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ABSTRACT

We introduce Palette, a simple and general framework for image-to-image trans-
lation using conditional diffusion models. On four challenging image-to-image
translation tasks (colorization, inpainting, uncropping, and JPEG decompression),
Palette outperforms strong GAN and regression baselines, and establishes a new
state-of-the-art result. This is accomplished without task-specific hyper-parameter
tuning, architecture customization, or any auxiliary loss demonstrating a desirable
degree of generality and flexibility. We uncover the impact of using L2 vs. L1

loss in the denoising diffusion objective on sample diversity, and demonstrate the
importance of self-attention through empirical architecture studies. Importantly,
we advocate a unified evaluation protocol based on ImageNet, and report several
sample quality scores including FID, Inception Score, Classification Accuracy of
a pre-trained ResNet-50, and Perceptual Distance against reference images for
various baselines. We expect this standardized evaluation protocol to play a critical
role in advancing image-to-image translation research. Finally, we show that a
single generalist Palette model trained on 3 tasks (colorization, inpainting, JPEG
decompression) performs as well or better than task-specific specialist counterparts.
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Figure 1: Illustration of Palette’s performance on four image-to-image translation tasks.

1 INTRODUCTION

Many problems in computer vision and image processing can be formulated as image-to-image
translation. Examples include restoration tasks, such as super-resolution, colorization, and inpainting,
as well as pixel-level image understanding tasks, such as instance segmentation and the estimation
of intrinsic images. Many such tasks, like those in Figure 1, are complex inverse problems, where
multiple output images are consistent with a single input. A natural approach to image-to-image
translation is to learn the conditional distribution of output images given the input using deep
generative models that can capture multi-modal distributions in the high-dimensional space of images.

1



Under review as a conference paper at ICLR 2022

Generative Adversarial Networks (GANs) (Goodfellow et al., 2014; Radford et al., 2015) have
emerged as the model family of choice for many image-to-image translation tasks (e.g., Isola et al.,
2017a), as they are capable of generating high fidelity outputs, are broadly applicable, and support
efficient sampling. Nevertheless, GANs can be challenging to train (e.g., Arjovsky et al., 2017;
Gulrajani et al., 2017), and often drop some modes in the output distribution (e.g., Metz et al., 2016;
Ravuri & Vinyals, 2019). Other generative models such as Autoregressive Models (van den Oord et al.,
2016; Parmar et al., 2018), VAEs (Kingma & Welling, 2013; Vahdat & Kautz, 2020), and Normalizing
Flows (Dinh et al., 2016; Kingma & Dhariwal, 2018) have seen success in specific applications, but
arguably, have not established the same level of sample quality and general applicability as GANs.

Diffusion models (Sohl-Dickstein et al., 2015; Song & Ermon, 2020; Ho et al., 2020) have received
a surge of recent interest (e.g., Cai et al., 2020; Song et al., 2021; Hoogeboom et al., 2021; Vahdat
et al., 2021; Kingma et al., 2021; Austin et al., 2021) resulting in several key advances in modeling
continuous data distributions. On speech synthesis, diffusion models have achieved human evaluation
scores on par with SoTA Autoregressive Models (Chen et al., 2021a;b; Kong et al., 2021). On
the class-conditional ImageNet generation challenge, they have outperformed the strongest GAN
baselines in terms of FID scores (Dhariwal & Nichol, 2021; Ho et al., 2021). On image super-
resolution, they have delivered impressive face enhancement results, outperforming GANs (Saharia
et al., 2021a). Despite these results, it is not clear whether diffusion models can present a versatile
and general solution to the problem of image-to-image translation, rivaling GANs.

This paper investigates the general applicability of Palette, our implementation of image-to-image
diffusion models, to a suite of four distinct and challenging tasks, namely colorization, inpainting, un-
cropping (a.k.a outpainting or extrapolation), and JPEG decompression (see Figure 1). Our empirical
results suggest that Palette with no task-specific architecture customization, and no changes to the
hyper-parameters or the loss, can deliver high-fidelity outputs across these tasks. It outperforms sev-
eral existing baselines and our own strong regression baseline on colorization, inpainting, uncropping,
and JPEG artifact removal, and establishes a new state-of-the-art. Importantly, we show that a single
generalist Palette model, trained on colorization, inpainting and JPEG decompression, outperforms a
task-specific JPEG decompression variant and achieves competitive performance on other tasks.

We study key components of Palette, including the loss function and the neural net architecture. We
find that while L2 (Ho et al., 2020) and L1 (Chen et al., 2021a) losses in the denoising objective
yield similar sample-quality scores, L2 leads to a higher degree of diversity in models samples,
whereas L1 (Chen et al., 2021a) produces more conservative outputs. We also find that removing
self-attention layers from the U-Net architecture of Palette to build a fully convolutional model hurts
the performance significantly. We present a set of evaluation protocols for inpainting, uncropping, and
JPEG decompression based on ImageNet (Deng et al., 2009). We report several quantitative evaluation
metrics, and contribute a surprisingly strong regression baseline. We expect this evaluation protocol to
play a critical role in advancing image-to-image translation research. Our key contributions include:

1. We study and confirm the versatility and general applicability of diffusion models to image-to-
image translation. Palette, our implementation of image-to-image diffusion models, is able to
achieve SoTA performance on four challenging tasks (colorization, inpainting, uncropping, and
JPEG decompression) with no task-specific tuning.

2. We recognize the impact of using L1 vs. L2 in the denoising objective on sample diversity, and
show the importance of self-attention through empirical studies of the neural network architecture.

3. We propose a unified evaluation protocol across image translation tasks based on the ImageNet
dataset, and report several sample quality scores for several baselines including Palette, a surpris-
ingly strong regression baseline, and prior work where possible.

