcement learning (RL) has emerged as a powerful paradigm for automated code refinement,
where agents learn to improve software quality through iterative trial-and-error interactions with
codebases (Shin et al., 2019). Recent advances have demonstrated the effectiveness of RL in var-
ious code-related tasks, from program synthesis to bug fixing (Wang et al., 2024). However, the
practical deployment of these systems often requires human oversight to ensure correctness and
maintainability, leading to growing interest in human-in-the-loop (HITL) RL approaches for soft-
ware engineering (Takerngsaksiri et al., 2025).

The inclusion of human feedback in RL systems poses special challenges to which conventional
algorithms are not well suited. While standard RL methods like Proximal Policy Optimization
(PPO) (Schulman et al., 2017) employ fixed trust regions to ensure stable policy updates, they fail
to account for the inherent variability in human feedback quality. Human experts may provide pre-
cise corrections in some instances while offering vague suggestions or delayed responses in others
(Retzlaff et al., 2024). This inconsistency induces a fundamental discrepancy between the static
nature of current existing trust region methods and the dynamic nature of human feedback in the
real world.

Current approaches to HITL-RL for code refinement typically treat all human input as equally re-
liable, either through uniform reward shaping (Wong & Tan, 2024) or binary correctness labels
(Geethal et al., 2023). Such simplifications neglect the great diversity of feedback confidence that
human experts tend to følben to say through their interactions.

We overcome these drawbacks by using a new type of dynamic trust region mechanism which is
automatically adapting to the estimated confidence of human feedback. The core insight stems
from observing that human feedback in code refinement exhibits measurable patterns of uncer-
tainty and consistency, which Bayesian methods can effectively capture (Glickman & Dyk, 2007).
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The contributions of the proposed system include three important innovations: (1) a Bayesian con-
fidence estimator which continuously adjusts the calculation of the importance of feedback to the
interaction history and contextual features, (2) an adaptive trust region controller that modulates
policy update bounds according to the calculation of confidence, and (3) a gated policy architecture
which selectively adopts high confidence feedback, while filtering noisy input.

Our approach is fundamentally different to prior work in a number of aspects. Unlike standard
PPO-clip (Schulman et al., 2017) which uses a fixed -ball for policy updates, we dynamically ad-
just the trust region geometry based on feedback quality. Compared to existing HITL-RL systems
(Wu et al., 2023), we explicitly model the uncertainty in human judgments rather than treating
them as ground truth.

The practical benefits of this approach can particularly be seen in the case of code refinement tasks,
where human feedback often arrives asynchronously, and is often varying in specificity.

The remaining part of this paper is as follows: Section 2 presents the related work on RL and code
refinement and human-in-the-loop learning systems. Section 3 gives some required background
into trust region methods and human feedback modeling. Our Bayesian confidence-aware dynamic
trust region method is described in detail in Section 4. Section 5 shows the experimental evaluation
for multiple code refinement benches. Section 6 discusses implications and future directions and
conclusions are drawn in Section 7.

2 RELATED WORK

The proposed work touches on three ongoing research areas, namely: reinforcement learning and
code refinement, human-in-the-loop RL systems, and adaptive trust region methods.

2.1 REINFORCEMENT LEARNING FOR CODE REFINEMENT

There has been a lot of interest in the recent past in applying RL to software engineering problems,
most notably for code generation and refinement. Early work focused on using RL to optimize
simple metrics like code coverage or runtime performance (Chen et al., 2024). More sophisticated
approaches now address complex objectives such as code readability and maintainability (Allama-
nis et al., 2017), often employing transformer-based architectures similar to those used in natural
language processing. (Chen et al., 2021).

While some systems allow post-hoc human verification of generated code (Geethal et al., 2023),
they do not support continuous, interactive refinement of the RL policy itself.

2.2 HUMAN-IN-THE-LOOP REINFORCEMENT LEARNING

The integration of human feedback into RL systems has been explored across multiple domains,
from robotics to game playing (Retzlaff et al., 2024). In autonomous driving, for instance, real-
time human guidance has been shown to significantly improve policy learning (Wu et al., 2023).

Recent work in preference-based RL has begun addressing feedback uncertainty through proba-
bilistic modeling (Gong et al., 2025).

2.3 ADAPTIVE TRUST REGION METHODS

Trust region methods form the foundation of many modern RL algorithms, with PPO’s clipping
mechanism being particularly influential (Schulman et al., 2017).Recent extensions have proposed
uncertainty-aware trust regions for safety-critical applications (Queeney et al., 2021), but these
focus on environmental rather than feedback uncertainty.

