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ABSTRACT

Detecting developer emotion in the informative data stream of technical commit
messages is a critical task for gauging signals of burnout or bug introduction, yet it
exposes a significant failure point for large language models whose emotion tax-
onomies are ill-suited for technical contexts in the field of software engineering. To
address this, the study introduces a dataset of 2,000 GitHub commit messages that
have been human-labeled with a four-label scheme tailored for this domain: Satis-
faction, Frustration, Caution, and Neutral. A diagnostic zero-shot evaluation of
five pretrained models yields near-chance Macro-F1 (0.13–0.21) and systematic
biases. While fine-tuning a code-aware encoder (CodeBERT) establishes a strong
baseline (Macro-F1 ≈ 0.59), this study introduces CommiTune, a simple hybrid
method that first fine-tunes a LLaMA model on the manually labeled dataset, uses
it to generate augmented data, and then fine-tunes CodeBERT on this expanded set,
achieving Macro-F1 ≈ 0.82 (Accuracy ≈ 0.81) on an untouched test split. This
demonstrates that hybrid augmentation can effectively repair the representation gap
in technical emotion detection. These results establish reproducible training and
validation schemes for software-engineering NLP. The code, prompts, and label
mappings will be released upon acceptance.

1 INTRODUCTION

Software development is an intensely collaborative process, and commit messages form the central
record of how developers describe and rationalize changes to code. Beyond documenting functionality,
these short messages often encode subtle signals of developer emotion—from satisfaction when
a feature is completed to frustration when a bug resists resolution. Detecting such emotions has
practical value: it can serve as an early-warning system for burnout Sinha et al. (2016), highlight
points of friction that introduce defects Yadav & Vishwakarma (2020), and ultimately improve
developer productivity and project stability.

Despite this importance, emotion detection in commit messages exposes a fundamental limitation
of current language models. Mainstream emotion taxonomies and datasets, often sourced from
social media or a mix of informal, non-professional repositories, fail to capture the signals present
in the terse, technical registers of high-quality software developmentGuo (2022). As a result, large
pretrained models underperformMajumder et al. (2019). Our diagnostic study finds that zero-shot
emotion classification on commit data yields near-chance Macro-F1 (0.13–0.21), with systematic
biases such as over-predicting Caution from technical jargon and Satisfaction from verbs like “fix”
or “implement.” This gap highlights the need for domain-adapted representations that integrate both
code-awareness and affective sensitivity.

To address this challenge, this work makes three contributions. First, a dataset of 2,000 human-labeled
GitHub commit messages is introduced, annotated under a domain-appropriate four-label scheme:
Satisfaction, Frustration, Caution, and Neutral. A transparent reconciliation pipeline prioritizes
risk signals, improving inter-annotator agreement from κ = 0.596 to κ = 0.710. Second, baseline
experiments show that fine-tuning a code-aware encoder (CodeBERT)(Feng et al., 2020) achieves
Macro-F1 ≈ 0.59, outperforming language-only baselines but leaving a representation gap. Finally,
we present CommiTune, a simple hybrid pipeline that fine-tunes a LLaMA modelTouvron et al.
(2023) on the labeled dataset, uses it to generate augmented training examples, and then fine-tunes
CodeBERT on this expanded corpus. CommiTune substantially improves performance, achieving
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Macro-F1 ≈ 0.82 (Accuracy ≈ 0.81) on a held-out test set, with the largest gains in detecting
Satisfaction.

These results demonstrate that hybrid augmentation can repair the failure modes of large language
models in technical emotion detection. Beyond benchmarks, this work establishes reproducible
protocols for annotation, reconciliation, and augmentation in software-engineering NLP. We highlight
the broader lesson that adapting affective modeling to technical domains requires bridging both
linguistic and representational gaps.

2 LITERATURE REVIEW

2.1 LLMS AND SENTIMENT/EMOTION ANALYSIS

Large Language Models (LLMs) such as BERT, GPT-3/4, and Flan-UL2 achieve strong results in
sentiment and emotion recognition due to their contextual depth and transferability. While they
generalize well in zero/few-shot settings, domain-specific fine-tuning often surpasses general-purpose
modelsAcheampong et al. (2021). Earlier approaches with CNNs and LSTMs also effectively
captured context in short texts, achieving over 90% accuracy in benchmark datasetsSinha et al.
(2016)Majumder et al. (2019)Huq et al. (2020). BERT-based models surpass lexicon methods, but
challenges remain in sarcasm detection, short texts, and imbalanced datasets (Guo, 2022). Moreover,
pre-trained models can encode biases in prompt design, category selection, and training corpora. They
perform well in binary sentiment classification but struggle with fine-grained or culturally dependent
emotional distinctions Wankhade et al. (2022).