4. We show that a multi-task Palette model performs as well or better than task-specific models.

2 RELATED WORK

Our work is inspired by Pix2Pix (Isola et al., 2017a), which explored a diverse array of image-to-
image translation tasks for GAN based models. Other GAN-based techniques have been proposed
for various image-to-image translation problems such as unpaired translation (Zhu et al., 2017),
unsupervised cross-domain generation (Taigman et al., 2016), multi-domain translation (Choi et al.,
2018), few shot translation (Liu et al., 2019) and many more. Nevertheless, existing GAN models
are sometimes unsuccessful in holistically translating images with consistent structural and textural
regularity. Recently, diffusion models (Sohl-Dickstein et al., 2015) have emerged with impressive
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results on image generation (Ho et al., 2020; 2021; Dhariwal & Nichol, 2021), audio synthesis (Chen
et al., 2021a; Kong et al., 2020), and image super-resolution (Saharia et al., 2021a). They have also
been used for unpaired image-to-image translation (Sasaki et al., 2021) and image editing (Meng
et al., 2021; Sinha et al., 2021). Our work on conditional diffusion models builds on these recent
advances, showing versatility and generality on a suite of image-to-image translation tasks.

Early inpainting approaches (e.g., Bertalmio et al., 2000; Barnes et al., 2009; He & Sun, 2012; Hays
& Efros, 2007; Roth & Black, 2005) worked well on textural regions but often fall short in generating
semantically consistent structure. GAN models are now widely used, but often require auxiliary
objectives on structures, context, edges, contours and hand-engineered features (e.g., Iizuka et al.,
2017; Yu et al., 2018a; 2019; Nazeri et al., 2019; Yi et al., 2020; Liu et al., 2020; Kim et al., 2021),
and a lack of stochasticity and diversity has been observed (Zheng et al., 2019; Zhao et al., 2021).
Generic diffusion models for image generation can be used for inpainting (Sohl-Dickstein et al.,
2015; Song et al., 2020), but we posit that conditional models trained for inpainting will be superior.
Image uncropping (a.k.a. outpainting) is considered more challenging than inpainting as it entails
generating open-ended content with less context. While early methods relied on retrieval (Kopf et al.,
2012; Wang et al., 2014; Shan et al., 2014). GAN-based methods are predominant (e.g., Teterwak
et al., 2019), but are often domain-specific (e.g., Yang et al., 2019; Bowen et al., 2021; Wang et al.,
2019a; Cheng et al., 2021; Lin et al., 2021). We show that conditional diffusion models trained on
large datasets reliably address both inpainting and uncropping on a wide range of image domains.

Colorization is a well-studied image-to-image task (e.g., Kumar et al., 2021; Guadarrama et al.,
2017; Royer et al., 2017; Ardizzone et al., 2019), requiring a degree of scene understanding, which
makes it a natural choice for self-supervised learning (Larsson et al., 2016). Challenges include
diverse colorization (e.g., Deshpande et al., 2017), respecting semantic categories (e.g., Zhang et al.,
2016), and producing high-fidelity color (e.g., Guadarrama et al., 2017). While some prior work
makes use of specialized auxiliary classification losses, we find that generic image-to-image diffusion
models work well without task-specific specialization. JPEG Decompression entails the removal of
JPEG compression artifacts and the production of realistic textures. Dong et al. (2015) applied deep
CNN architectures for JPEG decompression. Galteri et al. (2017; 2019) have successfully applied
GAN models for decompression tasks, but they have been restricted to quality factors of above 10.
We show the effectiveness of Palette in removing compression artifacts for quality factors as low as 5.

Multi-task training is a relatively under-explored area in image-to-image translation. Few papers (e.g.,
Qian et al., 2019; Yu et al., 2018b) have focused on simultaneous training over multiple tasks, but
they are primarily focused on enhancement tasks like deblurring, denoising, and super-resolution,
and they use smaller, modular networks. Several works have also dealt with simultaneous training
over multiple degradations on a single task e.g., multi-scale super-resolution (Kim et al., 2016),
jpeg-decompression on multiple quality factors (Galteri et al., 2019; Liu et al., 2018). This paper
takes the first step toward building multi-task image-to-image diffusion models for a variety of tasks.

3 PALETTE

Background on Conditional Diffusion Models. Diffusion models (Sohl-Dickstein et al., 2015; Ho
et al., 2020) convert samples from a satandard Gaussian distribution into samples from an empirical
data distribution through an iterative denoising process. Conditional diffusion models (e.g., Chen
et al., 2021a; Saharia et al., 2021b) make the denoising process conditional on an input signal.
Image-to-image diffusion models are conditional diffusion models of the form p(y | x), where both
x and y are images, e.g., x is a grayscale image and y is a reference color image. These models have
been previously applied to image super-resolution (Saharia et al., 2021a; Nichol & Dhariwal, 2021).
We study the general applicability of image-to-image diffusion models on a broad set of tasks.

Loss function. For a detailed treatment of diffusion models, please refer to Appendix A. Here, we
briefly discuss the denoising loss function. Given a reference output image y, we generate a noisy
version ỹ, and train a neural network fθ to denoise ỹ given x and a noise level indicator γ. The
objective takes the form

E(x,y)Eε∼N (0,I)Eγ
∥∥∥∥fθ(x,√γ y +

√
1− γ ε︸ ︷︷ ︸

ỹ

, γ)− ε
∥∥∥∥p
p

, (1)

where Chen et al. (2021a) and Saharia et al. (2021a) suggest using L1 norm, i.e., p = 1, whereas the
standard formulation is based on L2 norm (e.g., Ho et al., 2020). We perform careful ablations in
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this paper and recognize the impact of the choice of Lp on sample diversity. That is L1 results in
a significanlty lower sample diversity. For some applications L1 may be preferred to reduce from
potential hallucinations, but we adopt L2 to capture the output distribution more faithfully.

Architecture. Palette uses a standard U-Net architecture (Ho et al., 2020), with several architecture
modifications inspired by recent work (Song et al., 2021; Saharia et al., 2021a; Dhariwal & Nichol,
2021). The network architecture is based on the 256×256 class-conditional U-Net model of Dhariwal
& Nichol (2021). The two main differences between our architecture and theirs are (i) absence of
class-conditioning, and (ii) additional conditioning of the source image through concatenation. The
conditioning on the source image through concatenation is similar to Saharia et al. (2021a).