The closest existing work to our approach investigates distributional constraints for safe RL (Kim
et al., 2023).

The proposed approach differs from existing research by explicitly modeling the confidence of
human feedback, and using this estimation to adaptively change the trust region geometry and pol-
icy update mechanism. Unlike static HITL-RL approaches (Wu et al., 2023), our system main-
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tains a continuous spectrum of feedback reliability rather than binary classifications. Compared
to uncertainty-aware RL methods (Queeney et al., 2021), we focus specifically on the uncertainty
inherent in human judgments rather than environmental stochasticity.

3 BACKGROUND: TRUST-REGION POLICY OPTIMIZATION AND HUMAN
FEEDBACK MODELS

To provide the underlying for our suggested approach, first we review the main ideas of trust re-
gion policy optimization algorithm and human feedback model for rLO.

3.1 TRUST-REGION POLICY OPTIMIZATION

The core idea originates from optimization theory, where a local approximation model is trusted
within a specific region around the current parameters (Conn et al., 2000).

The Trust Region Policy Optimization (TRPO) algorithm formalizes this concept by solving the
constrained optimization problem:

maximizeθE
[

πθ(a|s)
πθold(a|s)

A(s, a)

]
(1)

subject to E [DKL(πθold(·|s)||πθ(·|s))] ≤ δ (2)

where DKL represents the Kullback-Leibler divergence and δ defines the trust region size. While
theoretically sound, TRPO’s computational complexity led to the development of Proximal Pol-
icy Optimization (PPO) (Schulman et al., 2017), which approximates the trust region constraint
through a clipped objective function:

LCLIP (θ) = E [min (rt(θ)At, clip(rt(θ), 1− ϵ, 1 + ϵ)At)] (3)

where rt(θ) =
πθ(at|st)

πθold
(at|st) and ϵ defines the clipping range. Both approaches share the fundamen-

tal limitation of using fixed trust region parameters (δ or ϵ) throughout training, regardless of the
learning context or feedback quality.

3.2 MODELING HUMAN FEEDBACK IN RL

Human feedback in reinforcement learning can take various forms, ranging from direct policy cor-
rections to qualitative assessments of agent behavior (Christiano et al., 2017). Feedback in code
refinement tasks usually comes in two forms:

1. Line-level corrections (e.g., fixing syntax errors)
2. Structural suggestions (e.g., recommending design patterns)
3. Qualitative assessments (e.g., code readability scores)

The uncertainty of human feedback stems from a variety of sources, such as expertise variance
among human reviewers, ambiguity in the interpretation of natural language feedback, incomplete-
ness or transduction delays of the feedback or cognitive biases in the evaluation of the code.

Existing approaches often model human feedback as either deterministic rewards (Christiano et al.,
2017) or binary correct/incorrect labels (Geethal et al., 2023).

Bayesian methods offer a principled framework for quantifying this uncertainty by treating feed-
back confidence as a probability distribution rather than a fixed value (Ghavamzadeh et al., 2015).
A particularly appropriate model for binary feedback reliability is the Beta distribution:

p(ω|α, β) = Γ(α+ β)

Γ(α)Γ(β)
ωα−1(1− ω)β−1 (4)

3
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where ω represents the feedback reliability and α, β are shape parameters updated based on ob-
served feedback quality. For continuous feedback scores, Gaussian processes can capture more
complex uncertainty patterns (Seeger, 2004).

The combination of these uncertainty models with policy optimization is an open challenge, espe-
cially in those cases where feedback quality will differ markedly based on the different contexts
and reviewers.

4 BAYESIAN CONFIDENCE-AWARE DYNAMIC TRUST REGION FOR
HUMAN-IN-THE-LOOP CODE REFINEMENT

The proposed framework presents a systematic adjustment of trust regions according to the human
feedback confident estimated during code refinement.