2.2 SENTIMENT ANALYSIS IN SOFTWARE ENGINEERING AND SOCIAL MEDIA

Building on these advances in general NLP, research has explored sentiment analysis in software
engineering. Analyses of GitHub commits reveal that developer emotions are correlated with
productivity, bug introduction, and burnout. Large-scale studies show most commit messages are
neutral, but negative emotions peak in bug-related commits (Nandwani & Verma, 2021)Babu &
Kanaga (2022). While LLMs offer strong baselines, smaller fine-tuned models (e.g., RoBERTa) often
outperform in domain-specific tasks (Zhang et al., 2023). Parallel findings in social media research
reinforce these patterns: machine learning models (e.g., GLM with 92% accuracy) capture affect
effectively but struggle with informal text, sarcasm, and multimodal cues (Yadav & Vishwakarma,
2020)Majumder et al. (2019)Yang et al. (2024). These limitations echo the difficulties encountered in
analyzing technical commit messages.

2.3 METHODS AND CHALLENGES

Across both general NLP and domain-specific studies, sentiment analysis methods span lexicon-based,
machine learning, and hybrid approaches. While ML and transfer learning outperform static lexicons,
challenges persist in ambiguity, sarcasm, multilingual settings, and limited domain datasets (Feldman,
2013)Acheampong et al. (2021)Majumder et al. (2019). This indicates that despite progress, robust
emotion detection in technical contexts still requires methods tailored to the domain.

2.4 DATA AUGMENTATION WITH GENERATIVE MODELS

A critical challenge in sentiment analysis of commit messages is class imbalance, i.e., most commits
are neutral, with relatively few expressing frustration or caution. Data augmentation has emerged
as a solution. Recent studies explore generative models for augmenting scarce emotion data. Back-
translation and paraphrasing with transformer models (Fadaee et al., 2017) increase diversity, while
more recent approaches leverage GPT-style models to synthesize realistic training samples. Con-
ditional text generation enables creation of domain-specific emotional data (Wang et al., 2023),
improving balance across categories. In software engineering, synthetic commits generated with
contextual cues could mitigate underrepresentation of rare emotions like “satisfaction” or “caution.”
Generative augmentation is not without risks: synthetic data may introduce noise or amplify bi-
ases. Nonetheless, careful prompt engineering and filtering strategies have shown improvements in
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downstream emotion detection tasks (Wang et al., 2023). Incorporating augmentation with LLMs
represents a promising direction for addressing imbalance in commit message sentiment analysis.

3 DATASET AND ANNOTATION

The foundation of this research is a dataset curated through a multi-stage process designed to ensure
statistical validity and high-quality annotations. This process encompassed data sourcing and stratified
sampling, a comprehensive text preprocessing pipeline, and an iterative annotation methodology to
construct a reliable gold standard dataset.

3.1 DATA SOURCING AND SAMPLING STRATEGY

The source data for this study is a large-scale public dataset from Kaggle, comprising 4.3 million com-
mit messages. These messages were extracted from 34 of the most popular and actively maintained
projects on GitHub, selected based on their star and fork counts. This selection criterion ensures that
the dataset is representative of high-quality, professional software development practices rather than
casual or hobbyist projects. The dataset’s utility for research is enhanced by its Open Data Commons
Attribution License (ODC-By) v1.0, which guarantees transparency and allows for unrestricted use
and reproduction of studies.

Given the computational expense of analyzing the entire 4.3 million commits, a representative subset
of 20,000 messages was created. To avoid sampling bias and ensure the subset accurately reflected
the parent corpus’s diversity, a stratified sampling strategy was employed. This method involved
creating a composite stratification label for each commit based on three features: the repository name,
the project’s overall size (defined by its total commit count), and a temporal grouping that assigned
each commit to a specific calendar quarter (e.g., “2020Q1”). For instance, a commit with the label
“100 python 2020Q1” would belong to the Python repository (with a total project size of 100,000
commits) and was made in the first quarter of 2020. By calculating the proportional representation of
each stratum in the full dataset, we could then draw a random sample from each group, resulting in a
20,000-commit subset that preserved the original distribution of commits across projects of varying
scales and time periods.