4 EVALUATING IMAGE-TO-IMAGE TRANSLATION MODELS

Evaluating image-to-image translation models is challenging. While prior work on colorization
(Zhang et al., 2016; Guadarrama et al., 2017; Kumar et al., 2021) has relied on FID scores and human
evaluation for model comparison, tasks like inpainting (Yu et al., 2019; 2018a) and uncropping
(Teterwak et al., 2019; Wang et al., 2019b) have often heavily relied on qualitative evaluation. For
many tasks, such as JPEG artifact removal (Dong et al., 2015; Liu et al., 2018; Galteri et al., 2019),
it has been common to use reference-based pixel-level similarity scores such as PSNR and SSIM.
In addition, many tasks lack a standardized dataset for evaluation, e.g., different test sets with
method-specific splits are used for evaluation.

We propose a unified evaluation protocol for inpainting, uncropping, and JPEG decompression on
ImageNet (Deng et al., 2009), due to its scale, diversity, and public availability. For inpainting and
uncropping, existing work has primarily relied on Places2 dataset (Zhou et al., 2017) for evaluation.
Hence, we also use a standard evaluation setup on Places2 for these tasks. Specifically, we advocate
the use of ImageNet ctest10k split proposed by Larsson et al. (2016) as a standard subset for
benchmarking of all image-to-image translation tasks on ImageNet. We also introduce a similar
category balanced 10,950 image subset of Places2 validation set called places10k. We further
advocate the use of automated metrics that can capture both image quality and diversity, in addition to
controlled human evaluation. We avoid the use of pixel-level metrics such as PSNR and SSIM since
such metrics are not reliable measures of sample quality for difficult tasks that require hallucination;
i.e., recent super-resolution works (e.g., Ledig et al., 2017; Dahl et al., 2017; Menon et al., 2020)
observe that PSNR and SSIM do not correlate well with human judgement as they prefer blurry
regression outputs.

We use four quantitative measures of sample quality for image-to-image translation: Inception
Score (IS) (Salimans et al., 2017); Fréchet Inception Distance (FID); Classification Accuracy
(CA) (top-1) of a pre-trained ResNet-50 classifier; and Perceptual Distance (PD), i.e., Euclidean
distance in the Inception-v1 feature space. We also assess sample diversity of models, by visual
inspection and histogram plots of pairwise SSIM scores between multiple model outputs. Sample
diversity is a major challenge, and has been a key limitation of many existing GAN-based methods.

The ultimate evaluation of image-to-image translation models is human evaluation; i.e., whether or
not humans can discriminate model outputs from reference images. To this end we use 2-alternative
forced choice (2AFC) trials to evaluate the perceptual quality of model outputs against reference
images (c.f., colorization turning tests (Zhang et al., 2016)). We summarize the results in terms of the
fool rate, the percentage of human raters who select model outputs over reference images when were
asked “Which image would you guess is from a camera?”. (See Appendix C for details.)

5 EXPERIMENTS

We study the general applicability of Palette, our implementation of image-to-image diffusion models,
to a suite of four distinct and challenging image-to-image translation tasks:

1. Colorization transforms an input grayscale image to a plausible color image.
2. Inpainting fills in user-specified masked regions of an image with realistic details.
3. Uncropping extends an input image along one or more directions to enlarge the image.
4. JPEG decompression corrects for JPEG compression artifacts to recover plausible details.

We evaluate Palette on these tasks without task-specific hyper-parameter tuning, or architecture
customization, or any auxiliary loss function. Inputs and outputs for all tasks are presented as RBG
256×256 images. Each of these tasks presents its own unique challenges (often requiring task-specific
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engineering), while enabling new applications. Colorization entails some representation of objects,
segmentation and layout, often with long-range image dependencies. Inpainting is challenging with
large masks and diverse image datasets comprising cluttered scenes. Outpainting is widely considered
even more challenging as there is less surrounding context to constrain semantically meaningful
generation. JPEG decompression entails the separation of local signal properties from compression
artifacts, thereby requiring a good model of local image statistics. While previous work has studied
these problems extensively, it is rarely the case that a single model achieves SoTA performance on all
tasks. In what follows Palette uses an L2 loss for the denoising objective, unless otherwise specified.
More implementation details can be found in Appendix B.

5.1 COLORIZATION

Prior work (e.g., Zhang et al., 2016; Kumar et al., 2021) has adopted LAB and YCbCr color spaces
to represent output images for colorization, but we use the RGB color space to maintain generality
across tasks. Our preliminary experiments suggest that Palette is equally effective in YCbCr and
RGB spaces. We compare Palette with cGAN (Isola et al., 2017b), PixColor (Guadarrama et al.,
2017), and Coltran (Kumar et al., 2021) and show qualitative results in Figure 2 and quantitative
scores in Table 1. Palette establishes a new SoTA, outperforming existing work by a large margin
in sample quality and human evaluation scores. Surprisingly, our simple L2 Regression baseline is
also able to outperform prior techniques, highlighting the importance of modern architectures and
large-scale training, even for a simple Regression model. Palette improves human raters’ Fool rate of
Coltran by more than 10%, reaching close to an ideal fool rate of 50%.

Grayscale Input PixColor† ColTran‡ Regression Palette (Ours) Reference

Figure 2: Illustration of colorization methods on ImageNet validation images. Baselines: †(Guadarrama et al.,
2017), ‡(Kumar et al., 2021), and our own strong regression baseline. Figure C.2 shows more samples.

Model FID-5K ↓ IS ↑ CA ↑ PD ↓ Fool rate (3 sec) ↑
Prior Work

cGAN (Isola et al., 2017b) 24.41 - - - -
PixColor (Guadarrama et al., 2017) 24.32 - - - 29.90%
Coltran (Kumar et al., 2021) 19.37 - - - 36.55%

This paper
Regression 17.89 169.8 68.2% 60.0 39.45%
Palette 15.78 200.8 72.5% 46.2 47.80%

Reference 14.68 229.6 75.6% 0.0 -

Table 1: Colorization quantitative scores and Fool rates on ImageNet val set. Appendix C.1 has more results.