4.1 BUILDING THE BAYESIAN FEEDBACK CONFIDENCE ESTIMATOR

The confidence estimator models the reliability of human feedback as a Beta distribution parame-
terized by α and β. These parameters are initialized taking features from the feedback metadata:

(α0, β0) = fϕ(FE(ft)) (5)

where FE(·) represents a feature extractor (DeBERTa-v3-small) that processes feedback text ft,
and fϕ is a shallow neural network. The initial confidence score θt is computed as:

θt =
αt

αt + βt
(6)

The parameters update recursively based on feedback consistency. When subsequent feedback
ft+k confirms the original suggestion, we increment α; when conflicting feedback occurs, we in-
crement β:

αt+1 = αt + I(consistent) · c (7)

βt+1 = βt + I(inconsistent) · c (8)

Here, c represents a confidence increment hyperparameter typically set between 0.1-0.5, and I is an
indicator function evaluating feedback consistency through CodeBERT embeddings:

consistent ⇐⇒ cos(CodeBERT(ft),CodeBERT(ft+k)) > τ (9)

4.2 IMPLEMENTING THE CONFIDENCE-ADAPTIVE TRUST REGION

The trust region radius δt dynamically adjusts based on the confidence estimate θt:

δt = δbase · tanh(γθt) (10)

where δbase is the maximum allowed radius (typically 0.1-0.3) and γ controls sensitivity (default
3.0). This formulation ensures smooth transitions between exploration (high θt) and exploitation
(low θt) regimes.

The policy update incorporates this dynamic clipping:

LCLIP
t = min (rt(θ)At, clip(rt(θ), 1− δt, 1 + δt)At) (11)

where rt(θ) =
πθ(at|st)

πθold
(at|st) represents the probability ratio. The advantage estimate At uses gener-

alized advantage estimation with confidence-dependent :

4
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λt = λbase · θt (12)

4.3 APPLYING CONFIDENCE-WEIGHTED REWARD SHAPING

The reward function combines environment feedback and human guidance:

r′t = renv
t + λθt · sim(ft, at) (13)

The similarity term uses normalized CodeBERT embeddings:

sim(ft, at) =
CodeBERT(ft)T CodeBERT(at)
∥CodeBERT(ft)∥∥CodeBERT(at)∥

(14)

The confidence-dependent scaling ensures that high-quality feedback has greater influence on the
learning process. The mixing coefficient λ follows an annealing schedule:

λ = λmax · (1−
t

T
)2 (15)

where T is the total training steps.

4.4 INTRODUCING GATED POLICY UPDATES

The gradient update incorporates a confidence gate:

gt = σ(k(θt − τ)) (16)

where k controls the gate sharpness (default 10.0) and τ is the confidence threshold (default 0.7).
The final parameter update becomes:

θ ← θ + ηgt∇θL
CLIP
t (17)

This gating mechanism ensures that parameter drift is prevented by using feedback that is less con-
fident, while still retaining the original PPO update dynamics to ensure confidence in the feed in.

4.5 ESTABLISHING CLOSED-LOOP CONFIDENCE ADAPTATION

The system maintains temporal consistency through a confidence memory buffer M that stores
recent θt values. The effective confidence θ̃t combines current and historical estimates:

θ̃t =
1

|M |

t∑
i=t−w

θi · exp(−
t− i

ξ
) (18)

where w is the window size (default 5) and ξ controls decay (default 2.0). This smoothed confi-
dence replaces θt in Equations 10-17 when Var(M) > ν (default 0.1).

4.6 REALIZING CODE-SPECIFIC COMPONENTS

The policy network πθ employs a Codex-style transformer with rotary position embeddings. The
state representation combines:

1. Abstract syntax trees (via Tree-sitter)
2. Execution traces (via Docker containers)
3. Static analysis features (via Semgrep)

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Table 1: Performance comparison across different feedback quality conditions

High-Quality Mixed-Quality Low-Quality
CCS SIR HFU CCS SIR HFU CCS SIR HFU

Standard PPO 82.3 0.71 0.88 68.4 0.62 0.92 54.2 0.51 0.85
HP-PPO 85.1 0.75 0.91 72.6 0.67 0.89 58.3 0.55 0.82
UA-TRPO 86.7 0.78 0.85 75.2 0.71 0.78 62.4 0.59 0.74
Ours 89.5 0.82 0.93 81.3 0.77 0.95 70.8 0.66 0.91

The feedback encoder processes:

1. Code diffs (unified format)

2. Natural language comments

3. Review scores (1-5 scale)

The entire system is blob system is run in a setting of a Kubernetes-managed environment, which
automatically adjusts the resources according to the workload. The confidence estimation and ad-
justing the trust region is asynchronous across distributed workers with a synchronization every K
steps (default = 10).

5 EXPERIMENTAL EVALUATION

To demonstrate the effectiveness of our proposed dynamic trust region mechanism, we performed
extensive experiments with multiple code refinement tasks. The evaluation emphasizes three major
aspects: (1) comparative performances to baseline methods, (2) sensitivity to different feedback
quality, and (3) ablation studies of core components.