Figure 1: Stratified sampling pipeline for constructing the 20k subset from the 4.3M commits.

3.2 PREPROCESSING PIPELINE

Prior to annotation and analysis, the 20,000 sampled commits were subjected to a rigorous, multi-
stage preprocessing pipeline to clean and standardize the raw text. The objective was to eliminate
noise and inconsistencies that could impede model performance. The pipeline began by selecting
only the essential data columns: author, date, repository, and message. The text then underwent
normalization, where all messages were converted to lowercase and extraneous whitespace was
removed. Following this, irrelevant content, such as automated messages from pull request merges

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

(e.g., “merge branch”) and commits with fewer than three words, was systematically filtered out.
The cleaning process was further refined by removing specific patterns that lack semantic value for
sentiment analysis, including URLs, email addresses, UUIDs, and metadata tags. Finally, the cleaned
messages were tokenized using the DistilBERT tokenizer, and any message exceeding the 512-token
input limit of the model was excluded from the dataset.

3.3 GOLD STANDARD ANNOTATION AND REFINEMENT

A gold standard dataset of 2,000 commits was established through a rigorous, iterative manual
annotation process conducted by two independent annotators. The initial annotation phase utilized
a seven-label emotion scheme common in the literature (Joy, Excitement, Satisfaction, Frustration,
Anger, Sadness, Neutral). This first pass, however, yielded a Cohen’s κ score of 0.596, indicating
only moderate inter-annotator agreement. A subsequent qualitative analysis of the disagreements
revealed that the low score was a result of conceptual ambiguity between closely related emotion
categories, such as Joy and Excitement, which proved difficult to distinguish reliably within the
technical context of commit messages.

This finding prompted a systematic refinement of the annotation scheme. The seven labels were
consolidated into four more robust and distinct categories designed to reduce ambiguity and better
capture the developer experience. The revised scheme consisted of Satisfaction (merging Joy,
Excitement, and gratification), Frustration (merging Anger, Sadness, and frustration), Neutral,
and a newly introduced category, Caution. The “Caution” label was specifically created to capture
defensive or risk-oriented signals (e.g., warnings, workarounds) that are highly relevant in software
development but not captured by traditional emotion models. A second round of annotation using
this 4-label scheme resulted in a Cohen’s κ of 0.710, a score that signifies substantial agreement
and confirms the reliability of the refined framework. This iterative process of evaluation and
consolidation was critical for producing a high-quality, trustworthy gold dataset for our research.

Figure 2: Reconciliation workflow that consolidates two annotations into a final gold label.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

4 EXPERIMENTAL SETUP AND MODELS

All experiments are conducted on the 2,000-message gold-standard dataset, partitioned into 1,600
training samples and 400 held-out test samples. Performance across all models is reported using
Macro F1, which balances class-level contributions and accounts for label imbalance.

4.1 BASELINE MODELS AND RATIONALE

To establish a comprehensive set of baselines, we evaluate five pretrained models spanning general-
purpose reasoning, code-aware representation, and emotion-focused classification. The lineup
includes:

• RoBERTa-large-MNLI: a natural language inference model used for zero-shot classification
by hypothesis testing.

• CodeBERT (microsoft/codebert-base): pretrained jointly on source code and natural
language, representing a domain-specific specialist.

• DistilRoBERTa Emotion: trained on multiple emotion datasets, covering fine-grained
affect categories.

• RoBERTa-base GoEmotions: fine-tuned on the 58k-example GoEmotions dataset, with
broad emotion coverage.

• EmoLLaMA-7B: a generative LLaMA-based model instruction-tuned for affective tasks.

We exclude distilbert-base-uncased-emotion because it lacks a Neutral label, making
it incompatible with our taxonomy.

4.2 ZERO-SHOT EVALUATION METHODOLOGY

All five baselines are first evaluated in a zero-shot setting. For RoBERTa-large-MNLI, commit
messages are treated as premises and paired with hypotheses of the form “This commit expresses
{label},” selecting the label with the highest entailment score. For emotion-tuned classifiers, fine-
grained outputs (e.g., joy, anger) are mapped into our four-label scheme, with categories such as
joy and love mapped to Satisfaction and anger or sadness mapped to Frustration. The generative
model (EmoLLaMA) is prompted with an explicit classification instruction, and its outputs are
normalized into the four classes. Finally, a lexicon-based override is applied: if a commit contains
predefined caution-related keywords (e.g., “workaround,” “warning”), the label is set to Caution
regardless of model output. This standardized procedure enables fair comparison across heterogeneous
architectures.