5.2 INPAINTING

We follow Yu et al. (2019) and train inpainting models on free-form generated masks, augmented
with simple rectangular masks. To maintain generality of Palette across tasks, in contrast to prior
work, we do not pass a binary inpainting mask to the models. Instead, we fill the masked region with
standard Gaussian noise, which is compatible with denoising diffusion models. We train the model
to predict only the masked out pixels, instead of the entire image to speed up training. We compare
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Palette with DeepFillv2 (Yu et al., 2019), HiFill (Yi et al., 2020), and Photoshop’s Content-aware Fill
and show qualitative results in Figure 3 and quantitative scores in Table 2. Palette exhibits strong
performance across inpainting datasets and mask configurations, establishing a new SoTA.

Masked Input Photoshop 2021‡ DeepFillv2† HiFill†† Palette (Ours) Reference

Figure 3: Comparison of inpainting methods on object removal. Baselines: ‡Photoshop’s Content-aware Fill
built on PatchMatch (Barnes et al., 2009), †(Yu et al., 2019), and ††(Yi et al., 2020). Figure C.4 has more samples.

Mask Type Model ImageNet Places2

FID ↓ IS ↑ CA ↑ PD ↓ FID ↓ PD ↓

20-30%
free form

DeepFillv2 (Yu et al., 2019) 9.4 174.6 68.8% 64.7 13.5 63.0
HiFill (Yi et al., 2020) 12.4 157.0 65.7% 86.2 15.7 92.8
Palette (Ours) 5.2 205.5 72.3% 27.6 11.7 35.0

128×128
center mask

DeepFillv2 (Yu et al., 2019) 18.0 135.3 64.3% 117.2 15.3 96.3
HiFill (Yi et al., 2020) 20.1 126.8 62.3% 129.7 16.9 115.4
Palette (Ours) 6.6 173.9 69.3% 59.5 11.9 57.3

Reference 5.1 231.6 74.6% 0.0 11.4 0.0

Table 2: Quantitative evaluation for free-form and center inpainting on ImageNet and Places2 validation images.

5.3 UNCROPPING

Recent work (Teterwak et al., 2019; Lin et al., 2021) has shown impressive visual effects by extending
(extrapolating) input images along the right border. We train Palette on uncropping in either of
the four directions or across the whole image boundary. In all cases, we keep the area of the
masked out region around 50% of the image. Like inpainting, we fill the masked out region with
Gaussian noise, and keep the unmasked region fixed during inference. We compare Palette with
Boundless (Teterwak et al., 2019) and InfinityGAN (Lin et al., 2021) and show qualitative results in
Figure 4 and quantitative sample quality scores in Table 3. Palette outperforms existing baselines on
both ImageNet and Places2 by a large margin, demonstrating the strong capability of Palette models
in image uncropping (a.k.a. outpainting) without any task-specific modifications to the architecture
or loss. Palette also achieves significantly higher fool rates over Boundless indicating much more
realistic looking generations.

Model ImageNet Places2

FID ↓ IS ↑ CA ↑ PD ↓ FID ↓ PD ↓ Fool rate ↑
Boundless (Teterwak et al., 2019) 18.7 104.1 58.8% 127.9 11.8 129.3 20.7%
Palette (Ours) 5.8 138.1 63.4% 85.9 3.53 103.3 39.9%

Reference 2.7 250.1 76.0% 0.0 2.1 0.0 -

Table 3: Quantitative scores and human raters’ Fool rates on uncropping.
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Masked Input Boundless† InfinityGAN †† Palette (Ours) Reference

Figure 4: Image uncropping results on Places2 validation images. Baselines: Boundless† (Teterwak et al., 2019)
and InfinityGAN†† (Lin et al., 2021) trained on a scenery subset of Places2. Figure C.7 shows more samples.

5.4 JPEG DECOMPRESSION

Finally, we evaluate Palette on the task of JPEG decompression (a.k.a. JPEG artifact removal),
which represents a challenging image enhancement problem (Dong et al., 2015; Galteri et al., 2019;
Liu et al., 2018). Similar to prior work (Ehrlich et al., 2020; Liu et al., 2018), we train Palette on
inputs compressed with various quality factors (QF). Prior work has typically limited itself to a
Quality Factor higher than 10, we increase the difficulty of the problem and train on Quality Factors
higher than 5 (more compression artifacts). Table 4 summarizes the results of Palette on ImageNet.
Palette exhibits strong performance across all quality factors, being significantly better than the
Regression baseline. As expected, the performance gap between Palette and Regression baseline
widens with decreasing quality factor. Figure 5 shows the qualitative comparison between Palette and
our Regression baseline at a quality factor of 5. It is easy to see that the regression model produces
blurry outputs, while Palette produces sharper images with realistic textures.

JPEG Input (QF=5) Regression Palette (Ours) Reference

Figure 5: Visual comparison for JPEG decompression on ImageNet validation images.

QF Model FID-5K ↓ IS ↑ CA ↑ PD ↓

5 Regression 29.0 73.9 52.8% 155.4
Palette (Ours) 8.3 133.6 64.2% 95.5

10 Regression 18.0 117.2 63.5% 102.2
Palette (Ours) 5.4 180.5 70.7% 58.3

20 Regression 11.5 158.7 69.7% 65.4
Palette (Ours) 4.3 208.7 73.5% 37.1

Ground Truth 2.7 250.1 75.9% 0.0

Table 4: Quantitative evaluation for JPEG decompression for various Quality Factors (QF).
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5.5 THE ROLE OF SELF-ATTENTION IN DIFFUSION MODEL ARCHITECTURES

Self-attention layers (Vaswani et al., 2017) have been an important component in recent U-Net
architectures for diffusion models (Ho et al., 2020; Dhariwal & Nichol, 2021). While self-attention
layers build a direct form of global dependency into the model, they prevent generalization to unseen
image resolutions. Generalization to new resolutions at test time is convenient for many image-to-
image translation tasks. Previous works on various image-to-image translation tasks have primarily
relied on fully convolutional architectures (Yu et al., 2019; Galteri et al., 2019).

We analyze the impact of these self-attention layers on sample quality for inpainting, one of the
more difficult image-to-image translation tasks. In order to enable input resolution generalization
for Palette, we explore different alternatives to global self-attention layers in the U-Net architecture.
Consequently, we experiment with the following configurations:

1. Global Self-Attention: Baseline configuration with global self-attention layers at 32×32, 16×16
and 8×8 resolutions.

2. Local Self-Attention: Local self-attention layers (Vaswani et al., 2021) at 32×32, 16×16 and
8×8 resolutions, at which feature maps are divided into 4 non-overlapping query blocks.