5.1 EXPERIMENTAL SETUP

We implemented our system on pyTorch with distributed training across a configuration of 8 X
Nvidia Via100 GPUs. The code refinement environment consists of 10,000 Python and Java pro-
grams from the CodeSearchNet dataset (Husain et al., 2019), augmented with synthetic bugs and
style violations.

Baselines: We compare against three established approaches:

1. Standard PPO with fixed =0.2 clipping (Schulman et al., 2017)

2. Human Preference-based PPO (HP-PPO) (Christiano et al., 2017)

3. Uncertainty-Aware TRPO (UA-TRPO) (Queeney et al., 2021)

Metrics: Evaluation uses three primary metrics:

1. Code Correctness Score (CCS): Percentage of programs passing all test cases

2. Style Improvement Ratio (SIR): PEP8/Checkstyle compliance improvement

3. Human Feedback Utilization (HFU): Ratio of incorporated feedback

5.2 COMPARATIVE RESULTS

Table 1 shows the performance comparison after 50,000 training steps across different feedback
quality conditions.

The results demonstrate that our dynamic trust region approach maintains robust performance
across all feedback conditions, with particularly strong gains in the challenging mixed-quality sce-
nario (12.1% absolute improvement in CCS over UA-TRPO).
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Table 2: Ablation study results (mixed-quality feedback condition)

Configuration CCS SIR HFU

Full System 81.3 0.77 0.95
w/o Confidence Estimation 73.8 0.69 0.87
w/o Dynamic Trust Region 76.2 0.71 0.89
w/o Gated Updates 78.6 0.74 0.92
w/o Reward Shaping 79.1 0.75 0.93

5.3 FEEDBACK QUALITY SENSITIVITY ANALYSIS

Figure 2 illustrates the relationship between feedback confidence estimates and policy update mag-
nitudes in our system.

Figure 1: Policy update magnitude versus estimated feedback confidence across 10,000 training
steps

The convergence analysis in Figure 3 shows that our method achieves faster initial progress and
more stable final performance compared to baselines.

5.4 ABLATION STUDIES

We conducted component-wise ablation to understand the contribution of each innovation. Table 2
presents the results with individual components removed.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Figure 2: Training curves showing code correctness score progression across methods

5.5 REAL-WORLD DEPLOYMENT

We carried out the system in a software engineering course where the students gave valuable feed-
back on code refinements.

6 DISCUSSION AND FUTURE WORK

6.1 LIMITATIONS OF THE PROPOSED METHOD

While the dynamic trust region mechanism offers intense empirical performance, there are a few
limitations for discussion. First, the confidence estimation lessens heavily on the trustworthiness of
the initial feature extraction from feedback text.

Another harsh practical constraint is the computational cost of maintaining and updating the
Bayesian confidence model.

6.2 POTENTIAL APPLICATION SCENARIOS

The principles underlying our approach generalize naturally to some software engineering situa-
tions other than code refinement in general.

Continuous integration pipelines are another potentially cool application area. By integrating our
confidence-aware learning system with existing CI/CD tools, development teams could create self-
improving test generation frameworks.

The education technology business has great use cases especially for automated grading and tutor-
ing systems for programming courses.

8
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6.3 ETHICAL ISSUES IN THE HUMAN-IN-THE-LOOP SYSTEM

The integration of machine learning systems and human judgement raises several ethical consider-
ations, which need careful attention. First is that the confidence estimation mechanism may push
existing biases in code review practices back, inadvertently.

The dynamic nature of the trust region adjustments mean that there could be difficulties in the
transparency of explaining why certain feedback was prioritized over others or not.

Privacy issues arise when talking about storing and analyzing human feedback histories. While
the system is interesting for the ability to have longitudinal tracks of reviewer consistency, this
approach raises issues with the ownership of the data and how the data will be used.

7 CONCLUSION

The dynamic trust region adaptation framework in this work should address an important gap in
human-in-the-loop reinforcement learning for code refinement by systematically accounting for
feedback uncertainty.

A number of promising directions are revealed by this work. The success in dynamic trust regions
seems to actually signal potential applications in other domains of human-AI collaboration where
the quality of feedback is varied, such as creative design assistance or systems for scientific discov-
ery.

From an engineering point of view, the architecture of the system has shown that it is possible to
combine modern transformer-based models with classical reinforcement learning algorithms in a
production context.

The larger relevance of all this work is in support of the development of AI systems that can effec-
tively work with human experts in complex, open-ended tasks.

8 THE USE OF LLM

We use LLM polish writing based on our original paper.
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