4.3 FINE-TUNING SETUP FOR BASELINE MODELS

Following the zero-shot evaluation, we fine-tune the two strongest candidates: RoBERTa-large-MNLI
(generalist) and CodeBERT (specialist), to assess their adaptability to technical text. Both models
are trained on the 1,600-sample training set using Hugging Face’s Trainer API. The classification
head is replaced with a four-class output layer, with mismatched dimensions resolved automatically.
Training proceeds for five epochs, with checkpoint selection based on validation Macro F1, while
external logging is disabled and only the best model retained.

This comparison revealed distinct dynamics: RoBERTa-large-MNLI overfit rapidly, showing limited
generalization, whereas CodeBERT maintained stable learning and achieved stronger balanced
performance. Accordingly, CodeBERT is adopted as the primary fine-tuned baseline and serves as
the reference point for subsequent augmentation experiments in 4.4.

4.4 THE COMMITUNE METHOD

We propose CommiTune, a hybrid augmentation pipeline that combines generative large language
models with code-aware fine-tuning to overcome the scarcity of labeled developer emotion data. The
method consists of three steps.
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4.4.1 FINE-TUNING THE GENERATIVE MODEL

We adapt Meta-LLaMA-3.1-8B-Instruct on the 1,600 manually labeled training commits to
align the generator with the four-label taxonomy. Fine-tuning is performed with Hugging Face’s
PEFT and LoRA adapters to ensure efficiency. The following hyperparameters are used: learning rate
= 2×10−5, batch size = 16, AdamW optimizer with weight decay 0.01, linear learning rate scheduler,
and 3 training epochs with early stopping based on validation loss. The model’s classification head is
resized for four outputs, consistent with our taxonomy.

4.4.2 GENERATIVE DATA AUGMENTATION

Using the fine-tuned LLaMA, we generate two paraphrases for each training commit, yielding an
augmented dataset of ∼4,800 examples. Prompts are structured as follows:

You are tasked with paraphrasing commit messages while preserving their emotional label.
Label: <LABEL>
Commit: <ORIGINAL COMMIT>
Output two alternative paraphrases of the commit message
that preserve the same meaning and emotional labels.

Generated outputs are post-processed to remove duplicates, normalize whitespace, and enforce single-
sentence formatting. This augmentation increases lexical and syntactic diversity while maintaining
the integrity of the gold-standard labels.

4.4.3 FINAL MODEL TRAINING

The augmented dataset is used to retrain CodeBERT, selected as the strongest baseline in 4.3. The
4,800 examples are partitioned using an 80–20 split, with the 20% subset serving as a held-out
validation set. Training mirrors the setup in 4.3: five epochs, cross-entropy loss, early selection by
Macro F1, logging disabled, and only the best checkpoint retained.

Figure 3: Commitune Method Diagram.

This pipeline integrates the strengths of generative models (diverse paraphrasing) and domain-specific
encoders (stable code-aware representations). CommiTune thereby offers a reproducible and scalable
method for technical emotion detection.

5 RESULTS

This section presents the empirical evaluation of our proposed method. We first establish a set of
strong baselines by assessing the performance of both zero-shot (4.2) and fine-tuned approaches (4.3).
We then report the results of our CommiTune pipeline, demonstrating its effectiveness in improving
developer emotion classification (4.4).

5.1 BASELINE PERFORMANCE

The results in Table 1 clearly show that off-the-shelf zero-shot models operate at near-chance
performance when applied to commit message sentiment analysis. With four target categories, a
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Table 1: Baseline zero-shot model performance on commit sentiment analysis.
Model Macro-F1
RoBERTa-large-MNLI 0.2058
CodeBERT 0.1968
DistilRoBERTa 0.1886
RoBERTa-base GoEmotions 0.1374
EmoLLaMA-7B 0.1296

random classifier would be expected to achieve a Macro-F1 of 0.25; the best baseline, RoBERTa-
large-MNLI, reaches only 0.2058. CodeBERT shows some sensitivity to software-specific phrasing
but still fails to capture affective nuance, while emotion-tuned classifiers such as DistilRoBERTa
and GoEmotions underperform due to domain mismatch. The generative model EmoLLaMA-7B
produces fluent categorical outputs, yet its predictions are poorly calibrated and unstable. These
results reinforce the need for domain-adapted approaches including fine-tuning, label consolidation,
and data augmentation to reliably identify subtle emotions like Satisfaction, Frustration, and Caution
in highly technical commit text.