3. More ResNet Blocks without Self-Attention: 2 × residual blocks at 32×32, 16×16 and 8×8
resolutions allowing deeper convolutions to increase receptive field sizes.

4. Dilated Convolutions without Self-Attention: Similar to 3. ResNet blocks at 32×32, 16×16
and 8×8 resolutions with increasing dilation rates (Chen et al., 2017) allowing exponentially
increasing receptive fields.

We train these models for 500K steps, and a batch size of 512. Table 5 reports the performance
of different configurations for inpainting. Global self-attention offers much better performance
than all other alternatives, re-affirming the importance of self-attention layers for such architectures.
Surprisingly, local self-attention performs worse than fully-convolutional alternatives. We leave more
detailed analysis of local self-attention for image generation architectures to future work.

Architecture Model FID ↓ IS ↑ PD ↓
Fully Convolutional Dilated Convolutions 8.0 157.5 70.6

More ResNet Blocks 8.1 157.1 71.9

Self-Attention Local Self-Attention 9.4 149.8 78.2
Global Self-Attention 7.4 164.8 67.1

Table 5: Fully Convolutional vs. Self-Attention architectures for inpainting.

5.6 SAMPLE DIVERSITY

In this section, we analyze the sample diversity of Palette on two translation tasks: colorization
and inpainting. Specifically, we analyze the impact of the changing the diffusion objective function
Lsimple (Ho et al., 2020), and compare L1 vs. L2 on sample diversity. While some existing
conditional generative diffusion models such as SR3 (Saharia et al., 2021a) and WaveGrad (Chen
et al., 2021a) have found L1 norm to perform better than the originally proposed L2 objective, there
has not been a detailed analysis of the impact of these two objectives.

Inspired by Guadarrama et al. (2017), we generate multiple outputs for a given input, and then
compute pairwise multi-scale SSIM between the first output sample and the remaining samples. We
do this for multiple inputs, and then plot the histogram of SSIM values in Figure 7, for colorization
and inpainting. Higher SSIM scores imply Less diversity. One can see that models trained with the
L2 loss have lower SSIM scores among their output samples than those trained with the L1 loss,
indicating greater sample diversity.

5.7 MULTI-TASK LEARNING

Multi-task training for image-to-image translation is a challenging area of research. In prior work, the
training paradigm is often restricted to multiple levels of corruptions within a single translation task –
e.g., Yu et al. (2019; 2018a) train inpainting models on different amounts of masked regions, and
Galteri et al. (2019); Liu et al. (2018) train JPEG artifact removal models on multiple quality factors.
In this section, we train a single generalist Palette model on multiple translation tasks simultaneously.
Specifically, we train Palette on tasks of JPEG decompression, inpainting, and colorization.
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Input Sample 1 Sample 2 Sample 3 Sample 4 Reference

Figure 6: Diversity of Palette outputs on colorization (top), inpainting (middle) and uncropping (bottom). Figures
C.3, C.5, C.8 and C.9 have more samples.

0.7 0.8 0.9 1.0

Diffusion (L1)
Diffusion (L2)

0.6 0.7 0.8 0.9 1.0

Diffusion (L1)
Diffusion (L2)

Figure 7: Distribution of pairwise multi-scale SSIM for Colorization (left) and Inpainting (right). Figure

Table 6 indicates that multi-task Palette outperforms the task-specific model on JPEG decompression,
it lags behind task-specific Palette models on inpainting and colorization. Due to compute limitations,
we currently train multi-task Palette for the same number of training steps as task-specific models.
We expect its performance to improve with more training.

Task Model FID ↓ IS ↑ CA ↑ PD ↓
Inpainting
(128×128 center mask)

Palette (Task-specific) 6.6 173.9 69.3% 59.5
Palette (Multi-task) 6.8 165.7 68.9% 65.2

Colorization
Regression (Task-specific) 5.5 176.9 68.0% 61.1
Palette (Task-specific) 3.4 212.9 72.0% 48.0
Palette (Multi-task) 3.7 187.4 69.4% 57.1

JPEG decompression
(QF = 5)

Regression (Task-specific) 29.0 73.9 52.8% 155.4
Palette (Task-specific) 8.3 133.6 64.2% 95.5
Palette (Multi-Task) 7.0 137.8 64.7% 92.4

Table 6: Performance of Multi-Task Palette on various image-to-image translation tasks.

6 CONCLUSION

This paper shows that conditional diffusion models present a flexible and generic solution to image-to-
image translation, rivaling the quality of GANs. Palette advances state-of-the-art on four challenging
tasks and produces diverse outputs consistent with different input contexts. This is accomplished
without task-specific customization or optimization instability. We also take a first step toward
building multi-task image-to-image diffusion models that learn representations useful for a range
of enhancement tasks. Further exploration and investigation of multi-task diffusion models is an
exciting avenue for future work. Before Palette is ready for practical applications, its inherent biases
should be studied and mitigated, its inference speed improved, and its operating resolution (currently
256×256) increased.

9



Under review as a conference paper at ICLR 2022

7 ETHICS STATEMENT

In human evaluation experiments, Palette achieves high fool-rates for various image-to-image trans-
lation tasks, indicating its capability to hallucinate realistic looking images which can be often be
indistinguishable from a real image. While the goal of our research is to advance generative models
on such challenging image-to-image translation tasks, we believe that there are scenarios where
generative models can be misused. Bias is also an important concern when working on such image
generation applications, and we expect Palette to suffer from such issues. While we did not find any
indications of bias upon visual inspection of our model samples, however dedicated work investigating
and mitigating bias is still needed. We believe that it is an important problem, and encourage future
work on such explorations. We are committed in our work to abide by the eight General Ethical
Principles listed at ICLR Code of Ethics (https://iclr.cc/public/CodeOfEthics).

8 REPRODUCIBILITY STATEMENT

We provide all the reproducibility details in Appendix B. We provide details related to training
and optimization, diffusion related hyper-parameters, and implementation details related to each
translation task discussed in our paper. The architecture of Palette is described in Section 3.
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A DIFFUSION MODELS

Diffusion models comprise a forward diffusion process and a reverse denoising process that is used at
generation time. The forward diffusion process is a Markovian process that iteratively adds Gaussian
noise to a data point y0 ≡ y over T iterations:

q(yt+1|yt) = N (yt−1;
√
αtyt−1, (1− αt)I) (2)

q(y1:T |y0) =

T∏
t=1

q(yt|yt−1) (3)

where αt are hyper-parameters of the noise schedule. The forward process with αt is constructed in a
manner where at t = T , yT is virtually indistinguishable from Gaussian noise. Note, we can also
marginalize the forward process at each step:

q(yt|y0) = N (yt;
√
γty0, (1− γt)I) , (4)

where γt =
∏t
t′ α
′
t .

The Gaussian parameterization of the forward process also allows a closed form formulation of the
posterior distribution of yt−1 given (y0,yt) as

q(yt−1 | y0,yt) = N (yt−1 | µ, σ2I) (5)

where µ =
√
γt−1 (1−αt)

1−γt y0+
√
αt (1−γt−1)

1−γt yt and σ2 = (1−γt−1)(1−αt)
1−γt . This result proves to be very

helpful during inference as shown below.

Learning: Palette learns a reverse process which inverts the forward process. Given a noisy image ỹ,

ỹ =
√
γ y0 +

√
1− γ ε , ε ∼ N (0, I) , (6)

the goal is to recover the target image y0. We parameterize our neural network model fθ(x, ỹ, γ) to
condition on the input x, a noisy image ỹ, and the current noise level γ. Learning entails prediction
of the noise vector ε by optimizing the objective

E(x,y)Eε,γ
∥∥∥∥fθ(x,√γ y0 +√1− γ ε︸ ︷︷ ︸

ỹ

, γ)− ε
∥∥∥∥p
p

. (7)

This objective, also known as Lsimple in Ho et al. (2020), is equivalent to maximizing a weighted
variational lower-bound on the likelihood (Ho et al., 2020).

Inference: Palette performs inference via the learned reverse process. Since the forward process is
constructed so the prior distribution p(yT ) approximates a standard normal distribution N (yT |0, I),
the sampling process can start at pure Gaussian noise, followed by T steps of iterative refinement.

Also recall that the neural network model fθ is trained to estimate ε, given any noisy image ỹ, and
yt. Thus, given yt, we approximate y0 by rearranging terms in equation 6 as

ŷ0 =
1
√
γt

(
yt −

√
1− γt fθ(x,yt, γt)

)
. (8)

Following Ho et al. (2020), we substitute our estimate ŷ0 into the posterior distribution of
q(yt−1|y0,yt) in equation 5 to parameterize the mean of pθ(yt−1|yt,x) as

µθ(x,yt, γt) =
1
√
αt

(
yt −

1− αt√
1− γt

fθ(x,yt, γt)

)
. (9)

And we set the variance of pθ(yt−1|yt,x) to (1− αt), a default given by the variance of the forward
process Ho et al. (2020).

With this parameterization, each iteration of the reverse process can be computed as

yt−1 ←
1
√
αt

(
yt −

1− αt√
1− γt

fθ(x,yt, γt)

)
+
√
1− αtεt ,

where εt ∼ N (0, I). This resembles one step of Langevin dynamics for which fθ provides an
estimate of the gradient of the data log-density.
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Algorithm 1 Training a denoising model fθ
1: repeat
2: (x,y0) ∼ p(x,y)
3: γ ∼ p(γ)
4: ε ∼ N (0, I)
5: Take a gradient descent step on

∇θ
∥∥fθ(x,√γy0 +√1− γε, γ)− ε∥∥pp

6: until converged

Algorithm 2 Inference in T iterative refinement
steps

1: yT ∼ N (0, I)
2: for t = T, . . . , 1 do
3: z ∼ N (0, I) if t > 1, else z = 0

4: yt−1 = 1√
αt

(
yt − 1−αt√

1−γt
fθ(x,yt, γt)

)
+

√
1− αtz

5: end for
6: return y0

B IMPLEMENTATION DETAILS

Training Details : We train all models with a mini batch-size of 1024 for 1M training steps. We do
not find over fitting to be an issue, and hence use the model checkpoint at 1M steps for reporting the
final results. Consistent with previous works (Ho et al., 2020; Saharia et al., 2021a), we use standard
Adam optimizer with a fixed 1e-4 learning rate and 10k linear learning rate warmup schedule. We use
0.9999 EMA for all our experiments. We do not perform any task-specific hyper-parameter tuning, or
architectural modifications.

Diffusion Hyper-parameters : Following (Saharia et al., 2021a; Chen et al., 2021a) we use α
conditioning for training Palette. This allows us to perform hyper-parameter tuning over noise
schedules and refinement steps for Palette during inference. During training, we use a linear noise
schedule of (1e−6, 0.01) with 2000 time-steps, and use 1000 refinement steps with a linear schedule
of (1e−4, 0.09) during inference.

Task Specific Details:

• Colorization : We use RGB parameterization for colorization. We use the grayscale image as the
source image and train Palette to predict the RGB image.
• Inpainting : We train Palette on a combination of free-form and rectangular masks. For free-form

masks, we use Algorithm 1 in Yu et al. (2019). For rectangular masks, we uniformly sample
between 1 and 5 masks. The total area covered by the rectangular masks is kept between a total
of 10% to 30% of the image. We randomly sample a free-form mask with 60% probability, and
rectangular masks with 40% probability. We do not provide any additional mask channel, and
simply fill the masked region with random Gaussian noise. During training, we mask restrict the
Lsimple loss function to the spatial region corresponding to masked regions, and use the model’s
prediction for only the masked region during inference.
• Uncropping : We train the model for image extension along all four directions, or just one

direction. In both cases, we set the masked region to 50% of the image. During training, we
uniformly choose masking along one side, or masking along all 4 sides. When masking along
one side, we further make a uniform random choice over the side. Rest of the training details are
identical to inpainting.
• JPEG Decompression : We train Palette for JPEG Decompression on quality factors in (5, 30).