Table 2: Fine-tuned model performance across emotion categories.
Class Precision Recall F1-Score Support
Caution 0.79 0.79 0.79 53
Satisfaction 0.47 0.44 0.46 107
Neutral 0.58 0.63 0.60 139
Frustration 0.52 0.50 0.51 101

Macro Avg 0.59 0.59 0.59 400
Accuracy – – 0.56 400

Figure 4: Confusion matrix for the fine-tuned CodeBERT baseline.

The results in Table 2 and Figure 4 show that off-the-shelf zero-shot models operate at near-chance
performance on commit message sentiment analysis. With four target categories, a random classifier
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would achieve a Macro-F1 of 0.25; the best baseline, RoBERTa-large-MNLI, reaches only 0.2058.
CodeBERT shows some sensitivity to software-specific phrasing but still fails to capture affective
nuance, while emotion-tuned classifiers such as DistilRoBERTa and GoEmotions underperform due
to domain mismatch. These results reinforce the need for domain-adapted approaches including
fine-tuning, label consolidation, and data augmentation.

5.2 COMMITUNE PERFORMANCE

To evaluate our proposed CommiTune pipeline, CodeBERT was retrained on the augmented dataset
and performance was assessed on the same held-out test set of 400 manually-labeled samples.

Table 3: CodeBERT performance after retraining with the CommiTune pipeline.
Emotion Precision Recall F1-Score
Frustration 0.87 0.79 0.83
Satisfaction 0.74 0.81 0.77
Neutral 0.80 0.80 0.80
Caution 0.90 0.88 0.89

Retraining CodeBERT on the augmented dataset resulted in a dramatic improvement across all
metrics. As shown in Table 3, the CommiTune approach achieves an overall accuracy of 81%, a
25-point increase from the baseline, and a Macro F1-score of 0.82, a 23-point increase over the 0.59
baseline.

Figure 5: Confusion matrix for CommiTune (CodeBERT trained with augmented data).

Crucially, the model’s primary weakness in identifying the Satisfaction class has been resolved.
The F1-score for Satisfaction jumped from a poor 0.46 to a strong 0.77. The confusion matrix
in Figure 5 reveals that the model no longer systematically misclassifies Satisfaction commits as
Neutral, demonstrating a more nuanced understanding of positive affective signals. Furthermore, the
model exhibits a significant reduction in off-diagonal errors across all categories. The performance
on Frustration (F1: 0.83) and Caution (F1: 0.89) is particularly strong, indicating a more robust
and reliable classifier overall. This demonstrates that the generative data augmentation strategy
was the key to repairing the representational gaps in the baseline model, unlocking state-of-the-art
performance on this nuanced, domain-specific task.
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6 CONCLUSION

In this work, we addressed the challenge of detecting developer emotions in technical commit
messages, a domain where general-purpose language models, trained on a mix of conversational text
and informal code repositories, systematically fail.

We introduced a rigorously annotated dataset for software engineering affect and demonstrated that
while a fine-tuned CodeBERT provides a strong baseline, its performance is significantly constrained
by data scarcity. Our proposed hybrid pipeline, CommiTune, overcomes this limitation by using
a fine-tuned LLaMA model for data augmentation, achieving a state-of-the-art Macro F1-score of
0.82 and substantially outperforming all baselines, particularly in resolving the ambiguities of the
Satisfaction class.

This result offers a broader lesson for specialized NLP: hybrid augmentation presents a practical and
effective strategy to bridge the representational gaps in domains where labeled data is scarce. While
our study focuses on English-language commits from professional repositories, future work could
explore this method’s efficacy in multilingual software projects or adapt it to other technical fields
like legal or biomedical text analysis.

By releasing our dataset, code, and models, we provide a reproducible benchmark to spur further
research into domain-adapted affective modeling—a feasible and socially impactful field with clear
applications in improving developer well-being and software reliability.
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