Since decompression for lower quality factors is a significantly more difficult task, we use an
exponential distribution to sample the quality factor during training. Specifically, the sampling
probability of a quality range Q is set to ∝ e−

Q
10 .

C ADDITIONAL EXPERIMENTAL RESULTS

C.1 COLORIZATION

Following prior work (Zhang et al., 2016; Guadarrama et al., 2017; Kumar et al., 2021), we train and
evaluate models on ImageNet (Deng et al., 2009). In order to compare our models with existing works
in Table 1, we follow ColTran (Kumar et al., 2021) and use the first 5000 images from ImageNet
validation set to report performance on standard metrics. We use the next 5000 images as the reference
distribution for FID to mirror ColTran’s implementation. For benchmarking purposes, we also report
the performance of Palette on ImageNet ctest10k (Larsson et al., 2016) dataset in Table C.1. Notice

17



Under review as a conference paper at ICLR 2022

Fool Rate % on Set-I (3 sec display) Fool Rate % on Set-II (3 sec display)

0 10 20 30 40 50 60 70
Palette (ours)

Regression

ColTran

PixColor

49.1%

39.2%

34.8%

27.5%

0 10 20 30 40 50 60 70
Palette (ours)

Regression

ColTran

PixColor

46.5%

39.7%

38.3%

34.3%

Fool Rate % on Set-I (5 sec display) Fool Rate % on Set-II (5 sec display)

0 10 20 30 40 50 60 70
Palette (ours)

Regression

ColTran

PixColor

47.0%

37.1%

32.6%

22.4%

0 10 20 30 40 50 60 70
Palette (ours)

Regression

ColTran

PixColor

44.8%

40.9%

37.2%

29.7%

Figure C.1: Human evaluation results on ImageNet colorization.

that while Palette trained with the L2 loss produces more diverse samples than the L1 loss, it lags
behind slightly in terms of samples quality.

Model FID-10K ↓ IS ↑ CA ↑ PD ↓
Palette (L2) 3.4 212.9 72.0% 48.0
Palette (L1) 3.4 215.8 71.9% 45.8

Ground Truth 2.7 250.1 76.0% 0.0

Table C.1: Benchmark numbers on ctest10k ImageNet subset for Image Colorization.

Human Evaluation: The ultimate evaluation of image-to-image translation models is human evalu-
ation; i.e., whether or not humans can discriminate model outputs from reference images. To this
end we use controlled human experiments. In a series of two alternative forced choice trials, we
ask subjects which of two side-by-side images is the real photo and which has been generated by
the model. In particular, subjects are asked “Which image would you guess is from a camera?"
Subjects viewed images for either 3 or 5 seconds before having to respond. For the experiments we
compare outputs from four models against reference images, namely, PixColor (Guadarrama et al.,
2017), Coltran (Kumar et al., 2021), our Regression baseline, and Palette. To summarize the result
we compute the subject fool rate, i.e., the fraction of human raters who select the model outputs over
the reference image. We use a total of 100 images for human evaluation, and divide these into two
independent subsets - Set-I and Set-II, each of which is seen by 50 subjects.

As shown in Figure C.1, the fool rate for Palette is close to 50% and higher than baselines in all cases.
We note that when subjects are given less time to inspect the images the fool rates are somewhat
higher, as expected. We also note the strength of our regression baseline, which also performs better
than PixColor and Coltran. Finally, to provide insight into the human evaluation results we also show
several more examples of Palette output, with comparisons to benchmarks, in Figure C.2. One can
see that in several cases, Palette has learned colors that are more meaningful and consistent with the
reference images and the semantic content of the images. Figure C.3 also shows the natural diversity
of Palette outputs for colorization model.

C.2 INPAINTING

Comparison on 256×256 images: We report all inpainting results on 256×256 center cropped im-
ages. In order to ensure fair comparison, we use a fixed set of image-mask pair for each configuration
for all models during evaluation. Since HiFill (Yi et al., 2020) is primarily trained on 512×512
images, we use 512×512 center crops with exact same mask within the central 256×256 region. This
provides HiFill with 4× bigger inpainting context compared to DeepFillv2 and Palette.

We train two Palette models for Inpainting - i) Palette (I) trained on ImageNet dataset, and ii) Palette
(I+P) trained on mixture of ImageNet and Places2 dataset. Table C.2 shows full comparison of
Palette with existing methods on all inpainting configurations. Based on the type of mask, and the
area covered, we report results for the following categories - i) 10-20% free-form region, ii) 20-30%
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Grayscale Input PixColor† ColTran‡ Regression Palette (Ours) Reference

Figure C.2: Comparison of different methods for colorization on ImageNet validation images. Baselines:
†(Guadarrama et al., 2017) and ‡(Kumar et al., 2021).

free-form region, iii) 30-40% free-form region and iv) 128×128 center rectangle region. Palette
consistently outperforms existing works by a significant margin on all configurations. Interestingly
Palette (I) performs slightly better than Palette (I+P) on ImageNet indicating that augmentation with
Places2 images during training doesn’t boost ImageNet performance. Furthermore, Palette (I) is
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Input Sample 1 Sample 2 Sample 3 Sample 4 Reference

Figure C.3: Diversity of Palette outputs on ImageNet colorization validation images.

only slightly worse compared to Palette (I+P) on Places2 even though it is not trained on Places2
images. We observe a significant drop in the performance of HiFill (Yi et al., 2020) with larger masks.
It is important to note that DeepFillv2 and HiFill are not trained on ImageNet, but we report their
performance on ImageNet ctest10k primarily for benchmarking purposes.

C.3 UNCROPPING

Many existing uncropping methods (Cheng et al., 2021; Teterwak et al., 2019) have been trained on
different subsets of Places2 (Zhou et al., 2017) dataset. In order to maintain uniformity, we follow a
similar setup as inpainting and train Palette on a combined dataset of Places2 and ImageNet. While
we train Palette to extend the image in all directions or just one direction, to compare fairly against
existing methods we evaluate Palette on extending only the right half of the image. For Table 3, we
use ctest10k and places10k to report results on ImageNet and Places2 validation sets respectively.

We also perform category specific evaluation of Palette with existing techniques - Boundless (Teterwak
et al., 2019) and InfinityGAN (Lin et al., 2021). Since Boundless is only trained on top-50 categories
from Places2 dataset, we compare Palette with Boundless specifically on these categories from
Places2 validation set in Table C.3. Palette achieves significantly better performance compared to
Boundless re-affirming the strength of our model. Furthermore, we compare Palette with a more
recent GAN based uncropping technique - InfinityGAN (Lin et al., 2021). In order to fairly compare
Palette with InfinityGAN, we specifically evaluate on the scenery categories from Places2 validation
and test set. We use the samples generously provided by Lin et al. (2021), and generate outputs
for Boundless, and Palette. Table C.4 shows that Palette is significantly better than domain specific
model InfinityGAN on scenery images in terms of automated metrics.
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Mask Type Model ImageNet Places2

FID ↓ IS ↑ CA ↑ PD ↓ FID ↓ PD ↓
10-20% DeepFillv2 (Yu et al., 2019) 6.7 198.2 71.6% 38.6 12.2 38.1
Free-Form HiFill (Yi et al., 2020) 7.5 192.0 70.1% 46.9 13.0 55.1
Mask Palette (I) (Ours) 5.1 221.0 73.8% 15.6 11.6 22.1

Palette (I+P) (Ours) 5.2 219.2 73.7% 15.5 11.6 20.3

20-30% DeepFillv2 (Yu et al., 2019) 9.4 174.6 68.8% 64.7 13.5 63.0
Free-Form HiFill (Yi et al., 2020) 12.4 157.0 65.7% 86.2 15.7 92.8
Mask Palette (I) (Ours) 5.2 208.6 72.6% 27.4 11.8 37.7

Palette (I+P) (Ours) 5.2 205.5 72.3% 27.6 11.7 35.0

30-40% DeepFillv2 (Yu et al., 2019) 14.2 144.7 64.9% 95.5 15.8 90.1
Free-Form HiFill (Yi et al., 2020) 20.9 115.6 59.4% 131.0 20.1 132.0
Mask Palette (I) 5.5 195.2 71.4% 39.9 12.1 53.5

Palette (I+P) 5.6 192.8 71.3% 40.2 11.6 49.2

128×128 DeepFillv2 (Yu et al., 2019) 18.0 135.3 64.3% 117.2 15.3 96.3
Center HiFill (Yi et al., 2020) 20.1 126.8 62.3% 129.7 16.9 115.4
Mask Palette (I) 6.4 173.3 69.7% 58.8 12.2 62.8

Palette (I+P) 6.6 173.9 69.3% 59.5 11.9 57.3

Ground Truth 5.1 231.6 74.6% 0.0 11.4 0.0

Table C.2: Quantitative evaluation for inpainting on ImageNet and Places2 validation images.

Model FID ↓ PD ↓
Boundless (Teterwak et al., 2019) 28.3 115.0
Palette 22.9 93.4

Ground Truth 23.6 0.0

Table C.3: Comparison with uncropping method Boundless (Teterwak et al., 2019) on top-50 Places2 categories.

Model FID ↓
Boundless (Teterwak et al., 2019) 12.7
InfinityGAN (Lin et al., 2021) 15.7
Palette 5.6

Table C.4: Comparison with uncropping method InfinityGAN (Lin et al., 2021) and Boundless (Teterwak et al.,
2019) on scenery categories.

Human Evaluation: Like colorization, we also report results from human evaluation experiments.
Obtaining high fool rates for uncropping is a significantly more challenging task than colorization,
because one half of the image area is fully generated by the model. As a consequence there are more
opportunities for synthetic artifacts. Because the baselines available for uncropping are trained and
tested on Places2, we run human evaluation experiments only on Places2. Beyond the choice of
dataset, all other aspects of experimental design are identical to that used above for colorization, with
two disjoint sets of test images, namely, Set-I and Set-II.

The results are characterized in terms of the fool rate, and are shown in Figure C.6. Palette obtains
significantly higher fool rates on all human evaluation runs compared to existing methods, i.e.,
Boundless (Teterwak et al., 2019) and InfinityGAN (Lin et al., 2021). Interestingly, when raters are
given more time to inspect each pair of images, the fool rates for InfinityGAN and Boundless worsen
considerably. Palette, on the other hand, observes approximately similar fool rates.

C.4 JPEG DECOMPRESSION

In order to be consistent with other tasks, we perform training and evaluation on ImageNet dataset.
Note that this is unlike most prior work (Dong et al., 2015; Liu et al., 2018), which mainly use small
datasets such as DIV2K (Agustsson & Timofte, 2017) and BSD500 (Martin et al., 2001) for training
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Masked Input Photoshop 2021‡ DeepFillv2† HiFill†† Palette (Ours) Reference

Figure C.4: Comparison of inpainting methods on object removal. Baselines: ‡Photoshop’s Content-aware Fill,
based on PatchMatch (Barnes et al., 2009), †(Yu et al., 2019), and ††(Yi et al., 2020).

and evaluation. Recent works such as (Galteri et al., 2019) use a relatively larger MS-COCO dataset
for training, however, to the best of our knowledge, we are the first to train and evaluate JPEG artifact
removal on ImageNet. We compare Palette with a strong Regression baseline which uses an identical
architecture. We report results on JPEG quality factor settings of 5, 10 and 20 in Table 4.
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Masked Input Sample 1 Sample 2 Sample 3 Sample 4 Reference

Figure C.5: Diversity of Palette outputs on image inpainting.
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Figure C.6: Human evaluation results on Places2 uncropping.
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Masked Input Boundless† InfinityGAN †† Palette (Ours) Reference

Figure C.7: Image uncropping results on Places2 validation images. Baselines: Boundless† (Teterwak et al.,
2019) and InfinityGAN†† (Lin et al., 2021) trained on a scenery subset of Places2. Samples for both baselines
are generously provided by their repective authors.
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Input Sample 1 Sample 2 Sample 3 Sample 4 Reference

Figure C.8: Diversity of Palette outputs on Right and Left uncropping on Places2 dataset.
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Input Sample 1 Sample 2 Sample 3 Sample 4 Reference

Figure C.9: Diversity of Palette outputs on Top and Bottom uncropping on Places2 dataset.
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